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Abstract: We consider the problem of �nding checkerboard copulas for modeling multivariate distributions.
A checkerboard copula is a distribution with a corresponding density de�ned almost everywhere by a step
function onanm-uniform subdivision of the unit hyper-cube.Wedevelop optimizationprocedures for �nding
copulas de�ned by multiply-stochastic matrices matching available information. Two types of information
are used for building copulas: 1) Spearman Rho rank correlation coe�cients; 2) Empirical distributions of
sums of random variables combined with empirical marginal probability distributions. To construct checker-
board copulas we solved optimization problems. The �rst problem maximizes entropy with constraints on
Spearman Rho coe�cients. The second problem minimizes some error function to match available data. We
conducted a case study illustrating the application of the developed methodology using property and ca-
sualty insurance data. The optimization problems were numerically solved with the AORDA Portfolio Safe-
guard (PSG) package, which has precoded entropy and error functions. Case study data, codes, and results
are posted at the web.

Keywords: multivariate distributions, checkerboard copula, Spearman Rho rank correlation, entropy, case
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1 Introduction
The objective of the paper is to build a joint distribution of incurred losses (or loss ratios) for a set of correlated
classes in insurance business. Some empirical information about the dependence structure of these classes
of business is available and we want to build a copula of a joint distribution. This methodology is relevant in
any situation where an aggregate loss distribution across correlated classes of business needs to be found. It
is especially helpful in representing simultaneous large losses inmany classes, a particularly thorny problem
in actuarial science.

Suppose that the following information about random variables (losses) is available: a) distributions for
m one-dimension random variables; b) distributions for sums of some of these random variables. For in-
stance, we know distributions of 3 random variables, and we know the distribution of the sum of the �rst
two random variables. The main objective of this paper is to developmethodology for �nding a copula which
matches available information. To our knowledge, this is an original research contribution which is not cov-
ered in other papers. We do not know other approaches for calibrating a copula based on such information.
For instance, papers [9, 10] consider copulas based on general partitions-of-unity. However, the problem ad-
dressed in this paper was not considered in these publications.
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The second objective of the paper is to review earlier results on calibrating checkerboard copulas by
maximizing entropy. This review is motivated by the case study for �nding a copula with known Spearman’s
rank correlation coe�cients (which are called also grade correlation coe�cients).

We conducted a case study illustrating the application of the developedmethodology using property and
casualty insurance data. The conducted case studies (codes, data) are posted at the web.

This paper relies on results for checkerboard copulas of maximum entropy developed in [2–4, 8, 11, 12].
An m-dimensional copula where m ≥ 2, is a continuous, m-increasing, probability distribution function
C : [0, 1]m 7→ [0, 1] on the unit m-dimensional hyper-cube with uniform marginal probability distributions.
A checkerboard copula is a distribution with a corresponding density de�ned almost everywhere by a step
function on an m-uniform subdivision of the hyper-cube. I.e., the checkerboard copula is a distribution on
the unit hyper-cube [0, 1]m de�ned by subdividing the hyper-cube into nm identical small hyper-cubes Ii
with constant density on each one. Suppose that the density on Ii, where i = (i1, i2, . . . im) is de�ned by the
expression nm−1hi, where hi is an element of hyper-matrix h = [hi] ∈ Rn

m
with hi ∈ [0, 1]. The marginal

distributions of C are uniform if hypermatrix h is multiply-stochastic, i.e., satis�es∑
i : ir=j

hi = 1 ∀ r = 1, . . . ,m, j = 1, . . . , n .

The paper develops optimization procedures for �nding copulas de�ned by a multiply-stochastic matrices
matching available information.

2 Checkerboard Copula with Prescribed Spearman Rho Coe�cients
The de�nitions and statements for themulti-dimensional copulas in this section are taken from [12]. This sec-
tion contains the maximum entropy optimization problem for a checkerboard copula with prescribed Spear-
man rho coe�cients. This problem is solved in the case study in Section 4.2. Also, this introductory section
provides de�nitions for the main methodological Section 3.

2.1 2-Dimensional Checkerboard Copula De�ned by Doubly-Stochastic Matrix

De�nitions and notations for multidimensional copulas are quite complicated, therefore, we start with the
two-dimensional case, similar to paper [11].

Let (X1, X2) be a pair of real valued random variables on R2 and let g(x1, x2) be the joint probability
density. The corresponding marginal probability densities are

g1(x1) =
∫
R

g(x1, x2) dx2 and g2(x2) =
∫
R

g(x1, x2) dx1

for x1 ∈ R and x2 ∈ R. In practice we often wish to construct a joint probability distribution where the
corresponding marginal distributions are already known. The method of copulas is one possible solution
method. Let c(u1, u2) be a density of two-dimension copula, i.e., the joint probability density on the unit
square with marginal densities

c1(u1) =
1∫

0

c(u1, u2) du2 = 1 and c2(u2) =
1∫

0

c(u1, u2) du1 = 1

for each u1 ∈ [0, 1] and each u2 ∈ [0, 1]. Let g1(x1) and g2(x2) be the known probability densities with
corresponding cumulative distribution functions F1(x1) and F1(x1) for real valued random variables X1 and
X2. The joint density, de�ned by the copula density c(u1, u2), equals

g(x1, x2) = c
(
F1(x1), F2(x2)

)
g1(x1)g2(x2) for (x1, x2) ∈ R2 .
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Let h = [hij] ∈ Rn×n be a a doubly-stochastic matrix, i.e., matrix satisfying conditions

n∑
i=1

hij =
n∑
l=1

hjl = 1 for all j = 1, . . . , n .

Let us de�ne a partition 0 = a(1) < a(2) < · · · < a(n + 1) = 1 of the interval [0, 1] where a(k) = (k − 1)/n,
k = 1, . . . , n+1. De�ne the step function c(u1, u2) almost everywhere on the region [0, 1]×[0, 1] by the formula

c(u1, u2) = n hij for (u1, u2) ∈
(
a(i), a(i + 1)

)
×
(
a(j), a(j + 1)

)
, i = 1, . . . , n, j = 1, . . . , n .

It can be easily shown that c(u1, u2) is a joint density function on the unit square with uniform marginal
densities, i.e., it is a density of a copula. Indeed, the integral of c(u1, u2) over the unit square equals

1∫
0

1∫
0

c(u1, u2) du1 du2 =
n∑
i=1

n∑
j=1

a(i+1)∫
a(i)

a(j+1)∫
a(j)

n hij du1 du2 =
n∑
i=1

n∑
j=1

nhij

a(i+1)∫
a(i)

a(j+1)∫
a(j)

du1 du2

=
n∑
i=1

n∑
j=1

n hij
1
n2 = 1

n

n∑
i=1

n∑
j=1

hij =
1
n

n∑
i=1

1 = 1 .

Also, suppose that u1 ∈
[
a(i), a(i + 1)

]
, then

1∫
0

c(u1, u2) du2 =
n∑
j=1

a(j+1)∫
a(j)

n hij du2 =
n∑
j=1

n hij

a(j+1)∫
a(j)

du2 =
n∑
j=1

n hij
1
n =

n∑
j=1

hij = 1 .

Therefore, the marginal density for any u1 ∈ [0, 1], equals

c1(u1) =
1∫

0

c(u1, u2) du2 = 1 ,

and similar for any u2 ∈ [0, 1],

c2(u2) =
1∫

0

c(u1, u2) du1 = 1 .

The corresponding checkerboard copula C : [0, 1]×[0, 1] 7→ [0, 1] is de�ned as follows,

C(u1, u2) =
u1∫
0

u2∫
0

c(v1, v2) dv1 dv2 for u1 ∈ [0, 1], u2 ∈ [0, 1] .

Example of two-dimensional copula.
Let us consider the case with m=2, n=4. Table 1 shows an example of hyper-matrix h. Table 2 and Figure 1
show the density of the checkerboard copula. Table 3 and Figure 2 show the Checkerboard copula.

2.2 De�nitions form-Dimensional Case

Let m ∈ N with m ≥ 2 and let X = (X1, . . . , Xm) ∈ Rm be a vector–valued random variable with joint
probability density g : Rm 7→ R. The corresponding marginal probability densities are

gr(xr) =
∫

Rm−1

g(x) dπcr x
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Table 1: Example. Hyper-matrix h.

1 2 3 4
1 0.167 0.333 0.333 0.167
2 0.167 0.333 0.333 0.167
3 0.167 0.333 0.333 0.167
4 0.5 0 0 0.5

Table 2: Example. Density values of the checkerboard copula.

1 2 3 4
1 0.667 1.333 1.333 0.667
2 0.667 1.333 1.333 0.667
3 0.667 1.333 1.333 0.667
4 2 0 0 2

Table 3: Example. Checkerboard copula values.

1 2 3 4
1 0.042 0.125 0.208 0.25
2 0.083 0.250 0.417 0.5
3 0.125 0.375 0.625 0.75
4 0.25 0.5 0.75 1.0

Figure 1: Example. Density of the checkerboard copula.
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Figure 2: Example. Checkerboard copula.

for all xr ∈ R and each r = 1, . . . ,m where we write x = (x1, . . . , xm) ∈ Rm and where the projection
πr : Rm 7→ R onto the xr-axis and the complementary projection πcr : Rm 7→ Rm−1 are de�ned for each
r = 1, 2, . . . ,m by

πrx = xr and πcr x =


(x2, . . . , xm) if r = 1
(x1, . . . , xr−1, xr+1, . . . , xm) if r = 2, . . . ,m − 1
(x1, . . . , xm−1) if r = m.

Frequently, in simulation of random events it is needed to construct a joint probability distribution where the
correspondingmarginal distributions are already known. Themethod of copulas provides a theoretical basis
for such analysis. If the joint distribution is known and the marginal distributions are continuous then the
copula is uniquely de�ned. We refer to the book by Nelsen [7] for the fundamental theory. It is convenient
to assume that the given marginal distributions are continuous. Let c : [0, 1]m 7→ [0,∞) be a joint proba-
bility density on the unit m–dimensional hyper-cube with uniform marginal densities. That is, the marginal
densities cr : [0, 1] 7→ [0,∞), satisfy the conditions

cr(ur) = 1 ⇔
∫

[0,1]m−1

c(u) dπcru = 1

for all ur ∈ [0, 1] and each r = 1, . . . ,m. The distribution C : [0, 1]m 7→ [0, 1] de�ned by

C(u) =
∫

×n
i=1[0,ui ]

c(v)dv

for all u ∈ [0, 1]m is an m-dimensional copula. The copula C de�nes a joint distribution for a vector valued
random variable U = (U1, . . . , Um) on the unit hyper-cube [0, 1]m. Let fs : R 7→ R be a given probability
density with corresponding cumulative distribution function Fs : R 7→ [0, 1] for each s = 1, . . . ,m. Write
f = (f1, . . . , fm) : Rm 7→ [0,∞)m and F = (F1, . . . , Fm) : Rm 7→ [0, 1]m, also

u = F(x) ⇔ (u1, . . . , um) = (F1(x1), . . . , Fm(xm))

for each x = (x1 . . . , xr) ∈ Rm.
The joint density g : Rm 7→ [0,∞) de�ned for random vector X = (X1, . . . , Xm) by the formula

g(x) = c(F(x))
m∏
s=1

fs(xs) for x ∈ Rm



Checkerboard copula de�ned by sums of random variables | 75

has prescribed marginal densities for Xr , r = 1, . . . ,m given by

gr(xr) = fr(xr)
∫

Rm−1

c(F(x))
∏
s≠r
fs(xs) dπcr x = fr(xr)

∫
[0,1]m−1

c(u) dπcru = fr(xr) for xr ∈ R .

The corresponding m-dimensional distribution G : Rm 7→ [0, 1] is de�ned in terms of the copula C and the
marginal distributions F by the formula

G(x) = C(F(x)) for x ∈ Rm .

2.3 Checkerboard Copulas and Multiply-Stochastic Matrices

Let n ∈ N be a natural number and let h be a non-negative m–dimensional hyper–matrix given by h =
[hi] ∈ R` where ` = nm and i ∈ {1, . . . , n}m with hi ∈ [0, 1]. For instance, suppose that n = 3, m = 2, then,
{1, 2, 3}2 is the list of pairs {1, 1}, {2, 1}, {3, 1}, {1, 2}, {2, 2}, {3, 2}, {1, 3}, {2, 3}, {3, 3}. If, for instance,
i = {3, 2}, than hi = h{3,2}.

De�ne themarginal sums σr : {1, . . . , n} 7→ R by the formulae

σr(ir) =
∑

πcr i ∈ {1,2,...,n}m−1
hi

for each ir = 1, 2, . . . ,m. If σr(ir) = 1 for all r = 1, 2, . . . ,m, then we say that h is multiply stochastic. De�ne
the partition 0 = a(1) < a(2) < · · · < a(n + 1) = 1 of the interval [0, 1] by setting a(k) = (k − 1)/n for each
k = 1, . . . , n + 1 and de�ne a step function ch : [0, 1]

m 7→ R almost everywhere by the formula

ch(u) = n
m−1 · hi if u ∈ Ii = ×mr=1[a(ir), a(ir + 1)]

for each i = (i1, . . . , im) ∈ {1, 2, . . . , n}m. Now it follows that∫
[0,1]m

ch(u) · du =
∑

i ∈ {1,...,n}m

∫
Ii

ch(u) · du =
∑

i ∈ {1,...,n}m
nm−1 hi

1
nm = 1 . (1)

Since
(ch)r(ur) =

∫
[0,1]m−1

ch(u) · dπ
c
ru =

∑
πcr i ∈ {1,...,n}m−1

nm−1 hi
1

nm−1 = 1

for all r = 1, 2, . . . ,m, then the step function ch : [0, 1]m 7→ [0,∞) is a joint density function for a corre-
sponding checkerboard copula Ch : [0, 1]

m 7→ [0, 1] de�ned by

Ch(u) =
∫

×n
i=1[0,ui ]

ch(v) dv for u ∈ [0, 1]m .

The joint density gh : R
m 7→ [0,∞) for the random variable X = (X1, . . . , Xm) is de�ned by

gh(x) = ch(F(x))
m∏
s=1

fs(xs) for x ∈ Rm ,

and the corresponding distribution function Gh : Rm 7→ [0, 1] is de�ned in terms of the copula Ch and the
prescribed marginal distributions F by the formula

Gh(x) = Ch(F(x)) for x ∈ Rm .
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2.4 Spearman Rho Correlation Coe�cient

The most widely known are Kendall’s tau and Spearman rho, both of which measure a form of dependence
known as concordance. Spearman rho is often called the grade correlation coe�cient. If xr are observations
from a real valued random variable Xr with cumulative distribution function Fr then the grade of xr is given
by ur = Fr(xr). Note that the grade ur can be regarded as an observation of the uniform random variable
Ur = Fr(Xr) on [0, 1] and that Ur has mean 1/2 and variance 1/12. The grade correlation coe�cient for the
continuous random variables Xr and Xs where r < s is de�ned as the correlation for the grade random vari-
ables Ur = Fr(Xr) and Us = Fs(Xs) by the formula

ρr,s =
E[(Ur − 1/2)(Us − 1/2)]

E[(Ur − 1/2)2]1/2E[(Us − 1/2)2]1/2
= 12

(
E[UrUs] − 1/4

)
.

We refer the reader to Nelsen [7] for further details. The Spearman rho correlation coe�cient for the checker-
board copula is given by

ρr,s = 12

 1
n3

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2) −
1
4

 . (2)

2.5 Entropy

Let h ∈ R` be a multiply stochastic hyper–matrix and let ch : [0, 1]
m → R be the associated elementary joint

density de�ned previously. The entropy of h is de�ned by

J(h) = (−1)

1
n

∑
i ∈ {1,...,n}m

hi loge hi + (m − 1) loge n

 . (3)

2.6 Maximum Entropy Problem with Prescribed Spearman Rho Coe�cients

We wish to select a multiply stochastic hyper–matrix h = [hi] ∈ R` to match known grade correlation
coe�cients ρr,s for all r < s in such a way that the entropy is maximized. We now formulate the optimization
problem for �nding copula with prescribed Spearman rho coe�cients.

Optimization problemwith prescribed Spearman rho coe�cients
Find the hyper-matrix h ∈ R` maximizing the entropy

J(h) = (−1)

1
n

∑
i ∈ {1,...,n}m

hi loge hi + (m − 1) loge n

 (4)

subject to the constraints

12

 1
n3 ·

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2) − 1/4

 = ρr,s , 1 ≤ r < s ≤ m (5)

∑
πcr i ∈ {1,...,n}m−1

hi = 1 , ir ∈ {1, . . . , n} , r = 1, . . . ,m (6)

hi ≥ 0 , i ∈ {1, . . . , n}m (7)
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In general terms the problem is well posed. There are a �nite number of linear constraints on h and so
the feasible set F of hyper–matrices satisfying (5,6,7) is a bounded (closed) convex set in R`. The function
J : F 7→ [0,∞) is strictly concave. If the interior or core of F is non-empty then there must be a unique
solution for h with strictly positive coordinates. The reader is referred to [1, 5] for a general discussion of the
requisite convex analysis and nonlinear optimization.

3 Copula De�ned by Sums of Random Variables
Let Xr, r = 1, 2, . . . ,m are randomvalueswithdistributions Fr(x) and single-valuedquantile functions F−1r (u)
for all u ∈ (0, 1). We denote by g a subset indexes of these random values. For instance, suppose that r =
1, 2, . . . , 7, then, we may have g = {2, 5} or g = {1, 3, 4, 6}. We will denote by Zg the sum of random values
with indexes r ∈ g, i.e. Zg =

∑
r∈g Xr . We denote by Fg (z) the distribution for the random value Zg .

Let us assume that the distributions Fr(x) , r = 1, 2, . . . ,m, and the distribution Fg (z) are available. We
want to build a copula for random values Xr, r = 1, 2, . . . ,m, based on available information about these
distributions.

Let us denote

Ind(a 6 b) =
{
1 if a 6 b
0 otherwise.

We de�ne the projection πrs : Rm 7→ R2 onto the urus-plane and the complementary projection πcrs : Rm 7→
Rm−2 for 1 ≤ r < s ≤ m by the formulae

πrsu = (ur , us)

and

πcrsu =



(u3, . . . , um) if r = 1, s = 2
(u2, . . . , us−1, us+1, . . . , um) if r = 1, 2 < s < m
(u2, . . . , um−1) if r = 1, s = m
(u1, . . . , ur−1, ur+1, . . . , us−1, us+1, . . . , um) if 1 < r < s < m
(u1, . . . , ur−1, ur+1, . . . , um) if 1 < r < m − 1, s = m
(u1, . . . , um−2) if r = m − 1, s = m.

We will explain the approach with a simple case when the sum includes only two random values Xr , Xs
and g = {r, s}. By de�nition,

Pr{Xr + Xs ≤ z} = Fg (z) ∀ z ∈ R . (8)

On the other hand, using copula we have

Pr{Xr + Xs ≤ z} =
∑

i ∈ {1,...,n}m

∫
Iπrs i

Ind
{
F−1r (ur) + F−1r (us) ≤ z

} ∫
Iπcrs i

ch(u) · dπ
c
rsu

 dπrsu

=
∑

i ∈ {1,...,n}m

∫
Iπrs i

Ind
{
F−1r (ur) + F−1r (us) ≤ z

} ∫
Iπcrs i

nm−1 · hi · dπ
c
rsu

 dπrsu
=

∑
i ∈ {1,...,n}m

∫
Iπrs i

Ind
{
F−1r (ur) + F−1r (us) ≤ z

}[
nm−1 · hi ·

1
nm−2

]
dπrsu

=
∑

i ∈ {1,...,n}m

 n a(ir+1)∫
a(ir)

a(is+1)∫
a(is)

Ind
{
F−1r (ur) + F−1r (us) ≤ z

}
dur dus

 hi .
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The last equation and (8) imply ∑
i ∈ {1,...,n}m

γ
g
i (z) hi = Fg (z) ∀ z ∈ R , (9)

where

γ
g
i (z) = n

a(ir+1)∫
a(ir)

a(is+1)∫
a(is)

Ind
{
F−1r (ur) + F−1s (us) ≤ z

}
dur dus . (10)

Similar to (8) we consider the case when cardinality |g| of the set g is higher or equal than 2, i.e. 2 ≤ |g| ≤ m,

Pr{Zg ≤ z} = Fg (z) ∀ z ∈ R . (11)

Equation (10) is generalized, in this case, as follows

γ
g
i (z) = n

|g|−1
∫

Iπg i

Ind

∑
r∈g

F−1r (ur) ≤ z

 dπgu . (12)

So far we have not made any speci�c assumptions about the distribution of the random value Zg . In the
considered case we assume that k observations of the random value Zg are available. Therefore, further we
suppose that the random value Zg is discretely distributed with equally probable atoms and the distribu-
tion function Fg (z) takes k values 1

k ,
2
k , . . . ,

k
k . Let us denote by Lg (h, j) the loss function, having k equally

probable scenarios,

Lg (h, j) = j
k −

∑
i ∈ {1,...,n}m

γ
g
i

(
F−1g

(
j
k

))
hi , j = 1, . . . k. (13)

With this notation, equation (9) can be rewritten as follows,

Lg (h, j) = 0 , j = 1, . . . , k . (14)

Pay attention that in case if the distribution Fg (z) is continuous, we still can use the �nite system of
equations (14) as an approximation of the in�nite system of equations (9). The system of equations (14) may
be infeasible. In this case, we can �nd hyper-matrix h by minimizing an error function. Further, we will
consider three error functions:

1) Mean Squared Error,

ε gMSE(h) =
1
k

k∑
j=1

[
Lg (h, j)

]2
, (15)

2) Mean Absolute Error,

ε gMAE(h) =
1
k

k∑
j=1

∣∣∣Lg (h, j)∣∣∣ , (16)

3) CVaR Absolute Error, see [6],

ε gCVaRAE(h, α) = CVaRα(|L(h, j)|) = minξ

ξ + 1
(1 − α)k

k∑
j=1

( ∣∣∣Lg (h, j)∣∣∣ − ξ)
 , (17)

with con�dence parameter α ∈ [0, 1).

Further we formulate regression problem for �nding copula with one set of constraints (14) . Let g be a
subset of indices of continuous random variables Xr with distributions Fr(x) , r = 1, 2, . . . ,m. Let denote by
ε g (h) one of the three considered error functions. We will solve the following optimization problem to �nd
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an optimal vector h de�ning copula.

Regression problemwith one sum function

Find the hyper-matrix h ∈ R` minimizing the error

min
h

ε g (h) (18)

subject to the constraints ∑
πcr i ∈ {1,...,n}m−1

hi = 1 , ir ∈ {1, . . . , n} , r = 1, . . . ,m (19)

hi ≥ 0 , i ∈ {1, . . . , n}m (20)

In general terms the problem (18,19,20) is well posed. There is a �nite number of linear constraints on
h and so the feasible set F of hyper–matrices satisfying (19,20) is a bounded closed convex set in R`. The
function ε : F 7→ [0,∞) is convex for the considered error function. The interior of F is non-empty, therefore
there is a convex set of optimal solutions for h. The reader is referred to [1, 5] for a general discussion of convex
analysis and nonlinear optimization.

It is important to note that the problem (18,19,20) has sense if the error function ε g (h) on optimal solu-
tion point is not equal to zero, which means that the system of linear constraints (14) is not feasible. Suppose
that the problem (18,19,20) has zero optimal objective function, then we need to solve the following entropy
maximization problem to assure that the solution is based only on available information speci�ed by con-
straints.

Entropy maximization problemwith one sum function

Find hyper-matrix h ∈ R` maximizing the entropy

J(h) = (−1)

1
n

∑
i ∈ {1,...,n}m

hi loge hi + (m − 1) loge n

 (21)

subject to constraints
Lg (h, j) = 0 , j = 1, . . . , k (22)

∑
πcr i ∈ {1,...,n}m−1

hi = 1 , ir ∈ {1, . . . , n} , r = 1, . . . ,m (23)

hi ≥ 0 , i ∈ {1, . . . , n}m (24)

Optimization problems with several sum functions

Let us denote by gµ , µ = 1, . . . , d subsets of indexes of random values Xr, r = 1, 2, . . . ,m. For instance,
suppose that r = 1, 2, . . . , 7, and d = 3, then, we may have g1 = {2, 4}, g2 = {3, 5}, g3 = {1, 3, 4, 6}.

If we have d sums of random values and accordingly d subsets of indexes, than the objective (18) in the
regression problem can be replaced by the weighted average of the error functions,

d∑
µ=1

λµ ε gµ (h) , (25)
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where λµ > 0 , µ = 1, . . . , d and
∑

µ λµ = 1. For instance, we can take equal coe�cients λµ = 1
d . The set

constraints (22) in the entropy minimization problem should be speci�ed for every sum of random variables,
i.e.,

L gµ (h, j) = 0 , j = 1, . . . , kµ , µ = 1, . . . , d . (26)

Calculation of loss function

According to de�nition (13), the loss function Lg (h, j) is a simple linear function in variables hi with coe�-
cients,

γ
g
i (z) = n

|g|−1
∫

Iπg i

Ind

∑
r∈g

F−1r (ur) ≤ z

 dπgu , where, z = F−1g
(
j
k

)
. (27)

Further we show how to calculate the integral in (27). We will explain the idea with the two dimension case
when |g| = 2. The integration is done over the variables ur , us in the box

Iπrs i = [a(ir), a(ir + 1)]×[a(is), a(is + 1)] .
As speci�ed in (10), formula (27) can be written as follows

γ
g
i (z) = n

a(ir+1)∫
a(ir)

a(is+1)∫
a(is)

Ind
{
F−1r (ur) + F−1s (us) ≤ z

}
dur dus . (28)

When in interior of the box Iπrs i the indicator function equals only 1 or only 0, integral in (28) can be easily
evaluated. Therefore, 3 cases are valid,

γi(z) = n ·


n−2 , if F−1r

(
a(ir + 1)

)
+ F−1s

(
a(is + 1)

)
≤ z ,

0 , if F−1r
(
a(ir)

)
+ F−1s

(
a(is)

)
≥ z ,∫ a(ir+1)

a(ir)
∫ a(is+1)
a(is) Ind

{
F−1r (ur) + F−1s (us) ≤ z

}
dur dus , otherwise .

(29)

When in interior of the box Iπrs i the indicator function equals both 1 and 0, we can consider, approximately,
that the integral in (28) equals, n−2, which is volume of Iπrs i , multiplied by 1

2 . Therefore,

γi(z) ≈


n−1 , if F−1r

(
a(ir + 1)

)
+ F−1s

(
a(is + 1)

)
≤ z ,

0 , if F−1r
(
a(ir)

)
+ F−1s

(
a(is)

)
≥ z ,

1
2 n

−1 , otherwise .

(30)

Now, let us derive the exact formula for γi(z) when in Iπrs i the indicator function equals both 1 and 0. In this
case, F−1r

(
a(ir + 1)

)
+ F−1s

(
a(is + 1)

)
> z and F−1r

(
a(ir)

)
+ F−1s

(
a(is)

)
< z . Coe�cient γi(z) is calculated

by integrating in the box Iπrs i over the area where Ind
{
F−1r (ur) + F−1s (us) ≤ z

}
= 1 . Let us denote the upper

bound for integrating variables ur, us by

Mi,r(z) = max
{
min

{
Fr(z), a(ir + 1)

}
, a(ir)

}
,

Mi,s(z) = max
{
min

{
Fs
(
z − F−1r

(
ur)
)
, a(is + 1)

}
, a(is)

}
.

So, we have

γ
g
i (z) = n

Mi,r(z)∫
a(ir)

Mi,s(z)∫
a(is)

dur dus . (31)
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Now, let us consider the case when the summay contain more than two variables, i.e., 2 ≤ |g| ≤ m. Then,
formula (29) is generalized as follows,

γ
g
i (z) = n

|g|−1 ·


n−|g| , if

∑
r∈g F

−1
r
(
a(ir + 1)

)
≤ z ,

0 , if
∑

r∈g F
−1
r
(
a(ir)

)
≥ z ,∫

Iπg i
Ind

{∑
r∈g F

−1
r (ur) ≤ z

}
dπgu , otherwise ,

(32)

and the approximate formula (30) is generalized as

γ
g
i (z) ≈


n−1 , if

∑
r∈g F

−1
r
(
a(ir + 1)

)
≤ z ,

0 , if
∑

r∈g F
−1
r
(
a(ir)

)
≥ z ,

1
2 n

−1 , otherwise .

(33)

The third term in (32) is derived similar to (31). Let us denote g = {r1, r2 . . . , rl} , where 2 ≤ l = |g| ≤ m . We
consider the following case,

∑
r∈g

F−1r
(
a(ir + 1)

)
=

l∑
ν=1

F−1rν
(
a(irν + 1)

)
> z ,

and ∑
r∈g

F−1r
(
a(ir)

)
=

l∑
ν=1

F−1rν
(
a(irν )

)
< z .

Let us denote
Mi,r1 (z) = max

{
min

{
Fr1 (z), a(ir1 + 1)

}
, a(ir1 )

}
,

Mi,r2 (z) = max
{
min

{
Fr2
(
z − F−1r1

(
ur1
))

, a(ir2 + 1)
}
, a(ir2 )

}
,

Mi,r3 (z) = max
{
min

{
Fr3

(
z −

2∑
ν=1

F−1rν
(
urν
))

, a(ir3 + 1)
}
, a(ir3 )

}
,

. . .

Mi,rl (z) = max
{
min

{
Frν

(
z −

l−1∑
ν=1

F−1rν
(
urν
))

, a(irl + 1)
}
, a(irl )

}
.

So, �nally we have

γ
g
i (z) = n

|g|−1

Mi,r1 (z)∫
a(ir1 )

Mi,r2 (z)∫
a(ir2 )

. . .

Mi,rν (z)∫
a(irν )

dur1 dur2 . . . durν . (34)

4 Case Study
This section presents a case study illustrating application of methodology considered in Sections 2 and 3.

The optimization problems were solved with Portfolio Safeguard (PSG); see http://www.aorda.com. PSG
is an optimization package for solving nonlinear and mixed-integer optimization problems; it is free for aca-
demic purposes. PSG contains precoded classes of nonlinear functions, which allows for formulation and
solving of optimization problems in analytic format. MATLAB code was developed to process data and pre-
pare inputs for PSG.

http://www.aorda.com


82 | Viktor Kuzmenko, Romel Salam, and Stan Uryasev

4.1 Copula De�ned by Spearman Rho Coe�cients

This section provides a case study illustrates the optimization approach presented in Section 2 for �nding
checkerboard copula with known Spearman Rho coe�cients .

The case study codes, data and results are posted at http://uryasev.ams.stonybrook.edu/index.php/
research/testproblems/�nancial_engineering/case-study-checkerboard-copula-de�ned-by-sperman-rho-
coe�cients-entropyr/. We posted several instances of solved problems in TEXT, MATLAB, and R formats. The
entropy maximization problem is solved with PSG, which has a precoded entropy function. PSG maximizes
entropy with dual formulation. However, the user is not involved in this reduction (just option in the
optimization problem statement should be speci�ed). PSG automatically generates the dual problem, solves
it, and present the results for the primal problem.

The dataset contains �ve random variables Xj , representing the incurred losses for �ve classes of busi-
ness for an insurance company. Accordingly, ten unique Spearman rho coe�cients, denoted by ρr,s , were
calculated, where 1 6 r < s 6 m = 5 , as shown in the following Table 4.

Table 4: Spearman rho coe�cients ρr,s .

1 0.535294 0.664706 0.629412 -0.414706
0.535294 1 0.247059 0.423529 -0.4
0.664706 0.247059 1 0.844118 -0.317647
0.629412 0.423529 0.844118 1 -0.247059
-0.414706 -0.4 -0.317647 -0.247059 1

The optimization problem (4–7) is reduced to the following optimization problem (35–38).

Optimization problem
Find hyper-matrix h ∈ R5 by maximizing

max
h

−
∑

i ∈ {1,...,n}5
hi loge hi (35)

subject to constraints
12
n3

∑
i ∈ {1,...,n}5

hi(ir − 1/2)(is − 1/2) − 3 = ρr, s , 1 ≤ r < s ≤ 5 (36)

∑
πcr i ∈ {1,...,n}4

hi = 1 , ir ∈ {1, . . . , n} , r = 1, . . . , 5 (37)

hi ≥ 0 , i ∈ {1, . . . , n}5 (38)

We solved the optimization problem (35–38) with grid parameter n = 4, 8, 10. Table 5 shows the optimal
objective value and calculation times.We observe that the solution time is quickly increasingwith dimension
n. The dimension n = 10, on one hand, is su�ciently large to get a good approximation precision of the
copula, on the other hand, the optimization time = 7.66 sec, is not signi�cant for a nonlinear optimization
problemhaving n5 = 100, 000 prime variables hi. Wewant to emphasize that this is a nonlinear optimization
problem with quite large number of variables. PSG package has a precoded entropy function which is very
e�ciently implemented. Data are posted at the web and a reader can benchmark this problem with some
other nonlinear programming software.
Figures 3-5 show two-dimensional projections of density of the optimal checkerboard copulawith n = 10. Two-
dimensional projection of the density to coordinates ui1 , ui2 is done by �xing complementary components
(not involved in the projection) at value 0.5 .

http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-checkerboard-copula-defined-by-sperman-rho-coefficients-entropyr/
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-checkerboard-copula-defined-by-sperman-rho-coefficients-entropyr/
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-checkerboard-copula-defined-by-sperman-rho-coefficients-entropyr/
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Table 5: Calculation results for optimization problem (35–38) with grid parameters n = 4, 8, 10.

n Optimal Value Solution Time (sec)
4 15.58 0.03
8 55.82 1.91
10 78.98 7.66

Figure 3: Two-dimensional projections (u1-u2; u1-u3; u1-u4; u1-u5) of density of the checkerboard copula, m=5, n=10, obtained
by maximizing entropy.

4.2 Checkerboard Copula De�ned by Sums of Random Variables

This section calibrates checkerboard copulas with known marginal distributions and distributions of
sums of random variables, as described in Section 3. The case study codes, data and results are posted
at http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/�nancial_engineering/case-study-
checkerboard-copula-de�ned-by-sums-of-random-variables/. We have found m=3-dimensional checker-
board copulas with grid parameter n = 10. The error minimization problems were solved with the PSG pack-
age (see http://www.aorda.com) which has precoded error functions: Mean Squared, Mean Absolute, and
CVaR Absolute. Standard statistical packages have Mean Squared andMean Absolute minimization capabili-
ties, however, they do not accept constraints. Optimization packages, such as Gurobi can solve very e�ciently
linear and quadratic optimization problems. Problems considered in this section can be reduced to quadratic
or linear programming. However, a signi�cant e�ort need to be made to make this reduction, write a code,
and debug. With PSG it is possible to avoid these time consuming steps.

http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-checkerboard-copula-defined-by-sums-of-random-variables/
http://www.aorda.com
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Figure 4: Two-dimensional projections (u2-u3; u2-u4; u2-u5; u3-u4) of density of the checkerboard copula, m=5, n=10, ob-
tained by maximizing entropy.

Figure 5: Two-dimensional projections (u3-u5; u4-u5) of density of the checkerboard copula, m=5, n=10, obtained by maximiz-
ing entropy.

We assumed that for 3 random variables W , X, and Y the empirical probability distribution functions
FW (w), FX(x), FY (y) are de�ned with 1000 observations. Assumptions for the sums of the random variables
are de�ned in the following two cases.

Case 1.
For the random value Z = W+X+Y, the empirical probability distribution function FZ(z) is de�nedwith K=16
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observations z1, . . . , z16. We solved an optimization problem and found a checkerboard copula on n × n × n
grid, where n=10. The 16 scenarios of the loss function L(h, j), de�ned in (13), were calculated as follows,

L(h, j) = j
16 −

10∑
i1=1

10∑
i2=1

10∑
i3=1

γi1 i2 i3 (zj) hi1 i2 i3 , j = 1, . . . 16 . (39)

We use formula (33) for the approximate calculations of the coe�cients γi1 i2 i3 (zj),

γi1 i2 i3 (z) ≈


n−1 , if F−1W (a(i1 + 1)) + F−1X (a(i2 + 1)) + F−1Y (a(i3 + 1)) ≤ z ,
0 , if F−1W (a(i1)) + F−1X (a(i2)) + F−1Y (a(i3)) ≥ z ,
1
2 n

−1 , otherwise .

(40)

Further we formulate the error minimization problem with one sum function as de�ned in (21–24).

Optimization Problem (Case 1)

Find hyper-matrix h ∈ R3 minimizing an error function

min
h

err(L(h, j)) (41)

subject to constraints
10∑
j2=1

10∑
j3=1

hj1 j2 j3 = 1, j1 = 1, . . . , 10 (42)

10∑
j1=1

10∑
j3=1

hj1 j2 j3 = 1, j2 = 1, . . . , 10 (43)

10∑
j1=1

10∑
j2=1

hj1 j2 j3 = 1, j3 = 1, . . . , 10 (44)

hj1 j2 j3 > 0, j1, j2, j3 = 1, . . . , 10 (45)

We considered in objective (41) three functions: Mean Squared Error (15), Mean Absolute Error (16), and CVaR
Absolute Error (17). Table 6 shows solutions for Optimization Problem (Case 1) with these error functions.

Table 6: Calculation results for Optimization Problem (Case 1) with di�erent error functions.

Error Function Optimal Value R2 Solution Time (sec)
Mean Squared 3.13E-03 0.987 1.45
Mean Absolute 1.56E-04 0.998 5.57

CVaR Absolute, α = 0.9 3.13E-02 - 1.42
CVaR Absolute, α = 0.99 3.66E-02 - 2.5

Figures 6, 7, 8, 9 shows the two-dimensional projections of density of checkerboard copula, obtained bymin-
imizing Mean Squared, Mean Absolute, CVaR Absolute α = 0.9, CVaR Absolute α = 0.99 in Optimization
Problem, Case 1. Two-dimensional projection of the density to coordinates ui1 , ui2 is done by �xing comple-
mentary components (not involved in the projection) at value 0.5 .
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Figure 6: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing Mean Squared Error in
Case 1.

Case 2.
For the three sums of random values Z1 = W + X, Z2 = W + Y, Z3 = X + Y, the empirical probability
distributions FZ1 (z), FZ2 (z), FZ3 (z) are de�ned by K=16 observations for every sum. So, we have observations
z11, . . . , s116 for Z1, observations z21, . . . , s216, for Z2, and observations z31, . . . , s316 for Z3. Let us denote the
following loss functions,

Li1 i2 (h, j) =
j
16 −

10∑
i1=1

10∑
i2=1

γi1 i2 (z
1
j )

10∑
i3=1

hi1 i2 i3 , j = 1, . . . 16, (46)

Li1 i3 (h, j) =
j
16 −

10∑
i1=1

10∑
i3=1

γi1 i3 (z
2
j )

10∑
i2=1

hi1 i2 i3 , j = 1, . . . 16, (47)

Li2 i3 (h, j) =
j
16 −

10∑
i2=1

10∑
i3=1

γi2 i3 (z
3
j )

10∑
i1=1

hi1 i2 i3 , j = 1, . . . 16 . (48)

We use formula (33) for the approximate calculations of the coe�cients γi1 i2 (z
1
j ), γi1 i3 (z

2
j ), γi2 i3 (z

3
j ),

γi1 i2 (z) ≈


n−1 , if F−1W (a(i1 + 1)) + F−1X (a(i2 + 1)) ≤ z ,
0 , if F−1W (a(i1)) + F−1X (a(i2)) ≥ z ,
1
2 n

−1 , otherwise .

(49)
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Figure 7: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing Mean Absolute Error in
Optimization Problem, Case 1.

γi1 i3 (z) ≈


n−1 , if F−1W (a(i1 + 1)) + F−1Y (a(i3 + 1)) ≤ z ,
0 , if F−1W (a(i1)) + F−1Y (a(i3)) ≥ z ,
1
2 n

−1 , otherwise .

(50)

γi2 i3 (z) ≈


n−1 , if F−1X (a(i2 + 1)) + F−1Y (a(i3 + 1)) ≤ z ,
0 , if F−1X (a(i2)) + F−1Y (a(i3)) ≥ z ,
1
2 n

−1 , otherwise .

(51)

Further we formulate the minimization problem with the weighted average of the error functions de�ned in
(25).

Optimization Problem (Case 2)

Find hyper-matrix h ∈ R3 minimizing weighted average of the error functions

min
h

1
3(err(Li1 i2 (h, j)) + err(Li1 i3 (h, j)) + err(Li2 i3 (h, j))) (52)

subject to constraints
10∑
j2=1

10∑
j3=1

hj1 j2 j3 = 1, j1 = 1, . . . , 10 (53)
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Figure 8: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing CVaR Absolute α = 0.9
Error in Optimization Problem, Case 1.

10∑
j1=1

10∑
j3=1

hj1 j2 j3 = 1, j2 = 1, . . . , 10 (54)

10∑
j1=1

10∑
j2=1

hj1 j2 j3 = 1, j3 = 1, . . . , 10 (55)

hj1 j2 j3 > 0, j1, j2, j3 = 1, . . . , 10. (56)

We considered in objective (52) three error functions de�ned in Section 3: Mean Squared, Mean Abso-
lute, and CVaR Absolute Error. Optimization problems were solved with PSG. Table 7 shows results for the
Optimization Problem (Case 2).

Table 7: Calculation results for Optimization Problem (Case 2) with di�erent error functions.

Error Functin Optimal Value R2 Solution Time (sec)
Mean Squared 1.01E-03 0.988 2.10
Mean Absolute 2.06E-02 0.918 1.70

CVaR Absolute, α = 0.9 6.56E-02 - 2.02
CVaR Absolute, α = 0.99 0.1 - 0.41
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Figure 9: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing CVaR Absolute α = 0.99
Error in Optimization Problem, Case 1.

Figures 10, 11, 12, 13 show the two-dimensional projections of density of the checkerboard copula, obtained by
minimizing Mean Absolute, Mean Squared, and CVaR Absolute α = 0.9, α = 0.99 in Optimization Problem,
Case 2. Two-dimensional projection of the density to coordinates ui1 , ui2 is obtained by �xing complementary
components (not involved in the projection) at value 0.5 .

5 Summary
We consider two setups for �nding checkerboard copula, which link a multivariate distribution on a
unit hyper-cube to their corresponding one-dimensional marginal distributions. A checkerboard copula is
uniquely de�ned by a multiply-stochastic hyper-matrix. In the �rst setup Spearman Rho rank correlation co-
e�cients are available. To �nd optimal values of elements of the hyper-matrix wemaximized entropy subject
to constraints, which match known Spearman Rho coe�cients. With the second setup, distributions of sums
of random variables and distributions of marginals are available. We developed a system of equations link-
ing elements of a hyper-matrix with known observations of random variables and their sums. This system of
equations is overspeci�ed, therefore, we have used regression to �nd a hyper-matrix.

The case study was done using property and casualty insurance data. More importantly, the case
study represents circumstances often faced by actuaries trying to build aggregate loss distributions across
correlated classes of business where the objective is to make the correct representation of the dependencies
observed in the data. The optimization problems were numerically solved with the AORDA Portfolio Safe-
guard (PSG) package, which has precoded entropy and error functions. Case study data, codes and results
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Figure 10: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing the average of Mean
Squared Errors in Case 2.

Figure 11: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing the average of Mean
Absolute Errors in Case 2.
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Figure 12: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing the average of CVaR
Absolute α = 0.9 Errors in Case 2.

Figure 13: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing the average of CVaR
Absolute α = 0.99 Errors in Case 2.
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are posted at web and are available for veri�cation (PSG is free for academic purposes).

Acknowledgments: We acknowledge that the �rst variant of the case study for the copula calibration with
known sums of random variables was conducted by Dr. Konstantin Pavlikov during his PhD study at the
University of Florida. Also, we acknowledge the help of Dr. Alexander Golodnikov with conducting the case
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