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Abstract: Uncertain information on input parameters of computer models is usually modeled by consider-
ing these parameters as random, and described by marginal distributions and a dependence structure of
these variables. In numerous real-world applications, while information is mainly provided by marginal dis-
tributions, typically from samples, little is really known on the dependence structure itself. Faced with this
problem of incomplete or missing information, risk studies that make use of these computer models are often
conducted by considering independence of input variables, at the risk of including irrelevant situations. This
approach is especially used when reliability functions are considered as black-box models. Such analyses re-
main weakened in absence of in-depth model exploration, at the possible price of a strong risk misestimation.
Considering the frequent case where the reliability output is a quantile, this article provides a methodology
to improve risk assessment, by exploring a set of pessimistic dependencies using a copula-based strategy.
In dimension greater than two, a greedy algorithm is provided to build input regular vine copulas reaching
a minimum quantile to which a reliability admissible limit value can be compared, by selecting pairwise
components of sensitive influence on the result. The strategy is tested over toy models and a real industrial
case-study. The results highlight that current approaches can provide non-conservative results.
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1 Introduction

Many industrial companies, like energy producers or vehicle and aircraft manufacturers, have to ensure a
high level of safety for their facilities or products. In each case, the structural reliability of certain so-called
critical components plays an essential role in overall safety. For reasons related to the fact that these critical
components are highly reliable, and that real robustness tests can be very expensive or even hardly feasible,
structural reliability studies generally use simulation tools [18, 43]. The physical phenomenon of interest
being reproduced by a numerical model 1 (roughly speaking, a computer model), such studies are based on
the calculation of a reliability indicator based on the comparison of y = n(x) and a safety margin, where
x corresponds to a set of input parameters. In the framework of this article, such models are considered as
black-boxes and can be explored only by simulation means.
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While the problems of checking the validity of n and selecting inputs x € y C R are addressed by an
increasing methodological corpus [3, 15], a perennial issue is the modeling of x. Differing from the specifi-
cation of 7 itself, this input vector is known with uncertainty, either because the number of experiments to
estimate is limited, or because some inputs reflect intrinsically variable phenomena [59]. In most cases, these
epistemic and aleatory uncertainties are jointly modeled by probability distributions [34]. Consecutively, the
reliability indicator is often defined as the probability that y be lower than a threshold (failure probability),
or a limit quantile for y. This article focuses on this last indicator, which provides an upper or lower bound
of the mean effect of the output variable uncertainty.

Therefore the modeling of x stands on the assessment of a joint probability distribution with support y,
divided between marginal and dependencies features. Though information on each dimension of x can often
be accessible experimentally or using physical or expert knowledge [5], the dependence structure between
the component of x remains generally unknown. Typically, statistical data are only available per dimension,
but not available for two or more dimensions simultaneously. For this reason, most of robustness studies
are conducted by sampling within independent marginal distributions. Doing so, reliability engineers try to
capture input situations that minimize the reliability indicator.

However, the assumption of independence between inputs has been severely criticized since the works
by [30] and [62], who showed that output failure probabilities of industrial systems can significantly vary
and be underestimated if the input dependencies are neglected. More generally, [60, 61] showed that tail
dependencies between inputs can have major expected effects on the uncertainty analysis results. A notice-
able contribution to this analysis was made by [64], who highlighted, using vine copula models, the strong
impact of input dependence structures on reliability indicators computed by well-known methods of uncer-
tainty quantification.

In this paper, we consider a general probabilistic and statistical approach at modelling dependence with
a supervised target. In particular, we study the specific problem of structural reliability as an application of
such method. In decision-making problems, [40] proposed a general definition of the worst penalizing distri-
bution as the minimizer of an excepted cost among a set of possible distributions. More recently, [2] extended
this approach to account for incomplete dependence information. These theoretical works, that propose se-
lection rules over the infinite set of all possible joint distributions, remain hard to apply in practice. Recent
applied works made use of copulas [50] to model dependencies between stochastic inputs [60, 61], following
other researchers confronted to similar problems in various fields: finance [13], structural safety [29], environ-
mental sciences [57] or medicine [4]. These studies mainly consider bivariate copulas, which makes theses
analysis effective only when two random variables are correlated. Cases where a greater number of variables
is involved were explored by [37] then [64], who used vine copulas to approach complex multidimensional
correlation problems in structural reliability, and by [63] in a specific context of regression by polynomial
chaos expansion. A vine copula is a graphical representation of the pair-copula construction (PCC), proposed
by [39], which defines a multidimensional dependence structure using conditional bivariate copulas. Various
class of vines exist (see [17] for a review), and among them the regular vines (R-vines) introduced by [6, 7] are
known for their appealing computational properties, while inference on PCC is usually demanding [20, 33].

R-vine parametric copulas seem promising to improve the search for a worst-case dependence between
stochastic inputs, while keeping the benefits of a small number of parameters, as favoring inference and con-
ducting simple sensitivity analyses a posteriori. To our knowledge, however, no practical methodology has
been yet proposed to this end for which the notion of worst case is defined by the minimization of an output
quantile. This is the subject of this article. More precisely, the aim of this research is to determine a paramet-
ric copula over X, close to the worst case dependence structure, which is associated to a minimum value of
the quantile of the distribution of y. Given a vine structure defined by a parameter vector, the optimization
problem involves to conduct empirical quantile estimations for each value of this vector in a finite set of in-
terest (chosen as a grid). The proposed methodology stands on an encompassing greedy algorithm exploring
copula structures, which integrates several sub-algorithms of increasing complexity and is based on some
simplifying assumptions. These algorithms are made available in the Python library dep-impact [8].

The article is therefore organized as follows. Section 2 introduces the framework and studies the con-
sistency of a statistical estimation of the minimum quantile, given an input copula family and a growing
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sequence of grids. The wider problem of selecting copulas in high-dimensional settings using a sequential
algorithm of quantile minimization is considered in Section 3.

While the choice of R-vines is defended, similarly to [64] a sparsity hypothesis is made to diminish the
computational burden, according to which only a limited number of pairwise dependencies is influent on
the result. A greedy algorithm is proposed to carry out the complete procedure of optimization and modeling.
This heuristic is tested in Section 4 over toy examples, using simulation, and a real industrial case-study. The
results highlight that worst-case scenarios produced by this algorithm are often bivariate copulas reaching the
Fréchet-Hoeffding bounds [27, 35] (describing perfect dependence between variables), as it could be expected
in monotonic frameworks, but that other nontrivial copulas can be exhibited in alternative situations. Results
and avenues for future research are extensively discussed in the last section of this article. We also refer to
Appendix A and B for supplementary material on consistency proofs, on R-vine copulas and on R-vine iterative
construction.

2 Minimization of the quantile of the output distribution

This section introduces a general framework for the calculation of the minimum quantile of the output dis-
tribution of a computational model, when the input distribution can be taken from a large family of distribu-
tions, each one corresponding to a particular choice of dependencies between the input variables.

2.1 A general framework for the computation of the minimum quantile

To be general, let us consider a computer code which takes a vectorx € y C R? as an input and produces a real
quantity y in output. This code is represented by a deterministic function 7 : R? — R such that 7(x) = y. The
sets R and R? are endowed with their Borel sigma algebras and we assume that n is measurable. The general
expression of the function 7 is unknown but for some vector x € R it is assumed that the quantity 1(x) can
always be computed. In particular, the derivatives of n, when they exist, are never assumed to be known.
Let Py, ..., P, be a fixed family of d distributions, all supported on R. We introduce the set D(Pq, ..., P;) of
all multivariate distributions P on R? such that the marginal distributions of P are all equal to the (Pjj-1...a-
Henceforth, we use the shorter notation D for D(Pq, ..., Py).

For some P € D, let G be the cumulative distribution function of the model output. In other terms dG is
the push-forward measure of P by 1. For a € (0, 1), let G™! be the a-quantile of the output distribution:

G Y(a) := inf{y e R: G(y) = a}. (1)

For the rest of this document, we denote as output quantile the a-quantile of the output distribution.

In many real situations, the function n corresponds to a known physical phenomenon. The input vari-
ables x of the model are subject to uncertainties and are quantified by the distribution P. The propagation
of these uncertainties leads to the calculation of the output quantile. Due to the difficulties to gather infor-
mation, it is common to have this distribution incompletely defined and only known through its marginal
distributions. Therefore, the set D corresponds to all the possible distributions that are only known through
their marginal distributions (P;);_; 4. Detecting very unfavorable correlations between inputs is similar to
detecting correlations leading to low quantile values. We define as the worst quantile, the minimum value of
the quantile by considering all the possible input distributions P € D. This conservative approach consists
in minimizing G~!(a) over the family D such as

G'l*(a) := min G *(a). 2
PeD

Since the function 1 has no closed form in general, it is not possible to give a simple expression of G™*(a)
in function of the distribution P, and consequently the minimum G™! (&) does not have a simple expression
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Figure 1: Illustration of the link between the dependence parameter 8 and the quantile function G;,l. The joint CDF Fy is ob-
tained using (3) from a copula C¢ and marginal CDF’s (Fj)]‘-il- The push-forward of Fg through the model  leads to the CDF G4
and quantile function G;,l of the output distribution.

too. In this paper we propose to study a simpler problem than (2), by minimizing G !(a) over a subset of D.
This subset is a family of distributions (Pg)gcg associated to a parametric family of copula (Cg)gcg, Where ©
is a compact set of RP and p is the number of copula parameters.

2.2 Copula-based approach

We introduce the real-values random vector X = (Xq,...,X,) € R associated to the distribution Pgy. Each
component X;, forj = 1,..., d, is a real-value random variable with distribution P;. A copula describes the
dependence structure between a group of random variables. Formally, a copula is a multidimensional contin-
uous cumulative distribution function (CDF) linking the margins of X to its joint distribution. Sklar’s Theorem
[58] states that every joint distribution Fg associated to the measure Py can be written as

Fo(x) = Co (F1(x1), ..., F4(xa)), 3

with some appropriate d-dimensional copula Cg with parameter @ € @ and the marginal CDF’s F;(x;) = P[X; <
x;]. If all marginal distributions are continuous functions, then there exists a unique copula satisfying

Cg(ul, ceey ud) = F9(F11(u1), ceey F&l(ud))

where u; = Fj(x;). For Fg absolutely continuous with strictly increasing marginal distributions, one can derive
(3) to obtain the joint density of X:

d
fo®) = cq (F1(x1), ..., Faxa)) [] fi(xy), (4)

j=1

where cg denotes the copula density function of Cg and f,-(xj) are the marginal densities of X. Numerous
parametric copula families are available and are based on different dependence structures. Most of these
families have bidimensional dependencies, but some can be extended to higher dimensions. However, these
extensions have a lack of flexibility and cannot describe all types of dependencies [50]. To overcome these
difficulties, tools like vine copulas [38] (described in Section 3) combine bivariate copulas, from different
families, to create a multidimensional copula.

Let Gg and Gy' be respectively the CDF and quantile function of the push-forward distribution of Py by
n (see Figure 1). For a given parametric family of copula (Cg)gco and a given a € (0, 1), the minimum output
quantile for a given copula is defined by

G () := inf G (a) 5)
0co
and if it exists, we consider a minimum
92 € argmin G;l(a). 6)
6co
We call this quantity the minimum quantile parameter or worst dependence structure.
Note that there is no reason for G;l (a) to be a convex function of 8. The use of gradient descent algorithms

is thus not straightforward in this context. Moreover, the gradient of @ — Gjol is unknown and only zero-
order optimization methods can be applied to solve (6). For this reason, in the following of this section, we
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analyze the basic approach which consists in estimating 6 by approximating © with a finite regular grid
Oy of cardinality N. Therefore, for a given parametric copula (Cg)gc and a given a € (0, 1), we restrict the
problem (6) to

0y € argmin G(",l(a). ™
0Oy

2.3 Estimation with a grid search strategy

In the restricted problem (7), the greater N, the closer @) to the minimum 8" of @; obviously the conver-
gence rate should depend on the regularity of the function n and on the regularity of the quantile function
0 — Ggl(a). Because 71 has no closed form, the quantile function G,;l(a) has no explicit expression. The
minimizer 6 can be estimated by coupling the simulation of independent and identically distributed (i.i.d)
data (Y3, ..., Yn), defined as realizations of the model output random variable Y := n(X) with distribution
dGg, with a minimization of the empirical quantile over @y. Note that this problem does not deal with fitting
vines on a set of observations: here we generate data according to various vine distributions and we estimate
quantiles under these distributions.
For 0 taking a value over the grid @y, the empirical CDF of Y is defined for any y € R by

~ 1
GO(Y) = n Z ]lY,-sy- (8)
i=1

The corresponding empirical quantile function a;l(a) is defined as in (1) by replacing G with its empirical
estimate. For a given a, the worst quantile on the fixed grid @y is given by

min G;l ().
6coy
and can be estimated by replacing the quantile function with its empirical function:

min Gy'(a). 9)
6coy

Finally the estimation of the minimum quantile parameter over the grid @y is denoted by

Oy = argmin Gp'(a). (10)
6coy
The construction of the grid @y can be difficult because @ can be unbounded (e.g. ® = [1, oo] for a Gum-
bel copula). To tackle this issue, we chose to construct @y among a normalized space using a concordance
measure, which is bounded in [-1, 1] and does not rely on the marginal distributions. We chose the com-
monly used Kendall rank correlation coefficient (or Kendall’s tau) [41] as a concordance measure to create
this transitory space. This non-linear coefficient T € [-1, 1] is related to the copula function as follows:

11
T=4//C9(u1, uz)dC(uy, uz) - 1.
-1 -

1

For many copula families, this relation is much more explicit (see for instance [28]). Therefore, the finite grid
is created among [-1, 1]” and each element of this grid is converted to the copula parameter 6. Moreover, the
use of concordance measures gives a normalized expression of the strength of dependencies for all pairs of
variables, independently of the used copula families.

The consistency of estimators (9) and (10) is studied in next section, under general regularity and geo-
metric assumptions on 1 and the functional > Py.
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2.4 Consistency of worst quantile-related estimators

In this section, we give consistency results of the estimators mingcg, a(‘,l(a) and 6N, for a growing sequence
of grids on the domain 0. For easier reading, we skip some definitions needed for our assumptions. Section
A in Appendix provides a more complete presentation, including the formal definition of the modulus of
increase of the quantile function.

Let a be a fixed value in (0, 1). To approximate @, we consider a sequence of finite discrete grids (Oy)n»1
on O where N is the cardinal of @y and such that

sup ||6-0'|; — 0 asN tends to infinity. @11
0c0, 0’ coy

We first introduce technical hypotheses required for the consistency result which are commented further in
the text.

Assumption A. Forall 8 € 0, the distribution Py admits a density fq for the Lebesgue measure and the copula
Co admits a density cg for the Lebesgue measure on [0, 1]¢ such that
0x[0,1]9 — R
0x(xy,...,x5) — colx1,...,xq)

is a continuous function.
Assumption B. For all 0 € 0O, Gy is a continuous function.

Assumption C. For all 6 < 0, Gy is strictly increasing and the modulus of increase of Gg at Gg'(a) is lower
bounded by a positive function €.

Assumption D. There exists a unique 8" € © minimizing 6 — Gy'().

Let (Nn)n=1 be a sequence of integers such that N, < nf for some 8 > 0. For every n > 1 we consider the
grid Oy, and for every @ € Oy, we compute the empirical quantile Egl(a) from a sample of n i.i.d variables
Y1,..., Yp with Y; = n(X;), where the ng are i.i.d. random vectors with distribution Pgy. We then introduce
the extremum estimator

é = HNH. (12)
Theorem 1. Under Assumptions A, B and C, for all € > 0 we have
P (‘(A}él(a) - Ggl*(a)( > e) = . (13)

Moreover, if Assumption D is also satisfied, then for all h > O we have

n—oo

PO - 07| > h] 22= 0

(proof given in Appendix A).

It would be possible to provide rates of convergence for this extremum quantile and for 8" at the price of more
technical proofs, by considering also the dimension metric of the domain @ and the modulus of increase of
the function 8 — Gg(a) (see for instance the proofs of Theorems 1 and 2 in [12] for an illustration of such
computations). It would be also possible to derive similar results for alternative extremum quantities. One
first example, useful in many applications, would be to estimate some "limit probability" by determining an
extremum infgc g Gg(y) of the CDF for a fixed y.

This consistency result could also be extended for regular functional of G4 or Gl‘,l, such that

inf [ Gg(y)d inf Go'(a)dy,
529/ o(y)dy or 529/ o (a)dy

Y2Yo azao
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Input Probabilistic Space Output CDF and PDF

G

Go(Gg'(a) - 6)

96(Gg (@) — 6)
9e(Gg ' (@)

9e(Gg (@) + 6)

mm {x:Gjl(a)=n(x)=Gzl(a)+ 6}

Gg'(@)
Figure 2: Pre-image (left) and image (right) of a modulus of increase of Gg at the point G;,l(a) for a deviation +4.

for some fixed values y, and ag. Extending our results for such quantities is possible essentially because the
Dvoretsky-Kiefer-Wolfowitz (DKW) inequality [21], used in the proof, gives an uniform control on the estima-
tion of the CDF and the quantile function.

We now discuss the three first assumptions and provide some geometric and probabilistic interpretations
of them. Assumption A requires some regularity of the input distribution with respect to 8. This is indeed nec-
essary to locate the minimum of the quantile. Assumption B and C ensure that the output quantile function
G;,l has a regular behavior in a neighborhood of the computed quantile G;,l(a). Assumption B ensures that
the output distribution dG¢ has no Dirac masses whereas Assumption C ensures that there is no area of null
mass inside the domain of dGyg.

Figure 2 illustrates Assumption B with a possible configuration of the input distribution. For @ € ® an § >
0, we consider a small neighborhood [Gal(a)—ﬁ , G;l (a)+6] of G;l (a), and the pre-image of this neighborhood.
The two right figures are the CDF Gy (top) and PDF gg (bottom) of the output variable Y for a given 0. The
figure at the left hand represents the contours of the pre-image in the input space. The red plain line is the
level set 17(Gy' (@) and the dot blue line is the perturbed level set 7' (Gy' (a) £ 8)). The blue area in the right
figure corresponds to [G;l(a) -6, Gjol(a) + 6] and the pre-image of this neighborhood is the blue area in the
left figure. Assumption B requires that the mass of the blue domain is lower bounded by a positive function
£¢(6) that does not depend on 6.

It is possible to give sufficient conditions on the input distribution Fg and on the geometry of 1 to obtain
Assumptions B and C. Using the definition of the modulus of continuity from Equation (A.1) in Appendix, it
comes

€,(6, Gg'(a) = max / fo(x)dA(x); / fo(x)dA(x)
Gyl ()<g<Gy(a)+6} {G,' (@)-6<g<Gy (@)}
> fo(x)dA(x)
{Gyt(a)<g=G, (a)+6}

Assume that the code 1 is a Lipschitz and differentiable function with no null derivatives almost everywhere
in the neighborhood of G,;l (a). Then, using the coarea formula (see for instance [26], Section 3.4.4, Proposition
3), we find that

Gol(a)+68

€c. (8, Go (a)) 2 / / fo d34 1| du,
G0t 0 Vall
Gyl(a)  [n{u}
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where 3% ! is the d - 1 dimensional Hausdorff measure (see for instance Chapter 2 in [26]). If the copula and
the code are such that there exists a constant I such that for any @ € ® and any u in the support of dGy

fodH¥ <1,
nH{u}

then we find that I
Nz
Note that ||V7]|e < oo since 77 is assumed to be Lipschitz. We have proved that Assumption C is satisfied in
this context. Finally, by rewriting again the co-area formula for G4(y), we find that Assumption B is satisfied
as soon as the set of stationary points (|| Vn(x)|| = 0) of all level set ! {u} has null mass for the Hausdorff
measure.

In conclusion, we see that for smooth copulas, Assumptions C and B mainly depend on the regularity of
the function 7, by requiring on one side that n does not oscillate to much and on the other side that the set
of stationary points does not have a positive mass on the level sets of .

€6,(8, Gg' () = 6

3 Quantile minimization and choice of penalized correlation
structure

A preliminary study of the influence of the dependence structure, specific to quantile minimization, is con-
ducted in Appendix C. It also illustrates that the worst quantile is not always reached for a trivial copula (i.e.,
reaching the Fréchet-Hoeffding bounds).

The current section first provides a rationale for choosing the so-called R-vine structure as a preferential
copula structure for modeling the variety of correlations between inputs. Then, the search for a minimum
quantile is presented in two times. Subsection 3.2 proposes an exhaustive grid-search algorithm for estimating
this quantile when the R-vine copula structure is fixed with a given pair-copula families and indexed by the
parameter vector 0. Subsection 3.3 extends this rigid framework by permitting the search of particular sub-
copula pairwise structures, such that the minimization be more significant. In each situation, examples are
provided to demonstrate the feasibility of the approach.

3.1 Arationale for R-vine copula structures

Representing dependence structures in high dimensional settings is a challenging problem. For the following
definition, we simplify the expressions by omitting the use of 8: f = fy, F = Fg and ¢ = cg. By recursive
conditioning, the joint density can be written as a product of conditioning distributions such as

fOxa,ooxa) = filxa) - fo10elx) - f31,,(61x1, x2) -+ -

o fan,z,..d-1(alxa, X2, .o Xgo1)- (14)

For clarity reason, we now simplify the expression with f3); ; = f3)1,,(x3|x1, X2) and so on for other orders.
From (4), the conditioning densities of (14) can be rewritten as products of conditioning copula and marginal
densities. For example, in a case of three variables and using (14), one possible decomposition of the the joint
density can be written as

fGa, x2,%3) = fi+ fopn - f3)1,2- (15)

Using (4), the reformulation of f3; , leads to

fizp  ci32fipfip
fij1,2 = 2 _ | | 2 _ c132°f32 (16)
fi2 fi2
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where ¢; 31, = ¢1,3,(Fy2(x1(x2), F3)5(x3]x2)). By developing f3); , in the same way, we find that

faj1,2=C132° €23 f3- (17)

Thus, by replacing the expression of f3); , in (15) and doing the same procedure for f,, the joint density can
be written as
[, x,x3) =fi-fa-fs- 1,27 €23 €13 (18)

This final representation of the joint density based on pair-copulas has been developed in [39] and is called
the pair-copula construction (PCC). The resulting copula represented by the product of conditional copulas
in (18) offers a very flexible way to construct high-dimensional copulas. However, it is not unique; indeed,
(14) has numerous decomposition forms and it increases with the dimension.

To describe all such possible constructions in an efficient way, [6, 7] introduced the vine models. This
graphical tool, based on a sequence of trees, gives a specific way to decompose the multivariate probability
distribution. Basically, a vine model is defined by

e astructure of trees which can be represented by a matrix [48],
¢ a copula family for each pair of the structure,
¢ a parameter for each pair-copula.

A R-vine is the general construction of a vine model, but particular cases exists such as the D-vines and C-
vines, described in Appendix B. Vine models were deeply studied in terms of density estimation and model se-
lection using maximum likelihood [1], sequential estimation [20, 42], truncation [11] and Bayesian techniques
[31]. Inspired by recent studies like [64], their popularity and well-known flexibility led us to use R-vines in
this article, despite the fact that in our context we are looking for a conservative form and not to select the
most appropriate form with given data, in absence of correlated observations.

3.2 Estimating a minimum quantile from a given R-vine

3.2.1 Grid-search algorithm

LetQ = {(i,j) : 1 < i,j < d} betheset of all the possible pairs of X, in a d-dimensional problem. The number of
pairs p isassociated to the size of Q suchasp = Q| = (g) = d(d-1)/2.We define V as the vine structure and we
consider fixed copula families for each pair. In this article, we only consider single parameter pair-copulas,
such that the parameter @ is a p-dimensional parameter vector with a definition space @ := ]'[(i,j) co ©ij
where 0, ; is the parameter space for the pair-copula of the pair (i, j). However, the methodology can easily
be extended to multi-parameter pair-copulas. Note that a pair-copula can be conditioned to other variables,
depending on its position in the vine structure V. Thus, the input distribution dFy(V) is defined by the vine
structure V, the copula families and the parameter 6. Also note that the copula parameter 0 is associated to
the R-vine structure V (i.e., 8 = 0y), see Section 3.2.2. For the sake of clarity, we simplify the notation to 0
only.

The most direct approach to estimate the minimum quantile is the Exhaustive Grid-Search algorithm,
described by Algorithm 1.

Algorithm 1: Exhaustive Grid-Search algorithm to minimize the output quantile.
Data: A vine structure V, a fixed grid Oy, a sample size n

1 for @ € Oy do

2 1. Simulate a sample {X;}L, according to dFg(V);

3 2. Evaluate {Y; = n(Xj)} ;s

4 3. Compute E;l(a): empirical quantile of {Y;}L,;

Result: min f}gl ()
6coy
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For a given vine structure V, copula families, a grid @ and a sample size n, three steps are needed for
each 0 € Oy. The first step simulates an input sample {X;}1' ; according to the distribution dFg¢(V) for a given
sample size n. The second evaluates the sample through the model 5. The third estimates the output quantile
from the resulting sample {Y; = n(X;)},. The minimum quantile is took among the results of each loop.

3.2.2 Influence of the vine structure

Using R-vines, the dependence parameter 0 is associated to the vine structure V. Due to the hierarchy of
the vine structure, some pair-copulas are conditioned to other variables and thus for their parameters. As
an illustration, let us consider two vine structures with the two following copula densities, with the same
simplified expressions as for (18):

Cvl(Xl’ X2,X3,X4) = Co15 €, " Cory” C92,3|1 ' C91,4\2 ' Ces,au,z (19)

Cv, (x1, X2, X3, X4) = €15 " CO34 " COou " COLu " CO2314 " COLIp3 A" (20)

The difference between these densities is the conditioning of some pairs, the dependence parameters of the-
ses vines are Oy, = [01,2, 01,3, 01,42, 02,311, 02,4, 03,4121 and Oy, = [01 534, 61,3, 01 413, 02,314, 02,4, 05,4].
Applying the same grid for these two vines may give different results due to the conditioning order from the
vine structure. For example, if the pair X5-X, is very influential on minimizing the output quantile, it would
be more difficult to find a minimum with V; than 'V, due to the conditioning of the pair with X; and X, in V;.
However, if the grid is thin enough, the minimum from these two vines should be equivalent.

To counter this difficulty, one possible option consists in randomly permuting the indexes of the variables
and repeating the algorithm several times to visit different vines structures.

3.2.3 Computational cost

For one given R-vine structure and one fixed copula family at each pair, the overall cost of the method is
equal to nN. However, as explained in § 2.4, the finite grid @y, should be thin enough to reasonably explore
0. Therefore, N should increase with the number of dimensions d and more specifically with the number of
pairsp = (‘zi) A natural form for N would be to write it as N = v, where v € R*. Thus, the overall cost of the

exhaustive grid-search would be equal to m(ﬁ). The costisin O(fydz) which makes the method hardly scalable
when the dimension d increases. Ideas about alternative optimizations methods are discussed in Section 5.

3.3 lterative search for a penalizing R-vine structure: a greedy heuristic based on
pairwise copula

3.3.1 Going further in quantile minimization

With Algorithm 1, the previous subsection proposes an exhaustive grid-search strategy to determine a R-vine
copula C 5 such that the associated output quantile Gél(a) be the smallest (and also the most conservative
in a structural reliability context). This approach remains however limited in practice since Cj for fixed pair-
copula families (e.g., Archimedean or max-stable copulas) and V which is a member of the set F; of all the pos-
sible d-dimensional R-vine structure. Intuitively, a more reliable approach to quantile minimization should
be based on mixing this estimation method with a selection among all members of the finite set F,;, as well for
the copula families. It is indeed likely that searching within an associative class of copulas like Archimedean
ones, allowing modeling dependence in arbitrarily high dimensions, be a too rigid choice for estimating the
minimum Gél(a).
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A minimum quantile can probably be found using a R-vine structure defined by conditional pairwise sub-
copulas (according to (18)) that are not part of the same rigid structure. However, a brute force exploration of
F 4 would be conducted at an exponential cost increasing with d [49]. If we also consider the large computa-
tional cost of an exhaustive grid-search for a large number of dependent variables (as explained in § 3.2), this
approach is not feasible in practice for high dimensions.

For this reason, it is proposed to extend Algorithm 1 by a greedy heuristic that dynamically selects the
most influential correlations between variables while limiting the search to pairwise correlations. Doing so,
minimizing the output quantile can be conducted in a reasonable computational time. Therefore the selected
d-dimensional vine structure would be filled with independent pair-copulas except for the pairs that are
influential on the minimization.

This working limitation, interpreted as a sparsity constraint, is based on the following assumption: it is
hypothesized that only few pairs of variables have real influences on the minimization. It is close in spirit to
the main assumption of global sensitivity analysis applied to computer models, according to which only a
limited number of random variables has a major impact on the output [36, 56].

3.3.2 General principle

The method basically relies on an iterative algorithm exploring pairwise correlations between the uniform
random variables U; = F]-’l(X ;) and progressively building a non-trivial R-vine structure, adding one pair of
variable to the structure at each iteration. Starting at step k = 0 from the simple independent copula

d
Coo (U1, ..., ug) = H uj,
j=1

the algorithm finally stops at a given step k = K while proposing a new copula Cqu associated to a R-vine
structure Vi mostly composed of independent pair-copulas.

At each iteration k, we denote by Q; the selected pairs which are considered non-trivial (non-
independent) due to their influence on the quantile minimization. Let Q_; = Q\Q; be the candidate pairs,
which were not the remaining pairs, which influence on the minimization is still to be tested and are still con-
sidered independent. We also consider B as a set of candidate copula families. The pseudo-code of Algorithm
2 shows in detail how this iterative exploration and building is conducted. More algorithms in Appendix B.2
described how to construct a vine structure with a given list of indexed pairs of variable.

3.3.3 Example

Consider the four-dimensional (d = 4) situation such as X = (Xy, ..., X4) where, for to the sake of simplicity,
all marginal distributions of X are assumed to be uniform on [0, 1]. We consider a simple additive model
described by

n(X) = 30X; + 10X5 + 100X,. 1)

For an additive model and uniform margins, the output quantile is monotonic with the dependence param-
eters (see Subsection 2 in Appendix C) which locates the minimum quantile at the edge of @. Thus, Step 1.b.
of Algorithm 2 is simplified by considering only Fréchet-Hoeffding copulas in the exploration.

In this illustration we consider @ = 0.1 and we select n = 300, 000 large enough in order to have a
great quantile estimation and the algorithm stops at K = 3. Figure 3 shows, for each iteration k, the p — k
vine structures that have been created by the algorithm. The red nodes and edges are the candidate pairs
(i,j) € Q_; and the blue nodes and edges are the selected pairs Q. At iteration k = 0, the selected pair is
(1, 4) with an estimated minimum quantile of —52.18. At iteration k = 1, the second selected pair is (3, 4)
with an estimated minimum quantile of -56.03. At iteration k = 2, the third selected pair is (2, 4) with an
estimated minimum quantile of -56.23.
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Algorithm 2: Minimization of the output quantile and estimation of 8% over an increasing family
of R-vine structures.

1 Initialization:

2 lteration: k = O;

3 Selected pairs: Qg = 0;

4 Selected families: By = (;

5 while k < K do

6 Copula parameter space of the selected pairs: Oy = [[; ycq, 6

7 1. Explore the set of candidate pairs Q_;
8 for (i,j) € Q_; do
a. Create a vine structure V; ;) using the procedure of Section B.2 applied to the list Q; U (i, j);

10 b. Explore the set of candidate families B;
1 for B € Bdo
12 Apply Algorithm 1 with the pair-copula families B U B;

() Definea (k +1)-dimensional grid A; ; of @) x ©; ; with
cardinality Ny;
(i) Select the minimum over the grid A, ;:

@3 = argmin{(A}f,,lB (a)}.

05 cA;;
13 c. Select the minimum among B
B;; = argmin {5T1 (a)}
b BeB 0z
Bi,j = 031.’].

14 2. Select the minimum among Q_j

()" = argmin{G;' @},

(i,))eQ Y
k
V( ) - v(i,j)(k)’
é(k) = é(i,j)(k)
k
30 - B pw
15 3. Check the stopping condition;
se ~-1 ~-1
16 if Gé(k) (a) = Gé(H) («) then
17 ‘ K=k-1;
18 else
19 Extend the list of selected pairs: Q; = Q; U (i,j)(") and families: B; = B, U B,
20 if k < K and computational budget not reached then

21 New iteration: k = k + 1;
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We observe that X, appears in all the selected pairs. This is not surprising since X, is the most influential
variable with the largest coefficient in (21). The algorithm considers D-vines by default, but this is important
for the first iterations since most of the pairs are independent. When it is possible, the algorithm creates a
vine such as the selected pairs and the candidate pair are in the first trees. For example, the fourth vine at
iteration k = 2 with the candidate pair (2, 4) shows a R-vine structure that respects the ranking of the listed
pairs. However, the third vine at iteration k = 2 for the candidate pair (1, 3) along with the selected pairs
{(1, 4), (3, 4) could respect the ranking and set all the pairs in the first tree altogether. Thus, using Algorithm
3 in Appendix, a valid vine structure is determined by placing the candidate pair (1, 3) in the next tree.

3.3.4 Computational cost

The number of model evaluations is influenced by several characteristics from the probabilistic model and
from the algorithm. Let |B| be the number of family candidates. The total number of runs is

K-1
N-= |B|g 3" Nex (d(d - 1) - 2K). 22)
k=0

The sum corresponds to the necessary iterations to determine the influential pairs. The maximum possible
cost is if all the pairs are equivalently influential (i.e., K = p = d(d - 1)/2), which would be extremely high.
The term N is the cost from the grid-search quantile minimization at step 2. of the algorithm. The greater
Ny is and the better the exploration of @ U 0; ;. Because the dimension of @; increases at each iteration
k, it is normal that Ny should also increases with k (e.g. N, = ~#X, where ~ and B are constants). Also, the
greater n is and the better the quantile estimations. The second term is the cost from the input dimension
d which influences the number of candidate pairs Q_; at each iteration k. Table 1 illustrates the number of
quantile estimations in function of the dimension d and the number of influential pairs K. We observe that
the computational cost increases significantly faster when K = 1 than when K = 3.

Table 1: Example of the computational cost with d (columns) and K (rows) in function of n for |B| = 1 and Ny = 10 x (k + 1)2.

K/d 3 4 5 6 7 8 9 10

30n 60n 100n 150n 210n 280n 360n 450n
80n 200n 360n 560n 800n 1080n 1400n 1760n
3 90n 360n 720n 1170n 1710n 2340n 3060n 3870n

Extensions can be implemented to reduce the computational cost such as removing from Q, the pairs
that are not sufficiently improving the minimization.

4 Applications

The previously proposed methodology is applied to a toy example and a real industrial case-study. It is
worth to mention that these experiments (and future ones) can be conducted again using the Python library
dep-impact [8], in which are encoded all the procedures of estimation and optimization presented here.
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4.1 Numerical example

We consider and extend the portfolio example provided and illustrated in Subsection 2 of Appendix C . The
numerical model 7 is now defined by the weighted sum

d
Y=n(X)=-pX" == BX;,
j=1

where the g = (81, ..., B4) is a vector of constant weights. The margins of the random vector X follow the
same generalized Pareto distribution with scale o and shape parameter . Note that the bivariate example
in Subsection 2 of Appendix C considers f = 1 and the distribution parameters as ¢ = 1 and ¢ = 1. In
the following examples, we aim at minimizing the median (a = 0.5) of the output distribution. We chose
to fix the marginal distribution’s parameters at 0 = 10 and & = 0.75, and we set the constant vector f to a
base-10 increasing sequence such that f§ = (101/ d 10%/ a ..., 10). This choice of weights aims to give more
influence to the latest components of X on Y. Thus, some pairs of variables should be more important in the
minimization of the output quantile, as required by the sparsity constraint. We also took n large enough to
estimate the output quantile with correct precision on this particular case-study (i.e. n = 300, 000).
For all these experiments the results from the different methods can be compared.

e Method 1: the grid-search approach with an optimized LHS sampling [46] inside © and a random vine
structure,
e Method 2: the iterative algorithm with an increasing grid-size of Ny = 25(k + 1)?.

Method 1 is established with the same computational budget as Method 2.

4.1.1 Dimension 3

In a three dimensional problem, only three pairs of variables (p = 3) are involved in the dependence structure.
The sampling size of ® in Method 1 s set to 400, which is great enough to explore a three dimensional space.
The results are displayed on Figure 4: the estimated quantiles from Method 1 (blue dots) with a convex hull
(blue dot line) and the quantile at independence (dark point) are provided. It also highlights the minimum
estimated quantiles from Methods 1 and 2 which are respectively represented in blue and red points. We
also show in green point, the minimum quantile by considering only the Fréchet-Hoeffding bounds. For each
minimum, the 95 % bootstrap confidence intervals is displayed in dot lines.

This low dimensional problem confirms the non-monotonic form of the quantile with the dependence
parameter, in particular for the variation of the quantile in function of 7, 3. As expected, the pair X,-X5 is
more influential on the output quantile due to the large weights on X, and X3. The minimum values obtained
by each method are still lower that the results given by an independent configuration. The minimum using
Fréchet-Hoeffding bounds is also provided to show that the minimum is not at the boundary of ©. Method 1
and 2 have very similar minimum results.

4.1.2 Dimension 10

To illustrate the advantages of the iterative procedure, we now consider d = 10. In this example, we chose
to only consider a Gaussian family for the set of pair-copula family candidates. The sampling size for the
exploration of @ in Method 1is set to 6, 000. Experimental results are summarized over Figure 5, by displaying
the minimum quantiles in function of the iteration k of Method 2. The quantile at independence is shown in
dark line, the minimum estimated quantile from Method 1 is shown in blue line and the other lines are the
minimum quantiles at each iteration of the algorithm, all with their 95% bootstrap confidence interval. We
display at each iteration the minimum quantiles of each candidate pair in small dots.
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Figure 4: Matrix plot of the output median in function of the Kendall coefficient of each pair. The blue dots represents the esti-
mated quantiles of Method 1. The black point is the quantile at independence and the minimum of Method 1 and 2 are the red
and blue points, which are equivalent here. The green point is the the minimum with only Fréchet-Hoeffding bounds. The 95 %
bootstrap confidence interval are displayed in dot lines.
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Figure 5: Minimization of the output quantile in function of the iteration k. The green and the orange lines respectively show
the minimum quantiles obtained from the first and second iterations from Method 2. The quantile at independence is shown in
black and the quantile obtained using Method 1is shown in blue. The 95 % bootstrap confidence intervals are also displayed
for the independence and each minimums.
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Figure 6: Quantile minimization for different set of family candidates B. The black line shows the quantile at independence. The
minimum at each iteration for the family candidates sets B, B2 and B> respectively in red, green and yellow.

The minimum result from Method 1 is even higher than the quantile at independence. This is due to the
very large number of pairs (p = 45) that makes the exploration of @ extremely difficult. On the other hand,
Method 2 (iterative algorithm) is definitely better and significantly decreases the quantile value even at the
first iteration (for only one dependent pair). The results are slightly improved with the iterations. We observe
at the last iteration that the results from the candidate pairs are slightly higher than the minimum from the
previous iteration. It is due to the choice of N} which does not increases enough with the iterations to correctly
explore O, which also increases with the iterations.

4.1.3 Using multiple pair-copula family candidates

To show the importance of testing multiple copula families, we consider d = 6 and three tests of Method 2
(iterative procedure). The figure 6 shows the minimum from the iterative results using three sets of family
candidates: a set of Gaussian and Clayton in red (B! = {G, C}), Gaussian only in green (B> = {G}), and
Clayton only in yellow (B> = {C}). We also display below the iteration number, the selected family for B'.
Atiteration k = 0, the algorithm with the set B! has selected the Gaussian copula as the selected pair and
the result is as expected equivalent as for the set B?. The next iteration, a Clayton copula has been selected
for algorithm with the set B, which slightly improves the minimization compared to the others. The improve-
ment start at iteration k = 2 where the Algorithm with the set B! minimizes more the output quantile than the
other sets with only one copula family. At the last iteration, the algorithm with set B! selected a mix between
Gaussian an Clayton families. This diversity seems to lead to better results than using only one family for
every pairs. Testing multiple families is an interesting feature of the algorithm and is something that cannot
be feasible for the grid-search approach. However, the cost for B! is twice larger than for the other methods.

4.2 Industrial Application

4.2.1 Context

We consider an industrial component belonging to a production unit. This component must maintain its in-
tegrity even in case of an accidental situation. For this reason, it is subject to a justification procedure by
regulation authorities, in order to demonstrate its ability to withstand severe operating conditions. This un-
desirable event consists in the concomitance of three different factors:
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¢ the potential existence of small and undetectable manufacturing defects ;

¢ the exposition of the structure to an ageing phenomenon harming the material which progressively di-
minishes its mechanical resistance throughout its lifespan ;

¢ the occurrence of an accidental event generating severe constraints on the structure.

If combined, these three factors might lead to the initiation of a crack within the structure. Since no failure was
observed until now, a structural reliability study should be conducted to check the safety of the structure. To
do soathermal-mechanical coden : R — R* was used, which calculates the ratio between the resistance and
the stress acting on the component during a simulated accident. The numerical model depends on parameters
affected by uncertainties quantified throughout numerous mechanical tests. Nevertheless, these experiments
are mostly established individually and only few experiments involve simultaneously two parameters.

4.2.2 Probabilistic model

For this problem, we introduce d = 6 random variables with predefined marginal distributions (P;);_;.. 4
The dependence structure is however unknown. From the 15 pairs of variables, only the dependencies of two
pairs are known: one is independent and the other follows a Gumbel copula with parameter 2.27. Therefore,
we consider p = 13 pairs of variables with unknown dependencies.
Given expert feedbacks, we restricted the exploration space 0 by defining bounds for each pair of vari-
ables (i, j) € Q such that
Tei;(17;) < 635 < Te, (7)),

where 7;; and TZ]- are respectively the upper and lower Kendall’s correlation coefficient bounds for the de-
pendence of the pair (i, j) and T, is the transformation from Kendall’s tau value to the copula parameter
for the associated copula c; ;. This choice enables to explore only realistic dependence structures. For these
experiments we only considered Gaussian copulas.

Remark 1. Note that such bounds can arise from expert knowledge based on a phenomenologic law linking
two variables: based on a physical property as the ideal or real gas laws, or the weakest link fracture theory
linking material toughness to temperature, a variable is known to be either negatively or positively correlated to
another one. Methodologies have been developed in various fields to refine such assessments [14, 67], but were
not considered in this research work.

4.2.3 Results

We consider the quantile at @ = 0.01 as a quantity of interest. A first experiment is established with the
incomplete probability structure: only the two pairs with a known dependence structure and all others at
independence. Two other experiments are established: an exhaustive grid-search approach with a given vine
structure and an iterative procedure with a maximum budget equivalent to the grid-search. A grid-size of
1000 is chosen with n = 20, 000.

The results are displayed in Figure 7. and has the same description as Figure 5. The quantile for the in-
complete probability structure is approximately at 1.8. The grid-search and the iterative approaches found de-
pendence structures leading to output quantile values close to 1.2 and 1.1 respectively. The minimum quantile
from the iterative procedure is slightly lower than the grid-search approach. The problem dimension is not
big enough to create make a significant difference between the methods. However, the resulting dependence
structure from the iterative method is greatly simplified with only four pairs of variables, in addition to the
already known pair.
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Figure 7: Minimization of the output quantile using a grid-search and the iterative procedure for &« = 1%. The description is the
same as in Figure 5.

This result highlights the risk of having an incomplete dependence structure in a reliability problem. In
this application, the critical limit (safety margin) of the considered industrial component is 1. With the incom-
plete distribution of X, the output quantile is very high compared to the critical limit and states a high relia-
bility of the component. Unfortunately, if we consider worst-case dependence structures, the output quantile
is significantly minimized and becomes closer to the critical limit. Thus, if the true dependence structure is
close to the obtained worst case dependence structure, the risk of over estimating the output quantile can be
important.

5 Conclusion and discussion

This article considers the situation where one wishes to detect and determine a penalizing correlation struc-
ture between the input random variables of a deterministic computer model, when no information is avail-
able, through data, on this correlation structure. The meaning given to the notion of penalization is as follows:
a low-order quantile of the output distribution of the computer model must be as small as possible, under the
constraint that the marginal distributions of the inputs are known. This work takes a first step towards this
goal, by proposing a greedy, heuristic algorithm that explores a set of possible dependencies, taking advan-
tage of the pair-copula construction (PCC) of multivariate probability distributions. Results of experiments
conducted on toy and a real models illustrate the good behavior of the procedure: in situations where the
monotonicity of the output quantile with respect to the inputs is postulated, a minimum quantile value is ob-
tained using Fréchet-Hoeffding bounds. Nonetheless, it is possible to exhibit situations where the algorithm
detect more penalizing dependence structures.

The tools proposed in this paper may be particularly useful in some structural risk and reliability stud-
ies, where the inputs typically correspond to independently measured physical parameters, the computer
model implements complex structural equations, and the resulting quantile is compared to a safety limit (or
a historical quantile value). The correlation structure obtained, associated with the marginal distributions,
then allows the generation of scenarios exploring the behavioural limits of the global model. We believe that
the methodology proposed here can also be applied to other supervised types of decision-helping studies
conducted in the more general context of uncertainty quantification. For instance, many problems of natural
resource management and sustainable development (where the correlations between influential parameters
are little or poorly known) use such quantiles as key indicators and dimensional quantities of resource ex-
traction [10, 32].
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However, it is essential that the correlation structure obtained remains phenomenologically relevant
and not biased by the interactions between input variables within the model. In the case of structural
reliability problems, the input parameters can be roughly separated between loads (forcing conditions,
e.g. an injection of cooling water) and capacities (structural resistances, e.g. material toughness) [25],
which are independent. This independence is known a priori and this constraint must be integrated into
the exploration of correlation structures. The use of similar, trivial bounds on the values of correlation
coefficients (§ 4.2.2) makes it possible to respect such a constraint.

The methodology presented in this article requires a number of hypotheses and approximations that pave
the way for future research. Besides, some perspectives arise from additional technical results.

It would be interesting to improve the statistical estimation of the minimum quantile, given a dependence
structure, by checking the hypotheses underlying the convergence results of Theorem 1. Checking and relax-
ing these hypotheses should be conducted in relation with expert knowledge on the computer model 1 and,
possibly, a numerical exploration of its regularity properties. The grid search estimation strategy promoted in
Section 2.3 arises from the lack of information about the convexity and the gradient of @ — G@l (a). However,
the method remains basic and stochastic recursive algorithms, such as the Robbins-Munro algorithm [54],
can be proposed and tested as possibly more powerful (faster) alternatives. Moreover, the empirical quantile
was considered for theoretical reasons but can be costly for large a. Another estimator could be consider to
reduce the estimation cost. Methods like importance sampling (see for instance [55]) are commonly used to
estimate small failure probabilities but its use can be more challenging in the case of quantile estimation.

A significant issue is the computational cost of the exploration of possible dependence structures. Reduc-
ing this cost while increasing the completeness of this exploration should be a main concern of future works.
Guiding the exploration in the space of conditional bivariate copulas using enriching criteria and possible
expert knowledge can facilitate the minimization. The Algorithm 2 can also be improved using nonparamet-
ric bootstrap. This would quantify the estimation quality of the selected minimum quantile of each iteration.
Note however that a seducing feature of an iterative procedure is the a priori possibility of its adaptation to sit-
uations where the computational model 7 is time-consuming. In such cases, it is likely that Bayesian global
optimization methods based on replacing the computer model by a surrogate model (e.g., a kriging-based
meta-model) [52] should be explored, keeping in mind that nontrivial conservative correlations — losses of
quantile monotonicity— can be due to edge effects (e.g., discontinuities) characterizing the computational
model itself. In this sense, mixing dynamic exploration designs with surrogate approaches, in the continuity
of the active learning approach introduced in [22, 23], seems a relevant research avenue.

We noticed in our experiments on real case-studies that expert knowledge remains difficult to incorpo-
rate otherwise that using association and concordance measures. Precise bounds on association measures
between two variables are sometimes complex to obtain from the experts due to the lack of bivariate obser-
vations. However it is often possible to derive crude upper and lower bounds for association measures, for
instance positive/negative correlation or a weak/strong association, and reducing greatly the exploration of
the space of correlations. The guidance provided by such expert knowledge can certainly be improved, de-
pending on the situation considered, by adapting dedicated methodologies evoked in Remark 1. Especially,
some of these methodologies are based on representation tools of the features of sampled multivariate dis-
tributions, that provide intelligible diagnostics, and participate in expert training, a key methodological re-
quirement for Bayesian analysis [5]. Doing so, these new bounds should be considered as probabilistic rather
than deterministic, which would lead to adapt the algorithmic core proposed in the present article.

Finally, another approach to consider could be to address the optimization problem (2) within the more
general framework of optimal transport theory, and to take advantage of the many ongoing works in this area.
Indeed, the problem (2) can be seen as a multi-marginal optimal transport problem (see [53] for an overview).
When d = 2, it corresponds respectively to the classical optimal transport problems of Monge and Kantorovich
[66]. However, the multimarginal theory is not as well understood as for the bimarginal case, and developing
efficient algorithms for solving this problem remains also a challenging issue [53].
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A Proof of the consistency result

The consistency of the estimator 0 requires some regularity of the function @ — Gg. This regularity can be
also expressed in term of modulus of increase of the function 6 — G,‘,l(a), on which some useful definitions
and connections with the modulus of continuity are reminded.

A.1 Modulus of increase of a cumulative distribution function

Let us recall that a modulus of continuity is any real-extended valued function w : [0, oo) s [0, o) such that
lims_, o w(x) = w(0) = 0. The function f : R — R admits w as modulus of continuity if for any (x, x’) € R?,

f0) - FOX)] < w(x = X')).
Similarly, for some x € R, the function f admits w as a local modulus of continuity if for any x’ € R?,
FO) - F(X)] < w((x - X]).

To control the deviation of the empirical quantile in the proof of Proposition 1 further, we consider the mod-
ulus of continuity of the quantile functions G™* : [0, 1] — R where G is a distribution function on R. The
quantile function being an increasing function, the exact local modulus of continuity of the quantile function
G 'ata € (0, 1) can be defined as

W (€, @) = max (G’l(a +e)-6a), 6 (@) - G a- e)) .

In the proof of Proposition 1, we note that the continuity of a quantile function G™! can be connected to
the increase of the distribution function G (see also for instance Section A in [9]). Using the fact that the
distribution function is increasing, we introduce the local modulus of increase of the distribution function €5
aty = G }(a) € Ras:

€g(8,y) :=min (G(y + 8) - G(y), G(y) - G(y - §)) .

A.2 Proofs

The estimator 6 defined in (12) is an extremum-estimator (see for instance Section 2.1 of [51]). The main
ingredient to prove the consistency of this estimator is the uniform convergence in probability of the families
of the empirical quantiles (G;l(a))gegkn over the family of grids O, .

Proposition 1. Let Ok, be defined as in Theorem 1. Let assume that B and C are both satisfied. Then, for all
€>0,
n—oo

P[ sup |§51(a) - G;l(a)\ >e] —= 0.
0cog,

Proof 1 (Proof of Proposition 1). We first make the connection between the local continuity of the quantile func-
tion G;l and the local increase of the distribution function Gg. According to Assumption C, we have that for any
€ € (0, max((1 - a), @), for any 6 > 0 and for any 0 < O,

~ { Go'a+e)-Gy'@ <6 _ | Go (Go'(a+ ) < Go (Gg' (@) +5)
" Gal@ - Gplla-e) < & Go (G;,l(a) - 5) < Gg (G;,l(a - s)) '

Next, using basic properties of quantile functions (see for instance point ii of Lemma 21.1 in [65] ) together with
Assumption B, we find that

Go (G{,l(a + e)) =a+e=0Gy (G@l(a)) +€
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and

Go (G;l(a - e)) =a-e=Gy (Ggl(a)) -€.
Thus,
Go (G;l(a) + 5) ~ Gy (G,;l(a)) >e
Go (Ga'(@) - Go (G (@ - 8) > € '

We have shown that any € € (0, max((1 - &), a)), for any 6 > 0 and for any 0 € O,

*) =

w1 (e, @) > 6 = €6, (6, Gg'(a)) < €. (23)
We now prove the proposition. For any n = 1 and any € > 0, we have
P( sup [Go'(@)-Go'@)|>€ | =P | |J {IGs'(@ - Gg'(@)] > €}
06y, <oy,
<3 P (|f;;,1(a) - GyH(a)] > e) . (24)
0cOx,
Let &1, ..., én be ni.id. uniform random variables. The uniform empirical distribution function is defined by
1 n
u(t) = - 21&.5[ forO<t<1.
i=1
The inverse uniform empirical distribution function is the function
Unt(u) = inf{t|Gn(t) >u} forOsu=<1.
The empirical distribution function E;,, can be rewritten as (see for instance [65]):
Go(y) £ Un(Go(¥))
and as well for the quantile function,
Go' (@) = Gg (Un (a).
From Inequality (24), we obtain
> Po (166" @~ Go' @] > €) = > Py (165" (Ur' (@) - o' (@) > €) (25)
0c Oy, 0c 0O,
By definition of the local modulus of continuity w G5! of the quantile function Gjol at a, we have
|Ga' (Un' (@) - G (a)] < w1 (JUn' (@) - a, ). (26)
Therefore, by replacing (26) in (25) and using (23), we obtain
3" P (]G;,l(nu;l(a)) - G;l(a)’ > e) < 3 P (wGal(\tu;l(a) —al,a)> e)
0coy, 0coy,
< Y Po(eo, e Gal@) < U@ - al) .
0691("
Assumption C then yields
A1 -1 -1
P < sup |Gg () - G (a)| > e) < KnP (\[U,, () —al > ge(e)) . 27)
06cOx,
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The DKW inequality [21] gives an upper bound of the probability of an uniform empirical process {|Un(a) - a|}.
As well for an uniform empirical quantile process {|U,'(a) - a|} (see for example Section 1.4.1 of [16]), such as
VYA > 0:

P( sup |Up'(a)-al) = A) < C exp(-2nA?).
ael0,1]

Moreover, [45] proved that one can take C = 2. Therefore, Equation (27) can be bounded using the DKW and

P ( sup |Gg'(a) - Gp'(a)| > e> < 2Kn exp [—ané(e)] 700
0cox,

since Ky < nf.

A second requirement to get the consistency of the extremum estimator is the regularity of 6 — G;l(a). This
is shown in the next proposition.

Proposition 2. Under Assumptions A, B and C, the function
0 — Im(n)
0 — Gg'(a)

is continuous in @ over 0.

Proof 2 (Proof of Proposition 2). According to Assumption A, for any 0 € O, the distribution Py admits a den-
sity function fg with respect to the Lebesgue measure on RY such that

folx1, ..., xq) = cg (F1(x1,...,xq)) fi(x1) ... falxa),

where f; is the marginal density function of X;, forj = 1, ..., d and the Lebesgue measure on R. Moreover, for
anyx € RY, the function 6 — fo(x) is continuous in 0 over 0.

The domain @ x [0, 1]? is a compact set and according to Assumption A, there exists a constant ¢ such that
v(0,u) € O x [0, 114, cg(u) < . Consequently, we have

d
folx1, ..., xa)| < € [ [ filx). (28)

i=1

For 0 < O and for any h > 0, we denote yj, = Gy, (a). According to Assumption B we have a = Gg.,(y;) and
thus,

Go' (@) - Ggip(@) = Gg' (@) ~ yp
= Gg' (Ggan(yn)) - Gg' (Go(yp)) (29)

Now, using Assumption C, we have that Gg is strictly increasing in the neighborhood of G;l(a) and thus G[,l is
continuous in the neighborhood of a. Note that

|Goin(yn) — Golyp)| = /1n(x)syhdF0+h(x)_/ﬂrl(x)syhdFQ(x)
R R

= / [forn (0 = foX)] L)<y, dAG)
Rd

< / Foun00 - fo(0IdAG)
Rd




286 —— Nazih Benoumechiara, Nicolas Bousquet, Bertrand Michel, and Philippe Saint-Pierre DE GRUYTER

We then apply a standard dominated convergence theorem using (28) to get that
h
Go.n(vn) - Go(yn) =% 0.

This, with (29) and with the continuity of @ — Gg, shows that

Go' (@) - Glp(@) =% 0.

We are now in position to prove Theorem 1.

Proof 3 (Proof of Theorem 1). Under Assumptions B and C, Proposition 1 directly gives that for any € > 0,

inf Gg'(a)- inf Gg'(a) >e) 1700

dt
0co

€0y, 0cOy,
P (

If Assumption A is also satisfied, Proposition 2 together with (11) give that
infgcg, Gp'(a) tends to infgcq Gy'(a) as n tends to infinity. Thus

which means that
n—oo

> e) /= 0. (30)

~-1 . -1
Gy (a) - oé%fk n Go (@)

inf Gy'(@) “== G¢b (@) = Gyl (a) (1)
00k, ¢

We then derive (13) from (30) and (31).

We now assume that Assumption D is also satisfied. Let 8" be the unique minimizer of @ — Gl;l(a). Let
h > 0 such that B(8",h)" := {8 € © : || - 8"||, > &} is not empty. According to Proposition 2 and using the
fact that O is compact, we have

sup |Gg'(a) - Gg' (@)| > O. (32
0cB(6",h)"

Consequently, for any Yh > 0 small enough, there exists € > 0 such that
|G;1(a)—653(a)| <e=10-6"|<h (33)

Let h > 0 and take € such that (33) is satisfied for h. According to Proposition 1, aél(a) - Gél(a) tends to zero in
probability as n tends to infinity. This, with (13), shows that

P ()Gél(a) - Gg}(a)’ > e) oo,

We conclude using (33).

B Vine copulas

B.1 Definition

A vine model describes a d-dimensional pair-copula construction (PCC) and is a sequence of linked trees
where the nodes and edges correspond to the d(d — 1)/2 pair-copulas. According to Definition 1 from [6], a
vine structure is composed of d — 1 trees T4, ..., T4_; with several conditions.

Definition 1 (R-vine). The sequenceV = (T4, ..., T4_1) is an R-vine on n elements if

1. T;is atree withnodes N1 = {1,...,d} and a set of edges denoted E.
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2. Fori=2,...,d-1, T;is a tree with nodes N; = E;_; and edges set E;.
3. Fori=,...,d-1and{a,b} € E; witha = {a;,a;} and b = {by, by} it must hold that #an b) = 1
(proximity condition).

Each tree T; is composed of d - i + 1 nodes which are linked by d - i edges fori = 1,...,d — 1. A node in
a tree T; must be an edge in the tree T;_{, fori = 2,...,d — 1. Two nodes in a tree T; can be joined if their
respective edges in tree T;_; share a common node, fori = 2,...,d - 1. The proximity condition, suggests
that two nodes connected by an edge should share one variable from the conditioned set. The conditioning
set and conditioned set are defined in Definition 2 along with the complete union. The complete union of an
edge e is a set of all unique variables contained in e.

Definition 2 (Complete union, conditioning and conditioned sets of an edge). Let A be the complete union
ofanedgee = {a, b} € E, inatree T, of aregular vineV,

Aec={veNj|3e; € E;,i=1,...,k-1,suchthatvee; €-- - ceyq €e}.

The conditioning set associated with edge e = {a, b} is D(e) := Aq N A}, and the conditioned sets associated
with edge e are i(e) := Aq\D(e) and j(e) := Ap\D(e). Here, A\B := A N B¢ and B¢ is the complement of B.

The conditioned and conditioning sets of an edge e = {a, b} are respectively the symmetric difference
and the intersection of the complete unions of a and b. The conditioned and conditioning sets of all edges
of V are collected in a set called constraint set. Each element of this set is composed of a pair of indices
corresponding to the conditioned set and a set containing indices corresponding to the conditioning set, as
shown in Definition 3.

Definition 3 (Constraint set). The constrain set for V is a set:

eV = {({i(e), j(e)}, De)le € Ej, e = {a,b},i=1,...,d -1}

The pair-copula in the first tree characterize pairwise unconditional dependencies, while the pair-copula
in higher order trees model the conditional dependency between two variables given a set of variables. The
number of conditioning variables grows with the tree order. Note that a PCC where all trees have a path-like
structure define the D-vine subclass while the star-like structures correspond to C-vine subclass. All other
vine structures are called regular vines (R-vines) [6].

We illustrate the concept of a vine model with a d = 5 dimensional example. For clarity reasons, we use
the same simplifications as in Section 3.2 which consider for instance f; = f1(x1), f> = f>(x>) and so on for
higher order and conditioning. One possible PCC can be written for this 5-dimensional configuration:

fOa, x2, X3, X4, x5) = f1 - f2 - f3 * f4 - f5 (margins)
(unconditional pairs) X C12 * C35 * C34 * C24
(1st conditional pair) X C143 * €234 * C45|3
(2nd conditional pair) X C15|34 * C25)34

(3rd conditional pair) X €15 345+ (34)
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Figure 8: R-vine structure for d = 5.

The vine structure associated to (34) is illustrated in Figure 8. This graphical model considerably simplify the
understanding and we observe that this model is a R-vine because there is no specific constraints on the trees.

A re-labeling of the variables can lead to a large number of different PCC. [49] calculated the number of
possible vine structures with the dimension d and shows that it becomes extremely large for high dimension
problems. We illustrate below, using the same d = 5 dimensional example, two other PCC densities:

fe=fi-fo-fs-fa-fs

X C12 €13 C14 " C15

fo=fi-fr-f3-fa-fs

X €12+ €23 C34 " Cy5
X €33]1 * Ca41 * C25)1
X €C13]2 * €243 * C35|4
! | | X C34]12 * C35|12

X C14)23 * C25|34
! | X Cy5123 (36)

X C15(234 (35)

where (35) and (36) respectively correspond to D-vine and C-vine structures and are represented in Figures
9a and 9b. As we can see in these examples, the D-vine have a constraint on each tree that gives a path-like
arrangement of the nodes. The C-vine on the other hand only has one node connected to all others for each
tree.

An efficient way to store the information of a vine structure is proposed in [48] and is called a R-vine
array. The approach uses the specification of a lower triangular matrix where the entries belongto 1, ..., d.
Such matrix representation allows to directly derive the tree structure (or equivalently the associated PCC
distribution). For more details, see [48].

B.2 Generating R-vine from an indexed list of pairs

The iterative procedure proposed in Section 3.3, described by Algorithm 2, minimizes the output quantile
by iteratively determining the pairs of variables that influences the most the quantile minimization. At each
iteration of the algorithm (step 1.a), a new vine structure is created by considering the list of influential pairs.
The specificity of this vine creation is to consider the ranking of the list by placing the most influential pairs in
the first trees of the R-vine. Thus, we describe in this section how to generate vine structure with the constraint
of a given list of indexed pairs to fill in the structure.
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@mz @ 24]3 @ 354 @ A
@ 1423 @ 25/34 @ T
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(a) D-vine structure for d = 5.
I b

35|11
45(123
1) oG g
34|12

(b) C-vine structure for d = 5.

Figure 9: D-vine and C-vine structures for d = 5.

B.2.1 The algorithm

We consider the same notation as in Algorithm 2. Creating a vine structure from a given indexed list of pairs
Q; is not straightforward. The difficulties come from respecting the ranking of Q; and the respect of the R-vine
conditions. Indeed, the pairs cannot be append in the structure easily. The vine structure must respect these
conditions, which can be sometime very restrictive. The procedure we proposed is detailed by the pseudo-
code of Algorithm 3 and can be greatly simplified in these few key steps:

1. fill V with the list Qy,
2. fill V with a permutation of Q_,
3. if Vis not a R-vine, then permute Q; and restart at step 1.

In step 1 and 2, the filling procedure, detailed in Algorithm 4, successively adds the pairs of a list in the trees
of a vine structure. Adding a pair (i, j) in a tree T; associates (i, j) with the conditioned set and determine a
possible conditioning set D from the previous tree such as a possible edge is i, j|D.

In step 2, because the ordering of Q_j is not important in the filling of 'V, the permutation of Q_; aims at
finding a ranking such as V leads to a R-vine.

In step 3, when the previous step did not succeeded and the resulting V is not a R-vine structure, then the
ranking of Q; is not possible and must be changed. The permutation of some elements of Q; must be done
such as the ranking of the most influential pairs remains as close as possible to the initial one.
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Algorithm 3: Generating a vine structure from a given list of indexed pairs Q;
Data: Qy, d
Result: A vine structure V.
1 .Q}(mt = .Qk;
2 k=1,
3 do
/* initialize V with a first empty tree */
4 N1=(1,...,d);
E1=0();
6 V = ((N1, E1));
/* filling V with the list of selected pairs Qy */
7 V=Fill(V, Qy, d); // See Algorithm 4
/* determining a permutation of Q_j that fills V */
8 for Q7, € n(Q_) do
/* £illing V with the candidate pairs Q7 */
9 Vo =Fill(V, .Q]_Tk, d); // See Algorithm 4
10 if Vzis a R-vine then
/* a permutation worked — we quit the loop */
1 break
12 V= Vn;
13 if Vis not a R-vine then
/* filling did not work — permute initial list Q;("“ */
14 Get Oy by inverting pairs of (Q{";
15 k=k+1;
16 while V is not a R-vine;
1,2
1,3 2.3 . .
Figure 10: Example: first tree of a non valid vine structure for d = 5 that does lead to a single connected tree.
B.2.2 Example
For illustration, let’s create a d = 5 dimensional vine structure with the given list of pairs Q, =

((1,2),(1,3),(2,3),(4,5),(2,4), (1, 5)) using Algorithm 3. Using the original list Q;, the Fi11 function may
fail at line 7 of Algorithm 3, and more precisely, at line 15 of Algorithm 4. Indeed, the first tree of V does
not validate the R-vine conditions. The tree is illustrated in Figure 10 and as we can see, the nodes are not
all connected into one single tree. Therefore, we permuted the list Q; by exchanging the pairs (2, 4) and
(4, 5), as shown in Figure 11. This permutation now leads to a vine structure that respects the new ranked list
Q. =((1,2),(1,3),(2,3),(2,4),(4,5),(1,5)).
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Figure 11: Example: exchange of elements of Q; in order to lead to a valid vine structure.

Algorithm 4: Filling a vine structure with a given list

1 functionFill(V, Q;, d):

/* V: an incomplete vine structure , */
/¥ Q:, a list of indexed pairs */
/* d: the input dimension. */
2 1= W4H // number of existing trees
(Tl,...,Tl)=V;
4 k=|Ty; // number of existing nodes in last tree
/* loop over the list of pairs */
5 for (i, j) € Q) do
6 D =0;
7 if [ >= 2 then
/* conditioning set is only computed from T */
8 D = FindConditioningSet((i, j), Nj_1); // See Algorithm 5
if D = 0 then
/* no conditioning set found — not possible */
10 return False
1 E;,=EUi,j|D; // add new edge in E;
12 T, = (Nl,El); // update current tree
13 V=(Ty,...,Tp);
14 if k = d - lthen
/* if tree T; is complete */
15 if V does not fulfill the R-vine conditions then
/* the vine structure V is not valid */
16 return False
17 k=1;
18 1=1+1;
19 Nl = El—l; // nodes of next tree are the edges of previous tree
20 else
21 k=k+1;
2 return V
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Algorithm 5: Gets the conditioning set of a given conditioned set

1 function FindConditioningSet ((i, j), N-):

/* (i,j): the conditioned set, */
/* N_: list of nodes from the previous tree. */
2 D = 0;
3 fora, b € N_, witha # b do
4 ific aandj € bthen
5 ifj¢ Agandi ¢ Ay then
/* See Definition 2 */
6 D=AqnAp;
7 break;
8 return D

C Supplementary material on copulas

This supplementary material is dedicated to a preliminary exploration of the influence of copula structure
on the behavior of the worst quantile, illustrated with toy examples. Especially, while it could be expected
that G;l(a) is a monotonic function with 6, and that the minimum can be reached for a trivial copula (i.e.,
reaching the Fréchet-Hoeffding bounds). Our experiments show that this behavior is not systematic.

C.1 About the copula choice

One of the most common approaches to model the dependence between random variables is to assume linear
correlations feeding a Gaussian copula. In this case, the problem is reduced by determining the correlation
matrix of X that minimizes Ggl(a). However, the positive semi-definite constraint on the correlation matrix
makes the exploration difficult and the minimization harder when the problem dimension increases. More-
over, such a Gaussian assumption is very restrictive and is inappropriate for simulating heavy tail dependen-
cies [44]. Still in this elliptical configuration, the t-copulas [19] can be used to counterpart these problems.
Nevertheless, tail dependencies are symmetric and with equal strengths for each pair of variables. Another
alternative is to consider multivariate Archimedean copulas [47] which are great tools to describe asymmet-
ric tail dependencies. However, only one parameter governs the strength of the dependence among all the
pairs, which is very restrictive and not flexible in high dimension. For a same correlation measure between
two random variables, multiple copulas can be fitted and lead to a different distribution of Y.

It is clear that the copula choice of X has a strong impact on the distribution of Y (see for instance [60]).
Therefore, various copula types should be tested to determine the most conservative configuration. In the
following, we may consider a flexible approach setting by modeling the input multivariate distribution using
regular vine copulas (R-vines). The necessary basics of R-vines are introduced in Section 3 of the article and
detailed in its Appendix B.

C.2 About the monotony of the quantile

For many simple case studies case studies, the worst quantile is reached for perfect dependencies (Fréchet-
Hoeffding bounds). More generally, when the function has a monotonic behavior with respect to many vari-
ables, it is likely that the minimum output quantile is reached at the boundary of ©. This phenomenon is
observed for various physical systems.
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Figure 12: Variation of the quantile of the overflow distribution with the Kendall coefficient T for a = 95% and different copula
families (Gaussian, Clayton, Gumbel and Joe).

To illustrate this phenomenon, we consider a simplified academic model that simulates the overflow of
a river over a dike that protects industrial facilities. The river overflow S is described by

0.6

S=H;+C,-Zy-H with H= Qo , (37)

BK;, /22

such as, when S < 0, a flooding occurs. The involved parameters of (37) are physical characteristics of the
river and the dike (e.g., flow rate, height of the dike) which are described by random variables with known
marginal distributions. See [36] for more information. For a given risk a, we aim at quantifying the associ-
ated overflow’s height describe by the a-quantile of S. We extend this model by supposing that the friction
(Strickler-Manning) coefficient Ks and the maximal annual flow rate Q are dependent with an unknown de-
pendence structure. To show the influence of a possible correlation between Ks and Q on the quantile of S,
we describe their dependence structure with multiple copula families.

Figure 12 shows the variation of the estimated quantile of S (with a large sample size) in function of the
Kendall coefficient T between K5 and Q for different copula families. We observe different slopes of variation
for the different copula families, with lower quantile values for the copulas with heavy tail dependencies (i.e.,
Clayton, Joe). At independence (r = 0) and for the counter-monotonic configuration (tr = —1),the quantile
values of these families are obviously equivalent. This variation is slight and the quantile is still above zero,
but this shows how the dependencies can influence the results of a reliability problem. This illustration shows
that the minimum is reached at the boundary of the exploration space, where the two variables are perfectly
correlated.

We can take advantage of this observation to speed up the algorithms presented in the next sections by
exploring only the boundaries of ®. However, assuming that the minimum is reached on the boundary of @
is a strong assumption that can be unsatisfied in some applications. See Fallacy 3 of [24] for a highlight of this
pitfall.

To illustrate this statement, we now give a counter example in the bidimensional setting. We assume
uniform marginal distributions for the input such that X; ~ U(-3, 1) and X, ~ U(-1, 3), and we consider
the model function

n(x1,x2) = 0.58x2x3 - x1x3 - x2 = x3. (38)
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Figure 13: Variation of the output quantile with the Kendall coefficient 7 for @ = 5% and different copula families (Gaussian,
Clayton, Gumbel and Joe).

The same experience as for Figure 12 is established and the results are shown in Figure 13. The slopes of the
quantile estimations with the Kendall coefficient, for each copula families, are quite different than the results
of Figure 12. We observe that the quantile is not monotonic with the Kendall coefficient and its minimum is
not reached at the boundary, but for T = 0.5. Moreover, the Gaussian copula is the family that minimizes the
most the quantile. It shows that copulas with tail dependencies are not always the most penalizing.

A second example, inspired from Example 6 of [24], also shows that the worst case dependence struc-
ture in an additive problem is not necessary for perfectly correlated variables. We consider a simple portfolio
optimization problem with two random variables X; and X, with generalized Pareto distributions such as
Fi1(x) = F»(x) = £&;. We aim at maximizing the profit of the portfolio, which is equivalent as minimizing the

following additive model function
nX1, X3) = -(X1 + 10X3). (39)

We consider the median (a = 0.5) of the output as an efficiency measure. Figure 14 shows the output me-
dian in function of the Kendall coefficient T between X; and X,. Just like the previous example, we observe a
non-monotonic slope of the median in function of 7. The variation can be significant and the minimum is ob-
tained at T = 0.53 for the heavy tail copula families (i.e., Clayton and Joe). The phenomenon can be explained
by the marginal distributions of the random variables, which are close Pareto distributions. A large correla-
tion seems to diminish the influence of the tails, which gives a higher quantile value. This explains why the
minimum is obtained for a dependence structure other that independence or the perfect dependence.

Therefore, these examples show that the worst quantile can be reached for other configurations than
the perfect dependencies.
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