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Abstract: In this work, we prove that quadratic transformations of aggregation functions must come from
quadratic aggregation functions. We also show that this is di�erent from quadratic transformations of (mul-
tivariate) semi-copulas and quasi-copulas. In the latter case, those two classes are actually the same and
consists of convex combinations of the identity map and another �xed quadratic transformation. In other
words, it is a convex set with two extreme points. This result is di�erent from the bivariate case in which the
two classes are di�erent and both are convex with four extreme points.
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1 Introduction
We are currently living in the age of information. With a large amount of data, a representative of raw data is
needed to get inside information. For numerical data, an aggregation function is usually used for such repre-
sentatives. Examples of aggregation functions include average function, minimum, andmaximum.Which of
these functions are appropriate as a representative will depend on the situation. Also, these examples are not
always appropriate, for instance, in the present of a very large or small outlier. Thus, other aggregation func-
tions are also required. Over the years, several constructions of aggregation functions have been proposed
in the literature including constructions of special types of aggregation functions such as semi-copulas and
quasi-copulas [1–3, 5, 6, 8, 9].

We are interested in the method of transformations, that is, a method that transforms aggregation func-
tions into other aggregation functions. Such methods have been studied by several others [4, 7, 8, 11, 12].
However,most of these studies are only applied to bivariate aggregation functions. It is therefore interesting to
investigate transformations of multivariate aggregation functions. Speci�cally, we will investigate quadratic
transformations in this work. Quadratic transformations of bivariate functions have been studied in [4, 7, 8].
Here, we show that such ideas can be extended to multivariate cases. The di�erence is that there are fewer
quadratic transformations in this case. Also, the class of quadratic transformations of quasi-copulas coincide
with the class of quadratic transformations of semi-copulas in this case.

In the next section, we will review related terminologies used throughout this work. We will also review
quadratic transformations of bivariate functions done by Kolesarova et al [8]. Characterization of quadratic
transformations of multivariate functions will be described in Section 3.
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2 Basic concepts and terminologies
Henceforth, let I denote the unit interval and R denote the set of all real numbers. A vector in Rk will be
denoted by ~x = (x1, . . . , xk). In other words, xi is the ith component of the vector ~x. The standard basis in
Rk will be denoted by ~e1, . . . ,~ek, that is, ~ei = (ei1, . . . , eik) where eij = 1 when i = j and eij = 0 otherwise.
Denote also, ~0 = (0, . . . , 0), ~1 = (1, . . . , 1), and ~e−i = ~1 − ~ei.

An aggregation function is simply a function A : Ik → I nondecreasing in each of its arguments such that
A
(
~0
)
= 0 andA

(
~1
)
= 1.Here,A

(
~x
)
can be thought of as a representative of numerical data~x = (x1, . . . , xk).

We assume, in this case, that all data lies in the unit interval. Aggregation functions for data lying in other
intervals can be de�ned analogously. Examples of aggregation functions include the following functions:

mean (x1, . . . , xk) =
1
k

k∑
i=1

xi;

L (x1, . . . , xk) =
{
xi , xj = 1 ∀j ≠ i;
0, otherwise;

W (x1, . . . , xk) = max
(
0,

k∑
i=1

xi − k + 1
)
;

M (x1, . . . , xk) = min (x1, . . . , xk) .
The class of k-variate aggregation functions will be denoted byAk.

A semi-copula is an aggregation function S : Ik → I satisfying the following condition:

S
(
~e−i + x~ei

)
= x

for all x ∈ I and all i = 1, 2, . . . , k. Equivalently, an aggregation function S is a semi-copula if and only if
L ≤ S ≤ M.

A semi-copula which is L1-Lipschitz is called a quasi-copula. In other words, a quasi-copula is a semi-
copula Q : Ik → I such that ∣∣Q (~x) − Q (~y)∣∣ ≤ k∑

i=1
|xi − yi|

for all ~x,~y ∈ Ik. This implies a quasi-copula is di�erentiable almost everywhere and that 0 ≤ ∂iQ ≤ 1 a.e.
The class of k-variate semi-copulas will be denoted by Sk while the class of k-variate quasi-copulas will

be denoted by Qk. Note that Qk ⊆ Sk ⊆ Ak and these three classes are di�erent. In fact, mean ∉ Sk while
L ∈ ̸ Qk. Also, bothW ,M ∈ Qk andW ≤ Q ≤ M for all Q ∈ Qk.

Given a (k + 1)-variate function P : Ik+1 → R, we may de�ne a transformation τP by letting

τP (A)
(
~x
)
= P

(
~x, A

(
~x
))

for any ~x ∈ Ik and any k-variate function A : Ik → R. The question is whether τP (F) ⊆ F when F is either
Ak, Sk, or Qk. Several works has been done for k = 2, see [4, 7, 8, 11, 12]. For quadratic polynomial P, the
following result is known.

Theorem 2.1. [8] Let P be a quadratic polynomial.
1. If P is linear, then τP (A2) ⊆ A2 if and only if P (x, y, z) = ax + by + cz where a, b, c ∈ I with a + b + c = 1.
2. τP (S2) ⊆ S2 if and only if P (x, y, z) = cz2 + dxy − cz (x + y) + (1 + c − d) z where d ∈ I and d − 1 ≤ c ≤

min (d, 1 − d).
3. τP (Q2) ⊆ Q2 if and only if P (x, y, z) = cz2 + dxy − cz (x + y) + (1 + c − d) z where d ∈ I and d − 1 ≤ c ≤ d.

It can be seen from the theorem that τP (S2) ⊆ S2 implies τP (Q2) ⊆ Q2 but the converse statement does
not hold. In the next section, we will extend this result to the multivariate case. Moreover, we will show that
τP (Sk) ⊆ Sk if and only if τP (Qk) ⊆ Qk for all k > 2. Therefore, the situation for the multivariate case is
actually di�erent from that of the bivariate case.
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3 Main Results
Henceforth, the quadratic polynomial P : Ik+1 → R will be written as

P
(
~x, z

)
=

k∑
i=1

k∑
j=1

aijxixj + az2 + z
k∑
i=1

bixi + cz +
k∑
i=1

cixi + d (1)

where a, aij , bi , c, ci , d are real coe�cients. The goal is to characterize these coe�cients so that either
τP (Ak) ⊆ Ak,τP (Sk) ⊆ Sk, or τP (Qk) ⊆ Qk.

First, we will characterize P such that τP (Ak) ⊆ Ak.

Theorem 3.1. Let P : Ik+1 → R be a quadratic polynomial as de�ned in equation (1). For any k ≥ 2, τP (Ak) ⊆
Ak if and only if P is a aggregation function.

Proof. Assume P is a quadratic aggregation function. Then P is nondecreasing which implies τP (A) is non-
decreasing whenever A itself is nondecreasing. Now

τP (A)
(
~0
)
= P

(
~0, A

(
~0
))

= P
(
~0, 0

)
= 0

and
τP (A)

(
~1
)
= P

(
~1, A

(
~1
))

= P
(
~1, 1

)
= 1

whenever A
(
~0
)
= 0 and A

(
~1
)
= 1. Therefore, τP (Ak) ⊆ Ak.

On the contrary, assume τP (Ak) ⊆ Ak. Using the same arguments, we have P
(
~0
)
= 0 and P

(
~1
)
= 1.

De�ne

Ai,a,z,ϵ
(
~x
)
=


( z
a−ϵ
)
xi , xi < a − ϵ;

z, a − ϵ ≤ xi ≤ a + ϵ;
1 −
( 1−z
1−a−ϵ

)
(1 − xi) , xi > a + ϵ.

Then Ai,a,z,ϵ is an aggregation function whenever 0 < a − ϵ < a + ϵ < 1 and z ∈ I. Moreover, ∂iAi,a,z,ϵ
(
~x
)
= 0

whenever ~x ∈ Ik is such that xi = a. Since τP
(
Ai,a,z,ϵ

)
is nondecreasing and di�erentiable when xi = a, we

must have ∂iτP
(
Ai,a,z,ϵ

) (
~x
)
≥ 0 whenever ~x ∈ Ik is such that xi = a. Now,

∂iτP
(
Ai,a,z,ϵ

) (
~x
)
= ∂iP

(
~x, z

)
+ ∂k+1P

(
~x, z

)
∂iAi,a,z,ϵ

(
~x
)
= ∂iP

(
~x, z

)
for such point. Therefore, we can conclude that ∂iP

(
~x, z

)
≥ 0 whenever 0 < xi < 1 and 0 < z < 1. Since P is a

polynomial function, we can conclude that ∂iP
(
~x, z

)
≥ 0 for all

(
~x, z

)
∈ Ik+1 and all i = 1, . . . , k. Therefore,

P is nondecreasing with respect to the �rst k variables.
To see that P is nondecreasing with respect to the last variable, �x 0 < a < 1 and 0 < z < 1. For each

c > 1, let p = pc (a, z) = ln z−ln c
ln a and

Bi,a,z,c
(
~x
)
= min

(
cxpi , 1

)
.

Then Bi,a,z,c is an aggregation function with Bi,a,z,c
(
~x
)
= z and ∂iBi,a,z,c

(
~x
)
= pcxp−1i = pz

a whenever ~x ∈ Ik

is such that xi = a. Now,
0 ≤ ∂iτP

(
Bi,a,z,c

) (
~x
)

= ∂iP
(
~x, z

)
+ ∂k+1P

(
~x, z

)
∂iBi,a,z,c

(
~x
)

= ∂iP
(
~x, z

)
+ ∂k+1P

(
~x, z

) (pz
a

)
.

Therefore,
∂k+1P

(
~x, z

)
≥ − apz ∂iP

(
~x, z

)
whenever ~x ∈ Ik is such that xi = a. Let c → ∞, then p → ∞ and hence ∂k+1P

(
~x, z

)
≥ 0 as desired. Since a

and z are arbitrary, we are done.
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The characterization of quadratic aggregation functions has been done in [10]. Thus, we immediately have
the following result.

Corollary 3.2. Let P : Ik+1 → R be a quadratic polynomial as de�ned in equation (1) for some k ≥ 2. Then
τP (Ak) ⊆ Ak if and only if P is a convex combination of πij and ζij where

πij
(
~u
)
= uiuj ,

ζij
(
~u
)
= ui + uj − uiuj

for all ~u =
(
~x, z

)
∈ Ik+1. In particular, such polynomials P forms a convex set with exactly (k + 1)2+k+1 extreme

points.

Proof. Follows directly from Theorem 2 and Corollary 3 in [10].

As an illustration, consider P : I4 → R de�ned by P = 1
2 (π12 + π34) Then P is a quadratic aggregation

function which immediately implies A = τP (mean) must be an aggregation function too. Direct computation
yields

A (x, y, z) = 1
2 xy +

1
6 xz +

1
6 yz +

1
6 z

2

for all x, y, z ∈ I.
From Theorem 3.1, we might guess that τP (F) ⊆ F if and only if P ∈ F when F is either Ak, Sk, or Qk.

This guess is, of course, incorrect even in the case k = 2. To characterize P for the remaining cases, we will
�rst consider the possible form of P. Note that if either τP (Sk) ⊆ Sk or τP (Qk) ⊆ Qk hold, then we would have
τP (M) ∈ Sk.

Lemma 3.3. Let P : Ik+1 → R be a quadratic polynomial as de�ned in equation (1). For any k > 2, τP (M) ∈ Sk
if and only if P is in the form

P
(
~x, z

)
= az2 − az

k∑
i=1

xi + (ak − a + 1) z

for some − 1
k−1 ≤ a ≤ 0.

Proof. Assume that τP (M) ∈ Sk. For any x ∈ I, we would have

0 ≤ τP (M)
(
x~ei
)
≤ τP (M)

(
~e−j
)
= 0

by choosing j ≠ i. Since M
(
x~ei
)
= 0, we have

τP (M)
(
x~ei
)
= aiix2 + cix + d

for all x ∈ I and hence aii = ci = d = 0.
Similarly, we can use the fact that k > 2 to show that M

(
x~ei + y~ej

)
= 0 and

2aijxy = τP (M)
(
x~ei + y~ej

)
= 0

for all x, y ∈ I. Thus, aij = 0. Hence, P must take the form

P
(
~x, z

)
= az2 + z

k∑
i=1

bixi + cz.

Now, we use the fact that M
(
~e−i + x~ei

)
= τP (M)

(
~e−i + x~ei

)
= x to obtain

x = τP (M)
(
~e−i + x~ei

)
= (a + bi) x2 +

 k∑
j≠i
bj + c

 x
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which is only possible when a + bi = 0 and
∑k

j≠i bj + c = 1. Therefore, bi = −a and c = 1 −
∑k

j≠i bj =
1 + (k − 1) a. Hence, P must be given in the above form. To see that − 1

k−1 ≤ a ≤ 0, we use the fact that τP (M)
is nondecreasing. Consider

f (x) = τP (M) (x, . . . , x)
= ax2 − akx2 + (ak − a + 1) x.

Since τP (M) is nondecreasing, so is f . Now, f ′ (x) = 2a (1 − k) x+(ak − a + 1) ≥ 0 for all x ∈ I. Substitute x = 0
yields a ≥ − 1

k−1 . Similarly, consider

g (x) = τP (M)
(
x, 12 , . . . ,

1
2

)
= 1
4a −

1
2a
(
x + 1

2 (k − 1)
)
+ 1
2 (ak − a + 1)

where x ≥ 1
2 . Then gmust also benondecreasingon the interval

[1
2 , 1

]
. Now, g′ (x) = −12a ≥ 0 for all x ∈

[1
2 , 1

]
.

Therefore, a ≤ 0.
On the contrary, if P is given by the above formula, then

τP (M)
(
~e−i + x~ei

)
= aM2 (~e−i + x~ei) − aM (~e−i + x~ei) (k − 1 + x) + (ak − a + 1)M (~e−i + x~ei)
= ax2 − ax (k − 1 + x) + (ak − a + 1) x
= x.

Therefore, τP (M) ∈ Sk.

Remark 3.4. If we de�ne P0
(
~x, z

)
= z and P1

(
~x, z

)
= − 1

k−1 z
2 + 1

k−1 z
∑k

i=1 xi = −
1
k−1 z

2 + k
k−1 z · mean

(
~x
)
,

then the above lemma states that τP (M) ∈ Sk if and only if P is a convex combination of P0 and P1, that is,
P = Pt = tP1 + (1 − t) P0 for some t ∈ I. Also, we always have τt = τPt = tτP1 + (1 − t) τP0 . Clearly, τ0 is
the identity map and hence τ0 (Sk) = Sk and τ0 (Qk) = Qk. If we can show that τ1 (Sk) ⊆ Sk, we can use the
fact that Sk is a convex set to conclude that τt (Sk) ⊆ Sk for all t ∈ I. Similar conclusion also holds when we
replace Sk withQk. Note that P1 is not an aggregation function. Thus, τ1 is not a transformation of aggregation
functions.

Also, for k = 2, {τt | t ∈ I} is a proper subset of all quadratic transformations preserving semi-copulas
(quasi-copulas).

Theorem 3.5. Let P : Ik+1 → R be a quadratic polynomial. For any k > 2, τP (Sk) ⊆ Sk if and only if τP = τt,
that is, P = Pt for some t ∈ I.

Proof. If τP (Sk) ⊆ Sk, then τP (M) ∈ Sk which implies P = Pt for some t ∈ I by the previous lemma. For the
converse, it is su�cient to show that τ1 (S) is nondecreasing since τ1 (S)

(
~e−i + x~ei

)
= x for all x ∈ I via direct

computation.
For any function F, denote ∆i,ϵF

(
~x
)
= F

(
~x + ϵ~ei

)
− F
(
~x
)
. Then

(k − 1) ∆i,ϵτ1 (S)
(
~x
)
= −S2

(
~x + ϵ~ei

)
+ S
(
~x + ϵ~ei

) k∑
ij=1

xj + ϵ

 + S2
(
~x
)
− S
(
~x
) k∑
j=1

xj

≥ S2
(
~x
)
− S2

(
~x + ϵ~ei

)
+ S
(
~x + ϵ~ei

) k∑
j=1

xj + ϵ

 − S (~x)
 k∑

j=1
xj + ϵ


= ∆i,ϵS

(
~x
) k∑

j=1
xj + ϵ − S

(
~x + ϵ~ei

)
− S
(
~x
)

≥ ∆i,ϵS
(
~x
) k∑

j=1
xj + ϵ −M

(
~x + ϵ~ei

)
−M

(
~x
)
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≥ ∆i,ϵS
(
~x
) k∑

j=1
xj + ϵ − 2M

(
~x + ϵ~ei

) .

Since S is nondecreasing, ∆i,ϵS
(
~x
)
≥ 0. Since k ≥ 2,

∑k
j=1 xj+ϵ ≥ 2M

(
~x + ϵ~ei

)
. Therefore, ∆i,ϵτ1 (S) ≥ 0which

implies τ1 (S) is nondecreasing as desired.

Theorem 3.6. Let P : Ik+1 → R be a quadratic polynomial as de�ned in equation (1) for some k > 2 Then
τP (Qk) ⊆ Qk if and only if τP = τt, that is, P = Pt for some t ∈ I.

Proof. Following the same arguments, it is su�cient to show that τ1 (Qk) ⊆ Qk. Since Qk ⊆ Sk, we already
have τ1 (Qk) ⊆ Sk. Thus, it remains to show that ∂iτ1 (Q) ≤ 1 a.e. for any Q ∈ Qk.

Since P1 is a polynomial and ∂iQ exists a.e., ∂iτ1 (Q) must exist a.e. too. Recall that Q
(
~x
)
≥ W

(
~x
)
=

max
(
0,
∑k

i=1 xi − k + 1
)
. Direct computation yields

∂iτ1 (Q)
(
~x
)
= − 2

k − 1Q
(
~x
)
∂iQ

(
~x
)
+ 1
k − 1Q

(
~x
)
+ 1
k − 1∂iQ

(
~x
) k∑
i=1

xi

=
1 − ∂iQ

(
~x
)

k − 1 Q
(
~x
)
+ 1
k − 1∂iQ

(
~x
)( k∑

i=1
xi − Q

(
~x
))

≤
1 − ∂iQ

(
~x
)

k − 1 Q
(
~x
)
+ 1
k − 1∂iQ

(
~x
)( k∑

i=1
xi −W

(
~x
))

≤ 1 − ∂iQ
(
~x
)
+ ∂iQ

(
~x
)

≤ 1

a.e. as desired.

Note that a quadratic function p~x (z) = P1
(
~x, z

)
= 1

k−1 z
(∑k

i=1 xi − z
)
only has two �xed points which are

z = 0 and z =
∑k

i=1 xi − k + 1. Thus, τ1 must transform any semi-copula (quasi-copula) to a di�erent semi-
copula (quasi-copula) excepted only when that semi-copula is either L orW. In other words, L andW are the
only �xed points of τ1. Similar conclusion also holds for τt when t ≠ 0.

We end this section with an example of quasi-copula construction using quadratic transformations.

Example 3.7. Consider a function Cθ : Ik → R de�ned by

Cθ
(
~x
)
=

k∏
i=1
xi + θ

k∏
i=1
xi (1 − xi)

for all ~x ∈ Ik. It can be easily proved that Cθ is a semi-copula if and only if it is a quasi-copula if and only if
−1 ≤ θ ≤ 1. Using the transformation τ1, another family

Qθ = τ1 (Cθ) =
1

k − 1

(
kCθ · mean − C2θ

)
of quasi-copulas can be constructed. Simpli�cation of Qθ is also possible. For example,

Q0
(
~x
)
= 1
k − 1

k∑
i=1

x2i ∏
j≠i
xj

 − 1
k − 1

k∏
i=1
x2i

for all ~x ∈ Ik.
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4 Conclusion and Discussion
In this work, we propose a construction of multivariate aggregation functions via quadratic transformations
of such functions. A characterization has been made to ensure which quadratic polynomials can be used to
de�ne such transformations. It turns out that the structure of quadratic transformations of general aggrega-
tion functions is quite complicated. In the bivariate case, such quadratic transformations form a convex set
with 12 extreme points. Moreover, the number of extreme points is roughly the square of the dimension in
general. On the contrary, quadratic transformations of multivariate semi-copulas and quasi-copulas are very
simple. Both classes are the same, which are convex sets with only two extreme points. Moreover, one of the
extreme points is the identity transformation. Therefore, there is only one non-trivial quadratic transforma-
tion. This situation di�ers from the bivariate case in several ways. First, in the bivariate case, such transfor-
mations form a convex set with four extreme points. Second, these two classes are di�erent in the bivariate
case with, surprisingly, the class of quadratic transformations of bivariate semi-copulas is a subclass of the
class of quadratic transformations of bivariate quasi-copulas.

Other subclasses of aggregation functions can also be considered. For example, we could try to character-
ize quadratic transformations of conjunctive aggregation functions and disjunctive aggregation functions. It
is also interesting to see whether these transformations overlapped. For instance, whether a quadratic trans-
formation of conjunctive aggregation functions is also a transformation of disjunctive aggregation functions.
More generally, whether a transformation of some subclass is also a transformation of its dual class. We hope
that these questions can be answer in the future.

During the investigation,we also found that the formof quadratic transformation τP can be foundby con-
sidering τP (M) alone. It is interesting to see whether this situation can be generalized. For example, when P
is a rational linear function as studied in [4]. Characterizing functions Pwith this property is also interesting.

Characterization of polynomial transformations τP is also an open problem. The existence of such trans-
formation is guaranteed by compositions of quadratic transformations. For aggregation functions, we may
use the exact same proof to conclude that P itself is an aggregation function. However, the characterization
of polynomial aggregation functions is also an open problem. For semi-copulas and quasi-copulas, the situa-
tion would bemore bizarre because wewould not be able to guess the form of such transformations. At most,
we are able to con�rm that these classes would be convex with non-linear boundary. Thus, they would have
in�nitely many extreme points.

All these questions require further study.
Acknowledgment. This work was supported by Chiang Mai University.
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