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Abstract: In this work, we prove that quadratic transformations of aggregation functions must come from
quadratic aggregation functions. We also show that this is different from quadratic transformations of (mul-
tivariate) semi-copulas and quasi-copulas. In the latter case, those two classes are actually the same and
consists of convex combinations of the identity map and another fixed quadratic transformation. In other
words, it is a convex set with two extreme points. This result is different from the bivariate case in which the
two classes are different and both are convex with four extreme points.
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1 Introduction

We are currently living in the age of information. With a large amount of data, a representative of raw data is
needed to get inside information. For numerical data, an aggregation function is usually used for such repre-
sentatives. Examples of aggregation functions include average function, minimum, and maximum. Which of
these functions are appropriate as a representative will depend on the situation. Also, these examples are not
always appropriate, for instance, in the present of a very large or small outlier. Thus, other aggregation func-
tions are also required. Over the years, several constructions of aggregation functions have been proposed
in the literature including constructions of special types of aggregation functions such as semi-copulas and
quasi-copulas [1-3, 5, 6, 8, 9].

We are interested in the method of transformations, that is, a method that transforms aggregation func-
tions into other aggregation functions. Such methods have been studied by several others [4, 7, 8, 11, 12].
However, most of these studies are only applied to bivariate aggregation functions. It is therefore interesting to
investigate transformations of multivariate aggregation functions. Specifically, we will investigate quadratic
transformations in this work. Quadratic transformations of bivariate functions have been studied in [4, 7, 8].
Here, we show that such ideas can be extended to multivariate cases. The difference is that there are fewer
quadratic transformations in this case. Also, the class of quadratic transformations of quasi-copulas coincide
with the class of quadratic transformations of semi-copulas in this case.

In the next section, we will review related terminologies used throughout this work. We will also review
quadratic transformations of bivariate functions done by Kolesarova et al [8]. Characterization of quadratic
transformations of multivariate functions will be described in Section 3.
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2 Basic concepts and terminologies

Henceforth, let T denote the unit interval and R denote the set of all real numbers. A vector in R¥ will be
denoted by X = (x1, ..., X;). In other words, x; is the i component of the vector X. The standard basis in
R¥ will be denoted by &1, ..., &, thatis, & = (i, ..., e;) where e;; = 1 wheni = jand e;; = O otherwise.
Denote also, 0 = ,...,0), 1= 1,...,1),and é_; = 1-8;.

An aggregation function is simply a function A : I¥ — I nondecreasing in each of its arguments such that
A (6) =0and A4 (T = 1.Here, A ()?) can be thought of as a representative of numerical data X = (x1, ..., X).
We assume, in this case, that all data lies in the unit interval. Aggregation functions for data lying in other
intervals can be defined analogously. Examples of aggregation functions include the following functions:

k
1
mean (X1,...,Xy) = X in;
i=1

Xi, Xi=1Vj#1;
L(X1,...,Xk)= ! J ]#
0, otherwise;

k
W(x1,...,X;) = max (O,in—k+ 1> ;
i=1

Mx1,...,x) =min (X1, ..., Xg).

The class of k-variate aggregation functions will be denoted by A;.
A semi-copula is an aggregation function S : I¥ — I satisfying the following condition:

S(é_;i+xé) =x
forallx e Tandalli = 1, 2,..., k. Equivalently, an aggregation function S is a semi-copula if and only if
L<S<M.

A semi-copula which is L*-Lipschitz is called a quasi-copula. In other words, a quasi-copula is a semi-
copula Q : I¥ — I'such that

|Q(Y)—Q(Y)ISZIXi—in

forallx,y € I¥. This implies a quasi-copula is differentiable almost everywhere and that 0 < 0;Q < 1 a.e.
The class of k-variate semi-copulas will be denoted by §; while the class of k-variate quasi-copulas will
be denoted by Q. Note that 9, C 8; C Ay and these three classes are different. In fact, mean ¢ 8, while
L ¢ Q. Also, both W, M € Q; and W < Q < M forall Q € Q.
Given a (k + 1)-variate function P : I**! — R, we may define a transformation 7p by letting

7p(4) (X) =P (X, A (X))
for any X € I¥ and any k-variate function A : I¥ — R. The question is whether 7, (¥) C F when ¥ is either

A, 8k, or Q. Several works has been done for k = 2, see [4, 7, 8, 11, 12]. For quadratic polynomial P, the
following result is known.

Theorem 2.1. [8] Let P be a quadratic polynomial.

1. IfPislinear, thentp (A;) C A, ifandonly if P (x,y, z) = ax + by + cz where a, b,c € Twitha+ b +c=1.

2. 1p(82) C Syifandonlyif P(x,y,z) = cz> +dxy —cz(x +y)+ (1+c-d)zwhered c landd -1 < c <
min (d, 1 - d).

3. 1p(Q) C Qifandonlyif P(x,y,z) = cz*> +dxy —cz(x +y)+ (1 +c—d)zwhered e Tandd -1 < c < d.

It can be seen from the theorem that 7p(S;) C 8, implies 7p (Q;) C 9, but the converse statement does
not hold. In the next section, we will extend this result to the multivariate case. Moreover, we will show that
Tp (8x) C 8y if and only if 7p (Q;) C Qi for all k > 2. Therefore, the situation for the multivariate case is
actually different from that of the bivariate case.
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3 Main Results

Henceforth, the quadratic polynomial P : 11 — R will be written as

P()?,Z)=Z .

k k k
i=1 j=1

aix;x;j + az’ +z Z bix; +cz+ Z cix;+d (1)

i=1 i=1

where a, aj;, b;, ¢, ¢;, d are real coefficients. The goal is to characterize these coefficients so that either
Tp (Ax) € A, Tp (Sk) C S, 01 Tp () € .
First, we will characterize P such that 7p (A;) C Ay.

Theorem 3.1. Let P : 1! — R be a quadratic polynomial as defined in equation (1). For any k = 2, Tp (Ax) C
Ay if and only if P is a aggregation function.

Proof. Assume P is a quadratic aggregation function. Then P is nondecreasing which implies 7p (4) is non-
decreasing whenever A itself is nondecreasing. Now

5 (A) (6) =P(6,A (6)) =P<6,0> -0
p (A) (I) =P(I,A (I)) =P(I, 1) -1

whenever A (6) =0and A (T) = 1. Therefore, Tp (Ay) C Ay.

and

On the contrary, assume 7p (A;) C Ay. Using the same arguments, we have P (6) =0and P (I) = 1.

Define
(ﬁ)xl.r Xi<a_€;

, a-e<xj<a+e

1- (%) -x), x;>a+e.

e

2

&

[

—~
=4

~—~
N

Then A; 4 ¢ is an aggregation function whenever O < a— € < a+ € < 1and z € I. Moreovet, 0;A; 4,7,¢ ()?) =0
whenever ¥ € I¥ is such that x; = a. Since 7p (Ai,a,z,e) is nondecreasing and differentiable when x; = a, we
must have 0;7p (Aj 4,5,¢) (X) > 0 whenever ¥ € I* is such that x; = a. Now,

aiTp (Ai,a,z,e) ()?) = aIP ()?, Z) + ak+1P ()?, Z) aiAi’a’Z’e ()_f) = a,P ()?, Z)

for such point. Therefore, we can conclude that 9;P (X, z) >0 whenever 0 < x; < 1and 0 < z < 1. Since Pis a
polynomial function, we can conclude that 0;P (X, z) = 0 for all (X,z) € I*!andalli=1,...,k. Therefore,
P is nondecreasing with respect to the first k variables.
To see that P is nondecreasing with respect to the last variable, fix 0 < a < 1 and O < z < 1. For each
c>1,letp=pc(a,z)= %and
Bia,zc (X) =min (cx?, 1).

—

Then B; 4,  is an aggregation function with B; , , . (X) = zand 0;B; 4,z ¢ (X) = pcx? ! = 2Z whenever X € I¥
is such that x; = a. Now,
0<0;7p (Bi,a,z,c) (f)
= aIP ()?, Z) + ak+1P ()?, Z) aiBi’a’z’C ()?)
= 0P (%,2) + 0P (%,2) (B2).

Therefore,
a

pz
whenever ¥ € I¥ is such that x; = a. Let ¢ — oo, then p — oo and hence 0y, P ()?, z) > 0 as desired. Since a
and z are arbitrary, we are done. O

0k+1P (X,2) 2 ——0;P (X, z)
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The characterization of quadratic aggregation functions has been done in [10]. Thus, we immediately have
the following result.

Corollary 3.2. Let P : I — R be a quadratic polynomial as defined in equation (1) for some k = 2. Then
Tp (Ax) C Ay if and only if P is a convex combination of mi;; and {;; where

i (H) = uiwj,
Gij () = u; + uj — uzu;

forallu = ()?, z) € I, In particular, such polynomials P forms a convex set with exactly (k+ 1)2 +k+1 extreme
points.

Proof. Follows directly from Theorem 2 and Corollary 3 in [10]. O

As an illustration, consider P : I* — R defined by P = % (112 + 34) Then P is a quadratic aggregation
function which immediately implies A = 7p (mean) must be an aggregation function too. Direct computation
yields

1

1 1 2
gXFt VIt ¢z

1
A(x,y,z)=§xy+6 ¢

forallx,y,zel.

From Theorem 3.1, we might guess that 7p (§) C Fif and only if P € F when ¥ is either Ay, 8, or Q.
This guess is, of course, incorrect even in the case k = 2. To characterize P for the remaining cases, we will
first consider the possible form of P. Note that if either 7p (S;) C 8y or 7p (Qx) C Qi hold, then we would have
Tp (M) € 8.

Lemma3.3. Let P : I**! — R be a quadratic polynomial as defined in equation (1). For any k > 2, Tp (M) € Sy

if and only if P is in the form
k

P(%,z) = az’ —aszi+(ak—a+ 1)z
i=1

for some -5 <a <0.
Proof. Assume that 7p (M) € 8. For any x € I, we would have
0<T7p(M)(xé)<Tp(M) () =0
by choosing j # i. Since M (x€;) = 0, we have
Tp (M) (x€;) = agx* +cix+d

forall x € Tand hence a;; = ¢c; =d = 0.
Similarly, we can use the fact that k > 2 to show that M (xé,- + yé’,-) =0and

2a;xy = Tp (M) (x€; + y€;) =0
forall x, y € L. Thus, a;; = 0. Hence, P must take the form
k
P(X,z) = az’ + ZZ bix; + cz.
i=1
Now, we use the fact that M (é_; + xé;) = Tp (M) (€_; + xéi) = x to obtain
X=Tp M) +X€

=(a+b)x*+ Zb +c|x
ji
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i b; + ¢ = 1. Therefore, b; = —~aand c = 1 - Z]’;i b;
1+ (k- 1) a. Hence, P must be given in the above form. To see that —ﬁ < a < 0, we use the fact that 7p (M)
is nondecreasing. Consider

which is only possible when a + b; = 0 and Zk

f=1pM)(x,...,X)

= ax® - akx* + (ak - a + 1) x.

Since 7p (M) is nondecreasing, so is f. Now, f’ (x) = 2a (1 - k) x+(ak — a + 1) = O for all x € 1. Substitute x = 0
yields a > - ¢1;. Similarly, consider

g(xX)=1p(M) <x,%,...,%>

1 1 1 1
—Za—ia(x+§(k—1))+§(ak—a+1)

where x > 3. Then g must also be nondecreasing on the interval [ 3, 1]. Now, g’ (x) = -3a > Oforallx € [3, 1].
Therefore, a < 0.
On the contrary, if P is given by the above formula, then

Tp (M) (€_; + x€;) = aM? (€_; + x€;) —aM (é_; + x&;) (k- 1+ x) + (ak — a + 1) M (€_; + X&)
—ax’ -ax(k-1+x)+(ak-a+1)x

=X.

Therefore, 7p (M) € 8. O

Remark 3.4. 1f we define Py (X,z) = zand Py (X,z) = —;152° + 252 Zﬁl Xj = —pg42% + kf"lz - mean (X),

then the above lemma states that 7p (M) € S if and only if P is a convex combination of Py and P, that is,
P = P; = tP1 + (1 - t) Po for some ¢t € I. Also, we always have 7; = 7p, = tTp, + (1 -t)7p,. Clearly, 19 is
the identity map and hence 7 (8;) = Sy and 7¢ (Qx) = Q. If we can show that 77 (S;) C 8, we can use the
fact that 8y is a convex set to conclude that 7+ (S;) C 8y for all t € 1. Similar conclusion also holds when we
replace 8; with Q;. Note that P; is not an aggregation function. Thus, 7, is not a transformation of aggregation
functions.

Also, for k = 2, {1;|t € [} is a proper subset of all quadratic transformations preserving semi-copulas
(quasi-copulas).

Theorem 3.5. Let P : I**! — R be a quadratic polynomial. For any k > 2, Tp (8) C Sy if and only if Tp = T4,
thatis, P = P; for some t € 1.

Proof. If Tp (Sy) C S, then 7p (M) € 8; which implies P = P; for some t € I by the previous lemma. For the
converse, it is sufficient to show that 7 (S) is nondecreasing since 7, (S) (é_i + xéi) = x for all x € T via direct
computation.

For any function F, denote 4; .F (X) = F (X + €€;) - F (X). Then

k
(k=1)4;e71 (S) (X) = -S” (X + €&;) + S (¥ + €8&)) Zx]+e +5 (X) - S(”)ij
ij=1 j=1
k
> §% (X) - §% (X +€&;) + S (X + €8&;) Zx]+e -S(X) ij+e
j=1
k
=2;eS(X) [ D xj+e-S(X+€&)-S(X)
j=1

k
> A; ¢S (X) ij +e-M(X+eé;) - M(X)
j=1
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k
> A; S (X) Z Xj+€-2M (X + €&))
j=1

Since S is nondecreasing, 4; .S (X) = 0. Since k > 2, Z;‘Zl Xj+€ 2 2M (X + €€;). Therefore, A; .71 (S) = 0 which
implies 7, (S) is nondecreasing as desired. O

Theorem 3.6. Let P : I*! — R be a quadratic polynomial as defined in equation (1) for some k > 2 Then
Tp(Qx) C Qr ifand only if Tp = 14, that is, P = P for some t € IL.

Proof. Following the same arguments, it is sufficient to show that 71 (Q;) C Q. Since Q; C 8;, we already
have 71 (Q¢) C 8. Thus, it remains to show that 0;71 (Q) < 1 a.e. for any Q € Qy.
Since P; is a polynomial and 0;Q exists a.e., 0;71 (Q) must exist a.e. too. Recall that Q ()?) > W ()?) =

max (0, Zf;l x;—k+ 1) . Direct computation yields

211(Q) (%) =~ 27 Q (%) 4Q () + -

a.e. as desired. O
Note that a quadratic function px (z) = P; ()?, z) = ﬁz (Zﬁl Xi— z) only has two fixed points which are
z=0andz = 25‘21 x; — k + 1. Thus, 71 must transform any semi-copula (quasi-copula) to a different semi-
copula (quasi-copula) excepted only when that semi-copula is either L or W. In other words, L and W are the
only fixed points of 7;. Similar conclusion also holds for 7; when ¢ # 0.

We end this section with an example of quasi-copula construction using quadratic transformations.

Example 3.7. Consider a function C, : I¥ — R defined by
k k
Cg ()?) = Hxi + GHXi(l —Xi)
i=1 i=1

for all X € IX. It can be easily proved that Cy is a semi-copula if and only if it is a quasi-copula if and only if
-1 < 0 < 1. Using the transformation 71, another family

1
Qo =71(Co) = (kCe - mean — cg)

of quasi-copulas can be constructed. Simplification of Qg is also possible. For example,

for all X  T*.
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4 Conclusion and Discussion

In this work, we propose a construction of multivariate aggregation functions via quadratic transformations
of such functions. A characterization has been made to ensure which quadratic polynomials can be used to
define such transformations. It turns out that the structure of quadratic transformations of general aggrega-
tion functions is quite complicated. In the bivariate case, such quadratic transformations form a convex set
with 12 extreme points. Moreover, the number of extreme points is roughly the square of the dimension in
general. On the contrary, quadratic transformations of multivariate semi-copulas and quasi-copulas are very
simple. Both classes are the same, which are convex sets with only two extreme points. Moreover, one of the
extreme points is the identity transformation. Therefore, there is only one non-trivial quadratic transforma-
tion. This situation differs from the bivariate case in several ways. First, in the bivariate case, such transfor-
mations form a convex set with four extreme points. Second, these two classes are different in the bivariate
case with, surprisingly, the class of quadratic transformations of bivariate semi-copulas is a subclass of the
class of quadratic transformations of bivariate quasi-copulas.

Other subclasses of aggregation functions can also be considered. For example, we could try to character-
ize quadratic transformations of conjunctive aggregation functions and disjunctive aggregation functions. It
is also interesting to see whether these transformations overlapped. For instance, whether a quadratic trans-
formation of conjunctive aggregation functions is also a transformation of disjunctive aggregation functions.
More generally, whether a transformation of some subclass is also a transformation of its dual class. We hope
that these questions can be answer in the future.

During the investigation, we also found that the form of quadratic transformation 7 can be found by con-
sidering 7p (M) alone. It is interesting to see whether this situation can be generalized. For example, when P
is a rational linear function as studied in [4]. Characterizing functions P with this property is also interesting.

Characterization of polynomial transformations 7p is also an open problem. The existence of such trans-
formation is guaranteed by compositions of quadratic transformations. For aggregation functions, we may
use the exact same proof to conclude that P itself is an aggregation function. However, the characterization
of polynomial aggregation functions is also an open problem. For semi-copulas and quasi-copulas, the situa-
tion would be more bizarre because we would not be able to guess the form of such transformations. At most,
we are able to confirm that these classes would be convex with non-linear boundary. Thus, they would have
infinitely many extreme points.

All these questions require further study.
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