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Abstract: We consider the problem of finding checkerboard copulas for modeling multivariate distributions.
A checkerboard copula is a distribution with a corresponding density defined almost everywhere by a step
function on an m-uniform subdivision of the unit hyper-cube. We develop optimization procedures for finding
copulas defined by multiply-stochastic matrices matching available information. Two types of information
are used for building copulas: 1) Spearman Rho rank correlation coefficients; 2) Empirical distributions of
sums of random variables combined with empirical marginal probability distributions. To construct checker-
board copulas we solved optimization problems. The first problem maximizes entropy with constraints on
Spearman Rho coefficients. The second problem minimizes some error function to match available data. We
conducted a case study illustrating the application of the developed methodology using property and ca-
sualty insurance data. The optimization problems were numerically solved with the AORDA Portfolio Safe-
guard (PSG) package, which has precoded entropy and error functions. Case study data, codes, and results
are posted at the web.
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1 Introduction

The objective of the paper is to build a joint distribution of incurred losses (or loss ratios) for a set of correlated
classes in insurance business. Some empirical information about the dependence structure of these classes
of business is available and we want to build a copula of a joint distribution. This methodology is relevant in
any situation where an aggregate loss distribution across correlated classes of business needs to be found. It
is especially helpful in representing simultaneous large losses in many classes, a particularly thorny problem
in actuarial science.

Suppose that the following information about random variables (losses) is available: a) distributions for
m one-dimension random variables; b) distributions for sums of some of these random variables. For in-
stance, we know distributions of 3 random variables, and we know the distribution of the sum of the first
two random variables. The main objective of this paper is to develop methodology for finding a copula which
matches available information. To our knowledge, this is an original research contribution which is not cov-
ered in other papers. We do not know other approaches for calibrating a copula based on such information.
For instance, papers [9, 10] consider copulas based on general partitions-of-unity. However, the problem ad-
dressed in this paper was not considered in these publications.
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The second objective of the paper is to review earlier results on calibrating checkerboard copulas by
maximizing entropy. This review is motivated by the case study for finding a copula with known Spearman’s
rank correlation coefficients (which are called also grade correlation coefficients).

We conducted a case study illustrating the application of the developed methodology using property and
casualty insurance data. The conducted case studies (codes, data) are posted at the web.

This paper relies on results for checkerboard copulas of maximum entropy developed in [2-4, 8, 11, 12].
An m-dimensional copula where m > 2, is a continuous, m-increasing, probability distribution function
C :[0,1]™ ~ [0, 1] on the unit m-dimensional hyper-cube with uniform marginal probability distributions.
A checkerboard copula is a distribution with a corresponding density defined almost everywhere by a step
function on an m-uniform subdivision of the hyper-cube. IL.e., the checkerboard copula is a distribution on
the unit hyper-cube [0, 1]™ defined by subdividing the hyper-cube into n™ identical small hyper-cubes I;
with constant density on each one. Suppose that the density on I;, where i = (i1, i3, . . . im) is defined by the
expression nm’lhi, where h; is an element of hyper-matrix h = [h;] € R"™ with h; € [0, 1]. The marginal
distributions of C are uniform if hypermatrix h is multiply-stochastic, i.e., satisfies

o h=1vr=1,...,m, j=1,...,n.

i:i,=j
The paper develops optimization procedures for finding copulas defined by a multiply-stochastic matrices
matching available information.

2 Checkerboard Copula with Prescribed Spearman Rho Coefficients

The definitions and statements for the multi-dimensional copulas in this section are taken from [12]. This sec-
tion contains the maximum entropy optimization problem for a checkerboard copula with prescribed Spear-
man rho coefficients. This problem is solved in the case study in Section 4.2. Also, this introductory section
provides definitions for the main methodological Section 3.

2.1 2-Dimensional Checkerboard Copula Defined by Doubly-Stochastic Matrix

Definitions and notations for multidimensional copulas are quite complicated, therefore, we start with the
two-dimensional case, similar to paper [11].

Let (X1, X») be a pair of real valued random variables on R? and let g(x1, x,) be the joint probability
density. The corresponding marginal probability densities are

81(xq) = /g(Xl, X2)dx; and g>(x2) = /g(Xl, x2) dx1
R R
for x; € R and x, € R. In practice we often wish to construct a joint probability distribution where the
corresponding marginal distributions are already known. The method of copulas is one possible solution
method. Let c(uy, u,) be a density of two-dimension copula, i.e., the joint probability density on the unit
square with marginal densities

1

1
C1(u1)=/6(u1,uz) du; =1 and c,(uy) =/C(u1,uz) du; =1
(0] 0

for each u; € [0, 1] and each u, < [0, 1]. Let g1(x;) and g»(x,) be the known probability densities with
corresponding cumulative distribution functions F;(x1) and F;(x1) for real valued random variables X; and
X,. The joint density, defined by the copula density c(u;, u,), equals

g(x1, x2) = ¢ (F1(x1), F2(x2)) g1(x1)g2(x2) for (x1,x2) € R*.
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Let h = [hj;] € R™™ be a a doubly-stochastic matrix, i.e., matrix satisfying conditions

n n
> hj=> hy=1 forall j=1,...,n.
i=1 =1

Let us define a partition 0 = a(1) < a(2) < --- < a(n + 1) = 1 of the interval [0, 1] where a(k) = (k - 1)/n,
k=1,...,n+1. Define the step function c(u1, u,) almost everywhere on the region [0, 10, 1] by the formula

c(ur, up) = nhy for (uy,u,) € (a(), a(i+1))x(a(),a+1)), i=1,...,n, j=1,...,n.

It can be easily shown that c(uq, u,) is a joint density function on the unit square with uniform marginal
densities, i.e., it is a density of a copula. Indeed, the integral of c(u1, u,) over the unit square equals

11 n on a(i+1) a(j+1) n n a(i+1) a(j+1)
//c(ul,uz)du1 du, = ZZ / / nhy duy dup = ZZ nh;; / / duq duy
00 UL a() al) FLEL a) a)

n n n n n
1 1 1
= Z.Znhijn—z=ﬁz.2hij=5.21=l.
i=1 j=1 i=1 j=1 i=1
Also, suppose that u; € [a(i), a(i + 1)], then
1 n a(j+1) n a(j+1) n n
1
/C(ul,uz)du2=z / nhi]- duz =Z nhij / duz =Z nhijﬁ = hij=1-
0 =1 ) =1 a(j) =1 =

Therefore, the marginal density for any u; € [0, 1], equals

1

c1(ug) = /C(u1, uy)du; =1,
0

and similar for any u, < [0, 1],
1

c(up) = /c(ul, u)du;=1.

0
The corresponding checkerboard copula C : [0, 1]4[0, 1] — [0, 1] is defined as follows,
u; uz
Clui, up) = //C(vl,vz) dvydv, for u;€]0, 1], u; €[0, 1].
0 0

Example of two-dimensional copula.
Let us consider the case with m=2, n=4. Table 1 shows an example of hyper-matrix h. Table 2 and Figure 1
show the density of the checkerboard copula. Table 3 and Figure 2 show the Checkerboard copula.

2.2 Definitions for m-Dimensional Case

Letm € Nwithm > 2 and let X = (Xq,...,Xm) € R™ be a vector—valued random variable with joint
probability density g : R™ — R. The corresponding marginal probability densities are

gr(xr) = / g(x) dnix

Rm-1
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Table 1: Example. Hyper-matrix h.

0.167 | 0.333 | 0.333 | 0.167

0.167 | 0.333 | 0.333 | 0.167

0.167 | 0.333 | 0.333 | 0.167
0.5 0 0 0.5

Al W|IN|=

Table 2: Example. Density values of the checkerboard copula.

1 2 3 4
1| 0.667 | 1.333 | 1.333 | 0.667
2 | 0.667 | 1.333 | 1.333 | 0.667
3] 0.667 | 1.333 | 1.333 | 0.667
4 2 0 0 2
Table 3: Example. Checkerboard copula values.
1 2 3 4

0.042 | 0.125 | 0.208 | 0.25
0.083 | 0.250 | 0.417 | 0.5
0.125 | 0.375 | 0.625 | 0.75
0.25 0.5 0.75 1.0

Al WIN|-

clu)

Figure 1: Example. Density of the checkerboard copula.
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>

Figure 2: Example. Checkerboard copula.

for all x € R and each r = 1,..., m where we write x = (xq,...,xm) € R™ and where the projection
iy : R™ — R onto the x,-axis and the complementary projection ¢ : R™ — R™ ! are defined for each
r=1,2,...,mby

(XZ,---,Xm) lf r=1
X=Xy and X =14 (X1,.e., Xpo1sXpslsenes Xm) if 7=2,...,m-1
(X1, eeesXma1) if r=m.

Frequently, in simulation of random events it is needed to construct a joint probability distribution where the
corresponding marginal distributions are already known. The method of copulas provides a theoretical basis
for such analysis. If the joint distribution is known and the marginal distributions are continuous then the
copula is uniquely defined. We refer to the book by Nelsen [7] for the fundamental theory. It is convenient
to assume that the given marginal distributions are continuous. Let ¢ : [0, 1]™ — [0, oo) be a joint proba-
bility density on the unit m-dimensional hyper-cube with uniform marginal densities. That is, the marginal
densities ¢ : [0, 1] — [0, o), satisfy the conditions

clur)=1 & / cu)dmiu=1
[0’1]m—1

forallu, € [0, 1]and each r = 1, ..., m. The distribution C : [0, 1]™ — [0, 1] defined by

Clu) = / c(v)dv
X1 Jo,u]
for all u € [0, 1]™ is an m-dimensional copula. The copula C defines a joint distribution for a vector valued
random variable U = (Uy,..., Un) on the unit hyper-cube [0, 1]™. Let fs : R — R be a given probability

density with corresponding cumulative distribution function Fs : R — [0, 1] for each s = 1,..., m. Write
f=1,...,fm):R™" = [0,00)"and F = (Fq, ..., Fn) : R™ — [0, 1]™, also

u=Fx) < (Uu,...,um)=F1(x1),...,Fnlxm))

foreachx = (x1...,x;) € R™,
The joint density g : R™ + [0, oo) defined for random vector X = (X1, ..., Xm) by the formula

glx) = C(F(X))Hfs(xs) for x ¢ R™

s=1
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has prescribed marginal densities for Xr, r =1, ..., m given by

S#r

gr(Xr) = fr(xy) / c(F(x)) Hfs(xs) d"fx = fr(xy) / c(u) dﬂfu = fy(xy) for x, e R.
Rm-1 [O,l]m—l
The corresponding m-dimensional distribution G : R™ ~ [0, 1] is defined in terms of the copula C and the

marginal distributions F by the formula

G(x) = C(F(x)) for x ¢ R™.

2.3 Checkerboard Copulas and Multiply-Stochastic Matrices

Let n € N be a natural number and let h be a non-negative m—-dimensional hyper—matrix given by h =
[h;] € R¢ where £ = n™ and i € {1,...,n}" with h; € [0, 1]. For instance, suppose that n = 3, m = 2, then,
{1, 2, 3}2 isthelistof pairs {1, 1}, {2, 1}, {3, 1}, {1, 2}, {2, 2}, {3, 2}, {1, 3}, {2, 3}, {3, 3}.If, for instance,
i= {3, 2}, than hi = h{3’2}.

Define the marginal sums oy : {1, ...,n} — R by the formulae

or(ir) = Z hi
mei € {1,2,...,n}m 1

foreachir=1,2,...,m.If o:(i;) = 1 forallr = 1, 2, ..., m, then we say that h is multiply stochastic. Define
the partition 0 = a(1) < a(2) < --- < a(n + 1) = 1 of the interval [0, 1] by setting a(k) = (k - 1)/n for each
k=1,...,n+1and define a step function c, : [0, 1]™ — R almost everywhere by the formula

cp(u) = nmt. h; if uel;=X1[a(iy), a(ir +1)]

foreachi = (iy,...,im) € {1, 2,...,n}™. Now it follows that
_ 1
/ cp(u) - du = Z /ch(u).du= Z n" 1h,-n—m=1. 6]
[0,1]m ie{1,.., n}'"[i ie{1,.,n}m
Since 1
(cp)r(ur) = / - dmu= Y iy lo=a
[0,1]m-1 ﬂfi c {1 ..... n}""l

forallr = 1,2,..., m, then the step function c, : [0, 1]™ — [0, o0) is a joint density function for a corre-

sponding checkerboard copula Cy, : [0, 1]™ — [0, 1] defined by
Ch) = / cpv)dv foru e [0, 1]" .
X [0,u]
The joint density g, : R™ — [0, oo) for the random variable X = (X1, ..., Xn) is defined by
m
gn®) = cp(FOO) [ fs(xs) for x e R™,
s=1

and the corresponding distribution function G, : R™ ~ [0, 1] is defined in terms of the copula Cj, and the
prescribed marginal distributions F by the formula

Gp(x) = Cp(F(x)) for x e R™.
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2.4 Spearman Rho Correlation Coefficient

The most widely known are Kendall’s tau and Spearman rho, both of which measure a form of dependence
known as concordance. Spearman rho is often called the grade correlation coefficient. If x, are observations
from a real valued random variable X, with cumulative distribution function F; then the grade of x; is given
by u, = Fr(x;). Note that the grade u, can be regarded as an observation of the uniform random variable
Ur = F+(X;) on [0, 1] and that U, has mean 1/2 and variance 1/12. The grade correlation coefficient for the
continuous random variables X, and Xs where r < s is defined as the correlation for the grade random vari-
ables Uy = Fy(X;) and Us = Fs(Xs) by the formula

_ E[(U; - 1/2)(Us - 1/2)]
prs El(U, - 1/2)2]12E[(Us - 1/2)2]1/2

=12 (E[U/Us] - 1/4).

We refer the reader to Nelsen [7] for further details. The Spearman rho correlation coefficient for the checker-
board copula is given by

prs =12 (,113 Z h(ir - 1/2)(is - 1/2) - Z) . )

2.5 Entropy

Let h € R’ be a multiply stochastic hyper-matrix and let cp : [0, 1]™ — R be the associated elementary joint
density defined previously. The entropy of h is defined by

J(h) = (-1) [rll > hyloge hy+(m-1)log, n] . 3)

ic{1,.,n}m

2.6 Maximum Entropy Problem with Prescribed Spearman Rho Coefficients

We wish to select a multiply stochastic hyper-matrix h = [h;] € R’ to match known grade correlation
coefficients p; s for all r < s in such a way that the entropy is maximized. We now formulate the optimization
problem for finding copula with prescribed Spearman rho coefficients.

Optimization problem with prescribed Spearman rho coefficients
Find the hyper-matrix h € R’ maximizing the entropy

1

J(h) = (-1) - Z hjlog, h; + (m - 1)log, n (4)

ie{1,.,n}m

subject to the constraints

1 . .

12 5 Z hi(ir -1/2)(is-1/2)-1/4| =prs, 1<sr<ss<m (5)
ie{1,.,n}pm

Z hj=1, ire{l,...,n}, r=1,...,m 6)

i € {1,...,n}m-1

hij=0, ic{1,...,n}" @
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In general terms the problem is well posed. There are a finite number of linear constraints on h and so
the feasible set F of hyper—matrices satisfying (5,6,7) is a bounded (closed) convex set in R. The function
J : F — [0, o0) is strictly concave. If the interior or core of F is non-empty then there must be a unique
solution for h with strictly positive coordinates. The reader is referred to [1, 5] for a general discussion of the
requisite convex analysis and nonlinear optimization.

3 Copula Defined by Sums of Random Variables

LetX,,r=1,2,..., marerandom values with distributions F,(x) and single-valued quantile functions F; *(u)
for all u € (0, 1). We denote by g a subset indexes of these random values. For instance, suppose that r =
1,2,...,7,then, we may have g = {2,5} or g = {1, 3, 4, 6}. We will denote by Zg the sum of random values
with indexes r € g, i.e. Zg = 3°, o Xr . We denote by Fg(z) the distribution for the random value Zg.

Let us assume that the distributions Fr(x) ,r = 1, 2,..., m, and the distribution Fg(z) are available. We
want to build a copula for random values X;, r = 1, 2, ..., m, based on available information about these
distributions.

Let us denote
1 ifa<b

Ind(a < b) =
0 otherwise.

We define the projection 71,5 : R™ — R? onto the u,us-plane and the complementary projection s : R™
R™ 2 for 1 < r < s < m by the formulae
st = (ur, us)

and
(uz,...,um) if r=1,s=2
(U2, e v vy Us—1, Usits oo s Um) if r=1,2<s<m
= (U2, ..., Um-1) %f r=1,s=m
(U1, ooy Up1y Upsds e ooy Us—1, Usits ..., Um) If 1<r<s<m
(U1, e ooy Up1y Upsds o ooy Um) if 1<r<m-1,s=m
(T TRy | if r=m-1,s=m.

We will explain the approach with a simple case when the sum includes only two random values X;, Xs
and g = {r, s}. By definition,
Pr{X;+Xs<z}=Fg(z) VzeR. (8)

On the other hand, using copula we have

PriX,+Xs<z} = 3 Ind {F;l(u,) +F (us) < z} / cp) - drsu | dmysu
ic {1,..., n}"’ln_ i Iﬂc i
= Z Ind {F,"l(ur) + Fylus) < z} / n™ . h; - dntu| drsu
ie{1,.., n}mlﬂ i Iﬂ'c i
_ - [ e 1
= Z Ind {F,l(ur) + Fylus) < z} nmt. h; - W] dmtsu
ie{1,.., n}mlﬂ' ; -

a(iy+1) a(is+1)
- Z n / / Ind {F;l(ur) + Fyl(us) < z} duydus | h; .
ic{1,..,n}m a(iy) alis)
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The last equation and (8) imply

> Af@hi=Fglz) VzeR, )
ic{1,..,n}m
where
a(i,+1) a(is+1)
yig(z) =n / / Ind {F;l(ur) + F3l(us) < Z} duy dus . (10)

a(i;) a(s)
Similar to (8) we consider the case when cardinality |g| of the set g is higher or equal than 2,i.e. 2 < |g| < m,

Pr{Zg <z} =Fg(z) VzeR. (11)

Equation (10) is generalized, in this case, as follows

'yig(z) = nl8l- / Ind ZF;l(u,) <zyp dmgu . (12)
Iﬂ ; reg
g
So far we have not made any specific assumptions about the distribution of the random value Zg. In the
considered case we assume that k observations of the random value Zg are available. Therefore, further we
suppose that the random value Zg is discretely distributed with equally probable atoms and the distribu-
tion function Fg(z) takes k values 1, 2,..., k. Let us denote by L8(h, j) the loss function, having k equally

probable scenarios,

Bhj=1- ¥ f(@%%))hb =1,k (13)

L8(h,j) = 0, j=1,...,k. (14)

Pay attention that in case if the distribution Fg(z) is continuous, we still can use the finite system of
equations (14) as an approximation of the infinite system of equations (9). The system of equations (14) may
be infeasible. In this case, we can find hyper-matrix h by minimizing an error function. Further, we will
consider three error functions:

1) Mean Squared Error, .
efsp =[5, )], (15
j=1
2) Mean Absolute Error, )
SMOBESSIAN] (16)
j=1
3) CVaR Absolute Error, see [6],
e&,urap(hs @ = CVaR4(|L(h, j)|) = ming | &+ ﬁ i ( ‘Lg(h,j)‘ _ ‘;v) ) 17)

j=1
with confidence parameter a < [0, 1).
Further we formulate regression problem for finding copula with one set of constraints (14) . Let g be a

subset of indices of continuous random variables X, with distributions Fr(x),r =1, 2, ..., m. Let denote by
£8(h) one of the three considered error functions. We will solve the following optimization problem to find
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an optimal vector h defining copula.
Regression problem with one sum function

Find the hyper-matrix h € R’ minimizing the error

m}in e8(h) (18)
subject to the constraints
Z hi=1, ire{l,...,n}, r=1,...,m 19)
nci € {1,...,n}m1
h;j=20, ie{1,...,n}" (20)

In general terms the problem (18,19,20) is well posed. There is a finite number of linear constraints on
h and so the feasible set F of hyper-matrices satisfying (19,20) is a bounded closed convex set in R¢. The
function € : F + [0, oo) is convex for the considered error function. The interior of F is non-empty, therefore
there is a convex set of optimal solutions for h. The reader is referred to [1, 5] for a general discussion of convex
analysis and nonlinear optimization.

It is important to note that the problem (18,19,20) has sense if the error function £8(h) on optimal solu-
tion point is not equal to zero, which means that the system of linear constraints (14) is not feasible. Suppose
that the problem (18,19,20) has zero optimal objective function, then we need to solve the following entropy
maximization problem to assure that the solution is based only on available information specified by con-
straints.

Entropy maximization problem with one sum function

Find hyper-matrix h € R maximizing the entropy

1

J(h) = (1) |- > hilog hy+(m-1)log,n 1)
iec{1,..,n}m
subject to constraints

Lg(h’j):(), j=1a--"k (22)
> hj=1, ire{l,...,n}, r=1,...,m (23)

el € {1,...,n}m1
h;j=0, ie{1,...,n}™ (24)

Optimization problems with several sum functions

Let us denote by 8, U= 1,...,d subsets of indexes of random values X,, r = 1, 2, ..., m. For instance,
suppose thatr =1, 2,...,7,and d = 3, then, we may have g, = {2,4},8, = {3,5},83 = {1, 3,4, 6}.

If we have d sums of random values and accordingly d subsets of indexes, than the objective (18) in the
regression problem can be replaced by the weighted average of the error functions,

d
> AueSu(h), (25)

u=1
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where A, >0, p=1,...,dand ) , Ay = 1. For instance, we can take equal coefficients A, = 1. The set
constraints (22) in the entropy minimization problem should be specified for every sum of random variables,
i.e.,

L8 (h,j) =0, j=1,....ky, u=1,...,d. (26)

Calculation of loss function

According to definition (13), the loss function L8 (h, j) is a simple linear function in variables h; with coeffi-
cients,

yl:g(z):n‘g"1 / Ind ZF;I(ur)sz dngu, where, z = Fg' (1%) . (27)

0. reg
ﬂ'gl

Further we show how to calculate the integral in (27). We will explain the idea with the two dimension case
when |g| = 2. The integration is done over the variables uy, us in the box

I i =la(in), a(ir + D]X[a(is), alis + 1)] .

As specified in (10), formula (27) can be written as follows
a(i,+1) a(is+1)
vE@2) =n / / Ind {F;l(ur) + F3l(us) < z} du, dus . (28)
a(iy) a(is)

When in interior of the box I, ; the indicator function equals only 1 or only 0, integral in (28) can be easily
evaluated. Therefore, 3 cases are valid,

n?, if Fy'(a(iy+1))+Fs'(alis+1)) <z,
7i(zZ)=n-<0, if Fy'(a(in)) + Fs'(a(is)) 2 z, (29)

fa“((ii’)”) aaé’:)”) Ind {F;'(uy) + Fs'(us) < z} durdus , otherwise .

When in interior of the box I i the indicator function equals both 1 and 0, we can consider, approximately,
that the integral in (28) equals, n~2, which is volume of I PRT multiplied by % Therefore,

nt, if Fi'(aiy+1)) +Fs'(a(is + 1) <z,
7@ =40, if Frl(a(in)+Fst(als)) 2z, (30)
int, otherwise .

Now, let us derive the exact formula for v;(z) when in I, ; the indicator function equals both 1and 0. In this
case, F;'(a(ir+1)) + F5'(a(is + 1)) > z and F;'(a(ir)) + Fs'(a(is)) < z. Coefficient ~;(2) is calculated
by integrating in the box I, ; over the area where Ind {F;l(ur) + Fst(us) < z} = 1. Let us denote the upper
bound for integrating variables u,, us by

M; (2) = max {min {F:(2), a(ir+ 1)}, a(in)},

M; ((2) = max {min {Fs (z- F;! (ur)), alis + 1)} , a(is)} .

So, we have
Mi,r(z) Mi,s(z)

'yig(z) =n / / duy dus . (31)
a(iy) a(is)
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Now, let us consider the case when the sum may contain more than two variables, i.e., 2 < |g| < m. Then,

formula (29) is generalized as follows,

n-l8l if 3,cgFr (alir+1) =z,

”Y,-g(Z) -ng-1.)o, if EregF;1 (a(in) 2z,

f’n iInd {Ereg Fil(uy) < z} dngu , otherwise,
8

and the approximate formula (30) is generalized as

nt, i Y g Fri(alir+ 1) sz,
@) =~<o0, if 3, cgFri(ai)zz,
int, otherwise .

(32)

(33)

The third term in (32) is derived similar to (31). Let us denote g = {ry,7...,1;} ,where2 <l = |g| < m. We

consider the following case,

l

> F M alir+1)) = Y Fl(aliy, + 1) > z,

reg v=1

and
I

ST F M (aln) = > Fl(aln) < z.

reg v=1

Let us denote
M; , (z) = max {min {Fy,(2), a(ir, + 1)}, a(ir,)},

M,-,rz(z) = max {min {F,z (z - Fal(un)) , a(ir, + 1)} , a(i,z)} ,

2
M; . (2) = max {min {Fr3 <z— ZF;V1 (urv)> , alir, + 1)} , a(irg)} ,
v=1

-1
M; , (2) = max {min {Frv <z— ZF;Vl(urv)> , alin + 1)} s a(ir,)} .
v=1

So, finally we have
Mi’r1 (2) Mi.rz (2) Mi,rv (2)

7ig(z) = nl8lt duy, duy, ...duy, .

a(i;;)  alir,) a(ir,)

4 Case Study

(34)

This section presents a case study illustrating application of methodology considered in Sections 2 and 3.
The optimization problems were solved with Portfolio Safeguard (PSG); see http://www.aorda.com. PSG
is an optimization package for solving nonlinear and mixed-integer optimization problems; it is free for aca-
demic purposes. PSG contains precoded classes of nonlinear functions, which allows for formulation and
solving of optimization problems in analytic format. MATLAB code was developed to process data and pre-

pare inputs for PSG.


http://www.aorda.com
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4.1 Copula Defined by Spearman Rho Coefficients

This section provides a case study illustrates the optimization approach presented in Section 2 for finding
checkerboard copula with known Spearman Rho coefficients .

The case study codes, data and results are posted at http://uryasev.ams.stonybrook.edu/index.php/
research/testproblems/financial_engineering/case-study-checkerboard-copula-defined-by-sperman-rho-
coefficients-entropyr/. We posted several instances of solved problems in TEXT, MATLAB, and R formats. The
entropy maximization problem is solved with PSG, which has a precoded entropy function. PSG maximizes
entropy with dual formulation. However, the user is not involved in this reduction (just option in the
optimization problem statement should be specified). PSG automatically generates the dual problem, solves
it, and present the results for the primal problem.

The dataset contains five random variables X;, representing the incurred losses for five classes of busi-
ness for an insurance company. Accordingly, ten unique Spearman rho coefficients, denoted by pr,s , were
calculated, where 1 < r < s < m = 5, as shown in the following Table 4.

Table 4: Spearman rho coefficients p; s .

1 0.535294 | 0.664706 | 0.629412 | -0.414706
0.535294 1 0.247059 | 0.423529 -0.4
0.664706 | 0.247059 1 0.844118 | -0.317647
0.629412 | 0.423529 | 0.844118 1 -0.247059
-0.414706 -0.4 -0.317647 | -0.247059 1

The optimization problem (4-7) is reduced to the following optimization problem (35-38).

Optimization problem
Find hyper-matrix h € R> by maximizing

max -Y  h;log.h; (35)
ic{1,..,n}5
subject to constraints
12 . .
= Z hi(ir-1/2)(is-1/2)-3 =prs, 1<sr<ss<5 (36)
ic{1,..,n}5
> hj=1, ire{l,...,n}, r=1,...,5 (37)

h;=0, ic{1,...,ny (38)

We solved the optimization problem (35-38) with grid parameter n = 4, 8, 10. Table 5 shows the optimal
objective value and calculation times. We observe that the solution time is quickly increasing with dimension
n. The dimension n = 10, on one hand, is sufficiently large to get a good approximation precision of the
copula, on the other hand, the optimization time = 7.66 sec, is not significant for a nonlinear optimization
problem having n° = 100, 000 prime variables h;. We want to emphasize that this is a nonlinear optimization
problem with quite large number of variables. PSG package has a precoded entropy function which is very
efficiently implemented. Data are posted at the web and a reader can benchmark this problem with some
other nonlinear programming software.

Figures 3-5 show two-dimensional projections of density of the optimal checkerboard copula with n = 10. Two-
dimensional projection of the density to coordinates u;, , u;, is done by fixing complementary components
(not involved in the projection) at value 0.5 .


http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-checkerboard-copula-defined-by-sperman-rho-coefficients-entropyr/
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-checkerboard-copula-defined-by-sperman-rho-coefficients-entropyr/
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-checkerboard-copula-defined-by-sperman-rho-coefficients-entropyr/
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Table 5: Calculation results for optimization problem (35-38) with grid parameters n = 4, 8, 10.

n | Optimal Value | Solution Time (sec)
4 15.58 0.03
8 55.82 1.91
10 78.98 7.66

c(u)

s
I

e

c(u)

Figure 3: Two-dimensional projections (u1-u2; ul-u3; ul-u4; ul-us) of density of the checkerboard copula, m=5, n=10, obtained
by maximizing entropy.

4.2 Checkerboard Copula Defined by Sums of Random Variables

This section calibrates checkerboard copulas with known marginal distributions and distributions of
sums of random variables, as described in Section 3. The case study codes, data and results are posted
at http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-
checkerboard-copula-defined-by-sums-of-random-variables/. We have found m=3-dimensional checker-
board copulas with grid parameter n = 10. The error minimization problems were solved with the PSG pack-
age (see http://www.aorda.com) which has precoded error functions: Mean Squared, Mean Absolute, and
CVaR Absolute. Standard statistical packages have Mean Squared and Mean Absolute minimization capabili-
ties, however, they do not accept constraints. Optimization packages, such as Gurobi can solve very efficiently
linear and quadratic optimization problems. Problems considered in this section can be reduced to quadratic
or linear programming. However, a significant effort need to be made to make this reduction, write a code,
and debug. With PSG it is possible to avoid these time consuming steps.


http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/case-study-checkerboard-copula-defined-by-sums-of-random-variables/
http://www.aorda.com
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Figure 4: Two-dimensional projections (u2-u3; u2-u4; u2-u5; u3-u4) of density of the checkerboard copula, m

tained by maximizing entropy.

10, obtained by maximiz-

, m=5,n

Figure 5: Two-dimensional projections (u3-u5; u4-u5) of density of the checkerboard copula

ing entropy.

We assumed that for 3 random variables W, X, and Y the empirical probability distribution functions

Fy(w), Fx(x), Fy(y) are defined with 1000 observations. Assumptions for the sums of the random variables

are defined in the following two cases.

Casel.

=16

W+X+Y, the empirical probability distribution function F(z) is defined with K

For the random value Z
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observations z1, ..., ;4. We solved an optimization problem and found a checkerboard copulaonn xnxn
grid, where n=10. The 16 scenarios of the loss function L(h, j), defined in (13), were calculated as follows,

.10 10 10
L(h,j) = ﬁ - ZZZ%’lizi;(zj) hiii,» Jj=1,...16. (39)
i1=1 i2=1 i3=1
We use formula (33) for the approximate calculations of the coefficients ; ;,, (),
nt,if Fypla(ip + 1) + Fyl(a(i; + 1)) + Fyl(a(is + 1) < z,
Yiriris(2) = < 0, if Fyf(a(iy)) + Fy'(a(i2)) + Fy'(a(i3) = z , (40)
1
2

n !, otherwise.

Further we formulate the error minimization problem with one sum function as defined in (21-24).
Optimization Problem (Case 1)

Find hyper-matrix h € R? minimizing an error function

m’in err(L(h, j)) (41)
subject to constraints
10 10
ZZhJUZIB =1’ j1=1)---,10 (42)
j2=1j3=1
10 10
Z Zhhizis =1, j,=1,...,10 43)
ji=1 j3=1
10 10
ZZhhm;ﬂ, ja=1,...,10 44
j1=1j2=1
hj1j2j3 20, ji,j2,j3=1,...,10 (45)

We considered in objective (41) three functions: Mean Squared Error (15), Mean Absolute Error (16), and CVaR
Absolute Error (17). Table 6 shows solutions for Optimization Problem (Case 1) with these error functions.

Table 6: Calculation results for Optimization Problem (Case 1) with different error functions.

Error Function Optimal Value R? Solution Time (sec)
Mean Squared 3.13E-03 0.987 1.45
Mean Absolute 1.56E-04 0.998 5.57

CVaR Absolute, a = 0.9 3.13E-02 - 1.42

CVaR Absolute, a = 0.99 3.66E-02 - 2.5

Figures 6, 7, 8, 9 shows the two-dimensional projections of density of checkerboard copula, obtained by min-
imizing Mean Squared, Mean Absolute, CVaR Absolute @ = 0.9, CVaR Absolute a = 0.99 in Optimization
Problem, Case 1. Two-dimensional projection of the density to coordinates u;,, u;, is done by fixing comple-
mentary components (not involved in the projection) at value 0.5 .
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Figure 6: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing Mean Squared Error in
Case 1.

Case 2.

For the three sums of random values Z, = W+ X, Z, = W+Y, Z; = X + Y, the empirical probability
distributions Fz, (z), Fz,(2), Fz,(z) are defined by K=16 observations for every sum. So, we have observations
z1,..., s} for Z;, observations z3, ..., s, for Z,, and observations z3, ..., s3¢ for Z3. Let us denote the

following loss functions,

10 10 10

; j 1 .
L, (h,j) = i€~ ;2%‘11‘2(2;) Zl hiii,» J=1,...16, (46)
n=11;= 13=
]. 10 10 10
. 2 .
Ly, (h,j) = 16~ ;;wlig(zj) Z:lhilizi3 , j=1,...16, (47)
11=113= 1=
j 10 10 10
R 3 .
Li2i3(h’]) = T6 - z;z;’yiziB(Zi) z;hiliZiB 5 ]= 1, ... 16. (48)
p=113= 1n=

We use formula (33) for the approximate calculations of the coefficients ~;,, (2/), vy, (27), ¥i,is (27

nt, if Fyla(iy + 1) + Fxl(a(i; + 1) < z,
Yi,(2) = € 0, if Fy/(a(iy)+Fx'(a(i2) 2z, (49)
in!, otherwise.
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c(u)

Figure 7: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing Mean Absolute Error in
Optimization Problem, Case 1.

nt, if Fyl(a(iy + 1)+ Fyl(a(i3 + 1) < z,
Vi (2) = < 0, if Fy}(a(iy) +Fyt(a(iz) 2z, (50)
in™', otherwise .

nt, if Fyl(a(i; + 1)) + Fyl(a(i3 + 1) < z,

T,i5(2) =1 0, if Fyl(a(iy)+Fy'(a(i3) >z, (51)
1
2

n!, otherwise.

Further we formulate the minimization problem with the weighted average of the error functions defined in
(25).

Optimization Problem (Case 2)

Find hyper-matrix h € R> minimizing weighted average of the error functions

m’in %(err(Liliz (h, ) + err(Ly,;,(h, j)) + err(Ly,;, (h, ) (52)

subject to constraints
10 10

S hiyy =1, j1=1,...,10 3)

J2=1j3=1
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Figure 8: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing CVaR Absolute @ = 0.9

Error in Optimization Problem, Case 1.

10 10

SN by =1, j2=1,...,10

j1=1 j3=1

10 10

S iy =1, j3=1,...,10

j1=1j>=1

hflizia 20,

j1,d2.J3 =1,...,10.

(54)

(55)

(56)

We considered in objective (52) three error functions defined in Section 3: Mean Squared, Mean Abso-
lute, and CVaR Absolute Error. Optimization problems were solved with PSG. Table 7 shows results for the

Optimization Problem (Case 2).

Table 7: Calculation results for Optimization Problem (Case 2) with different error functions.

Error Functin Optimal Value R? Solution Time (sec)
Mean Squared 1.01E-03 0.988 2.10
Mean Absolute 2.06E-02 0.918 1.70
CVaR Absolute, a = 0.9 6.56E-02 2.02
CVaR Absolute, a = 0.99 0.1 0.41
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c(u)
c(u)

c(u)

0 0 u2

Figure 9: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing CVaR Absolute a = 0.99
Error in Optimization Problem, Case 1.

Figures 10, 11, 12, 13 show the two-dimensional projections of density of the checkerboard copula, obtained by
minimizing Mean Absolute, Mean Squared, and CVaR Absolute @ = 0.9, a = 0.99 in Optimization Problem,
Case 2. Two-dimensional projection of the density to coordinates u;, , u;, is obtained by fixing complementary
components (not involved in the projection) at value 0.5 .

5 Summary

We consider two setups for finding checkerboard copula, which link a multivariate distribution on a
unit hyper-cube to their corresponding one-dimensional marginal distributions. A checkerboard copula is
uniquely defined by a multiply-stochastic hyper-matrix. In the first setup Spearman Rho rank correlation co-
efficients are available. To find optimal values of elements of the hyper-matrix we maximized entropy subject
to constraints, which match known Spearman Rho coefficients. With the second setup, distributions of sums
of random variables and distributions of marginals are available. We developed a system of equations link-
ing elements of a hyper-matrix with known observations of random variables and their sums. This system of
equations is overspecified, therefore, we have used regression to find a hyper-matrix.

The case study was done using property and casualty insurance data. More importantly, the case
study represents circumstances often faced by actuaries trying to build aggregate loss distributions across
correlated classes of business where the objective is to make the correct representation of the dependencies
observed in the data. The optimization problems were numerically solved with the AORDA Portfolio Safe-
guard (PSG) package, which has precoded entropy and error functions. Case study data, codes and results
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Figure 10: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing the average of Mean

Squared Errors in Case 2.

Figure 11: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing the average of Mean

Absolute Errors in Case 2.
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Figure 12: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing the average of CVaR

Absolute a

0.9 Errorsin Case 2.

Figure 13: Two-dimensional projections of density of the checkerboard copula, obtained by minimizing the average of CVaR

Absolute a = 0.99 Errors in Case 2.
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are posted at web and are available for verification (PSG is free for academic purposes).

Acknowledgments: We acknowledge that the first variant of the case study for the copula calibration with
known sums of random variables was conducted by Dr. Konstantin Pavlikov during his PhD study at the
University of Florida. Also, we acknowledge the help of Dr. Alexander Golodnikov with conducting the case
study and preparing the paper.
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