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Abstract: In this paper, we propose a procedure to build bivariate box plots (BBP). We �rst obtain the theo-
retical BBP for a random vector (X, Y). They are based on the univariate box plot of X and the conditional
quantile curves of Y|X. They can be computed from the copula of (X, Y) and the marginal distributions. The
main advantage of these BBP is that the coverage probabilities of the regions are distribution-free. So they can
be selected by the users with the desired probabilities and they can be used to perform �t tests. Three reason-
able options are proposed. They are illustrated with two examples from a normal model and an exponential
model with a Clayton copula. Moreover, several methods to estimate the theoretical BBP are discussed. The
main ones are based on linear and non-linear quantile regression. The others are based on empirical estima-
tors and parametric and non-parametric (kernel) copula estimations. All of them can be used to get empirical
BBP. Some extensions for the multivariate case are proposed as well.
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1 Introduction
The (univariate) Tukey’s box plots are very useful tools to analyse and compare data (random variables) both
in size (mean, median, quantiles, etc.) and in dispersion (range, interquartile range, etc.). They can also be
used to detect outliers.

When we analyse bivariate (paired) data we have di�erent options in order to de�ne bivariate box plots
(BBP). From a theoretical point-of-view, when we study the (real-valued) random vector (X, Y), we can use
the regions determined by the Mahalanobis distance and the associated lower bounds for their probabilities
provided by the multivariate Chebyshev’s inequality (see [5, 17]). Exact probabilities can be computed for
normal (Gaussian) random vectors by using the Chi-squared distribution (see p. 39 in [14]). Extensions to the
multivariate case can be obtained through a standard principal component analysis (see [17]). In practice, we
can use the regions determined by the estimated means, variances and covariances or that provided by the
empirical distribution of the data set (see [16]).

Another popular empirical option is to use the bagplots proposed in [20]. They are based on the concept
of depth and provide a region (called the bag) based on the depthmedianwhich contains the 50%of the data.
This region is in�ated three times to obtain the fence which separates inliers from outliers.

A third good option is provided by the quantile regression curves. This option is especially useful when
wewant to estimate Y (response variable) from X (explanatory variable). In the general case we could use the
regions proposed in [6] instead. The theoretical quantile regression curves can be obtained from the copula
of (X, Y) (see p. 217 in [19]). In practice we can use the empirical linear or non-linear estimators proposed in
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[10, 11]. The package quantreg for the statistical programR can be used for this purpose. A short introduction
is given in Section 3 below.

In this paper, we use the quantile regression curves to propose a procedure to build bivariate box plots
(BBP). The theoretical BBP are studied in Section 2. The main advantage of this procedure is that, by using
conditional distributions, we can choose the exact probability of each region. Three reasonable options are
proposed. The empirical bivariate versions are discussed in Section 3. They are obtained by using di�erent
techniques to estimate the theoretical regions. Some extensions to the multivariate case are proposed in Sec-
tion 4. The conclusions are placed in Section 5.

If f : Rn → R is a real-valued function with n variables, then ∂i f denotes the partial derivative of f with
respect to its ith variable. Analogously, ∂i,j f := ∂i∂j f and so on. Whenever we use a partial derivative, we
tacitly assume that it exists.

2 Theoretical BBP

2.1 De�nitions

The Tukey’s univariate box plot associated to a sample X1, . . . , Xn from a random variable X is usually de-
termined by the inverse of the function gn obtained connecting the points (Xi:n , (i − 1)/(n − 1)), i = 1, . . . , n
(see, e.g., [8]), where X1:n ≤ · · · ≤ Xn:n represent the ordered data. The box [Q1, Q3] is determined by the em-
pirical quartiles Q1 := g−1n (1/4) and Q3 := g−1n (3/4). In the middle we plot the empirical median Me = Q2 :=
g−1n (2/4). Thewhiskers are determined by [L1, Q1] and [Q3, L2] where L1 := X1:n = min(X1, . . . , Xn) and L2 :=
Xn:n = max(X1, . . . , Xn). To detect outliers, the limit points L1 and L2 are replacedwith L1 = Q1−1.5(Q3−Q1)
and L2 = Q3 + 1.5(Q3 − Q1) when X1:n < Q1 − 1.5(Q3 − Q1) or Xn:n > Q3 + 1.5(Q3 − Q1). The data beyond
these limit points are considered as possible outliers.

There are di�erent options to de�ne the theoretical univariate box plots. In this case, the Tukey’s box
plot is replaced by the 5 points method based on the mean (or the median), two moderate quantiles and two
extreme quantiles. If F is the distribution function of X, the (upper) quantile (generalized inverse) function
is usually de�ned as

q(u) = F−1(u) := sup{x : F(x) ≤ u}

for u ∈ (0, 1). Other authors prefer to use the so called lower quantiles de�ned as q−(u) := inf{x : F(x) ≥ u}.
If F is continuous and strictly increasing, they coincide for 0 < u < 1. The quantile function q is available in
many statistical programs (as R) for the usual probability models. The theoretical median and quartiles can
be de�ned as me = q2 = q(1/2), q1 = q(1/4) and q3 = q(3/4) (other de�nitions can be considered as well).
Hence the theoretical box can be de�ned as [q1, q3].

One can also consider di�erent options to de�ne the theoretical whiskers. As in the empirical case, the
limit points (or fences) can be de�ned as l1 := q1 −1.5(q3 − q1) and l2 := q3 +1.5(q3 − q1). The main problem
with this de�nition is that the probabilities Pr(X ∈ [l1, q1]) and Pr(X ∈ [q3, l2]) depend on F. Insteadwe could
consider the quantiles represented by q1 − 1.5(q3 − q1) and q3 + 1.5(q3 − q1) in a normal (Gaussian) model.
In this model we have

F(q1 − 1.5(q3 − q1)) = 1 − F(q3 + 1.5(q3 − q1)) = 0.003488302.

Therefore, we can de�ne the theoretical limit points for a general distribution F as `1 := q(0.0034883) and
`2 := q(1 − 0.0034883) = q(0.9965117). With these de�nitions, we have

Pr(X ∈ [`1, q1]) = Pr(X ∈ [q3, `2]) =
1
4 − 0.0034883

for any continuous distribution function F. In the normalmodel both de�nitions coincide but in othermodels
li and `i can be di�erent for i = 1, 2. Note that

Pr(X < `1) + Pr(X > `2) = 2 · 0.0034883 = 0.0069766.
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Therefore, approximately, the 0.7% of the data from X will be classi�ed as (false) outliers, that is, the theo-
retical box-plot will contain the 99.3% of the data. If we want di�erent coverage probabilities, we can choose
other quantiles for the 5 points method.

Now we are ready to propose a procedure to de�ne theoretical bivariate box plots (BBP) for a bivariate
random vector (X, Y) with an absolutely continuous distribution function F (this assumption can be relaxed
later). To this end we are going to use the 5 points method and conditional distributions. For instance, we
can consider the conditional distribution (Y|X = x), that is, we consider Y as a response variable and X as an
explanatory variable. Then we propose the regions de�ned as

R = [a, b] × [α, β], (2.1)

where a < b are real numbers and α, β : [a, b] → R are continuous functions with α ≤ β. For this kind of
regions we can state the following result.

Theorem 2.1. If the region R in (2.1) is de�ned by using the quantile functions α(x) = F−12|1(u|x) and β(x) =
F−12|1(v|x) for F2|1(y|x) := Pr(Y ≤ y|X = x) and �xed quantiles u and v such that 0 < u < v < 1 , then

Pr((X, Y) ∈ R) = (v − u) Pr(a ≤ X ≤ b).

Proof. From eq. (2.1)

Pr((X, Y) ∈ R) = Pr(a ≤ X ≤ b) Pr(α ≤ Y ≤ β|a ≤ X ≤ b) = p1p2,

where we assume p1 := Pr(a ≤ X ≤ b) > 0 (if p1 = 0 the result is trivial),

p2 := Pr(α ≤ Y ≤ β|a ≤ X ≤ b) =
b∫
a

Pr(α(x) ≤ Y ≤ β(x)|X = x) f1(x)p1
dx

and f1 is the probability density function (pdf) of X. By using now that α and β are quantile functions of the
conditional random variable (Y|X = x), we get

p2 =
b∫
a

(v − u) f1(x)p1
dx = (v − u)

b∫
a

f1(x)
p1

dx = v − u

which concludes the proof.

The preceding theorem is the key tool for de�ning the theoretical bivariate box plots. Note that here we can
use the copula approach to determine the conditional quantile functions F−12|1 (see, e.g., [19, p. 217]). The result
can be stated as follows.

Proposition 2.1. If C is the copula function of (X, Y), then the conditional (or regression) quantile function
q2|1(v|x) := F−12|1(v|x) of (Y|X = x) can be obtained as

q2|1(v|x) = F−12 (d−1F1(x)(v)) (2.2)

for v ∈ (0, 1), where F−12 is the quantile function of Y, d−1u is the inverse function of du(v) := ∂1C(u, v) and we
assume limv→0 ∂1C(u, v) = 0 for all 0 < u < 1.

Proof. If F1, F2 represent the absolutely continuous marginal distribution functions of (X, Y), then from
Sklar’s theorem, we know that there exists a unique copula function C such that

F(x, y) := Pr(X ≤ x, Y ≤ y) = C(F1(x), F2(y))

for all x, y. Hence a joint pdf f of (X, Y) is

f(x, y) := f1(x)f2(y)c(F1(x), F2(y))
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for all x, y, where f1 = F′1 and f2 = F′2 represent the marginal pdf functions and c = ∂1,2C is the pdf of the
copula C. Therefore, the conditional pdf of (Y|X = x) is

f2|1(y|x) =
f(x, y)
f1(x)

= f2(y)c(F1(x), F2(y))

for x such that f1(x) > 0. Then the conditional distribution function can be represented as

F2|1(y|x) =
y∫

−∞

f2|1(z|x)dz =
y∫

−∞

f2(z)∂1,2C(F1(x), F2(z))dx = dF1(x)(F2(y))

where du(v) := ∂1C(u, v) for 0 < v < 1, du(0) := 0 and du(1) := 1, since we assume limv→0 ∂1C(u, v) = 0 for
all 0 < u < 1 (see [18] or [19, p. 217]). Therefore 2.2 holds.

The function du : [0, 1] → [0, 1] de�ned in the preceding proof is a distortion function for all 0 < u < 1,
that is, it is increasing from du(0) = 0 to du(1) = 1 (see [18]). Note that du only depends on the copula C. In
many copula models, it is continuous and strictly increasing in [0, 1]. Therefore its inverse function d−1u can
be obtained easily (by using analytical and/or numerical methods). Properties for the conditional quantile
functions (also known as Conditional Value at Risk or CoVaR) of di�erent copulas can be seen in, e.g., [2, 3, 9].
Note that here we are �xing one of the in�nitely many versions of the conditional distribution Y|X. In some
cases, this selection might a�ect the shape of BBP de�ned below.

The preceding proposition can be used to obtain di�erent quantile curves. For example, the conditional
median (or the median regression) curve can be obtained as

me2|1(x) := q2|1(1/2|x) = F−12|1(0.5|x) = F
−1
2 (d−1F1(x)(0.5)).

If wewant to predict Y for a speci�c value of X = x, this curve is a good alternative to classicalmean regression
curve m2|1(x) := E(Y|X = x). Moreover, it can be used to de�ne a conditional median vector as follows.

De�nition 2.1. The conditional median vector for X and Y|X is de�ned as

me2|1 = (meX ,me2|1(meX)),

where meX := F−11 (0.5) is the median of X and me2|1 is the median regression curve of Y|X.

The conditional median vectorme1|2 for Y and X|Y can be de�ned in a similar way. It is in general di�erent
fromme2|1 (some exampleswill be given later) andboth are di�erent from themean vector (or the conditional
mean vectors, de�ned similarly).

Analogously, the conditional (theoretical) quartile functions are de�ned by

q(i)2|1(x) := q2|1(i/4|x) = F
−1
2|1(i/4|x) = F

−1
2 (d−1F1(x)(i/4))

for i = 1, 2, 3. Of course, q(2)2|1 = me2|1.
As mentioned above, the function du only depends on the copula. For many copulas, we can obtain an

explicit expression for d−1u . For example, the explicit expression for Archimedean copulas was given in [19,
p. 218]. If we cannot obtain an explicit expression, we can use numerical methods to approximate d−1u . If
we do not want to use copulas, we can choose models with known conditional distributions (e.g. a normal
distribution) or models built by using speci�c conditional distributions (see [1]).

The regions given in eq. (2.1) with appropriate conditional quantile functions α and β can be used to
de�ne the theoretical BBP. We propose here three reasonable options. In all of them, we use the 5 points
method applied to the marginal distribution of X and the conditional distribution of Y|X. Other options can
be considered as well.

De�nition 2.1: BBP, option 1. In this option, the central region Rcc is obtained with p1 = p2 = 1/2. In
this case, the interval [a, b] coincideswith the theoretical (univariate) box for X (i.e. a = q1(X) = F−11 (1/4) and
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b = q3(X) = F−11 (3/4)) and the curves α and β coincide with the �rst and the third quartile regression curves
(i.e., α = q(1)2|1 and β = q(3)2|1). In the middle of the region we can plot the median regression curveme2|1 = q(2)2|1
(see the examples below). Hence, from Theorem 2.1, the region Rcc will contain (approximately) the 25% of
the data since p1p2 = 1/4.

Next we can de�ne the central-top Rct and central-bottom Rcb regions with p1 = 1/2 and p2 = 1/4 −
0.0034883 = 0.2465117. Both are obtained with [a, b] as above (i.e. the box of X). Then Rct is obtained with
α = q(3)2|1 and β(x) = q2|1(0.9965117|x) and Rcb is obtained with α(x) = q2|1(0.0034883|x) and β = q(1)2|1 (i.e.
the limit points of the theoretical whiskers of Y|X). Then p1p2 = 0.1232559.

Analogously, the left-central Rlc and right-central Rrc regions are obtained with p2 = 1/2 and p1 = 1/4 −
0.0034883. The �rst one is obtained with a = `1 and b = q1(X) and the second with a = q3(X) and b = `2
(i.e. the limit points of the theoretical whiskers of X). Then, in both cases, we take α = q(1)2|1 and β = q(3)2|1.
Therefore p1p2 = 0.1232559 as in the preceding regions. The four regions Rct , Rcb , Rlc , Rrc together will
contain (approximately) the 49.30234% of the data.

Finally, we de�ne in a similar way the four corner regions Rlt , Rlb , Rrt , Rrb (left-top, left-bottom, right-top
and right-bottom) with p1 = p2 = 1/4 − 0.0034883 and p1p2 = 0.06076802. Hence, the four corner regions
together contain the 24.30721%of the data. The data out of these nine regions can be considered as possible
outliers and 1 − 0.9860955 = 0.01390453 is the probability of a false outlier (i.e. approximately the 1.4%
of the data from (X, Y) will be considered as possible outliers).

Some examples of these regions are given below (see Figures 1 and 5, left). There we add some simulated
data (right plots). We also perform �t tests based on the Chi-squared distribution and these regions.

De�nition 2.2: BBP, option 2. If we want a central region Rcc containing the 50% of the data, we can
choose p1 = p2 = 1/

√
2 = 0.7071068. However, in this case, the interval [a, b] does not coincide with the

theoretical (univariate) box for X, since

a = F−11
(
1 − 1/

√
2

2

)
= F−11 (0.1464466) < q1(X) = F−11 (0.25)

and
b = F−11

(
1 − 1 − 1/

√
2

2

)
= F−11 (0.8535534) > q3(X) = F−11 (0.75).

The same happenwith the curves α and βwhich do not coincide with the quartile regression curves. They are
de�ned as α(x) = q2|1(0.1464466|x) and β(x) = q2|1(0.8535534|x). In the middle of the region, as in option
1, we plot the median regression curve me2|1. Hence, from Theorem 2.1, the region Rcc de�ned in this way
will contain (approximately) the 50% of the data (since p1p2 = 1/2).

To complete this option we just need to de�ne the other regions as in option 1 but changing the coverage
probabilities to get simple regions. For example, a reasonable option could be to de�ne the limit points as
`1 = F−11 (0.05) and `2 = F−11 (0.95). In this case Pr(`1 ≤ X ≤ `2) = 0.9. We can do the samewith the conditional
distributions by choosing the quantile functions q2|1(0.05|x) and q2|1(0.95|x). Hence the nine regions of the
BBP will contain (approximately) the 81% of the data and the 9% of the data will be classi�ed as possible
(false) outliers. The four regions Rct , Rcb , Rlc , Rrc will contain the 6.819805%of the data and all together the
27.27922%. Analogously, the corner regions Rlt , Rlb , Rrt , Rrb will contain the 0.9301948% and all together
the 3.720779%. Some examples are given below (see Figures 2 and 5, right).

De�nition 2.3: BBP, option 3.Another option to get a central region Rcc containing the 50% of the data,
is to choose p1 = 1 and p2 = 0.5, that is, a = −∞, b = ∞, α(x) = q2|1(0.25|x) and β(x) = q2|1(0.75|x).
This option is not new since it is a popular option in quantile regression plots (see [10, 11]) and the resulting
region can be considered as a 50% con�dence band for the predictions for Y obtained by using the median
regression curve. Note that they also coincide with the union of all the theoretical boxes for Y|X = x for x ∈ R.

Here we also have several options for the whiskers. Themost habitual one (option 3.1) in quantile regres-
sion plots is to use q2|1(0.05|x) and q2|1(0.95|x) for the lower and upper limits (as in option 2 above). With
this choice the three regions all together will contain the 90% of the data (as in option 2) and they can also
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be considered as a 90% con�dence band for Y|X. The 10% of the data will be considered as false outliers.
Instead (option 3.2) we can use the limits for the theoretical whiskers (used in option 1 above) obtained with
the limit curves q2|1(0.0034883|x) and q2|1(0.9965117|x). This is equivalent to use the theoretical box plots
for Y|X = x at every point x ∈ R. In all these choices we maintain a = −∞ and b = ∞. Thus, the main ad-
vantage of option 3 is that we just have three regions (as in the univariate box plots). The main disadvantage
is that we will not be able to detect outliers due to extremes values of X but close to the median regression
curve (see Figure 3) since we are not using a univariate box plot for X to determine [a, b].

2.2 Main properties

The BBP de�ned above have the following properties. The proofs are immediate from Theorem 2.1 and the
properties of the regression quantile functions.

Proposition 2.2. The BBP are equivariant under monotone increasing transformations, that is, if h1, h2 are in-
creasing functions and R = (a, b)×(α, β) is a p = p1p2 con�dence region for (X, Y) based on quantile regression
curves, then

R* = (h1(a), h1(b)) × (h2(α(h−11 )), h2(β(h−11 )))

is a p = p1p2 con�dence region for (h1(X), h2(Y)).

Proof. From (2.2), the quantile regression curves of h2(Y)|h1(X) = x satisfy

qh2(Y)|h1(X)(v|x) = h2(qY|X(v|h
−1
1 (x)))

for all increasing functions h1, h2 and 0 < v < 1. This property is based on Proposition 2.1 and thewell known
fact that the copula (and so du) does not change under increasing transformations. Therefore, R* is a p = p1p2
con�dence region for (h1(X), h2(Y)) based on quantile regression curves.

In particular, the BBP proposed above are equivariant under scale-location transformations with a positive
scale parameter (i.e., when we change X and Y with aX + b and cY + d for a, c > 0).

However, the BBP are not in general equivariant for interchanging X and Y (since they are based on
quantile regression curves). If we want equivariant plots in this sense we should use bagplots (see [20]) or
the con�dence regions based on the multivariate Chebyshev’s inequality (see [16]).

Proposition 2.3. The coverage probabilities and the expected values for the regions of the BBP in the di�erent
options considered above are distribution-free.

The proof is immediate from Theorem 2.1. The de�nitions given above of the di�erent regions can bemodi�ed
to get the desired (theoretical) coverage probabilities.

By prolonging the curves/lines used to de�ne the 9 regions proposed in options 1 and 2 above, the possi-
ble outliers can be also classi�ed in 16 di�erent regions that indicate how extreme they are (themore extreme
ones will be that included in the four corner regions).

2.3 Two theoretical examples

Let us see how to compute the theoretical BBP in two di�erent models. A normal (Gaussian) model (next
example) and an exponential model with a Clayton copula (Example 2.2).

Example 2.1. A typical (relevant) case is to consider a normal model. In this case the conditional distribu-
tions are known and the quantile regression curves are straight lines (this fact will simplify the estimation
procedure considered in the next section). For example, we can consider two standard normal distributions
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with correlation ρ = 0.7. Then the conditional distribution (Y|X = x) has a normal distribution with mean

m2|1(x) = E(Y|X = x) = ρx = 0.7x

and a constant variance σ2 = Var(Y|X = x) = 1 − ρ2 = 1 − 0.49 = 0.51 (see, e.g., [14, p. 63]). Moreover, the
conditional median regression curve coincides with the regression curve, that is,

me2|1(x) = m2|1(x) = ρx.

In this case, the conditional medians coincide and are equal to the mean vector, that is, me2|1 = me1|2 =
(0, 0). Analogously, the conditional quantile function is

q2|1(v|x) = ρx + qnorm(v, 0, σ),

where qnorm(v, 0, σ) is the quantile function of a normal distribution with zero mean and standard deviation
σ =
√
0.51 = 0.7141428.

The �rst and third quartiles of X (and Y) satisfy −q1 = q3 = 0.6744898 and the limits for the whiskers
−`1 = `2 = 2.697959. As mentioned above, in this case we have `1 = q(0.0034883) = l1 = q1 − 1.5(q3 − q1)
and `2 = q(0.9965117) = l2 = q3 + 1.5(q3 − q1).

The regions for the BBP in option 1 for this example are plotted in Figure 1, left. The central region Rcc
(blue) is determined by the four blue lines. The black line plotted in the middle represents the conditional
median curveme2|1 (in thismodel it is also the regression curve). The blue and red lines are used to determine
the other regions. For example, the central-top region Rct (top red) is determined by the vertical blue lines
(the box of X), the top blue line and the top red line (the topwhisker of Y|X). The other regions are determined
in a similar way. The blue region contains the 25% of the data, each red region the 12.32559% (all together
the 49.30234%) and each grey region the 6.076802% (all together the 24.30721%). The conditionalmedian
m2|1 = (0, 0) point is represented by the + symbol. The data outside these nine regions can be considered as
possible outliers. Note that these outliers can also be classi�ed in di�erent regions. For example, a data on
the left (i.e. with X < `1) is just an outlier in the box plot of X. If it is also in the top (i.e. Y > β), then it is also
an outlier in the conditional distribution Y|X.

In the right plot of Figure 1, we add n = 100 simulated data from this model. With these data we obtain
the following estimations: Me(X) = −0.16317 (of me = 0), Q1(X) = −0.72181 (of q1 = −0.6744898) and
Q3(X) = 0.55324 (of q3 = 0.6744898). In this plot we have two possible (false) outliers. The �rst one (right-
top) is also an outlier in the box plot of X since X = 3.134841 > L2 = Q3(X)+1.5(Q3(X)−Q1(X)) = 2.465815.
The second one (bottom) with values (−0.8450186, −2.621403) is not detected as an outlier for X. However,
it is classi�ed as a possible (false in this case) outlier in the conditional distribution of Y|X since Y < α(X)
(by a small margin). The counts of the data in each region are given in Table 1. There, we also provide the
expected data values in each region obtained as np1p2. Thus, we can perform a Chi-squared �t test with the
statistic

T =
m∑
i=1

(Oi − Ei)2
Ei

where Oi represent the observed data in each region, Ei the expected data and m the number of regions. We
can considerm = 10 regions by including a common region for the outliers. It iswell known that,with theBBP
obtained by using the correct (exact) distribution (null hypothesis), the asymptotic distribution of T (when
n →∞) is a χ2m−1. The P-value for this test is P− value = Pr(T > To), where To is the observed value for T. The
approximation with the Chi-squared distribution gives a good approximation if all the expected values Ei are
greater than 5 (see, e.g., [7]). So, if it is necessary, some regions can be joined. If the distribution contains
k unknown parameters and they are estimated with a maximum likelihood method, then the asymptotic
distribution of T is χ2m−k−1. With these simulated data and the ten regions of option 1, we obtain (see Table 1)

To =
(4 − 6.076802)2

6.076802 + · · · + (2 − 6.076802)2
6.076802 + (2 − 1.39045)2

1.39045 = 7.679805

and P−value = Pr(T > 7.679805) = 0.5667081,where T has (approx.) a χ29 distribution. Hence, as expected,
we can con�rm that the data come from this model (we have an expected value less than 5 but the P-value is
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Figure 1: BBP in option 1 (left) for the normal model considered in Example 2.1. The blue region contains the 25% of the data,
the four red regions the 49.30234% and the four grey regions the 24.30721%. In the right plot we add 100 simulated data
from this model.

large enough to con�rm this decision). Note that with the BBP in option 1 (and the correct distribution), the
expected values in the regions will only depend on n for any joint distribution F (i.e. they are distribution-
free).

Table 1: Observed and expected data in the regions determined by the BBP in option 1 for the normal model in Example 2.1.

Oi|Ei Left Central Right Sum
Top 4|6.076802 12|12.32558 4|6.076802 20|24.47919

Central 17|12.32558 30|25 13|12.32558 60|49.65117
Bottom 6|6.076802 10|12.32558 2|6.076802 18|24.47919
Sum 27|24.4796 52|49.65117 19|24.4796 98|98.60955

The BBP in options 2 and 3.1 can be obtained in a similar way. They are plotted in Figures 2 and 3,
respectively. They can also be used to perform�t tests. As expected, in the BBPof option 2wehave several (14)
false outliers but we just have an extreme outlier (right corner), the point with values (3.134841, 3.711933)
which is out of both the regions determined by the right vertical red line (`2) and the top red line (β). Instead,
the central (blue) region Rcc contains 55 data (we expect 50). In the BBP of option 3.1 we also have many
false outliers, 5 above the top red line and 4 below the bottom red line (we expect 10). In this case the more
extreme data is the point with values (−0.8450186, −2.621403) because it is the farthest point from the
median regression estimation

Ŷ := me2|1(−0.8450186) = 0.7(−0.8450186) = −0.591513.

If we use the limits in option 3.2 (red dashed lines in Figure 3), then this point is the unique outlier. In this
case, the point in the right-top corner is not detected as an outlier (remember that it was classi�ed as outlier
in the univariate box plot of X). The same will happen with extremes values of X or Y close to the median
regression curve (black line).
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Figure 2: BBP in option 2 (left) for the normal model considered in Example 2.1. The blue region contains the 50% of the data,
the four red regions the 27.27922% and the four grey regions the 3.720779%. In the right plot we add 100 simulated data
from this model.

Example 2.2. There aremoremodels (copulas) whose quantile regression curves are straight lines (see, e.g.,
Example 5.24 in [19, p. 218]). However, in this second example, we want to choose a model without this prop-
erty (this fact will hinder the estimation procedures studied in the next section). Thus, we consider the fol-
lowing Clayton copula

C(u, v) = uv
u + v − uv ,

which induces a positive dependence between X and Y. As C is the distribution function of U = F1(X) and
V = F2(Y) we can just consider the BBP for (U, V). The similar plots for (X, Y) will be obtained with the trans-
formations X = F−11 (U) and Y = F−12 (V) for any continuous marginal distributions F1 and F2 and Proposition
2.2.

As the Clayton copulas belong to the wide family of Archimedean copulas, the quantile regression curves
can be obtained from the expression given in Example 5.25 of [19, p. 218]. For the copula C given above we
can also use a direct calculation as follows. The distortion function du for the conditional distribution Y|X is

du(v) := ∂1C(u, v) =
v2

(u + v − uv)2

for 0 ≤ v ≤ 1 and 0 < u < 1. Note that du is the distribution function of V|U = u for 0 < u < 1. It is plotted in
Figure 4, left, for di�erent values of u. Its inverse function is

d−1u (v) = u
√
v

1 − (1 − u)
√
v

for 0 ≤ v ≤ 1 and 0 < u < 1. Hence, from eq. (2.2), the quantile regression curves are

q2|1(y|x) = F−12
(
d−1F1(x)(y)

)
= F−12

(
F1(x)

√y
1 − (1 − F1(x))

√y

)
for 0 < y < 1 and x such that f1(x) > 0. In particular, for (U, V), which have uniform marginal distributions
in (0, 1), we get

q2|1(v|u) = d−1u (v) = u
√
v

1 − (1 − u)
√
v

for 0 < u < 1. Thus, for example, the median regression curve for V|U = u is

me2|1(u) := q2|1(0.5|u) =
u
√
0.5

1 − (1 − u)
√
0.5
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Figure 3: BBP in option 3.1 (left) for the normal model considered in Example 2.1. The blue region contains the 50% of the data
and the two red regions the 40%. The dashed lines represent the BBP in option 3.2. In the right plot we add 100 simulated
data from this model.

for 0 < u < 1. It is plotted in Figure 4, right (black line) jointly with the �rst and third quartile functions
(blue lines) and the 5 and 95 percentile functions (red lines). These curves determine the BBP in option 3.1.
Note that C is symmetric (i.e. (U, V) has an exchangeable distribution) but that these regions are not. The
conditional median vector of V|U is

m2|1 =
(
0.5,me2|1(0.5)

)
=
(
0.5, 0.5

√
0.51 − 0.5

√
0.5
)
= (0.5, 0.5469182).

By the symmetry of the model, we havem1|2 = (0.5469182, 0.5) and so, in this case, they do not coincide.
Note that they are also di�erent from themean andmedian vectors which coincide in the point (E(U), E(V)) =
(me(U),me(V)) = (0.5, 0.5).

The quantile regression curve q2|1 can also be used to get the BBP in options 1 and 2. They are plotted in
Figure 5 jointly with 100 simulated data from this model. These simulated data were obtained by using the
conditional standardmethod. Thus we �rst generate a 100 random data u1, . . . , u100 from U (i.e. 100 random
data in (0, 1)), and then we get one random data from V|U = ui by using q2|1 for i = 1, . . . , 100 (i.e. with
the inverse transformmethod). As in the preceding example the BBP could be used to perform �t tests for the
copula (when we are not sure about the exact copula).

If, for example, the marginal distributions are standard exponentials, that is, F1(x) = F2(x) = 1 − e−x for
x ≥ 0, then by applying the inverse transform F−1i (y) = − ln(1 − y) for i = 1, 2, we obtain the data and the BBP
(options 1 and 2) plotted in Figure 6.
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Figure 4: Conditional distribution functions (left) of V|U = u for the Clayton copula in Example 2.2 and u = 0.5, 0.25, 0.75,
0.05, 0.95 (black, blue top, blue bottom, red top, red bottom). Quantile regression curves q2|1(v|u) (right) for V|U = u for
v = 0.5, 0.25, 0.75, 0.05, 0.95 (black, blue bottom, blue top, red bottom, red top). The + point represents the conditional
medianm2|1 = (0.5, 0.5469182).

3 Practical BBP
Asmentioned at the beginning of Section 2, the univariate box plots are an empirical tool. Therefore, it is very
important to obtain the practical BBP associated to the theoretical ones proposed in the preceding section.
To this end we can maintain the de�nitions (options) and just estimate the theoretical regions or to modify
the de�nitions by using the sample. In this section (X1, Y1), . . . , (Xn , Yn) represent a sample of i.i.d. random
vectors from (X, Y).

As the theoretical BBP in option 1 of the preceding section is based on the univariate box plot for X, in
practice we have two options for the limit points `1 and `2.

Option 1.a (�ve pointsmethod):Here we canmaintain the de�nitions and use the function gn obtained
from the data X1, . . . , Xn (see the �rst paragraph of Section 2) to estimate `1 and `2 by ˆ̀1 := g−1n (0.0034883)
and ˆ̀2 := g−1n (0.9965117).

Option 1.b (Tukey’s method): Alternatively, we can just use the empirical (Tukey’s) box plot for X, that
is, we can use the limits L1 and L2 for the whiskers as vertical limits for the BBP.

Note that this second option cannot be applied to the conditional distributions Y|X = x since, in contin-
uous models, we just have a data (Xi , Yi) for each value x = Xi for i = 1, . . . , n and we do not have data for
the other values of x. Hence we need to estimate the conditional quantile function q2|1 and use the quantile
limits proposed in options 1-3. Fortunately, we have several techniques available in the literature (and in
some statistical programs) for this purpose. Let us see some of them.

3.1 Linear quantile regression

The linear quantile regression was proposed by Koenker and Basset in [11] (see also [10]) as an alternative to
thewell known linear regressionmodel. The key idea is to replace conditionalmeans by conditionalmedians.
It is well known that the empirical median m̂X = g−1n (0.5) of X1, . . . , Xn minimizes the mean absolute error
MAE(x) = 1

n
∑n

i=1 |Xi−x|while the empiricalmean Xminimizes themean squared errorMSE(x) = 1
n
∑n

i=1(Xi−
x)2.
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Figure 5: BBP in options 1 (left) and 2 (right) for the Clayton copula in Example 2.2 with 100 simulated data.
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Figure 6: BBP in options 1 (left) and 2 (right) for the exponential model with the Clayton copula in Example 2.2 and 100 simu-
lated data.
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Thus, in a linear median regression model, we consider the linear function y = a + bx which minimizes
the

MAE(a, b) = 1
n

n∑
i=1
|Yi − a − bXi|

instead of the MSE used in the linear regression model. The empirical linear median regression curve is then
de�ned as m̂2|1(x) = â + b̂x, where â, b̂ ∈ R are the (one) solutions of this minimization problem. This
de�nition can be extended when the random variable X is replaced with a random vector (see [11]).

Analogously, the qth sample quantile x̂q of X is de�ned as the (one) solution of

min
x

∑
i:Xi>x

q|Xi − x| +
∑
i:Xi<x

(1 − q)|Xi − x|

for 0 < q < 1. Note that this de�nition does not coincide with that used above (and in the default method of R)
to get the quartiles Q1 and Q3 and to built the univariate box plots (see the �rst paragraph of Section 2 or [8]).
Thisminimizationproblemcanbeused tode�ne the linear regression quantile function as q̂2|1(v|x) = âv+b̂vx,
where âv , b̂v ∈ R are the (some) solutions of

min
a,b

∑
i:Yi>aXi+b

v|Yi − a − bXi| +
∑

i:Yi<aXi+b
(1 − v)|Yi − a − bXi|

for a �xed v ∈ (0, 1). These linear regression quantiles can be obtained in R with the package: quantreg
(see [13]). After installing this package, the command: rq(Y∼X,v) provides the estimated linear regression
quantiles for 0 < v < 1, where X and Y are two columns containing the paired data (Xi , Yi).

Clearly, q̂2|1(v|x) can be considered as an estimator of the theoretical curve q2|1(v|x) de�ned in the pre-
ceding section. Of course, it will be a better estimator if the theoretical curves are straight lines.

Thus, if we use the data in Example 2.1 (obtained from anormalmodel), we obtain the BBP (option 1.b) in
Figure 7. The continuous lines represent the theoretical regression quantile functions (plotted also in Figure
1) and the dashed lines the associated estimations. The symbols + represent the conditional median vector
(black) and its estimation (red). The theoreticalmedian (andmean) regression curveme2|1(x) = 0.7x (contin-
uous black line) is estimatedwith themedian regression line m̂e2|1(x) = 0.05705845+0.76947487x (dashed
red line). In this case it can also be estimated with the linear regression line m̂2|1(x) = 0.02156 + 0.82231x
(dashed green line). In the right, we just plot the empirical BBP and we add the data. Note that the worst
estimation is obtained in the lower quantile function (bottom red lines) which �ts to the lower data. That is
because the lower dashed red line is a regression quantile with probability 0.0035 and so it is obviously at-
tracted by (and even goes through) the lower outliers. As a result, the fences might not identify these outliers
(but they remark them as possible outliers). Also note that the greater data of X is considered as an outlier
and so it is replaced as the upper limit of X with L2 = Q3 +1.5(Q3 −Q1) = 2.465815 (right red dashed vertical
lines). It is a good estimation of `2 = qnorm(0.9965117, 0, σ) = 2.697959 (right red vertical line). The dashed
lines can be used to de�ne the nine empirical regions R̂ as in Section 2. The counts of the data in these regions
are given in Table 2. As they depend on the data, some regions may contain more data than the theoretical
ones (for this sample). However, if they are used to study the data in an independent sample, the expected
values should be the same.

Analogously, if we use the data in Example 2.2 (obtained from a Clayton copula), then we obtain the BBP
(option 1.b) in Figure 8 for uniform (left) and exponential (right) marginals. The purpose of this �gure is to
show that the estimated quantile regression lines can be quite far from the theoretical ones when they are not
straight lines. In this case they are not so bad in the left plot. Note that in the right plot we have �ve outliers in
X due to the fact that the exponential model is quite far from the normal model. So, in the classic univariate
box (Tukey’s) plot of X (vertical lines), the maximum value has been replaced with L2 = Q3 + 1.5(Q3 − Q1) =
2.56428 (detecting �ve false outliers). In these cases (far from the normal model), it is better to use option
1.a (i.e. the empirical 5 points method). Moreover, with this option, we maintain the expected values in the
regions. The counts for the empirical regions in the left plot are in Table 3. They do not coincide with the
counts for the regions in the right plot due to the change in the right limit of X.
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Figure 7: Empirical BBP (dashed lines) in option 1.b for the data in Example 2.1. The continuous lines represent the theoretical
BBP and the dashed green lines the empirical regression line.
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Figure 8: Empirical BBP (dashed lines) in option 1.b for the data in Example 2.2 with uniform (left) and standard exponential
(right) marginals. The continuous lines represent the theoretical BBP and the dashed green lines the empirical regression line.
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Table 2: Observed and expected values for the data in Example 2.1 and the regions determined by the empirical BBP in option
1.

Oi|Ei Left Central Right Sum
Top 7|6.076802 11|12.32558 6|6.076802 24|24.47919

Central 12|12.32558 27|25 12|12.32558 51|49.65117
Bottom 6|6.076802 12|12.32558 5|6.076802 23|24.47919
Sum 25|24.4796 50|49.65117 23|24.4796 98|98.60955

Table 3: Observed and expected values for the data from (U, V) in Example 2.2 and the regions determined by the empirical
BBP in option 1.b.

Oi|Ei Left Central Right Sum
Top 2|6.076802 19|12.32558 3|6.076802 24|24.47919

Central 14|12.32558 23|25 12|12.32558 49|49.65117
Bottom 8|6.076802 7|12.32558 8|6.076802 23|24.47919
Sum 24|24.4796 49|49.65117 23|24.4796 96|98.60955

3.2 Non-linear quantile regression

The basic theory for the non-linear quantile regression can be seen in [12]. They are also included in the R-
package: quantreg. Of course, this method is especially useful for models with non-linear regression curves
(as the model studied in Example 2.2). However, it can also be applied to models with linear quantile regres-
sion curves. Note that the linear model can also be applied to linear expressions based on X. For example,
we can obtain quadratic approximations by using X and X2. One can think that the �ts will be better in this
case because we have an additional parameter by using y = a + bx + cx2. However, this is not always true.
Thus, for example, the quadratic median regression curve obtained with this method will be closer to the
data than the linear one but it can be a worse estimation of the theoretical median regression curve. In an
extreme casewemight add n parameters to get a curvewhich contains all the data, but this curvewill not be a
good approximation of the theoretical one. This fact can be observed in Figure 9 where we plot the quadratic
estimations obtained from the data in Example 2.1. They can be comparedwith the linear estimations given in
Figure 7. However, if we use the data in Example 2.2, we obtain the BBP in Figure 10 (uniform and exponential
marginals). Clearly, in these cases, the quadratic approximations are better than the linear approximations
given in Figure 8.

3.3 Empirical estimators

If we prefer to have “empirical estimators” we just need to estimate the conditional median (quantiles) for
Y|X = Xi. For example, in a three points method, we can �rst sort the data from X obtaining X1:n , . . . , Xn:n.
Then, to estimate the quartiles of Y|X = Xi:n, we can consider the three values of the Y, associated with
Xi−1:n , Xi:n , Xi+1:n. They are called concomitans and are usually represented as Y[i−1:n], Y[i:n], Y[i+1:n]. These
values are not necessarily ordered, so we need to sort them and then to estimate the quartiles of Y|X = Xi:n
with these three ordered values Qi1 ≤ Qi2 ≤ Qi3 (the median is estimated with the value in the middle). For the
extreme points X1:n and Xn:n, we can use respectively the points X1:n , X1:n , X2:n and Xn−1:n , Xn:n , Xn:n (or just
use two points). For these points we have the following property.
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Figure 9: Quadratic empirical BBP (dashed lines) in option 1.b for the data in Example 2.1. The continuous lines represent the
theoretical BBP.
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Figure 10: Quadratic empirical BBP (dashed lines) in option 1.b for the data in Example 2.2 with uniform (left) and standard
exponential (right) marginals. The continuous lines represent the theoretical BBP.
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Figure 11: BBP in option 3 for the data in Example 2.1 estimated with the three-points (left) and the seven-points (right) meth-
ods. The dashed lines represent the theoretical BBP. The orange lines represent the median curves, the blue lines, the third
quartile curves, and the green lines, the �rst quartile curves. The red lines in the right plot can be used to get the whiskers.

Proposition 3.1. With the notation introduced above,

lim
n
E(F2|1(Qij|Xi:n)) = E(Uj:3) = j/4

for j = 1, 2, 3, where U1:3, U2:3, U3:3 are the order statistics from a standard uniform distribution.

Proof. As n →∞, the three ordered values Qi1 ≤ Qi2 ≤ Qi3 can be seen as three ordered values from the condi-
tional distribution Y|X = Xi:n. Then U1:3 := F2|1(Qi1|Xi:n), U2:3 := F2|1(Qi2|Xi:n) and U3:3 := F2|1(Qi3|Xi:n) can
be seen as three ordered values from a standard uniform distribution. Their distributions are well known in
the literature. For example, the distribution of U3:3 is

F3:3(u) = Pr(max(U1, U2, U3) ≤ u) = Pr(U1 ≤ u) Pr(U2 ≤ u) Pr(U3 ≤ u) = u3

for 0 ≤ u ≤ 1, the pdf is f3:3(u) = 3u2 and so

E(U3:3) =
1∫

0

uf3:3(u)du =
1∫

0

3u3du = 3
4 .

Analogously, it can be proved easily that E(U1:3) = 1/4 and E(U2:3) = 1/2.

By applying this method to the data in Example 2.1, we obtain the estimations (continuous lines) plotted in
Figure 11, left. Aswe can see the estimations arenot very good. Ifwehavemoredatawe coulduse a�ve-points
or a seven-points methods. In the �rst case, the �ve closest values can be used to get the box-plots but note
that they are biased (except in the case of the median) since E(Uj:5) = j/6 for j = 1, 2, 3, 4, 5. However, in the
second,we have E(Uj:7) = j/8 for j = 1, . . . , 7 and so the second, the fourth and the sixth values of the ordered
Ys are unbiased estimators for the quartiles at this point. The �rst and the seventh values can be used to plot
the whiskers. They are plotted in Figure 11, right. There we have changed the theoretical limits in option 1
with the quantile regression curves with q = 1/8 and q = 7/8 (dashed red lines). In discrete populations we
can use all the data with X = Xi for a �xed i. In the following subsections we propose other techniques to get
“smooth” estimations based on copula estimations.
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3.4 Parametric estimation

As we have seen in Section 2, the conditional regression curves depend on the partial derivative of the copula
C and the marginal distributions F1 and F2 (see eq. (2.2)). The last ones can be estimated with the empirical
(or kernel) distribution functions from X and Y. These estimations F̂1 and F̂2, can be used to transform the
data into Ui = F̂1(Xi) and Vi = F̂2(Yi) for i = 1, . . . , n, which can be considered as a sample from the copula
C. Then we just need to use these data to estimate C.

In this subsection, we assume a parametric form for the copula C, that is, we assume that C = Cθ for given
family of copulas Cθ with an unknown parameter θ. Typically, θ represents the grade of dependency between
X and Y. Thus, in Example 2.2, we might assume that the data have a Clayton copula

Cθ(u, v) =
(
max(0, u−θ + v−θ − 1)

)−1/θ
(3.1)

(see, e.g., [19, p. 116]) with an unknown dependence parameter θ ∈ [−1, 0) ∪ (0,∞). If θ → 0, then Cθ goes
to the product copula Π(u, v) = uv (i.e. X and Y are independent). So, by de�nition, we take C0 := Π.

A typical procedure in copula theory to estimate the dependence parameter θ is to consider a depen-
dence (or concordance) coe�cient invariant under monotone increasing transformations. The most usual
coe�cients are the Kendall’s tau τ and the Spearman’s rho ρS (see [19, p. 158, 167]). Then we estimate this co-
e�cient from the data andwe choose the value of θ to get this coe�cient in Cθ. For example, the Kendall’s tau
τ coe�cient for the above Clayton copula is τθ = θ/(2 + θ) for θ ≥ −1 (see [19, p. 163]). Note that τθ ∈ [−1, 1).
The empirical Kendall’s tau τ̂ is de�ned (see (5.1.1) in [19, p. 158]) as

τ̂ = c − d(n
2
) ,

where c is the number of concordant and d is the number of discordant pairs of data and
(n
2
)
is the number of

pairs. We say that the pairs (Xi , Yi) and (Xj , Yj) (j ≠ i) are concordant (resp. discordant) if (Xi −Xj)(Yi −Yj) > 0
(resp. < 0). If we apply this formula to the data in Example 2.2, we get τ̂ = 0.339798. Then by solving

τθ =
θ

2 + θ ≈ 0.339798 = τ̂

we obtain
θ̂ := 2τ̂

1 − τ̂ = 1.029376

which a good estimation of the theoretical value θ = 1. Finally, under the assumption of a Clayton copula,
we use the conditional quantile regression curves of Cθ̂ to estimate the theoretical ones and get the practical
BBP. A straightforward calculation from eq. (3.1) gives

d−1u (v) =
(
1 − u−θ + u−θv−

θ
1+θ
)−1/θ

for 0 < u < 1 and 0 < v < 1. Hence, by replacing the unknown θwith θ̂ = 1.029376 in these curves, we obtain
the estimated curves (dashed lines) plotted jointly with the theoretical ones (continuous lines) in Figure 12,
left. Note that the estimations for the curves are very good. The estimations for the quartiles of U (vertical
dashed lines) are not so good. However, if we know that the data come from a copula, they can be replaced
with the exact values (continuous vertical lines). The estimations in Figure 12, right, for the exponentialmodel
are not so good due to the use of the empirical estimators of F1 and F−12 in eq. (2.2) (they are especially bad in
the top red curve). If we want continuous lines, we can use kernel estimators for F1 and F−12 . Remember that
the vertical dashed lines correspond to the (empirical) classical univariate box plot of X and that the right
limit can be replaced with the maximum value of X which in this sample is X100:100 = 5.008685 (here it is
also considered as an outlier of X).

Moreover, note that the BBP regions can be used to perform �t-tests to con�rm the assumedmodel for the
copula. There, if we estimate a dependence parameter by using maximum likelihood, then we should reduce
the degrees of freedom in one unit in the (approximate) chi-squared distribution of T.
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Figure 12: BBP in option 1.b for the data in Example 2.2 when we use a parametric estimation for the Clayton copula based on
the Kendall’s tau coe�cient. The dashed lines represent the estimations and the continuous lines the theoretical BBP.

3.5 Non-parametric estimation

If we do not have a parametricmodel for the copula (as in the preceding subsection), thenwe have to estimate
the copula C and its partial derivative ∂1C. C can be estimated by using the empirical copula but, this estima-
tor cannot be used to estimate the partial derivative. To this purpose it is better to use a kernel type estimator
for C. A survey on the application of this kind of estimators to copula can be seen in [21]. The main problem
is that the support of the copula is included in [0, 1]2 while the kernel estimators do not have this property.
To skip this problem, Nagler [16] proposed to transform the data from (U, V) included in [0, 1]2 to new data
with support in R2. This procedure was called the transform method. To do that, we can, for example, apply
the quantile function of a standard normal univariate distribution. We shall use the following notation. The
pdf of this distribution will be denoted by

ϕ(x) = 1√
2π

exp
(
− x

2

2

)
and its distribution function by Φ(x) =

∫ x
−∞ ϕ(z)dz. Hence its quantile (inverse) function is denoted

by Φ−1. By applying this transformation to the sample (U1, V1), . . . , (Un , Vn), we obtain a new sample
(X1, Y1), . . . , (Xn , Yn) from (X, Y) where X = Φ−1(U) and Y = Φ−1(V). Of course, (X, Y) has support R2,
copula C and standard normal marginals. Then we use the new sample to get a kernel estimator for the joint
distribution F of (X, Y). To this end we propose to use a bivariate normal kernel with independent compo-
nents, i.e.

F̂(x, y) := 1
n

n∑
i=1

Φ
(
x − Xi
hn

)
Φ
(
y − Yi
hn

)
with a common bandwidth hn > 0. Then, as F(x, y) = C(Φ(x),Φ(y)), the estimator for C is

Ĉ(u, v) := F̂(Φ−1(u),Φ−1(v)) = 1
n

n∑
i=1

Φ
(
Φ−1(u) − Φ−1(Ui)

hn

)
Φ
(
Φ−1(v) − Φ−1(Vi)

hn

)
for u, v ∈ (0, 1)2. Note that Ĉ is an absolutely continuous bivariate distribution function with support in-
cluded in [0, 1]2 but it is not a copula. Then we can use

d̂u(v) := ∂1Ĉ(u, v) =
1

nhnϕ
(
Φ−1(u)

) n∑
i=1

ϕ
(
Φ−1(u) − Φ−1(Ui)

hn

)
Φ
(
Φ−1(v) − Φ−1(Vi)

hn

)
(3.2)
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Figure 13: Kernel estimations (left) of the copula C(u, v) in Example 2.2 for u = 0.05, 0.25, 0.5, 0.75, 0.95 (dotted lines from
the bottom). The respective estimations for du(v) obtained from eq. (3.2) are potted in the right. The continuous lines represent
the exact values.

as an estimator for du(v). Here we can use a numerical method to estimate its inverse function d−1u (v) and to
get the estimations for the quantile curves from eq. (2.2).

The estimations obtained of the copula C(u, v) for u = 0.05, 0.25, 0.5, 0.75, 0.95 from the data in Ex-
ample 2.2 are plotted in Figure 13, left. We have taken the bandwidth hn = n−1/5 = 0.3981072 but we have
seen that the estimations are very similar for other typical choices of hn. The respective estimations for du(v)
obtained from eq. (3.2) are potted in Figure 13, right. The worse estimations are obtained when u = 0.75 (red
line) and u = 0.05 (orange line).

Note that some of the functions d̂u in Figure 13, right, are not distribution functions. This is due to the
fact that Ĉ is not a copula. To avoid this problem the estimator in eq. (3.2) can be replaced with

d̂*u(v) = d̂Ĉ1(u)(Ĉ2(v)), (3.3)

where

Ĉ1(u) = Ĉ(u, 1) =
1
n

n∑
i=1

Φ
(
Φ−1(u) − Φ−1(Ui)

hn

)
and

Ĉ2(v) = Ĉ(1, v) =
1
n

n∑
i=1

Φ
(
Φ−1(v) − Φ−1(Vi)

hn

)
are the marginal distributions of Ĉ. Hence, from eq. (2.2), d̂*u(v) are the conditional distribution functions of
Ĉ. Unfortunately, the estimations obtained from eq. (3.3), plotted in Figure 14, do not improve that obtained in
Figure 13, right. They are not distribution functions due to the numerical errors in the computer calculations.

Finally, we use eq. (3.2) to approximate the quantile regression curves plotted in Figure 14, right, for the
model (U, V) in Example 2.2 with q = 0.5 (black), q = 0.25, 0.75 (blue) and q = 0.05, 0.95 (red). These
curves can be used to obtain (to estimate) the BBP (option 3) de�ned in Section 2.

4 Multivariate box plots
The regions de�ned in Section 2 can be extended to a random vector X = (X1, . . . , Xn) with n > 2 to get
the multivariate box plots (MBP). For example, if n = 3, then we can consider the regions de�ned as R =
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Figure 14: Kernel estimations (left) obtained from eq. (3.3) for du(v) of the model (U, V) in Example 2.2 for u = 0.05, 0.25, 0.5,
0.75, 0.95 (dotted lines from the top). Quantile regression curves (right) for q = 0.5 (black), q = 0.25, 0.75 (blue) and q =
0.05, 0.95 (red). The continuous lines represent the exact values.

[a, b] × [α2, β2] × [α3, β3] where a, b ∈ R, α2, β2 : [a, b]→ R and α3, β3 : [a, b] × R→ R. As in the bivariate
case, if we use quantile maps, we have the following property.

Proposition 4.1. With the above notation, if α2, β2 are u2, v2-quantile curves of X2|X1 and α3, β3 are u3, v3-
quantile maps of X3|X1, X2, then

Pr(X ∈ R) = p1p2p3,

where p1 = Pr(a ≤ X1 ≤ b), p2 = v2 − u2 and p3 = v3 − u3.

Proof. If the region R is de�ned as above, then

Pr(X ∈ R) =
b∫
a

β2(x1)∫
α2(x1)

β3(x1 ,x2)∫
α3(x1 ,x2)

f(x1, x2, x3)dx3dx2dx1

=
b∫
a

β2(x1)∫
α2(x1)

Pr(α3(x1, x2) ≤ X3 ≤ β3(x1, x2)|X1 = x1, X2 = x2)f2|1(x2|x1)dx2f1(x1)dx1.

Thus, if α3 and β3 are u3, v3-quantile maps of (X3|X1 = x1, X2 = x2), then

Pr(α3(x1, x2) ≤ X3 ≤ β3(x1, x2)|X1 = x1, X2 = x2) = p3

for p3 = v3 − u3. Then, we get

Pr(X ∈ R) = p3
b∫
a

Pr(α2(x1) ≤ X2 ≤ β2(x1)|X1 = x1)f1(x1)dx1.

Finally, if α2 and β2 are also u2, v2-quantile curves of (X2|X1 = x1), then

Pr(α2(x1) ≤ X2 ≤ β2(x1)|X1 = x1) = p2

for p2 = v2 − u2 and so we get the stated result.
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The expressionobtained in theprecedingproposition canbeused tode�ne regionswith speci�cprobabilities.
For example, if we use the �rst and third quartile curves to de�ne the central region Rccc, then we get p1 =
p2 = p3 = 1/2 and Pr(X ∈ Rccc) = 1/8. The other regions can be de�ned similarly. As in Section 2, other
options can be considered as well. The same technique can be used for n > 3.

Unfortunately, the preceding approach does not provide useful plots. We could just have 3D plots when
n = 3. In this case we obtain 21 regions (obtaining plots similar to Rubik’s cube). In the other cases we just
might use the regions (but we cannot plot them). So we need to consider other options.

A typical one, is to provide in a common �gure all the BBP obtained from pairs of random variables from
X (see, e.g., Figure 7 in [20]). Moreover, note that here the BBP for (X1, X2) and (X2, X1) can be di�erent (i.e.
they are not just a symmetric transposition). To show this approach we plot in Figure 15 the BBP obtained by
using linear regression quantile curves for the R-data called stackloss, which contains operational data of
a plant for the oxidation of ammonia to get nitric acid (see [4] or the help included in R about this data set).
The plots in themain diagonal represent the univariate box plots. The “linear regression quantile” procedure
used in this �gure can be replaced with any of the other procedures proposed in Section 3.

To conclude this section we propose a di�erent approach also based in quantile regression. In all the
paper we are assuming that we have a response variable Y that should be approximated when we know the
value of an explanatory variable X. Actually, this is what happen in this data set where a response variable Y
(called “stack loss”) should be estimated from the variables X1, X2, X3 plotted in Figure 15 (note that they are
not “independent”). In linear quantile regression this estimation will be provided by the estimated median
regression line given in this case by the formula

Y ≈ m(x1, x2, x3) := −39.68985507 + 0.83188406x1 + 0.57391304x2 − 0.06086957x3. (4.1)

In order to get a bivariate plot of this relationship between four variables we propose to create the arti�cial
variable

Z = −39.68985507 + 0.83188406X1 + 0.57391304X2 − 0.06086957X3 (4.2)

and use it to get the BBP of (Z, Y) (plotted in Figure 16). Note that the linear regression curves included in this
plot can be used to obtain con�dence bands for the estimation of Y from the functionm in Eq. (4.1). However,
note that these con�dence bands can be di�erent from that obtained from a linear quantile regression with
X1, X2, X3. For example, the limits for 50% con�dence band obtained from the �rst and third quartile lines
in (Z, Y) (red lines) are 0.1917811 + 0.9266720z and −0.8828384 + 1.1609055z, that is,

q1(x1, x2, x3) = −36.5877 + 0.7708837x1 + 0.5318291x2 − 0.05640613x3

and
q3(x1, x2, x3) = −46.95901 + 0.9657388x1 + 0.6662588x2 − 0.07066382x3,

while the corresponding ones obtained from (X1, X2, X3, Y) are

q̃1(x1, x2, x3) = −36 + 0.5x1 + x2 − 4.57967 · 10−16x3

and
q̃3(x1, x2, x3) = −54.18966 + 0.8706897x1 + 0.9827586x2 + 2.677979 · 10−16x3.

Note that q̃1 and q̃3 cannot be written in terms of Z and so they cannot be included in Figure 16. In this
sense the arti�cial random variable Z can be seen as a kind of “�rst principal component” when we want to
approximate Y from a median regression line based on X1, X2, X3 since Z has all the information to get this
estimation. However, Z does not contain the information needed to compute the limits q̃1 and q̃3. Instead
we should use q1 and q3. The same can be applied to the bands based on other quantile lines or to other
approaches based on non-linear quantile regression (see Subsection 3.2).



154 | Jorge Navarro

50 60 70 80

50
70

X1

X
1

18 22 26

50
70

X2

X
1

75 85

50
70

X3

X
1

50 60 70 80

18
24

X1

X
2

18 22 26

18
24

X2

X
2

75 85

18
24

X3

X
2

50 60 70 80

75
90

X1

X
3

18 22 26

75
90

X2

X
3

75 85

75
90

X3

X
3

Figure 15: BBP obtained from linear quantile regression for a real data set with three variables. The vertical lines represent the
univariate box plots.
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Figure 16: BBP in option 3 obtained from linear quantile regression for a real data set with three explanatory variables
X1 , X2 , X3 and a response variable Y. The variable Z given in (4.2) represents the linear median regression expression ob-
tained from X1 , X2 , X3.

5 Conclusions and open problems
We have proposed di�erent ways to obtain bivariate box plots (BBP). They are a good alternative to other sim-
ilar plots. They are based on some regions obtained from univariate box plots and conditional distributions.
So they are especially useful when we have a response variable Y and an explanatory variable X.

The main advantage of this approach is that the regions in the theoretical BBP have �xed probabilities.
In Section 2 we propose three options to �x these probabilities but the users can consider other options as
well. As a consequence of this property, these regions can be used to perform �t tests to study if some data
can come from a given bivariate model.

Moreover, the theoretical BBP can be obtained easily from eq. (2.2), the partial derivatives of the copula
and the marginal distribution functions. They can also be obtained in a direct way for models with known
conditional distributions (as happen for the normal model and all themodels proposed in [1]). Two examples
illustrate these procedures.

In practice the theoretical BBP should be estimated. Fortunately, we already have several techniques
available in the literature to this purpose. Here we have showed some of them. The two �rst techniques are
based on linear and non-linear quantile regression. So they can be computed easily by using the available
packages in R. In the third one, we propose new empirical estimators based on concomitants. In the fourth,
we assume a copula parametricmodel for the dependence and thenwe estimate this parameter from the data.
As mentioned above, the assumedmodel can be con�rmed by using a �t test based on the regions in the BBP.
We also propose a �fth option based on new non-parametric kernel estimators for the partial derivative of the
copula. All these approaches are illustrated with the two proposed examples.

Finally, we also consider the multivariate case, suggesting two ways to get BBP when we have more than
two variables. A real data set (from R) is used to illustrate these options.

This paper is just a �rst step. So there are many tasks for future research. Let us mention just some of
them. From a theoretical point-of-view, the most di�cult one is to decide which option is the more reason-
able to de�ne the bivariate (and the univariate) box plots. In practice, we should decide which estimation
procedure is the best for our data. There are a lot of results (papers) for the �rst approaches. However, the
last one should be studied in detail. We have proposed two kernel estimators and we do not know which one
is the best one. Also, we should study how to determine the optimal bandwidth. Moreover, if we assume a
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bivariate copula regression model, one would like to study some of the properties of the residuals resulting
from �tting such model. These and other tasks are left for future research projects.
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