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Abstract: The energy distance and energy scores became important tools in multivariate statistics and mul-
tivariate probabilistic forecasting in recent years. They are both based on the expected distance of two in-
dependent samples. In this paper we study dependence uncertainty bounds for these quantities under the
assumption that we know the marginals but do not know the dependence structure. We find some interesting
sharp analytic bounds, where one of them is obtained for an unusual spherically symmetric copula. These
results should help to better understand the sensitivity of these measures to misspecifications in the copula.
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1 Introduction

In recent years the so-called energy distance became a famous tool in multivariate statistics used e.g., for
goodness-of-fit tests and many other things. For a good overview over this topic we refer to [22]. Similar con-
cepts have been suggested in the theory of multivariate probabilistic forecasting, where the so-called energy
score has been suggested as a strictly proper scoring rule for multivariate distributions in the fundamental
paper of [6]. Both concepts rely on functionals that are based on expected distances of independent copies
of random vectors. This is related to the multivariate Gini mean difference, which has been studied in detail
in [9]. In the univariate case the Gini mean difference is a well-known measure of spread of distributions or
inequality in case of income distributions, see e.g., [24] for an overview.

In goodness-of-fit testing as well as in probabilistic forecasting one is interested in detecting misspecifi-
cations of stochastic models. Therefore it is an important question how sensitive the used functionals react
to which kind of misspecification. [15] studied the discrimination ability of the energy score for the case of
multivariate normal distributions. Based on simulation studies they conclude that the discrimination ability
of the energy score may be limited when focusing on the dependence structure of multivariate probabilistic
forecasts, but to the best of our knowledge there has been no general study of this problem so far for general
distributions. Motivated from this study, [26] recently introduced the concept of a copula energy score. For
their study it is important to find good lower bounds for the energy score of a copula.

In this paper we want to study this problem of so-called dependence uncertainty bounds for such quan-
tities like the energy score and the Gini mean difference. By dependence uncertainty bounds we mean here
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bounds for a functional of a multivariate distribution under the assumption that we only know the marginal
distributions but do not know the dependence structure, i.e., we do not know the copula. The study of such
uncertainty bounds has a long history going back to [7] and [4]. They considered this problem for correlation
coefficients and for the value of cumulative distribution functions. In the meanwhile there is a vast literature
on this topic for many kinds of functionals. For an overview see [18]. Very often the extremal positive depen-
dence is given by the comonotone copula, in particular if the functional is an expectation of a supermodular
function, as has been shown in [23] and [19]. It is typically more complicated to find the extremal negative
dependence, even in the case of expectations of functions and thus linear functionals of the distributions,
which is the case for most problems considered in the literature. An example of a non-linear problem is the
case of finding the solution of an optimal stopping problem that was considered in [11]. In such a case of a
non-linear problem the characterization of the optimizer can be very different from the case of a linear prob-
lem. Other non-linear problems include finding bounds on some risk measures.

The problem considered here also resembles the problems of optimal transport or optimal coupling. Our

problem can be written in the form
sup {/ clxi,..., x2d)d;u}

where the supremum is taken over all 2d-dimensional distributions y with given marginals and the additional
constraint that the first d components are independent of the other d. Without these additional constraints
such problems have been considered e.g., in [20]. In recent years there is a lot of interest in such problems
under an additional martingale constraint, see e.g., [5].

In this paper we also deal with a non-linear problem, but it will turn out that still the comonotone copula
will typically lead to the extremal positive dependence. But for the extremal negative dependence we find in
some cases a very interesting solution based on a spherical symmetric copula. This is an interesting copula,
which does not seem to be well-known in the dependence modelling community.

The paper is organized as follows. In Section 2, we recall the definitions of the various concepts. We also
introduce some important notation that will be used throughout the manuscript and present the problem
that is considered in this paper. In Section 3, we focus on the expected distance between two multivariate
distributions and its sensitivity to dependence uncertainty. Finally in Section 4, we provide a number of re-
sults on the dependence uncertainty bounds on the energy score. Section 5 concludes with a number of open
questions that are left for future research.

2 Energy score and Gini mean difference

Throughout the manuscript X, X shall be independent copies of a d-dimensional random vector with cumu-
lative distribution function (cdf)

FOxX)=P(X1 £x1,...,X5<xq), X=(1,...,xg) € RY,

and let Y be a random vector with cdf G. We define the expected distance between two independent d-
dimensional samples of F and G as

S(F, G) =E(|X - ¥|2) = / Ix - Y F(dx)G(dy),

where we identify the cdfs F and G with the corresponding probability measures and denote as usual by

the Euclidian distance. For an observation y, we similarly define by identifying y with the one-point measure
iny
SE¥) ~E(IX-yI2) = [ lbe-ylaF(@0.
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The energy distance between two distributions F and G is defined as
&(F, G) = 2S(F, G) - S(F, F) - S(G, G).

This is a distance between probability distributions, as it can be shown that &(F, G) = O for all F, G and that
&(F, G) = 0ifand only if F = G. For details of this concept and applications we refer to the overview article of
[22]. A strongly related concept is the so-called energy score for a distributional forecast F and an observation
y, which is given by

ES(F,y) = S(F, y) - 2 S(F, F).

This can be generalized by introducing a parameter 8 € (0, 2) as already considered in the fundamental
paper of [6].

Definition 1. For 8 < (0, 2), the generalized expected distance between two independent d-dimensional
samples of F and G is defined as

Sp(F, G) = E (Hx - Y||§) - / Ix - y||EF(dx)G(dy),
and the generalized energy score as
ES4(F,y) = Sy(F, ) - %SB(F, F
Similarly, the corresponding generalized energy distance is defined as
Ep(F, G) = 2S4(F, G) - Sg(F, F) - Sg(G, G). (€]

Note that the limiting case 8 = 2 is excluded in the definition, as &,(F, G) only depends on the marginal
distributions of F and G and thus does not depend at all on the copula and in fact therefore is not a distance
and does not lead to a proper scoring rule.

Remark 2. The function
S(E,F) =E (X - X|) = / X - Yl F(d0F(dy)

is known (sometimes up to a constant 2d) as multivariate Gini mean difference and has been studied in detail
in [9]. To distinguish the univariate version of the Gini mean difference from the multivariate one we denote,
from now on, the univariate version with a slight abuse of notation as

MC(F) := M(F, F) = S(F, F) - / X - y|F(dx)F(dy) = 2 / (1 - FO))F()dx
and its generalization for B € (0, 2) and different F and G similarly as
M/;(F, G) = / |x - y|ﬁF(dx)G(dy).
Note that the bordering case of § = 2 yields for X ~ F up to a factor of two the variance
M,(F,F) = / |x - y|*F(dx)F(dy) = 2var(X).

We will frequently consider the random variable Z = |X - Y| for independent random variables X and Y. We
use the following notation.

Definition 3. Forindependent X and Y with cdf F and G, respectively, we denote by FOG the cdfof Z = |[X- Y|
which is given by

FOG() = /(F(y +X) = Fy-x) G(dy), x20.
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Notice that the Gini mean difference M(F) = S(F, F) is the mean of FOF and more general M ﬁ(F ,G) = E(ZP)
is the corresponding moment of order f3.

Example 4. In case of standard uniform distributions U, V on (0, 1) for F = G we get for Z the density
fz(z) =2 -2zon|0, 1] and thus
1
mwpmﬂp/ﬁuamu=
0

2 2

B+1 fB+2

@

with the special cases S(F, F) = M(F) = EZ = 1 and in the limiting case when = 2 we get EZ* = 1 = 2var(U).

2.1 Dependence uncertainty bounds

We want to study how sensitive these quantities are with respect to the dependence information in the joint
distribution. Therefore we investigate bounds for such expressions given that we only know the marginals of
F and G. As usual we denote the marginals by

Fi(x):=PX;<x), x€R,i=1,...,d.
By Sklar’s theorem we can write the joint cumulative distribution F of X in the form
F(X): C(Fl(xl)’---aFd(Xd))) xeRdy

for some copula C, see e.g., [13]. We denote by C the set of all possible copulas and by F = F(Fy, ..., Fy;)
the so-called Fréchet class of all multivariate distributions with given marginals F, ..., F;. The well-known
Fréchet bounds are denoted by

F*(x) = min{F1(x1), ..., Fa(x4)}

and
F (x) =max{F1(x1) +...+ F4(x4) -d + 1,0}

and C* and C~ will be the corresponding copulas, typically called the comonotonic and countermonotonic
copula, where one has to take into account that C™ is only a copula for d = 2.
Similarly, for a joint cumulative distribution function G of X,

G(x) = C(G1(x1), ..., Ga(xyg)), xeRY,

we denote by G, the Fréchet class of all multivariate distributions with given marginals G4, ..., G,.
We first study the corresponding dependence uncertainty bounds on the generalized expected distance
between two independent d-dimensional samples from F and G. These bounds can then be written as

inf Sg(F, F) and sup Sg(F, F), 3)
FeF FeF

when both samples come from the same distribution F, and by

inf Sg(F,G)and sup Sg(F,G), (4)
FeJ,6e§ FEF,GES
when the multivariate distributions F and G are not identical.
For a given observation y, we then study dependence uncertainty bounds for its generalized energy score
by considering
inf ESg(F, y) and sup ESg(F, 5
inf ESy(F. y) and sup ESy(F. y) )

The optimizations in (3), (4) and (5) are over the Fréchet classes F and G. In fact, given that the marginal
distributions are given, the uncertainty bounds can also be considered as solutions of optimization problems
over the class C of all copulas.
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3 Dependence uncertainty bounds for Sp

In this section, we provide analytic bounds for the expressions (3) and (4). To do so, we first look at some
fundamental properties of Sg and ESg.

It is well-known (see for instance [6]) that the generalized energy distance & p is a distance for 8 € (0, 2),
ie., & B(F , G) = 0forall F, G and therefore also ES B (F,y) 2 0 for all F and y. Moreover, this implies by defini-
tion (1) also that

254(F, G) = S4(F, G) + Sp(G, F) = Sg(F, F) + Sy(G, G). 6)

It is also well-known that ESg is a proper scoring rule, meaning that
ESp(F, F) < ESg(F, G) forall F, G. )

Note also that ESg(F, F) = %SB(F , F). We can derive the following lemma on the concavity of Sg(F, F). As
already observed in section 2.1 of [6], this concavity holds for any proper scoring rule, but for completeness
we add an elementary proof.

Lemma5. F -+ S B(F , F) is concave.

Proof. Indeed, Sp is linear in F and G and therefore we get for « € (0, 1) from (6) that

SglaF + (1 - &)G, aF + (1 - a)G)
= a’Sg(F, F) + a(1 - a)(Sp(F, G) + Sg(G, F)) + (1 - @)* Sp(G, G)
> a’Sp(F, F) + a(1 - a)(S(F, F) + Sp(G, G)) + (1 - @) S4(G, G)
= aSg(F, F) + (1 - a)Sg(G, G).

3.1 Lower bound on Sg(F, G)

For finding a minimum value of S ﬁ(F , G) the following representation is going to be helpful.

B
2

d
si,0-5 (1x-vif) - 2| (22) . ®
i1

where Z; = |X; - Y;| ~ F;0G; (see Definition 3). Thus we have a representation Sg(F, G) = Ef(Z3,..., Zé)
where we know the marginals of (Z%, A Zﬁ) and the function f has the following properties: as a concave
function of the sum it is submodular, i.e., —f is supermodular. For the definition and properties of supermodu-
lar functions and their relevance for inequalities of expectations in case of distributions with given marginals
we refer to Chapter 3 in [12].

From this we can derive the following lower bound.

Theorem 6. For any random vector X and Y with cumulative cdfs F and G we get the following lower bound:
Sp(F, 6) = B (22)

for a random variable Z that is defined as
d 2
2= ((F0G)™ W)
i=1

for some standard uniform random variable U.
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In case of identical marginals F1 = ... = Fyand Gy = ... = G4 this bound is sharp and is obtained for the
upper Fréchet bounds F = F* and G = G*. Furthermore, in this case it reduces to

+ ot g
Sl;(F, G) ESﬁ(F ,G ) = dzMﬁ(Fl,Gl).

Proof. According to (8) we can write S(F, G) = Ef(Z3,..., Zﬁ) for a submodular function f. It follows from
[23] that a lower bound for Ef(Z3, ..., Z2) is obtained by assuming that the copula of (Z3, ..., Z2) is given
by the upper Fréchet bound C*, or equivalently the copula of (Z4, ..., Z,), as the copula is invariant under
a strictly increasing transform of the components. This means that we can assume that Zl-2 = ((F;0G) Y ())?
for some fixed uniform U and from this the first assertion immediately follows.

If each of F and G has identical marginals, then we have for F* and G* that X = (X;,...,X;)and Y =
(Yy,..., Y1) and thus we get in (8) also the equality Z; = ... = Z; and therefore this lower bound is attained
and reduces to

Sp (F*, G) =E ((dZD)?) = d* My(Fy, Go)

O

Note that Sg(F*, G*) may not be a lower bound when the marginals of F and G are not identical. Consider
X =(4U1,Uy) and Y = (U, 4U>) for two independent uniform Uy, U,. Then Z; is large if U; is large and Z,
is large if U, is large and they are far away from being comonotone. The support of (Z1, Z,) is given in the
left panel of Figure 1 and does not correspond of the support of the upper Fréchet bound. The lower bound
is obtained for something different from F* and G*. In fact, if one takes for F the lower Fréchet bound F = F~
and G = G” instead, i.e., X = (4U,, 1 - Uy) and Y = (U,, 4U,), then we get more positively correlated Z; and
Z, as depicted in the right panel of Figure 1. Indeed we get S(F~, G*) = 2.48 < S(F*, G*) = 2.55.

(F+,G+) (F-,G+)

Figure 1: Support of (Z1, Z,). Left panel: F = F*, G = G*. Right panel: F = F~, G = G".

3.2 Upper bound on Sg(F, G)

It seems to be much more difficult to find a sharp upper bound for Sg(F, G), as it is a notoriously difficult
problem to find a strongest possible negative dependence in the sense of maximizing the expression in (8).
But we can easily derive an upper bound via Jensen’s inequality.
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Theorem 7. For any random vector X and Y with cumulative cdfs F and G we get the following upper bound:

B
d 2
Sp(F, G) < <ZM2(F,-,Gi)> :

i=1

Proof. Applying Jensen’s inequality to (8) we get that for any multivariate distributions F and G,

B B B

d 2 d 2 d 2

Sy(F, G) = E(ZZ%) < (ZEZ?) = <ZM2(Fi,Gi)> .
i=1 i=1

i=1
O

The bound in Theorem 7 is obtained from Jensen’s inequality. Therefore it is only tight if the expression
| X - Y||, is constant. This will typically not be the case unless at least one of the distributions of X and
Y is constant. However, this is not a characterization: a simple exception is given in the following example.

Example 8. Assume that d = 2 and that F; = F, = G1 = G> are all Bernoulli with probability 1/2. If F has
the copula C* and G has the copula C~ then X has probability 1/2 for the values (0, 0) and (1, 1), whereas Y
has probability 1/2 for the values (0, 1) and (1, 0), so that || X - Y||, = 1 almost sure, and hence, we get the
sharp bound

Sp(F, G) < Sﬁ(C+(F1,F2), C (G4, Gy)) =1.

3.3 Upper and lower bounds on Sg(F, G) for copulas

In the special case of uniform marginal distributions, the class & is simply the class of all copulas and we are
able to derive explicit expressions of the lower and upper bounds obtained in Theorems 6 and 7. Specifically,
from Example 4, we have expression (2) and we get that EZ? = 1/6 . We can then immediately derive the
following consequence.

Corollary 9. For copulas C, C, we get the following bounds:

i
o _ B (2 2 d\?
and in particular for B = 1,

s(c*, ¢ - ;/a < 5(Cy, Cy) < \/g.

Example 10. Similarly as in the case of Bernoulli variables considered in Example 8 one could conjecture
that a sharp upper bound for copulas is obtained by Sg(C™, C*). We will now give an explicit counterexample
for the important case of d = 2 and B = 1. Using the invariance under rotation we can easily derive S(C~, C*)
in this case from the expected distance of two points on the axes.

11
- 1 V2 +1og(1+/2)
s(c,chH= —//\/x2+y2 dxdy = ~=——=>-"7"2 = 0.541.
2 2
V2, 3v2

Now let us consider the copula C ”, defined as the distribution of the following random vector (U, U,) with
U, ~ U(0,1) and
Ul + %, if U1 < %,

Uz = (9)
Ul—%, ifUl >%.

Thus the support of the copula C! consists of two parallel line segments as displayed in Figure 2.
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Figure 2: Support of the copula C!l defined in (9)

Then we get by a similar computation

1 1
st cly= 1 Lo(L, * dxdy = 0.549
N —ﬁ 5 Z X_y Xy~ . .

0 O

Thus S(C*, ¢l) > S(C, C*). We notice, however, that this inequality is reversed for the energy distance. We
get &(C,C*) = 0.069 > 0.064 ~ &(C, Cll) even though S(C~, C*) < S(c*, Cll), as S(C*, C*) ~ 0.471 is
significantly smaller than S(C I, ¢l ~ 0.4985. Therefore it is still an open problem whether for the energy
distance &(C~, C*) maximizes £(Cq, C,) among all copulas.

3.4 Upper bound on S(F, F) for copulas

Under the assumption of equal copulas C = C; = C,, we can improve the upper bounds in Corollary 9 and
even find sharp bounds for S(C, C) in the case of dimension d = 2 and d = 3 for some interesting copulas,
which can be called spherical symmetric copulas. These do not seem to be very well-known in the commu-
nity working on dependence modelling and copulas, but they have been considered from time to time in the
statistics literature, e.g., in [2], [21] and [14]. Implicitly this result can also be found in section 4.9 of [8] where it
is shown that uniform distributions can be marginal distributions of spherical symmetric distributions only
in dimension d = 2 and d = 3. [14] show that in dimensions d = 2 and d = 3 there are unique spherical
symmetric random vectors X whose marginals are uniformly distributed on [-1, 1]. In dimension d = 2, this
distribution has the density

f(X’ )’) = by > 1[x2+y2<1] (10)

1-x2-y
and in dimension d = 3 this is given by the uniform distribution on the sphere of a unit ball. The fact that
the uniform distribution on the sphere of a unit ball in dimension d = 3 has uniform marginals is in fact a
consequence of a famous theorem on spheres and cylinders going back to Archimedes. Notice that the bivari-
ate case can be obtained from this by considering the two-dimensional marginals of the three-dimensional
case. Transforming the marginals to uniform distributions on [0, 1] via the transformation X; — (X;+1)/2 we
get copulas called spherical symmetric copulas, which we will denote by C°. In Figure 3 we show a discrete
approximation of the bivariate spherical symmetric copula. Notice that the density is unbounded, going to
infinity at the boundary of the support, and therefore in the discrete approximation there are many points
there as one expects for a bivariate projection of points uniformly scattered on the sphere of a ball.
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Figure 3: An illustration of the bivariate spherical symmetric copula C°

Moreover, we will use results that were obtained independently in [10], Theorem 2 and as main result in
[1]. In our notation their results can be stated as follows.

Theorem 11. The functional S(F, F) is maximized among all random vectors X ~ F with E(||X Hz) < 1 for
S(F*,F"), where X" ~ F" is given as follows.

Ifd > 3 then X" is uniformly distributed on the sphere of a unit ball.

Ifd = 2 then \/2/3 - X" has the density given in equation (10).

From this result we can derive the following improved bounds for copulas.

Theorem 12. In dimension d = 2 it holds for any copula C that

S(C, ) < S(C°, C°) = %.

In dimension d = 3 it holds for any copula C that

S(C, C) < S(C°, C°) = %

Proof. We define the shift T(Xy,...,X;) = (X1 -1/2,..., X;—1/2) that transforms marginals from uniform
on (0, 1) to uniform on (-1/2, 1/2). As obviously

E(IX-Y[2) =E(|TX - TY|2)

this shift does not affect the functional S, and therefore we can replace the copulas by distributions F with
uniform marginals on (-1/2, 1/2). For any such random vector X ~ F we get

2
E(|X||?) = B(X3 +...+X3) = % and hence E H 1/172X =1.
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For any copula C, and X ~ C and Y ~ C independent, we thus obtain that E (‘ 1d—2TX

2
) = 1 and thus

from Theorem 11,

S(C,O=E(IX-Y[)=E(|TX-TY|>) (11)
d 12 12 d * o x
= \/;E (H\/;TX_’/dTY 2) <\ 35F . F),

with S(F", F") as described in Theorem 11. In case d = 2 and d = 3 we get equality for C = C° and the
corresponding values for S(F*, F*) are computed in [1], there denoted as M. They are given by

M, = iandMg = ﬁ

NG 3
Thus we derive for d = 2 that
o poy_ |2 _n
S(c,0)<8(c°,c°) = IVl M2—6,
and for d = 3 that
o oy _ 3 . _g
S(c,0)=8(c°,co) = 13 M3—3.

O

We also get an improved bound for d > 4 from Theorem 11 but then it is not sharp, as the uniform distribution
on the sphere no longer has uniform marginals. Indeed, [14] show that there cannot exist any spherical sym-
metric copulain dimension d > 4 and therefore we do not know, how the copula C that maximizes C — S(C, C)
looks like. We conjecture that it in some sense will be close to spherical symmetry. The improved bound that
we can derive from (11) and Theorem 11 in case d = 4 is

| 4 1 64
S(C,0) < ﬁ-M4—\/;-15—n~0.784,

whereas the bound from Jensen’s inequality for d = 4 given in Corollary 9 is \/m ~ 0.816. For higher
dimensions d the difference between the bounds derived from Jensen’s inequality in Corollary 9 and the better
ones derived from (11) and Theorem 11 become smaller and smaller as the latter ones are also approximately
\/ﬂ for large d. A similar phenomenon has been observed for bounds on risk measures in [17] and [3].

Remark 13. We also notice that S(C°, C°) is not an upper bound for the case that we allow the copulas to be
different, as we have an explicit counterexample in Example 10 with

11
2
oy 1 1,.(1,, - ~ T _gco. c°
s(c*, ch) ﬁ//\/2+<2+x y) dxdy O.549>6 S(ce, C°).
0 0

4 Bounds on the energy score

Let F be a distribution and y an observation. We now first study bounds on Sg(F, y) in order to obtain bounds
on the energy score ESg(F, y).

4.1 Bounds on Sg(F,y)

First, note that we cannot expect a general upper bound for y — Sg(F,y) as Sp(F,y) — oo fory — oo. It
is possible, however, to find general lower bounds and they are very important in applications like in the
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definition of the copula energy score in [26]. We therefore concentrate on studying the lower bound in what
follows.

It is clear that as a function of y, the expression of Sg(F, y) is small if y is in some sense near the center
of the distribution. In the univariate case it is a well-known simple result that y — E|X — y| is minimized for
y" := Fx}(1/2) being the median of the distribution of X.

We can prove a similar lower bound in the multivariate case for the upper Fréchet bound F*, if we assume
that the marginals are symmetric and unimodal. Recall that a univariate distribution with cdf F is called
symmetric and unimodal with respect to some u € R, if F(u + t) + F(u - t) = 1 for all ¢ > 0 and F is convex
on (—oo, u) and concave on (U, o). Notice that unimodal distributions have a density if they are continuous
in pu. We will need the following simple Lemma for such distributions that we state with a proof here, as we
could not find it in the literature.

Lemma 14. Assume that the random variable X has a continuous, unimodal and symmetric distribution with
respect to u. Then it holds for all y < x < y and all y = x > y that

X - x| <5t |X -y
Proof. Denote by Fx the cdf of | X — x|, and assume p < x < y. We have to show that Fx(t) = Fy(t) forall t = 0.

A simple calculation shows Fx(t) = F(x + t) - F(x - t). As F is continuous, unimodal and symmetric, it has a
density f which is symmetric around y and decreasing on [u, oo). Therefore

0
&Fx(t) =fx+t)-f(x-1t<0
as |x + t — | > |x - t — y|. This implies the assertion for y < x < y and the case yu = x > y follows then by

symmetry. O

Theorem 15. Assume that the random vector X has a cdf F with marginals F; that are continuous, unimodal
and symmetric with respect to p;, i =1, ...,d. Then we have for ally € R4

S/}(Fa Y) 2 Sﬁ(F+’ I‘l)-

Proof. We have

B
2

d
Sp(F,y) = E (Z Z%,yi> : (12
i-1
where Z; = (X; - y;). It follows from Lemma 14 that

Xi - yi)? 25¢ (X; - p)?

for all i. Let us denote by (ZZYi 2)i=1,...,d comonotone random variables with the same distributions
as Zl-z, et Notice that for general y the vector (Z %;YI’ cee Zé,yd) is typically not comonotone, even if F is the
comonotonic upper Fréchet bound F = F*. This is the case, however, if y; = y; is the median for all i =
1,..., d. Therefore we get

v

B B
d 2 d 2
Sp(F,y) = E <Z Z?,y,) E <Z(Z{y,.)2> (13)
i=1

i=1

d 7
> | (Z(Z?,m)z) = Sp(F*, w). (14)
i=1
The first inequality follows as in the proof of Theorem 6. The second inequality follows from the fact that
for random vectors Z and Z’ with the same copula C* stochastic ordering Zj, <s; Zj, of the marginals implies
multivariate stochastic ordering and thus Ef(Z) < Ef(Z’) for all increasing functions f : RY — R, see e.g.,
[12], Theorem 3.3.8. O
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For copulas we get the following corollary. We denote here by 1 = (1, ..., 1) a vector with all components
being equal to one.

Corollary 16. For all copulas C and ally € [0, 1]¢ it holds

1 g 1P
+ _ 45 3
Sﬂ(C,y)ESl; (C ,§1> = d2ﬁ+1.
Proof. This follows from Theorem 15, as uniform distributions U on (0, 1) are symmetric and unimodal with
respect to 1/2 and
18
2

B+1°

E (\U— 1/2|ﬁ) -
O

In the case of copulas we can also have a look at the case that the observation y is an extreme point, which
can be assumed to be without loss of generality y = 0.
Theorem 17. Fory = 0 the function
C — S4(C,0)
attains its minimum for the upper Fréchet bound C*.
Proof. The proof for the minimum of C — S B(C , 0) follows the same lines as in Theorem 6. If U is a random

vector with copula C, then
Sﬁ(ca 0) = Ef(21, ey Zd)

where Z; = Uiz, i=1,...,d, and f is a submodular function. As Z = (Z4, ..., Z;) has the same copula as U,

we can conclude that Sg(C, 0) = Sg(C”, 0). O

It is easy to see that it is not true in general that the upper Fréchet bound C* minimizes C — Sg(C, y). Due to
invariance under rotations the minimum is obtained for the lower Fréchet bound C™ ify = (0, 1).

4.2 Bounds on ESg(F, y)

Similarly to the above study of Sg(F, y), one cannot expect a general upper bound for the energy score

1
ESy(F,y) = Sy(F,y) - 5 S(F, F)

as the quantity tends to +oo for y — oo. As we have to deal with a difference of two quantities, it is also in
general more difficult to find sharp bounds, whereas one easily gets some bounds by bounding each of the
two quantities using our previous results.

We now first consider a bounded domain for y. We then characterize the copula that achieves the lower
bound.

Asy — ||x - YHIZS is convex for f > 1, we also get that y — Sg(F, y) is convex in this case. From Lemma 5,
we thus can easily derive the following result.

Lemma 18. For 8 € [1, 2) the functions y — ESg(F, y) and F — ESg(F,y) are convex.
Considering a copula C and an observation y € [0, 1]¢ we immediately get the following consequence.

Proposition 19. For B € [1, 2) the function
yHESﬁ(C,Y)a ye [0, 1]d’

attains a maximum in the set {0, 1}%.
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Proof. This immediately follows from the fact that a convex function on a compact convex domain attains a
maximum in an extreme point. O

Following the results on the lower bound of S ﬁ(F , ¥) obtained for copulas in Section 4.1, it is natural to con-
jecture that the upper Fréchet bound C* is also the minimum of C — ES4(C, 0). This is not true, however.
We can show that in the bivariate case ES(C*, 0) > ES(C, 0) for the copula C of the following random vector
U.Let U, U’ ~ U(0, 1) be independent uniformly distributed random variables and define U = (U, U,) as
follows: Uy = U, = U, if U< 1/2.1fU > 1/2 then U; = Uand U, = (U’ + 1)/2.

We are not able to obtain an explicit lower bound but we can characterize some properties of the copula
that achieves the minimum energy score.

Let T : R? — R? be a transformation that is an isometry and that preserves the marginal distributions
in the following sense: if X is a random vector with distribution function F and marginals F1, ..., F;, then
T(X) also has the same marginals and for any x, y € R? we have

IT) = TW)I2 =[x = yll2-
It is easy to see that in the case of uniform marginals, i.e., for copulas, this holds for reflections of the form
Ti(X) = (X105« v s Xic1s L= Xiy Xig1s o+ o 5 Xg) (15)
and for permutations 7 of the coordinates
Tn(x) = Xys oo vs Xmy)- (16)

Let us denote by Cr the copula of the transformation T(U), if U is a random vector with copula C, and let H be
the finite group generated by all these isometric transformations of the hypercube that preserve the copula
property. This symmetry group of the hypercube is also called hyper-octahedral group and is generated by the
reflections and permutations described in (15) and (16), see e.g. [25].

We get the following theorem.

Theorem 20. For B € [1,2) andy = 11 the function
attains a minimum for a copula that is invariant under H.

Proof. Let us define for a fixed Cand y = %1

N 1
= T(y)
y |H|% v
and 1
C:i= — Cr.
|H\T§, !

Theny =y, T(y) = y forall T € H and C is invariant under H. Due to convexity of C — ESp(C, y) we get

PN 1 N 1 N
ESp(C,¥) < TH E ESp(Cr,y) = TH E ESp(Cr, T(¥)
TeH TeH

= ESy(C, 9).
O

With a similar argument we can show that the function C — ES ﬁ(C , 0) attains a minimum for a copula that
is invariant under permutations, but we are not able to derive an explicit solution for the moment.
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5 Conclusions

We investigated dependence uncertainty bounds on the energy score and for related functionals. The ob-
tained results indicate that indeed these functionals seem not to be very sensitive to the dependence structure
as one can see e.g., from the inequality

1 d
§¢Hs S(C1,Cy) < \/;

in Corollary 9, which holds for all copulas C;, C,. Notice that we get the even closer sharp bounds

?55((3,05%

in Theorem 12 for the case d = 2 if we restrict to the case of equal copulas. Therefore our results support the
corresponding claim in [15] which was based on a simulation study using multivariate normal distributions.
However, many questions remain open and we hope to stimulate research on this topic that we consider
as important. For example, we are not able to find explicitly the copula that achieves the lower bound of
the energy score. We are only able to provide a partial characterization of it in Theorem 20. We are also
working on the problem of finding the numerical solution of this optimization problem by using a variant
of the swapping algorithm that was used in [16] for a related problem. First results indicate that the solu-
tion seems to be a copula with a very unusual shape, but these results will be reported in a forthcoming paper.
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