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Abstract: The energy distance and energy scores became important tools in multivariate statistics and mul-
tivariate probabilistic forecasting in recent years. They are both based on the expected distance of two in-
dependent samples. In this paper we study dependence uncertainty bounds for these quantities under the
assumption that we know themarginals but do not know the dependence structure.We �nd some interesting
sharp analytic bounds, where one of them is obtained for an unusual spherically symmetric copula. These
results should help to better understand the sensitivity of these measures to misspeci�cations in the copula.

Keywords: dependence uncertainty bounds, energy score, Gini mean di�erence, spherically symmetric cop-
ula

MSC: 60E05, 60E15, 62C05, 62E10, 62E15

1 Introduction
In recent years the so-called energy distance became a famous tool in multivariate statistics used e.g., for
goodness-of-�t tests and many other things. For a good overview over this topic we refer to [22]. Similar con-
cepts have been suggested in the theory of multivariate probabilistic forecasting, where the so-called energy
score has been suggested as a strictly proper scoring rule for multivariate distributions in the fundamental
paper of [6]. Both concepts rely on functionals that are based on expected distances of independent copies
of random vectors. This is related to the multivariate Gini mean di�erence, which has been studied in detail
in [9]. In the univariate case the Gini mean di�erence is a well-known measure of spread of distributions or
inequality in case of income distributions, see e.g., [24] for an overview.

In goodness-of-�t testing as well as in probabilistic forecasting one is interested in detecting misspeci�-
cations of stochastic models. Therefore it is an important question how sensitive the used functionals react
to which kind of misspeci�cation. [15] studied the discrimination ability of the energy score for the case of
multivariate normal distributions. Based on simulation studies they conclude that the discrimination ability
of the energy score may be limited when focusing on the dependence structure of multivariate probabilistic
forecasts, but to the best of our knowledge there has been no general study of this problem so far for general
distributions. Motivated from this study, [26] recently introduced the concept of a copula energy score. For
their study it is important to �nd good lower bounds for the energy score of a copula.

In this paper we want to study this problem of so-called dependence uncertainty bounds for such quan-
tities like the energy score and the Gini mean di�erence. By dependence uncertainty bounds we mean here
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bounds for a functional of a multivariate distribution under the assumption that we only know the marginal
distributions but do not know the dependence structure, i.e., we do not know the copula. The study of such
uncertainty bounds has a long history going back to [7] and [4]. They considered this problem for correlation
coe�cients and for the value of cumulative distribution functions. In the meanwhile there is a vast literature
on this topic for many kinds of functionals. For an overview see [18]. Very often the extremal positive depen-
dence is given by the comonotone copula, in particular if the functional is an expectation of a supermodular
function, as has been shown in [23] and [19]. It is typically more complicated to �nd the extremal negative
dependence, even in the case of expectations of functions and thus linear functionals of the distributions,
which is the case for most problems considered in the literature. An example of a non-linear problem is the
case of �nding the solution of an optimal stopping problem that was considered in [11]. In such a case of a
non-linear problem the characterization of the optimizer can be very di�erent from the case of a linear prob-
lem. Other non-linear problems include �nding bounds on some risk measures.

The problem considered here also resembles the problems of optimal transport or optimal coupling. Our
problem can be written in the form

sup
{∫

c(x1, . . . , x2d)dµ
}

where the supremum is takenover all 2d-dimensional distributions µwith givenmarginals and the additional
constraint that the �rst d components are independent of the other d. Without these additional constraints
such problems have been considered e.g., in [20]. In recent years there is a lot of interest in such problems
under an additional martingale constraint, see e.g., [5].

In this paper we also deal with a non-linear problem, but it will turn out that still the comonotone copula
will typically lead to the extremal positive dependence. But for the extremal negative dependence we �nd in
some cases a very interesting solution based on a spherical symmetric copula. This is an interesting copula,
which does not seem to be well-known in the dependence modelling community.

The paper is organized as follows. In Section 2, we recall the de�nitions of the various concepts. We also
introduce some important notation that will be used throughout the manuscript and present the problem
that is considered in this paper. In Section 3, we focus on the expected distance between two multivariate
distributions and its sensitivity to dependence uncertainty. Finally in Section 4, we provide a number of re-
sults on the dependence uncertainty bounds on the energy score. Section 5 concludes with a number of open
questions that are left for future research.

2 Energy score and Gini mean di�erence
Throughout the manuscript X, X̃ shall be independent copies of a d-dimensional random vector with cumu-
lative distribution function (cdf)

F(x) = P(X1 ≤ x1, . . . , Xd ≤ xd), x = (x1, . . . , xd) ∈ Rd ,

and let Y be a random vector with cdf G. We de�ne the expected distance between two independent d-
dimensional samples of F and G as

S(F, G) = E (‖X − Y‖2) =
∫
‖x − y‖2F(dx)G(dy),

where we identify the cdfs F and G with the corresponding probability measures and denote as usual by

‖x‖2 =

√√√√ d∑
i=1

x2i

the Euclidian distance. For an observation y, we similarly de�ne by identifying ywith the one-point measure
in y

S(F, y) = E (‖X − y‖2) =
∫
‖x − y‖2F(dx).
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The energy distance between two distributions F and G is de�ned as

E(F, G) = 2S(F, G) − S(F, F) − S(G, G).

This is a distance between probability distributions, as it can be shown that E(F, G) ≥ 0 for all F, G and that
E(F, G) = 0 if and only if F = G. For details of this concept and applications we refer to the overview article of
[22]. A strongly related concept is the so-called energy score for a distributional forecast F and an observation
y, which is given by

ES(F, y) = S(F, y) − 1
2 S(F, F).

This can be generalized by introducing a parameter β ∈ (0, 2) as already considered in the fundamental
paper of [6].

De�nition 1. For β ∈ (0, 2), the generalized expected distance between two independent d-dimensional
samples of F and G is de�ned as

Sβ(F, G) = E
(
‖X − Y‖β2

)
=
∫
‖x − y‖β2F(dx)G(dy),

and the generalized energy score as

ESβ(F, y) = Sβ(F, y) −
1
2 Sβ(F, F)

Similarly, the corresponding generalized energy distance is de�ned as

Eβ(F, G) = 2Sβ(F, G) − Sβ(F, F) − Sβ(G, G). (1)

Note that the limiting case β = 2 is excluded in the de�nition, as E2(F, G) only depends on the marginal
distributions of F and G and thus does not depend at all on the copula and in fact therefore is not a distance
and does not lead to a proper scoring rule.

Remark 2. The function
S(F, F) = E

(
‖X − X̃‖2

)
=
∫
‖x − y‖2F(dx)F(dy)

is known (sometimes up to a constant 2d) asmultivariate Gini mean di�erence and has been studied in detail
in [9]. To distinguish the univariate version of the Gini mean di�erence from the multivariate one we denote,
from now on, the univariate version with a slight abuse of notation as

M(F) := M(F, F) = S(F, F) =
∫
|x − y|F(dx)F(dy) = 2

∫
(1 − F(x))F(x)dx

and its generalization for β ∈ (0, 2) and di�erent F and G similarly as

Mβ(F, G) =
∫
|x − y|βF(dx)G(dy).

Note that the bordering case of β = 2 yields for X ∼ F up to a factor of two the variance

M2(F, F) =
∫
|x − y|2F(dx)F(dy) = 2var(X).

We will frequently consider the random variable Z = |X − Y| for independent random variables X and Y. We
use the following notation.

De�nition 3. For independent X and Y with cdf F and G, respectively, we denote by F♦G the cdf of Z = |X−Y|
which is given by

F♦G(x) =
∫
(F(y + x) − F(y − x)) G(dy), x ≥ 0.
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Notice that the Gini mean di�erence M(F) = S(F, F) is the mean of F♦F and more general Mβ(F, G) = E(Zβ)
is the corresponding moment of order β.

Example 4. In case of standard uniform distributions U, V on (0, 1) for F = G we get for Z the density
fZ(z) = 2 − 2z on [0, 1] and thus

Mβ(F) = E(Zβ) =
1∫

0

zβ(2 − 2z)dz = 2
β + 1 −

2
β + 2 (2)

with the special cases S(F, F) = M(F) = EZ = 1
3 and in the limiting casewhen β = 2we getEZ2 = 1

6 = 2var(U).

2.1 Dependence uncertainty bounds

We want to study how sensitive these quantities are with respect to the dependence information in the joint
distribution. Therefore we investigate bounds for such expressions given that we only know the marginals of
F and G. As usual we denote the marginals by

Fi(x) := P(Xi ≤ x), x ∈ R, i = 1, . . . , d.

By Sklar’s theorem we can write the joint cumulative distribution F of X in the form

F(x) = C(F1(x1), . . . , Fd(xd)), x ∈ Rd ,

for some copula C, see e.g., [13]. We denote by C the set of all possible copulas and by F = F(F1, . . . , Fd)
the so-called Fréchet class of all multivariate distributions with given marginals F1, . . . , Fd. The well-known
Fréchet bounds are denoted by

F+(x) = min{F1(x1), . . . , Fd(xd)}

and
F−(x) = max{F1(x1) + . . . + Fd(xd) − d + 1, 0}

and C+ and C− will be the corresponding copulas, typically called the comonotonic and countermonotonic
copula, where one has to take into account that C− is only a copula for d = 2.

Similarly, for a joint cumulative distribution function G of X,

G(x) = C(G1(x1), . . . , Gd(xd)), x ∈ Rd ,

we denote by G, the Fréchet class of all multivariate distributions with given marginals G1, . . . , Gd.
We �rst study the corresponding dependence uncertainty bounds on the generalized expected distance

between two independent d-dimensional samples from F and G. These bounds can then be written as

inf
F∈F

Sβ(F, F) and sup
F∈F

Sβ(F, F), (3)

when both samples come from the same distribution F, and by

inf
F∈F,G∈G

Sβ(F, G) and sup
F∈F,G∈G

Sβ(F, G), (4)

when the multivariate distributions F and G are not identical.
For a given observation y, we then study dependence uncertainty bounds for its generalized energy score

by considering
inf
F∈F

ESβ(F, y) and sup
F∈F

ESβ(F, y) (5)

The optimizations in (3), (4) and (5) are over the Fréchet classes F and G. In fact, given that the marginal
distributions are given, the uncertainty bounds can also be considered as solutions of optimization problems
over the class C of all copulas.
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3 Dependence uncertainty bounds for Sβ
In this section, we provide analytic bounds for the expressions (3) and (4). To do so, we �rst look at some
fundamental properties of Sβ and ESβ.

It is well-known (see for instance [6]) that the generalized energy distance Eβ is a distance for β ∈ (0, 2),
i.e., Eβ(F, G) ≥ 0 for all F, G and therefore also ESβ(F, y) ≥ 0 for all F and y. Moreover, this implies by de�ni-
tion (1) also that

2Sβ(F, G) = Sβ(F, G) + Sβ(G, F) ≥ Sβ(F, F) + Sβ(G, G). (6)

It is also well-known that ESβ is a proper scoring rule, meaning that

ESβ(F, F) ≤ ESβ(F, G) for all F, G. (7)

Note also that ESβ(F, F) = 1
2 Sβ(F, F). We can derive the following lemma on the concavity of Sβ(F, F). As

already observed in section 2.1 of [6], this concavity holds for any proper scoring rule, but for completeness
we add an elementary proof.

Lemma 5. F → Sβ(F, F) is concave.

Proof. Indeed, Sβ is linear in F and G and therefore we get for α ∈ (0, 1) from (6) that

Sβ(αF + (1 − α)G, αF + (1 − α)G)
= α2Sβ(F, F) + α(1 − α)(Sβ(F, G) + Sβ(G, F)) + (1 − α)2Sβ(G, G)
≥ α2Sβ(F, F) + α(1 − α)(Sβ(F, F) + Sβ(G, G)) + (1 − α)2Sβ(G, G)
= αSβ(F, F) + (1 − α)Sβ(G, G).

3.1 Lower bound on Sβ(F, G)

For �nding a minimum value of Sβ(F, G) the following representation is going to be helpful.

Sβ(F, G) = E
(
‖X − Y‖β2

)
= E

( d∑
i=1

Z2i

) β
2

 , (8)

where Zi = |Xi − Yi| ∼ Fi♦Gi (see De�nition 3). Thus we have a representation Sβ(F, G) = Ef (Z21 , . . . , Z2d)
where we know the marginals of (Z21 , . . . , Z2d) and the function f has the following properties: as a concave
function of the sum it is submodular, i.e., −f is supermodular. For the de�nition and properties of supermodu-
lar functions and their relevance for inequalities of expectations in case of distributions with givenmarginals
we refer to Chapter 3 in [12].

From this we can derive the following lower bound.

Theorem 6. For any random vector X and Y with cumulative cdfs F and G we get the following lower bound:

Sβ(F, G) ≥ E
(
Z

β
2
)

for a random variable Z that is de�ned as

Z =
d∑
i=1

(
(Fi♦Gi)−1(U)

)2
for some standard uniform random variable U.
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In case of identical marginals F1 = . . . = Fd and G1 = . . . = Gd this bound is sharp and is obtained for the
upper Fréchet bounds F = F+ and G = G+. Furthermore, in this case it reduces to

Sβ(F, G) ≥ Sβ
(
F+, G+

)
= d

β
2Mβ(F1, G1).

Proof. According to (8) we can write S(F, G) = Ef (Z21 , . . . , Z2d) for a submodular function f . It follows from
[23] that a lower bound for Ef (Z21 , . . . , Z2d) is obtained by assuming that the copula of (Z21 , . . . , Z2d) is given
by the upper Fréchet bound C+, or equivalently the copula of (Z1, . . . , Zd), as the copula is invariant under
a strictly increasing transform of the components. This means that we can assume that Z2i = ((Fi♦Gi)−1(U))2

for some �xed uniform U and from this the �rst assertion immediately follows.
If each of F and G has identical marginals, then we have for F+ and G+ that X = (X1, . . . , X1) and Y =

(Y1, . . . , Y1) and thus we get in (8) also the equality Z1 = . . . = Zd and therefore this lower bound is attained
and reduces to

Sβ
(
F+, G+

)
= E

(
(dZ21)

β
2
)
= d

β
2Mβ(F1, G1)

Note that Sβ(F+, G+) may not be a lower bound when the marginals of F and G are not identical. Consider
X = (4U1, U1) and Y = (U2, 4U2) for two independent uniform U1, U2. Then Z1 is large if U1 is large and Z2
is large if U2 is large and they are far away from being comonotone. The support of (Z1, Z2) is given in the
left panel of Figure 1 and does not correspond of the support of the upper Fréchet bound. The lower bound
is obtained for something di�erent from F+ and G+. In fact, if one takes for F the lower Fréchet bound F = F−

and G = G+ instead, i.e., X = (4U1, 1 − U1) and Y = (U2, 4U2), then we get more positively correlated Z1 and
Z2 as depicted in the right panel of Figure 1. Indeed we get S(F−, G+) ≈ 2.48 < S(F+, G+) ≈ 2.55.

Figure 1: Support of (Z1 , Z2). Left panel: F = F+ , G = G+. Right panel: F = F− , G = G+.

3.2 Upper bound on Sβ(F, G)

It seems to be much more di�cult to �nd a sharp upper bound for Sβ(F, G), as it is a notoriously di�cult
problem to �nd a strongest possible negative dependence in the sense of maximizing the expression in (8).
But we can easily derive an upper bound via Jensen’s inequality.
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Theorem 7. For any random vector X and Y with cumulative cdfs F and G we get the following upper bound:

Sβ(F, G) ≤
( d∑
i=1

M2(Fi , Gi)
) β

2

.

Proof. Applying Jensen’s inequality to (8) we get that for any multivariate distributions F and G,

Sβ(F, G) = E

( d∑
i=1

Z2i

) β
2

≤
( d∑
i=1

EZ2i

) β
2

=
( d∑
i=1

M2(Fi , Gi)
) β

2

.

The bound in Theorem 7 is obtained from Jensen’s inequality. Therefore it is only tight if the expression
‖X − Y‖2 is constant. This will typically not be the case unless at least one of the distributions of X and
Y is constant. However, this is not a characterization: a simple exception is given in the following example.

Example 8. Assume that d = 2 and that F1 = F2 = G1 = G2 are all Bernoulli with probability 1/2. If F has
the copula C+ and G has the copula C− then X has probability 1/2 for the values (0, 0) and (1, 1), whereas Y
has probability 1/2 for the values (0, 1) and (1, 0), so that ‖X − Y‖2 = 1 almost sure, and hence, we get the
sharp bound

Sβ(F, G) ≤ Sβ(C+(F1, F2), C−(G1, G2)) = 1.

3.3 Upper and lower bounds on Sβ(F, G) for copulas

In the special case of uniformmarginal distributions, the class F is simply the class of all copulas and we are
able to derive explicit expressions of the lower and upper bounds obtained in Theorems 6 and 7. Speci�cally,
from Example 4, we have expression (2) and we get that EZ2i = 1/6 . We can then immediately derive the
following consequence.

Corollary 9. For copulas C1, C2 we get the following bounds:

Sβ(C+, C+) = d
β
2 ·
(

2
β + 1 −

2
β + 2

)
≤ Sβ(C1, C2) ≤

(
d
6

) β
2

and in particular for β = 1,

S(C+, C+) = 1
3
√
d ≤ S(C1, C2) ≤

√
d
6 .

Example 10. Similarly as in the case of Bernoulli variables considered in Example 8 one could conjecture
that a sharp upper bound for copulas is obtained by Sβ(C−, C+). We will now give an explicit counterexample
for the important case of d = 2 and β = 1. Using the invariance under rotation we can easily derive S(C−, C+)
in this case from the expected distance of two points on the axes.

S(C−, C+) = 1√
2

1∫
0

1∫
0

√
x2 + y2 dxdy =

√
2 + log(1 +

√
2)

3
√
2

≈ 0.541.

Now let us consider the copula C‖, de�ned as the distribution of the following random vector (U1, U2) with
U1 ∼ U(0, 1) and

U2 :=

 U1 + 1
2 , if U1 ≤ 1

2 ,

U1 − 1
2 , if U1 > 1

2 .
(9)

Thus the support of the copula C‖ consists of two parallel line segments as displayed in Figure 2.
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Figure 2: Support of the copula C‖ de�ned in (9)

Then we get by a similar computation

S(C+, C‖) = 1√
2

1∫
0

1∫
0

√
1
2 +

(
1
2 + x − y

)2
dxdy ≈ 0.549.

Thus S(C+, C‖) > S(C−, C+). We notice, however, that this inequality is reversed for the energy distance. We
get E(C−, C+) ≈ 0.069 > 0.064 ≈ E(C−, C‖) even though S(C−, C+) < S(C+, C‖), as S(C+, C+) ≈ 0.471 is
signi�cantly smaller than S(C‖, C‖) ≈ 0.4985. Therefore it is still an open problem whether for the energy
distance E(C−, C+) maximizes E(C1, C2) among all copulas.

3.4 Upper bound on S(F, F) for copulas

Under the assumption of equal copulas C = C1 = C2, we can improve the upper bounds in Corollary 9 and
even �nd sharp bounds for S(C, C) in the case of dimension d = 2 and d = 3 for some interesting copulas,
which can be called spherical symmetric copulas. These do not seem to be very well-known in the commu-
nity working on dependence modelling and copulas, but they have been considered from time to time in the
statistics literature, e.g., in [2], [21] and [14]. Implicitly this result can also be found in section 4.9 of [8] where it
is shown that uniform distributions can be marginal distributions of spherical symmetric distributions only
in dimension d = 2 and d = 3. [14] show that in dimensions d = 2 and d = 3 there are unique spherical
symmetric random vectors X whose marginals are uniformly distributed on [−1, 1]. In dimension d = 2, this
distribution has the density

f (x, y) = 1
2π
√
1 − x2 − y2

1[x2+y2<1] (10)

and in dimension d = 3 this is given by the uniform distribution on the sphere of a unit ball. The fact that
the uniform distribution on the sphere of a unit ball in dimension d = 3 has uniform marginals is in fact a
consequence of a famous theorem on spheres and cylinders going back to Archimedes. Notice that the bivari-
ate case can be obtained from this by considering the two-dimensional marginals of the three-dimensional
case. Transforming themarginals to uniform distributions on [0, 1] via the transformation Xi 7→ (Xi +1)/2 we
get copulas called spherical symmetric copulas, which we will denote by C◦. In Figure 3 we show a discrete
approximation of the bivariate spherical symmetric copula. Notice that the density is unbounded, going to
in�nity at the boundary of the support, and therefore in the discrete approximation there are many points
there as one expects for a bivariate projection of points uniformly scattered on the sphere of a ball.
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Figure 3: An illustration of the bivariate spherical symmetric copula C◦

Moreover, we will use results that were obtained independently in [10], Theorem 2 and as main result in
[1]. In our notation their results can be stated as follows.

Theorem 11. The functional S(F, F) is maximized among all random vectors X ∼ F with E(‖X‖2) ≤ 1 for
S(F*, F*), where X* ∼ F* is given as follows.
If d ≥ 3 then X* is uniformly distributed on the sphere of a unit ball.
If d = 2 then

√
2/3 · X* has the density given in equation (10).

From this result we can derive the following improved bounds for copulas.

Theorem 12. In dimension d = 2 it holds for any copula C that

S(C, C) ≤ S(C◦, C◦) = π6 .

In dimension d = 3 it holds for any copula C that

S(C, C) ≤ S(C◦, C◦) = 2
3 .

Proof. We de�ne the shift T(X1, . . . , Xd) = (X1 − 1/2, . . . , Xd − 1/2) that transforms marginals from uniform
on (0, 1) to uniform on (−1/2, 1/2). As obviously

E (‖X − Y‖2) = E (‖TX − TY‖2)

this shift does not a�ect the functional S, and therefore we can replace the copulas by distributions F with
uniform marginals on (−1/2, 1/2). For any such random vector X ∼ F we get

E(‖X‖2) = E(X21 + . . . + X2d) =
d
12 and hence E

∥∥∥∥∥
√

12
d X

∥∥∥∥∥
2
 = 1.
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For any copula C, and X ∼ C and Y ∼ C independent, we thus obtain that E
(∥∥∥∥√12

d TX
∥∥∥∥2
)

= 1 and thus

from Theorem 11,

S(C, C) = E (‖X − Y‖2) = E (‖TX − TY‖2) (11)

=
√

d
12E

(∥∥∥∥∥
√

12
d TX −

√
12
d TY

∥∥∥∥∥
2

)
≤
√

d
12 S(F

*, F*),

with S(F*, F*) as described in Theorem 11. In case d = 2 and d = 3 we get equality for C = C◦ and the
corresponding values for S(F*, F*) are computed in [1], there denoted as Md. They are given by

M2 =
π√
6

and M3 =
4
3 .

Thus we derive for d = 2 that

S(C, C) ≤ S(C◦, C◦) =
√

2
12 ·M2 =

π
6 ,

and for d = 3 that

S(C, C) ≤ S(C◦, C◦) =
√

3
12 ·M3 =

2
3 .

We also get an improved bound for d ≥ 4 from Theorem 11 but then it is not sharp, as the uniform distribution
on the sphere no longer has uniformmarginals. Indeed, [14] show that there cannot exist any spherical sym-
metric copula indimension d ≥ 4and thereforewedonot know,how the copula C thatmaximizes C 7→ S(C, C)
looks like. We conjecture that it in some sense will be close to spherical symmetry. The improved bound that
we can derive from (11) and Theorem 11 in case d = 4 is

S(C, C) ≤
√

4
12 ·M4 =

√
1
3 ·

64
15π ≈ 0.784,

whereas the bound from Jensen’s inequality for d = 4 given in Corollary 9 is
√
2/3 ≈ 0.816. For higher

dimensions d the di�erence between the bounds derived from Jensen’s inequality in Corollary 9 and the better
ones derived from (11) and Theorem 11 become smaller and smaller as the latter ones are also approximately√
d/6 for large d. A similar phenomenon has been observed for bounds on risk measures in [17] and [3].

Remark 13. We also notice that S(C◦, C◦) is not an upper bound for the case that we allow the copulas to be
di�erent, as we have an explicit counterexample in Example 10 with

S(C+, C‖) = 1√
2

1∫
0

1∫
0

√
1
2 +

(
1
2 + x − y

)2
dxdy ≈ 0.549 > π6 = S(C◦, C◦).

4 Bounds on the energy score
Let F be a distribution and y an observation. We now �rst study bounds on Sβ(F, y) in order to obtain bounds
on the energy score ESβ(F, y).

4.1 Bounds on Sβ(F, y)

First, note that we cannot expect a general upper bound for y 7→ Sβ(F, y) as Sβ(F, y) → ∞ for y → ∞. It
is possible, however, to �nd general lower bounds and they are very important in applications like in the
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de�nition of the copula energy score in [26]. We therefore concentrate on studying the lower bound in what
follows.

It is clear that as a function of y, the expression of Sβ(F, y) is small if y is in some sense near the center
of the distribution. In the univariate case it is a well-known simple result that y 7→ E|X − y| is minimized for
y* := F−1X (1/2) being the median of the distribution of X.

We can prove a similar lower bound in themultivariate case for the upper Fréchet bound F+, if we assume
that the marginals are symmetric and unimodal. Recall that a univariate distribution with cdf F is called
symmetric and unimodal with respect to some µ ∈ R, if F(µ + t) + F(µ − t) = 1 for all t > 0 and F is convex
on (−∞, µ) and concave on (µ, ∞). Notice that unimodal distributions have a density if they are continuous
in µ. We will need the following simple Lemma for such distributions that we state with a proof here, as we
could not �nd it in the literature.

Lemma 14. Assume that the random variable X has a continuous, unimodal and symmetric distribution with
respect to µ. Then it holds for all µ ≤ x < y and all µ ≥ x > y that

|X − x| ≤st |X − y|.

Proof. Denote by Fx the cdf of |X − x|, and assume µ ≤ x < y. We have to show that Fx(t) ≥ Fy(t) for all t ≥ 0.
A simple calculation shows Fx(t) = F(x + t) − F(x − t). As F is continuous, unimodal and symmetric, it has a
density f which is symmetric around µ and decreasing on [µ, ∞). Therefore

∂
∂x Fx(t) = f (x + t) − f (x − t) ≤ 0

as |x + t − µ| > |x − t − µ|. This implies the assertion for µ ≤ x < y and the case µ ≥ x > y follows then by
symmetry.

Theorem 15. Assume that the random vector X has a cdf F with marginals Fi that are continuous, unimodal
and symmetric with respect to µi, i = 1, . . . , d. Then we have for all y ∈ Rd

Sβ(F, y) ≥ Sβ(F+, µ).

Proof. We have

Sβ(F, y) = E

( d∑
i=1

Z2i,yi

) β
2

, (12)

where Z2i,yi = (Xi − yi)2. It follows from Lemma 14 that

(Xi − yi)2 ≥st (Xi − µi)2

for all i. Let us denote by (Z+i,yi )
2, i = 1, . . . , d comonotone random variables with the same distributions

as Z2i,yi . Notice that for general y the vector (Z21,y1 , . . . , Z
2
d,yd ) is typically not comonotone, even if F is the

comonotonic upper Fréchet bound F = F+. This is the case, however, if yi = µi is the median for all i =
1, . . . , d. Therefore we get

Sβ(F, y) = E

( d∑
i=1

Z2i,yi

) β
2

≥ E

( d∑
i=1

(Z+i,yi )
2
) β

2

(13)

≥ E

( d∑
i=1

(Z+i,µi )
2
) β

2

= Sβ(F+, µ). (14)

The �rst inequality follows as in the proof of Theorem 6. The second inequality follows from the fact that
for random vectors Z and Z′ with the same copula C+ stochastic ordering Zh ≤st Z′h of the marginals implies
multivariate stochastic ordering and thus Ef (Z) ≤ Ef (Z′) for all increasing functions f : Rd → R, see e.g.,
[12], Theorem 3.3.8.



250 | Carole Bernard and Alfred Müller

For copulas we get the following corollary. We denote here by 1 = (1, . . . , 1) a vector with all components
being equal to one.

Corollary 16. For all copulas C and all y ∈ [0, 1]d it holds

Sβ(C, y) ≥ Sβ
(
C+, 121

)
= d

β
2

1
2
β

β + 1 .

Proof. This follows from Theorem 15, as uniform distributions U on (0, 1) are symmetric and unimodal with
respect to 1/2 and

E
(
|U − 1/2|β

)
=

1
2
β

β + 1 .

In the case of copulas we can also have a look at the case that the observation y is an extreme point, which
can be assumed to be without loss of generality y = 0.

Theorem 17. For y = 0 the function
C 7→ Sβ(C, 0)

attains its minimum for the upper Fréchet bound C+.

Proof. The proof for the minimum of C 7→ Sβ(C, 0) follows the same lines as in Theorem 6. If U is a random
vector with copula C, then

Sβ(C, 0) = Ef (Z1, . . . , Zd)

where Zi = U2
i , i = 1, . . . , d, and f is a submodular function. As Z = (Z1, . . . , Zd) has the same copula as U,

we can conclude that Sβ(C, 0) ≥ Sβ(C+, 0).

It is easy to see that it is not true in general that the upper Fréchet bound C+ minimizes C 7→ Sβ(C, y). Due to
invariance under rotations the minimum is obtained for the lower Fréchet bound C− if y = (0, 1).

4.2 Bounds on ESβ(F, y)

Similarly to the above study of Sβ(F, y), one cannot expect a general upper bound for the energy score

ESβ(F, y) = Sβ(F, y) −
1
2 Sβ(F, F)

as the quantity tends to +∞ for y → ∞. As we have to deal with a di�erence of two quantities, it is also in
general more di�cult to �nd sharp bounds, whereas one easily gets some bounds by bounding each of the
two quantities using our previous results.

We now �rst consider a bounded domain for y. We then characterize the copula that achieves the lower
bound.

As y 7→ ‖x − y‖β2 is convex for β ≥ 1, we also get that y 7→ Sβ(F, y) is convex in this case. From Lemma 5,
we thus can easily derive the following result.

Lemma 18. For β ∈ [1, 2) the functions y 7→ ESβ(F, y) and F 7→ ESβ(F, y) are convex.

Considering a copula C and an observation y ∈ [0, 1]d we immediately get the following consequence.

Proposition 19. For β ∈ [1, 2) the function

y 7→ ESβ(C, y), y ∈ [0, 1]d ,

attains a maximum in the set {0, 1}d.
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Proof. This immediately follows from the fact that a convex function on a compact convex domain attains a
maximum in an extreme point.

Following the results on the lower bound of Sβ(F, y) obtained for copulas in Section 4.1, it is natural to con-
jecture that the upper Fréchet bound C+ is also the minimum of C 7→ ESβ(C, 0). This is not true, however.
We can show that in the bivariate case ES(C+, 0) > ES(Ĉ, 0) for the copula Ĉ of the following random vector
Û. Let U, U′ ∼ U(0, 1) be independent uniformly distributed random variables and de�ne Û = (Û1, Û2) as
follows: Û1 = Û2 = U, if U ≤ 1/2. If U > 1/2 then Û1 = U and Û2 = (U′ + 1)/2.

We are not able to obtain an explicit lower bound but we can characterize some properties of the copula
that achieves the minimum energy score.

Let T : Rd → Rd be a transformation that is an isometry and that preserves the marginal distributions
in the following sense: if X is a random vector with distribution function F and marginals F1, . . . , Fd, then
T(X) also has the same marginals and for any x, y ∈ Rd we have

‖T(x) − T(y)‖2 = ‖x − y‖2.

It is easy to see that in the case of uniform marginals, i.e., for copulas, this holds for re�ections of the form

Ti(x) = (x1, . . . , xi−1, 1 − xi , xi+1, . . . , xd) (15)

and for permutations π of the coordinates

Tπ(x) = (xπ1 , . . . , xπd ). (16)

Let us denote by CT the copula of the transformation T(U), if U is a random vector with copula C, and let H be
the �nite group generated by all these isometric transformations of the hypercube that preserve the copula
property. This symmetry group of the hypercube is also called hyper-octahedral group and is generated by the
re�ections and permutations described in (15) and (16), see e.g. [25].

We get the following theorem.

Theorem 20. For β ∈ [1, 2) and y = 1
21 the function

C 7→ ESβ(C, y)

attains a minimum for a copula that is invariant under H.

Proof. Let us de�ne for a �xed C and y = 1
21

ŷ := 1
|H|

∑
T∈H

T(y)

and
Ĉ := 1

|H|
∑
T∈H

CT .

Then ŷ = y, T(ŷ) = ŷ for all T ∈ H and Ĉ is invariant under H. Due to convexity of C 7→ ESβ(C, y) we get

ESβ(Ĉ, ŷ) ≤
1
|H|

∑
T∈H

ESβ(CT , ŷ) =
1
|H|

∑
T∈H

ESβ(CT , T(ŷ))

= ESβ(C, ŷ).

With a similar argument we can show that the function C 7→ ESβ(C, 0) attains a minimum for a copula that
is invariant under permutations, but we are not able to derive an explicit solution for the moment.
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5 Conclusions
We investigated dependence uncertainty bounds on the energy score and for related functionals. The ob-
tained results indicate that indeed these functionals seemnot to be very sensitive to the dependence structure
as one can see e.g., from the inequality

1
3
√
d ≤ S(C1, C2) ≤

√
d
6

in Corollary 9, which holds for all copulas C1, C2. Notice that we get the even closer sharp bounds
√
2
3 ≤ S(C, C) ≤ π6

in Theorem 12 for the case d = 2 if we restrict to the case of equal copulas. Therefore our results support the
corresponding claim in [15] which was based on a simulation study using multivariate normal distributions.
However, many questions remain open and we hope to stimulate research on this topic that we consider
as important. For example, we are not able to �nd explicitly the copula that achieves the lower bound of
the energy score. We are only able to provide a partial characterization of it in Theorem 20. We are also
working on the problem of �nding the numerical solution of this optimization problem by using a variant
of the swapping algorithm that was used in [16] for a related problem. First results indicate that the solu-
tion seems to be a copulawith a very unusual shape, but these results will be reported in a forthcoming paper.
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