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Abstract: The relationship between the European stockmarket and the crude oil depends on the signi�cance
of the di�erent industries in the European economy. The literature points to a structural change after the
2008 crisis without getting into details of which sectors lead this regime switch. The co-movement between
oil prices and stock market is known to exhibit (1) non-linearity, (2) asymmetric tail dependence and (3) vari-
ation over time. I combine a copula approach with Switching Markovmodels to capture this complex linkage
while the CoVaR measure translates the consequences of the tail dependence into potential losses. The re-
sults indicate a change in the lower tail dependence from negative to positive association between oil and
Eurostoxx, meaning a shift in the exposure of our stock portfolio to commodity risk. There is a structural
change in dependence after the 2008 �nancial crisis led by energy-intensive sector, e.g. basic materials and
consumer goods. The economic cycle and its implications for pro�t margin and oil demand might explain
this switch. Healthcare sector responds to oil shocks in an opposite way than Eurostoxx, displaying useful
features to reduce the exposure of the stock portfolio to oil spillovers.

Keywords: conditionalmeasures, oil prices, european industries, spillover, switchingMarkov regime, copula,
stress test
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1 Introduction
The relationship between stock market and oil prices is a key topic extensively studied in the literature,
given the several transmission channels that connect both markets. A large number of industries employ
oil and petroleum products, such as kerosene or plastic materials, as input factors, so that higher input
costs will generally a�ect �rms’ returns and sales price, triggering in�ationary processes. The e�ects of oil
shocks go beyond in�ation and declines in corporate pro�ts. A shock in oil prices may also show up in
aggregate measures of output and employment ([36], [53], [40]). On the other hand, stock market returns are
a high-frequency proxy of economic growth, so that analysing the stock market exposure to oil movements
allows us to evaluate short-term e�ects of oil shocks on the economy.

The oil-stock linkmay well be sector speci�c, and it would then not be convenient to try to characterise it
at the level of the stock market index. [12] show that the diversi�cation opportunities to reduce the exposure
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to oil prices arise across industriesmore than across countries. [62] and [60] realize that oil exposure depends
on the role of the country as an oil provider or consumer. [48] point out that the domestic stock market
index can dress up the impact of oil shocks on the economy depending on the sectoral diversi�cation of
each country. Hence, the discrepancies between countries might be due to a di�erence in their industrial
production more than to a geographical issue. [10] suggest industry-speci�c factors within each region
to explain di�erences in the same sectors across regions, such as the degree of oil consumption or the
concentration in the industry. [11] also �nd high variability in oil exposure across sectors. The sensitivity to
changes in oil prices is higher on oil-related industries ([54], [70], [17]). [48] indicate that energy-intensive
sectors, like transportation or chemical industrials, have a great exposure to oil shocks in G7 economies. [55]
obtain the same conclusions for the transport sector in developed countries.

The literature identi�es several issues to be considered in the econometric analysis to avoid drawing
misleading conclusions: non-linearities, structural breaks, asymmetric behaviour and tail dependence.
Non-linearity shows up as a di�erence in correlation on average than on extreme scenarios. [23] points out
that overlooking this feature may lead to deny any impact from oil on stock markets ([9], [21] and [41]).
[64] highlights this characteristic in his analysis, �nding structural breaks that explain a change in the
dependence between oil and the stock market. A change in monetary policy, e.g. the introduction of the
Euro ([54], [73]) or an economic crisis, e.g. the 2008 �nancial crisis ([68], [77]) may imply a structural break
in the linkage between oil and stock markets. An asymmetric pattern, i.e. the di�erent joint behaviour
in a low-quantile than in a high-quantile scenario, must also be considered when analysing extreme
co-movements in the stock market and oil prices. [6] provide evidence of an increase in the co-movement
between bothmarkets during acute periods of �nancial stress. Tail dependence, i.e. the probability of having
very extreme realizations for stock market returns given very extreme realizations for oil returns, plays a key
role in understanding the linkage under severe scenarios especially in the lower joint tail ([6], [56], [75]).
Investors’ herd behaviour during the contraction phase in the business cycle might also explain this feature.

Methodologically, the copula approach enables us to capture the asymmetric pattern exhibited by �nan-
cial data. The greater �exibility of this state-of-the-art technique explains the increasing attention that has
received in the latest years to carry out the analysis of spillovers between oil and stockmarkets ([73], [56], [75],
[68], [51]). This approach allows for gathering more information about the distribution, which motivates its
use in this study. To �nd possible structural changes in that linkage, the copula structure evolves according
to Switching Markov speci�cation. The Switching Markov approach is more robust to misspeci�cation than
other models employed to incorporate time-varying characteristics as [61].¹ This sophisticated technique
identi�es endogenously di�erent regimes over time having a clear economic interpretation. Switching
Markov models are ideal to capture regime switch episodes between oil shocks and economic variables,
such as changes in output growth ([63], [24], [39], [25]), sector employment ([28]) or stock markets ([14], [64],
[5]). To my knowledge no study has yet considered jointly the copula methodology with Switching Markov
dynamics to analyse the link between oil and the European stock market. This methodological perspective
allows for disclosing some hidden patterns inside the data, while shedding light on possible changes in joint
tail dependence.

Unlike other articles that use a similar methodology ([69], [37]), this study does not use a SWARCH
model to �t marginal behaviour for two reasons². The �rst reason is related to the model parsimony whilst
the second one concerns economic interpretation. Assuming a SWARCH model would lead to a signi�cant
increase in the number of parameters. To overcome this drawback, [69] and [37] assume an originating
variable in the contagion process, so the switch in dependence will be dependent on the switch in variance

1 For a comparison between di�erent speci�cation for the evolution of dependence using copulas see for instance [50].
2 There is an additional reason to reject a SW − GARCH model ([33], [15]): the computational complexity consequence of the
path-dependence in the process.
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of one variable. Economically, we can not justify that oil or stock returns originate the change in the
co-movement, because this swift may have diverse sources outside this bivariate relationship. Thinking
about an implicit variable that leads the switch in the dependence between equity and oil returns has more
sense. [26] �nd a common factor among di�erent set of commodities that we could identify as a proxy of the
external demand and international trade stability. Hence, it has sense to model the relationship depending
on an endogenous probability that is not directly linked to the evolution of the marginal distributions.

I compute the impact of extreme movements in oil prices on the European stock market and its sectors,
bearing in mind the non-linearity of that relationship, the possible structural changes and the asymmetric
features exhibited by the co-movement between oil and stock markets. The focus on European industries
plays a key role to understand the diversi�cation advantages available during periods of great oscillations in
oil prices. The aim of this article is to check the existence of a structural break in the relationship between oil
prices and Eurostoxx, identifying the sectors leading such change as well as those that are useful to reduce
the contagion from oil to a European stock portfolio. The study also deals with the challenge of translating
the impact of oil spillover on stock markets into a quantitative measure convenient for risk management
purposes. The change in the Value-at-Risk (VaR) of the stockmarket when oil prices move abruptly measures
the e�ect of tail dependence on the extreme quantiles of the stock market returns. The Conditional Value at
Risk (CoVaR) provides a simple way to summarize complex information, such as the portfolio exposure to a
commodity risk. It is therefore a perfect tool to understand the consequence of risk as potential losses.

The input data employed for our empirical analysis goes from the beginning of 2000 to the end of 2015
including several periods of crisis and potential structural breaks, e.g. the dot-com crisis, the 2008 �nancial
crisis, the European debt crisis or the 2014 oil glut period. Our results are in line with the literature, �nding
a structural change after the �nancial crisis ([68]) and a high sensitivity to oil shocks of oil-related sectors
and industries with high-energy requirements ([54], [48], [55]). Our �ndings indicates that the relationship
between oil prices and the European stock market experienced a structural change after 2008 led by sectors
with high consumption of oil. The relationship between the stock market and oil returns presents a strong
asymmetric tail dependence. They had an asymmetric negative association before 2008, with low quantiles
of oil returns and high quantiles of stock returns having stronger dependence than high quantiles of oil
returns and low quantiles of stock returns. The relationship became positive in the aftermath of the 2008
�nancial crisis, with lower tail dependence. The economic cycle and its implications for pro�t margin, oil
demand and herd behaviour may explain the change in dependence. During the expansion phase of the
business cycle a decrease in the price of a key production input as oil would increase the pro�t margin
between sales price and the unit cost of production. On the other side, increases in oil prices entail a general
rise in production costs which would be translated to sales prices. At the outset of the crisis �rms ran
into losses, the unemployment rate increased sharply and a substitution e�ect occurred between oil and
employment ([28]) leading to a decrease in the oil demand as an input factor. In contrast to [68], which do
not �nd dependence before 2008, our results point out to a negative association between variables. [68]
use copulas that only allow for positive association, which might overlook the change in the relationship
between oil and the stock market. This potentially misleading conclusion has serious implications for
risk management because both sectors may then be assumed to be independent when actually, the stock
portfolio is exposed to sharp changes in oil prices. The study presents the change in the Value-at-Risk at
5% and 95% when oil prices experience a severe downward movement, i.e. bearish CoVaR, or an acute
upward swing, i.e. bullish CoVaR. The di�erences between CoVaR and VaR values are found statistically
signi�cant using Kolgomorov-Smirnov (KS) bootstrapping test, specially after the 2008 �nancial crisis. The
four-month period ahead forecast exercise using out-of-sample data from 2015 to 2018 indicates that adding
the healthcare sector to the stock portfolio reduces the oil exposure.

This research has implications for investors and portfolio managers, who need risk management
strategies to protect stock portfolio against extreme movements in oil prices; for market authorities, who
have to supervise stock �rms’ quotes, measuring the exposure and impact of oil swings on the stock market;
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and for policy makers, who are concerned on a sector analysis regarding the e�ect of extreme changes in
oil prices on the markets due to its consequences on growth, employment and household income. Financial
institutions also need information concerning how the exposure to oil prices could a�ect �rm’s returns
directly, for instance via positions in oil derivatives, and also indirectly through investment of �nancial �rms
in stock market.

The article is laid out as follows: Section 2 presents the CoVaR measure and the copula methodology
using a Switching Markov model to produce time-varying copulas. Section 3 introduces the data and
performs a descriptive analysis. Section 4 presents the results and section 5 concludes.

2 Methodology
This section is structured in three parts. The �rst part presents the CoVaRmeasure, in which themain results
of the article are based on. Subsection 2.2 introduces the copula methodology and how tomeasure CoVaR us-
ing this approach. Finally subsection 2.3 highlights some features concerning themarginal and joint distribu-
tion model with particular attention to the time-varying speci�cation for the dependence between variables,
i.e. Switching Markov model.

2.1 Conditional Value at Risk

The Conditional Value at Risk (CoVaR) measure ([4], [32]) indicates in this study a quantile of the stock
market returns given an sharp change in oil prices. CoVaR gives a conditional view of VaR measure, which
is widely employed for risk management purposes and capital bu�er requirements in the �nancial sector.
CoVaR translates spillovers from oil to stock market into potential losses in the stock market portfolio.
The comparison between CoVaR and the unconditional VaR can give us an idea of the change in the risk
measure when extreme oil scenarios occurs as an indicator of dependence. This way of looking at the link
between oil and stockmarket is very convenient for investors, who get aware of the negative consequences of
oil unhedging, and policy makers and market authorities, which need a quantitative estimate of the e�ects
of swings in oil prices on stock markets.

CoVaR focuses on the tail of the distribution where non-linearities and asymmetries appear and where
the e�ects of spillovers are more harmful. I compute four assessment of CoVaR depending on the oil-related
scenario and the tail of the stockmarkets. The variable ro in the hereinafter notation refers to the conditioning
variable, i.e. oil returns, and rm represents the conditioned variable, i.e. stock market returns. The subscript
t indicating the time is left out for notational convenience. I distinguish two types of scenarios for the oil
returns: a bearish scenario where oil returns are below its α100 − th quantile, i.e. P(ro < VaRo(α)) = α, and
a bullish scenario where oil returns are above its highest α − th quantile, i.e. P(ro > VaRo(1 − α)) = α. The
bearish and bullish CoVaRm|o(α, β) are computed at a con�dence level β100% for the stockmarket. Hence,
setting the β close to one and close to zero allows for analysing the e�ects of oil spillovers on the right and
left tails of the distribution of stock market returns. The asymmetries in tail dependence and its changes over
time justify the assessment of CoVaR for di�erent scenarios and con�dence levels.
The CoVaR measure comes from the Bayes’ theorem and the copula representation of the joint distribution.
Next subsection presents the copula methodology and shows how we can employ it to compute CoVaR.



Structural change in the link between oil and the European stock market | 57

2.2 CoVaR in terms of copulas

Copulas functions provide a straightforward decomposition of the joint distribution. This property gives us
higher �exibility to model complex joint distribution capturing diverse features as asymmetric dependence
or strong joint tail behaviour. Sklar’s theorem ([72]) states that amultivariate cumulative distribution function
can be expressed as a combination of marginal cumulative distribution functions and a copula, i.e.

F(ro , rm) = C
(
Fo(ro), Fm(rm)

)
, (1)

where Fk is the cumulative distribution function of variable k = o,m and C(. . . ) is the copula function.
Bayes’ theorem allows for expressing a conditional probability as the ratio of the joint probability of seeing
both scenarios to the probability of observing the conditioning scenario. Copulas and rotated copulas
provide us the expression for the joint probability. After solving the conditional probability equation, the
CoVaR value is the result of using the inverse distribution function of the conditioned variable.

For instance, the bearish CoVaRm|o(α, β) of the market returns m would be obtained implicitly from

P
(
rm < CoVaRm|o|ro < VaRo(α)

)
=

P
(
rm < CoVaRm|o , ro < VaRo(α)

)
P(ro < VaRo(α))

= β,

where P(ro < VaRo(α)) = α and P
(
rm < CoVaRm|o , ro < VaRo(α)

)
can be expressed as

C
(
Fm(CoVaRm|o), α

)
. (2)

The quantile Fm(CoVaRm|o) is obtained by numerical optimization.³ Assessing CoVaR through copulas is
faster and less time consuming than other approaches that imply integration methods. Then, the CoVaR
value arises as the result of employing the inverse cumulative distribution function of the conditioned
variable, i.e F−1m (Fm(CoVaRm|o)) = CoVaRm|o.

The bullish CoVaRm|o(α, β) of the stock market returns is obtained from

P
(
rm < CoVaRm|o|ro > VaRo(1 − α)

)
=

P
(
rm < CoVaRm|o , ro > VaRo(1 − α)

)
P(ro > VaRo(1 − α))

= β,

where P(ro > VaRo(1 − α)) = α and P
(
rm < CoVaRm|o , ro > VaRo(1 − α)

)
can be expressed as

Fm(CoVaRm|o) − C
(
Fm(CoVaRm|o), 1 − α

)
. (3)

The CoVaR presents the same drawbacks than VaR as a risk measure, i.e. it is not sub-additive. The CoES
overcomes the shortcomings of the CoVaR, i.e. it is a coherent risk measure ([3], [42]), which complements
the information provided by the CoVaR. The Conditional Expected Shortfall (CoES) is the mean value of the
variable beyond the CoVaR. We would focus on the mean returns below this threshold when the interest lies
in the left tail of the conditional distribution, i.e.

CoESm|o(α, β) =
1
β

β∫
0

CoVaRm|o(α, q)dq.

whilst if the interest is on the right tail of the conditional distribution would be

CoESm|o(α, β) =
1

1 − β

1∫
β

CoVaRm|o(α, q)dq.

3 UsingMATLAB software and for certain values of α and β, the function fzero is employed to get u* = Fm(CoVaRm|o). Note that
only in case of independence between both markets Fm(CoVaRm|o) = β.
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2.3 Marginal distribution and joint dependence structure

This subsection introduces the model for the marginal distribution and the copula functions that make up
the joint distribution.

2.3.1 Marginal model

We characterise the marginal densities of the stock market (m) and oil (o) returns by an AR(p) model, i.e.

rk,t = ϕk,0 +
p∑
j=1

ϕk,jrk,t−j︸ ︷︷ ︸
µk,t

+ϵk,t , k = m, o (4)

where p is a non-negative integer, ϕk,j are the autoregressive (AR) parameters with j = 0, . . . , p and ϵk,t =
σk,tzk,t. The dynamic of the variance of ϵk,t follows a GJR − GARCH(1, 1) speci�cation, which allows for
leverage e�ects, i.e.

σ2k,t = ωk + βkσ
2
k,t−1 + (αk + γk1ϵk,t−1<0)ϵ

2
k,t−1, k = m, o (5)

where ωk, βk and αk are the GARCH parameters and 1ϵk,t−1<0 is an indicator function that values 1 if ϵk,t−1 < 0
and zero otherwise. γk captures leverage e�ects, i.e. negative shocks have more impact on variance than
positive ones. When γk = 0 we have the GARCH model. Furthermore, zk,t is a i.i.d. random variable with
zero mean and unit variance that follows a [38]’s skewed-t distribution which allows us to capture higher
moments, i.e. skewness and kurtosis.
The density of [38]’s skewed-t distribution is

h(zk,t|ηk , λk) =
{
bc(1 + 1

ηk−2 (
bzk,t+a
1−λk )2)−(ηk+1)/2 zk,t < −a/b

bc(1 + 1
ηk−2 (

bzk,t+a
1+λk )2)−(ηk+1)/2 zk,t ≥ −a/b

, (6)

where 2 < ηk < ∞ and −1 < λk < 1. The constants a, b and c are given by

a = 4cλk
(
ηk − 2
ηk − 1

)
, b =

√
1 + 3λ2k − a2, c =

Γ( ηk+12 )√
π(ηk − 2)Γ( ηk2 )

.

Note that when λk = 0 Equation (6) reduces to the standard Gaussian distribution as ηk → ∞. When λk = 0
and ηk �nite, we obtain the standardized symmetric-t distribution.

2.3.2 Copula speci�cation and time-varying features

2.3.2.1 Set of copulas
I initially choose �ve types of copulas as potential dependence functions to �t the data because of their tail
dependence features, i.e. Gaussian, Student t, Clayton, Gumbel, BB1. Gaussian and Student copulas allow
for positive and negative association, while Gaussian copula has no tail dependence, Student t copula has
symmetric tail dependence. Gumbel and Clayton copulas allow only for positive asymmetric association,
while Clayton copula has lower tail dependence, Gumbel copula has upper tail dependence. BB1 copula,
also known as Clayton-Gumbel copula, allows only positive association, but it can be asymmetric. It has two
parameters thatmodel upper and lower tail dependence (See Table 1). Later on, the set of copulas is enhanced
by rotating the Archimedean copulas, i.e. Gumbel, Clayton and BB1 copulas, to enable negative co-movement
with implications for tail dependence. Appendix A provides further details about these copulas and their
properties.
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Table 1:Main tail dependence features for each copula

Family τL τU
Gaussian − (if ρ = 1 then 1) − ( if ρ = 1 then 1)

Student t 2tη+1
(
−
√

(η+1)(1−ρ)
1+ρ

)
2tη+1

(
−
√

(η+1)(1−ρ)
1+ρ

)
Clayton 2−1/θ −
Gumbel − 2 − 21/θ

BB1 (Clayton-Gumbel)a 2−
1
θδ 2 − 21/δ

Note:
–− represents no tail dependence.
Source: [8, p. 22], [44], [46], [29] and [45, p. 193–204].
Let u1 and u2 denote two uniform-distributed variables across (0,1).
– The lower tail dependence, τL, is de�ned as τL = limq→0P(u2 < q|u1 < q).
– The upper tail dependence, τU is de�ned as τU = limq→1P(u2 > q|u1 > q).

2.3.2.2 Model selection.
An inaccurate copula choice can have serious consequences in the joint dependence construction, leading to
mistaken interpretation of the relationship between variables. To avoid choosing a wrong copula, I use ana-
lytical and graphical tools to propose a set of copulas that �t the empirical evidence as potential dependence
structures. In addition to that, I consider potential variations over time in the copula parameters and in the
copula itself following a Switching Markov model.
I use graphical tools as contour plots, lambda functions and Tail Concentration Functions (TCF) and ana-
lytical tools as the Akaike Information Criterion Corrected for small-sample bias (AICC) to choose a suitable
copula that �ts the true data dependence. AICC is the principal indicator for copula selection ([18], [66], [67],
[68], [69], [65]). The results are also analysed by looking at the con�dence interval for the risk measure using
bootstraping techniques.

2.3.2.3 Switching Markov speci�cation and estimation process
The link between oil and stock market returns has been claimed to exhibit a structural change after the 2008
�nancial crisis according to recent literature, e.g. [68], [77]. Hence, I consider a two-regime SwitchingMarkov
model to replicate the evolution over time of the dependence structure, i.e. the changes in tail dependence
across regimes. The switch can be limited to a change in the copula parameter or a change also in the copula
itself depending on the empirical evidence provided by analytical and graphical tools. Each regime has an
economic interpretation depending on the type of dependence observed within each state. The regimes are
not directly observable but they can be identi�ed from the estimation process.
The joint distribution is decompose following Equation (1) assuming that the copula function depends on a
latent variable st that re�ects the kind of relationship in the co-movement between oil prices and the stock
market, i.e.

F(ro,t , rm,t) = C
(
Fo,t(ro,t; µo,t , σo,t , ηo , λo), Fm,t(rm,t; µm,t , σm,t , ηm , λm)); θst , st

)
. (7)

where µk,t is given by Equation (4), σk,t follows the dynamic in Equation (5) and ηk, λk are the parameters
from the innovation process in Equation (6) with k = o,m. C (. . . ; θst , st) is the copula under the state st with
parameter θst . To begin with, I constrain the copula switch to a simple change in its parameter θst on the as-
sumption that the type of copula remains unchanged throughout the entire sample. Later on, this constraint
is relaxed to allow for di�erent copulas across regimes. In other words, the Switching Markov approachmod-
els the dependence between oil returns and stock markets returns as a copula mixture where the weights are
given by the forecasting probabilities, i.e. P(st|It−1) where It−1 indicates the information set at t − 1.
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The copula of the conditional process depends on a regime, st, which is assumed to be stochastic and
unobservable. The probability of being at each time t in each state st depends only on the state at t − 1, i.e.
the regime generating process follows a �rst order Markov chain de�ned by its transition probabilities

pij = P(st = j|st−1 = i), (8)

such that
∑2

j=1 pij = 1 for i = 1, 2.
The transition matrix de�ned by the Markov Chain is

P =

[
p11 1 − p22

1 − p11 p22

]
, (9)

where 1 − p11 = p12 and 1 − p22 = p21 refer to the probability of changing between states and p11 and p22
are the probabilities of staying in the same state. For the sake of brevity the reader can �nd further details
about the Switching Markov methodology in Appendix B.

The parameters are estimated using the full maximum likelihood method. The copula is assumed to be
regime dependent, i.e. it moves according to a two-state Markov Chain (st = 1 and st = 2). This assumption
keeps the model tractable for estimation purposes but, at the same time, gives a great �exibility to identify
changes in the linkage. At each time t the likelihood for each observation can be written as

Lt(ro,t , rm,t; It−1, Θt) = f (ro,t , rm,t|Θst=1, It−1)P(st = 1|It−1) + f (ro,t , rm,t|Θst=2, It−1)P(st = 2|It−1), (10)

where Θt stands for the set of parameters of the joint distribution at each state. This is a mixture of two joint
distribution where the weights are given by the likelihood of being at each state. Deriving from Equation (1)
we can rewrite f (ro,t , rm,t|Θst=i) as

fo,t(ro,t; µo,t , σo,t , ηo , λo)fm,t(rm,t; µm,t , σm,t , ηm , λm)c
(
uo,t , um,t; θst=i , st = i

)
(11)

where uo,t = Fo,t(ro,t; µo,t , σo,t , ηo , λo), um,t = Fm,t(rm,t; µm,t , σm,t , ηm , λm) and c
(
. . . ; θst=i , st = i

)
is the

copula density under the state st = i with parameter θst=i with i = 1, 2. It is worth noting that the log-
likelihood function, i.e.

∑
t log(Lt(ro,t , rm,t; It−1, Θt)) has tobemaximizedusinganon-linearmethodbecause

this function depends in a non-linear way on the set of parameters.⁴

3 Data
I employ weekly data on stock market, exchange rate and commodity prices from 7 January 2000 to 23 Oc-
tober 2015. The length of the time series includes several crises where the oil prices have experienced great
oscillations.
Concerning commodity prices, I use the spot prices of Europe Brent crude oil sourced from the US Energy
Information Agency (http://www.eia.doe.gov). This is the main benchmark to settle the price of light crudes
and it is a better proxy for oil price series than OPEC oil quote ([73]). Brent crude oil is denominated in dollars
per barrel, so it is transformed into Euros to perform the empirical exercise. The EUR/USD exchange rate is
obtained from the European Central Bank Statistical Data Warehouse (https://sdw.ecb.europa.eu).
Regarding the European stockmarket variables, I employ the EUROSTOXX index and its ten-industry decom-
position based on the Industry Classi�cationBenchmark (ICB) nomenclature obtained fromDatastream (oil &

4 The fminsearch function inMATLAB software provides good estimates while some transformation of the parameters are per-
formed to keep them in a feasible region. For instance instead of looking for values of p11 and p22, I obtain the optimal estimate
for a parameter x and y such that 1/(1 + exp(−x)) = p11 and 1/(1 + exp(−y)) = p22. [35] employ this kind of transformations to
estimate the parameters of its SWARCH model.
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gas, basic materials, industrials, consumer goods, healthcare, consumer services, telecommunications, util-
ities, �nancials, technology). This set of variables makes possible to measure not only the joint e�ect of large
swings in oil prices on the European economy as a whole but also on the di�erent productive industries.
Table 2 reports the main statistics for the stock market returns and the oil returns denominated in Euros. It
considers the full sample and two subsamples where 15 September 2008 is established as a breakpoint after
the fall of Lehman Brothers and the consequent onset of the �nancial crisis. The post-crisis subsample shows
higher kurtosis and standard deviation. It also shows amore negative skewness andmean than the pre-crisis
subsample. The p-value of Jarque Bera indicates the importance of higher moments in the distribution, sup-
porting the choice of [38]’s skewed t distribution for the marginals. The correlation between stock market
returns and oil returns increases after the �nancial crisis. In some cases, as in the health care sector, the
correlation moves from negative values to positive ones after the 2008 crisis. Figure 1 shows the time varying
correlation between oil and Eurostoxx (blue line), oil and basicmaterials (red line) and oil and heath care sec-
tor (yellow line). We get the time-varying correlation using a rolling windows approach on the weekly returns
with a �ve-year windows length. Two main conclusions are inferred from this �gure. First, the health care
sector presents lower correlation throughout the entire sample than basic materials or Eurostoxx. Second,
around 2008-2009 the correlation between these stock returns and oil returns experiences a sharp upward
movement which might be an indication of regime switch. This evidence is also shown in the empirical joint
distribution of Figure 2.
Figure 2 shows an approximation to the joint distribution of Eurostoxx returns and oil returns. Axis shows the

empirical cumulative distribution function, i.e. F̃(ri,t) =
∑T

t=1 1ri,t >ri,j
T+1 . The probability space is divided into 25

areas where each area indicates a interquintile range for each variable. The colour of each area depends on
the probability mass observed, the darker colours indicate a higher clustering of data. For instance a darker
colour in the bottom left corner of the graph indicates the higher density of pairwise observations when both
returns are in their lowest quintile, i.e. there is a higher dependence in the lower tail.
Figure 3 shows the empirical joint distribution between the oil and the di�erent sectors of the stock market.
Left set of sub�gures refer to the full period while center and right set of sub�gures consider respectively
the observations in the pre-crisis and post-crisis sample. The relationship between oil and basic materials
or health care sectors seems to change from a negative dependence in the pre-crisis period to a positive tail
dependence in the post-crisis phase. This change in linkage is ignored if we look at the full sample. There are
evidences concerning a structural change during the analysed period justifying the SwitchingMarkov choice.

4 Results
This section is divided in two parts. The �rst subsection focuses in estimation results. It identi�es structural
changes in the co-movement between oil and stock market, paying special attention to the swing in tail de-
pendence, and its impact on model risk. The second subsection studies the implications of this change on
the joint behaviour for risk measures. I employ the CoVaR measure to quantify the e�ects of extreme move-
ments in oil prices on the VaR estimates of the stockmarket. To close this section, I perform an out-of-sample
forecast exercise building a stock portfolio without tail dependence with oil returns.

4.1 Estimation results

This subsection shows three set of results where the constraints and assumptions are gradually relaxed.
First, I present the results of the estimates with constant dependence parameters for the considered set of
copulas. I study a possible change in dependence after the 2008 �nancial crisis using di�erent graphical
tools as lambda functions and Tail Concentration Functions (TCF).
Second, I relax the constraint regarding the �xed dependence over time while assuming an unchanged type
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Figure 1: Time-varying correlation between stock returns and oil returns.
This �gures shows the evolution of the correlation between oil and Eurostoxx (blue line), basic materials (red line) and health
care (yellow line). The correlation evolves over time using a rolling window on weekly returns with a �ve-year window length,
i.e. at each time t I assess the correlation of the weekly returns between t − 260 and t. The �gures depict two evidences. First,
the lower correlation between health care and oil than other stock returns. Second, the shift in the correlation after 2008-2009,
which might indicate the presence of a regime switch.

Figure 2: Empirical joint distribution for returns of EUROSTOXX and Brent oil denominated in Euros.
Top �gure shows the empirical joint distribution function for all the sample, middle graphs represents the pre-crisis subsample
and the bottom one the post-crisis subsample. Darker colours indicate a higher data clustering on certain part of the distribu-
tion. Looking at the entire sample and assessing a constant copula parameter may overlook the complex dependence evolution
within the data.



64 | Javier Ojea Ferreiro

Figure 3: Empirical joint distribution for returns of EUROSTOXX sector portfolios and Brent oil denominated in Euros.
Left set of sub�gures show the empirical joint distribution function for all the sample, centre set of graphs represents the pre-
crisis subsample and the right one the post-crisis subsample. Darker colours indicate a higher data clustering on certain part
of the distribution. Looking at the entire sample and assessing a constant copula parameter may overlook the complex depen-
dence evolution within the data.

(a) All sample (b) Pre-crisis (c) Post-crisis

of copula. This change is justi�ed by the results of the likelihood ratio test, which indicate a change in the
dependence with oil returns for most of the stock market industries.
Finally, the previous constraint is also removed, allowing for a change in the copula over time. I select the set
of potential copulas for the structural break given the information contained in the data analysis fromSection
3.Apart from the likelihood ratio test results,which indicates the better �t of time-varyingdependence against
constant dependence, I indicate the di�erence in CoVaR under both models measuring the implicit model
risk in the constant speci�cation.

4.1.1 Estimates assuming constant dependence parameters

Tables 3a and 3b present the results of the joint models for the best copula �t. The hypothesis of lack of au-
tocorrelation and homocedasticity in the residuals given by an AR(1)-GJR-GARCH(1,1) model are not rejected,
supporting the choice done for the marginal model. The hypothesis that the residuals come from a [38]’s
skewed t distribution cannot be rejected either. The marginal distribution is well-speci�ed according to the
results of the joint distribution with constant dependence. Table 4 shows the AICC values of the stock-oil
model using the initial set of copulas. The Clayton copula depicts the best �t for most of the sectors followed
by theBB1 andStudent t copula. Clayton copula implies lower tail dependencewhile BB1 andStudent t copula
imply upper and lower tail dependence. Oil & gas, industrial and technology sectors obtain a better �t under
the BB1 copula, which has asymmetric tail dependence, i.e. the joint behaviour with oil returns is di�erent at
low quantiles than at high quantiles. The Student t explains better the relationship between healthcare and
oil. To motivate the need of time-varying parameters for dependence I present the results of two graphical
tools, i.e. lambda function and Tail Concentration Functions (TCF), employed to describe co-movement and
tail dependence.
The lambda function ([30], [1], [18], [71]) is a useful graphical tool that comes from the di�erence between the
quantile q and the Kendall function K(q, θ), i.e.

λ(q, θ) = q − K(q, θ)
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Table 4: AICC values for the models with constant copula parameter

AICC A B C D E F G H I J K

Gaussian -6164,8 -5995,9 -5909,1 -6017,7 -6160,8 -6123,3 -6218,2 -5870,0 -6135,6 -5792,4 -5553,7
Student -6163,7 -5998,6 -5911,2 -6017,8 -6159,0 -6125,2 -6216,3 -5868,3 -6136,5 -5792,8 -5558,4
Clayton -6166,5 -5988,3 -5915,0 -6018,8 -6161,2 -6124,7 -6220,4 -5873,9 -6143,5 -5796,2 -5554,2
Gumbel -6160,4 -5993,4 -5903,3 -6015,1 -6156,5 -6123,3 -6215,0 -5868,8 -6130,8 -5791,7 -5555,0
BB1 -6165,6 -6004,6 -5913,0 -6019,2 -6159,1 -6122,6 -6218,3 -5871,8 -6141,5 -5794,1 -5560,8

This table shows the values of the Akaike Information Criterion corrected for small sample bias (AICC) ([43]).
AICC = 2k T

T−k−1 − 2 log(L̂), where T is the sample size, k is the number of estimated parameters and L̂ is the Log-likelihood value.
Minimum AICC value in bold letters indicates the best copula �t.
A: EUROSTOXX; B: OIL&GAS; C: BASICMATS; D: INDUSTRIALS; E: CONSUMERGDS; F: HEALTHCARE; G: CONSUMERSVS;
H: TELECOM; I:UTILITIES; J: FINANCIALS; K: TECHNOLOGY.

where K(q, θ) is the Kendall function, which represent the probability associated to the joint distribution,
i.e. K(q, θ) = P(C(u1, u2; θ) ≤ q).⁵ The top sub�gure in Figure 4 presents the lambda function for the
estimated copula function in the solid cyan line, while the grey area depicts the 90% con�dence interval
obtained by bootstrapping. The red line shows the empirical lambda function for the full sample using the
residuals from the marginal models. The dotted black lines are the bands of the lambda function for perfect
positive dependence (�at line) and independence (curve line). The solid green and the dashed blue lines
are the pre-crisis and post-crisis empirical lambda functions. The pre-crisis empirical lambda is close to
the independence case while the post-crisis empirical lambda shows a lower curvature, which indicates an
increase in dependence.

The Tail Concentration Function (TCF) is proposed by [59] to quantify tail dependence features at a �nite
scale, where the weight for each tail depends on the selected quantile, i.e.

TCF(q) = C(q, q)q 1q≤0.5 +
1 − 2q + C(q, q)

1 − q 1q>0.5,

where q represents a certain quantile, C(q, q) is the copula function and 1 is the indicator function.
The bottom sub�gure in Figure 4 shows the TCF between the stock market returns and the oil returns. The
cyan line is the TCF for the estimated copula while the grey area represents its 90% con�dence interval
obtained by bootstrapping. Red line is the empirical TCF for the full sample while the solid green line and
the dashed blue line are the empirical TCF for the pre-crisis and post-crisis samples. These results show
an increase in the lower tail dependence after the 2008 �nancial crisis, which is translated into higher TCF
values for q ≤ 0.5. Therefore, there are grounds for believing that the tail dependence between oil and
stock market changed after the 2008 �nancial crisis. Figure 4 focuses on the Eurostoxx. The �gures for the
productive sectors are provided in Appendix D.

The next subsection relaxes the assumption of constant dependence over time identifying changes in the
degree of dependence between stock market and oil returns.

4.1.2 Estimates allowing for time-varying dependence parameters while keeping unchanged the type of
copula

This section introduces the estimate results of the joint distribution function presented in Equation (7). The
model assumes that the optimal copula according to Table 4 keeps unchanged but its parameters can vary

5 Further details about the Kendall function can be found in [22, p. 8–11,25–26].
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across regimes.

Tables 5a and 5b present the estimates of the joint distribution and their standard deviations where the
copula parameter evolves according to a two-regime Markov Chain. Figures 5a shows the smoothed prob-
abilities using [47]’s algorithm. The scope of these probabilities is to determine if and when regime switch
occurs. Figure 5a points to a structural change in the dependence between oil returns and Eurostoxx index
after the 2008 �nancial crisis in line with recent results in the literature like [68]. The sectors that lead the
switch in the co-movement between the Eurostoxx index and the oil returns are basic materials, consumer
goods, consumer services, telecommunications, utilities and technology. All of thempresent a similar change
in dependence around 2008 following the same copula speci�cation, i.e. Clayton copula. There seems to be
an increase in dependence after 2008 between these sector returns and oil returns. Although the �nancial
sector has the same copula speci�cation and presents a rise in dependence after 2008, it seems a transitory
change. Actually, the expected duration for the high dependence regime in the �nancial sector is around two
years and for the low dependence regime is four years. The expected duration of the regimes in the Eurostoxx
is four years longer than in the �nancial sector. The healthcare sector exhibits an increase in the correlation
but a decrease in tail dependence across regimes. Actually, the great increase in the number of degrees of
freedom might indicate that the dependence between oil and healthcare sector is better explained by a Stu-
dent t-Gaussianmixture. The dependence in basic materials or technology with oil returnsmight arise from a
mixture between Clayton copula and a copula that allows negative co-movement, due to the pattern inferred
from the pre-crisis sample in Figure 3 and Table 2.
The following section discloses the hidden patterns in the type of dependence between oil and stockmarket
according to a two-state Switching Markov speci�cation, where the type of copula can change across states.

4.1.3 Estimates allowing for changes in the type of copula

The empirical joint density function in Figures 1, 2 and 3 point out a change in the link from negative to
positive association for Eurostoxx and most of its sectors. Assuming an unchanged type of copula over time
is a strong constraint given the fact that some copulas only enable positive association. In fact, Clayton,
Gumbel and BB1 copulas only allow for positive tail dependence. These copulas cannot detect potential
changes in the sign of the relationship. This entails signi�cant problems for risk management because might
claim that hedging against extreme movements in oil prices is not required when a dependence between oil
and stock market returns exists.
Hence, I compare the results from previous section, where the copula choice was assumed constant over
time, with the estimation of a model where not only the copula parameter but the copula itself can change
across regimes.

The set of copula combinations considered in Table 6 depends on the results from the previous sub-
section and the descriptive analysis from Section 3. For instance, the Clayton copula is combined with the
independence copula, i.e. the product of themarginal distributions, for the sectors that have presented lower
tail dependence. This combination allow us to check if the low-dependence regime means that before 2008
oil returns and those sectors were independent. The limitations of the model to detect negative dependence
might lead to misinterpretations of the low-dependence regime. The Clayton copula is, consequently,
combined with copulas that express a negative relationship without tail dependence (Gaussian), symmetric
tail dependence (Student), lower tail dependence (90◦ rotated Clayton), upper tail dependence (90◦ rotated
Gumbel) or asymmetric tail dependence (90◦ rotated BB1). Further details about the use of rotated copulas
are provided in Appendix A. For these sectors Table 6 shows a change from a negative to positive lower
tail dependence, i.e. R90Clayton-Clayton, with the exception of consumer services which does not seem to
have tail dependence before 2008 but it also presents a negative behaviour. These results are in line with
the intuition behind Figure 2. Utilities is the only sector where the low-dependence regime from previous
subsection is identi�ed with the independent copula. Table 7 displays the p-values of the one-sample
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Figure 5a: Smoothed probabilities assuming same copula type but di�erent copula parameter across regimes
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(e) Oil - CONSUMER GDS sector
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(f) Oil - HEALTH CARE sector
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(g) Oil- CONSUMER SVS sector
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(h) Oil - TELECOM sector
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(i) Oil - UTILITIES sector
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(j) Oil - FINANCIALS sector
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Smoothed probabilities are obtained using [47]’s algorithm. Further information about this algorithm is provided in Appendix B.
The text box indicates the chosen copula according to Table 4 and the optimal parameters depending on the regime. Across

regimes the copula parameter changes but the type of copula is assumed to be constant over time.
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Table 6: AICC values for the models with di�erent copula

EUROSTOXX BASICMATS CONSUMERGDS CONSUMERSVS TELECOM UTILITIES FINANCIALS
Clayton-Clayton -6163,5 -5915,4 -6163,2 -6216,6 -5870,1 -6142,3 -5792,4

Ind -Clayton -6165,6 -5917,5 -6165,3 -6218,8 -5872,2 -6144,4 -5794,6
Gaussian-Clayton -6165,0 -5915,5 -6164,1 -6226,8 -5875,9 -6142,4 -5799,1
Student-Clayton -6162,7 -5913,9 -6161,6 -6224,5 -5873,4 -6140,0 -5796,7

R90Gumbel-Clayton -6163,5 -5915,4 -6163,2 -6218,5 -5870,2 -6142,3 -5794,2
R90Clayton-Clayton -6169,6 -5919,6 -6166,2 -6224,9 -5879,7 -6143,1 -5803,0

R90BB1-Clayton -6167,5 -5917,5 -6165,5 -6222,8 -5877,6 -6141,0 -5800,9

OILGAS INDUSTRIALS HEALTHCARE TECHNOLOGY
BB1-BB1 -5998,6 BB1-BB1 -6013,8 Student-Student -6123,7 BB1-BB1 -5551,5
Ind-BB1 -6012,2 BB1-Ind -6018,1 Ind-Gaussian -6124,4 Ind-BB1 -5554,8
Gaussian-BB1 -6001,1 BB1-Gaussian -6017,9 Student-Gaussian -6125,0 Gaussian-BB1 -5566,9
Gumbel-BB1 -5997,1 BB1-R90Gumbel -6016,0 Student-BB1 -5561,4
Clayton-BB1 -6011,0 Gumbel-BB1 -5559,8

R90Clayton-BB1 -5563,3
R90Gumbel-BB1 -5568,3

This table shows the values of the Akaike Information Criterion corrected for small sample bias (AICC) ([43]).
AICC = 2k T

T−k−1 − 2 log(L̂), where T is the sample size, k is the number of estimated parameters and L̂ is the Log-likelihood value. Minimum AICC
value in bold letters indicates the best copula �t. The second and the third best copulas are shown in italic letters.

Table 7: Kolgomorov Smirnov one sample test against the uniform distribution

A B C D E F G H I J K

C(uoil|ustock) 0,9897 0,6849 0,9500 0,9709 0,9715 0,9966 0,9896 0,9805 0,9888 0,9735 0,9958
C(ustock|uoil) 0,8220 0,9562 0,9816 0,2642 0,6991 0,6096 0,7387 0,6401 0,5957 0,3388 0,4302

This table shows the p-values of the Kolgomorov Smirnov test comparing the conditional copula distribution from the best
model according to Table 6 with the uniform distribution.
A: EUROSTOXX; B: OIL&GAS; C: BASICMATS; D: INDUSTRIALS; E: CONSUMERGDS; F: HEALTHCARE; G:
CONSUMERSVS; H: TELECOM; I:UTILITIES; J: FINANCIALS; K: TECHNOLOGY.
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Kolgomorov-Smirnov test of the conditional copula against the uniform distribution where no indication
of misleading copula is found. The conditional copula comes from the derivation of the copula function
from one input variable, e.g. C(u2|u1) = ∂C(u1, u2)/∂u1. C(u2|u1) indicates the distribution of u2 given
the realization of u1. If the copula gathers properly the dependence between variables, the conditional
probability of u2 must be uniformly distributed (see [69]).

Figure 6a sheds light on the possible structural break in the joint dependence. Besides the smoothed
probabilities under the best copula �t according to Table 6, the �gure shows the 90% con�dence interval
(grey area) obtained in a bootstrapping procedure. 500 paths of length 2000 are simulated following the
algorithm inAppendix C, which I employ to re-estimate the parameters of themodel. The set of new estimates
are employed to generate a con�dence interval regarding the point estimates. The point estimates using the
original data are not always within the grey area due to the procedure employed. According to the smoothed
probabilities, the periods associated with the regime of negative or null dependence are between 2003 and
2008. The wider con�dence intervals before 2008 also indicates a higher uncertainty for some sectors. The
estimates and the standard deviation for the new models are presented in Tables 8a, 8b and 8c.
Health care sector presents a regimewith strong negative tail dependencewhile the other regime has positive
but small correlation. This feature indicates that adding the healthcare to a stock portfolio can decrease the
exposure to oil spillovers at extreme quantiles.

A likelihood ratio test is performed to test if themodelwith time-varying dependence is statistically better
than the model with constant dependence. The model with constant dependence represents the restricted
model, while the model with time-varying copula represents the unrestricted model. The likelihood ratio is
distributed as

−2(log(LikelR) − log(LikelUR)) ∼ XkUR−kR
where k refers to the number of parameters for the model while R is the restricted (constant) model and UR
is the (time-varying) unrestricted model.

Note that the constant model is nested in the time-varying model. However the transition probabilities
of the Markov process are not identi�ed under the null hypothesis, so regularity conditions justifying the χ2

approximation to the likelihood ratio test are not held. Following [19], I replicate 500 series of returns with a
sample length of 1000 under the constantmodel usingMonte Carlo simulations. Then, the SwitchingMarkov
model is �tted for each generated series. Finally, I calculate the likelihood ratio statistic of each Monte Carlo
simulation getting the distribution of the likelihood ratio statistic under the null hypothesis, which I use to
obtain the p-value.

The results in Table 9 indicate that the null hypothesis is not rejected for oil & gas, industrial and technol-
ogy sectorwhen the unrestrictedmodel only allows for a change in the parameter of the copula. Nevertheless,
the probability of each state gives useful information concerning a potential change. Allowing for a change
not only in the parameter but also in the copula itself improves the model, rejecting the null hypothesis that
constant and time-varying models are equivalent.

The �tting improvement using the model with time-varying dependence can be quantify in terms of
the estimation of a percentile for Eurostoxx depending on the scenario for oil prices. Figure 7 shows the
di�erence between the estimation of the same percentile under the same oil-related scenario over the anal-
ysed period for the Eurostoxx using the time-varying copula (minuend) and the constant dependence model
(subtrahend). Themodel risk of assuming a constant dependence across assets implies an overestimation by
8% and a underestimation by 4% of the same risk measure depending on the period, scenario and chosen
percentile. Appendix D provides the same type of �gures for the stock sectors. They indicate a higher model
risk in the estimation of low quantiles of stock returns than high percentiles, in particular under scenarios
where oil prices experience a downward movement.
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Figure 6a: Smoothed probabilities assuming di�erent copula type across regimes

(a) Oil- EUROSTOXX index (b) Oil - OIL & GAS sector (c) Oil - BASIC MATS sector

(d) Oil - INDUSTRIALS sector (e) Oil - CONSUMER GDS sector (f) Oil - HEALTH CARE sector

(g) Oil- CONSUMER SVS sector (h) Oil - TELECOM sector (i) Oil - UTILITIES sector

(j) Oil - FINANCIALS sector (k) Oil - TECHNOLOGY sector

Smoothed probabilities are obtained using [47]’s algorithm. Further information about this algorithm is provided in Appendix B.
The legend box indicates the chosen copula according to Table 6. Solid lines indicate the states under the best mixture of
copulas. Grey area indicates the 90% con�dence interval of the smoothed probability of state 1 following a Monte Carlo

technique explained in Appendix C. Generally speaking there is a clear regime after 2008 that implies positive tail dependence
between oil and stock market while in the period 2003-2008 predominates a regime that implies negative tail dependence,

although with higher uncertainty.
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Table 8a: Parameter estimates for the joint distribution using a mixture of copulas where the weights are given by the forecast
probability of each state

A L B L C L D L

ϕ0 0.00 -0.00 0.00 0.00 0.00 * -0.00 0.00 * -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ϕ1 -0.07 ** 0.03 -0.05 * 0.05 * -0.06 ** 0.03 -0.08 ** 0.04
(0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04)

ω 0.00 ** 0.00 * 0.00 *** 0.00 ** 0.00 *** 0.00 ** 0.00 ** 0.00 **
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

α 0.00 0.05 ** 0.03 0.04 ** 0.00 0.04 ** 0.00 0.04 *
(0.04) (0.03) (0.07) (0.02) (0.04) (0.02) (0.03) (0.03)

β 0.84 *** 0.90 *** 0.80 *** 0.91 *** 0.80 *** 0.90 *** 0.83 *** 0.89 ***
(0.07) (0.03) (0.07) (0.03) (0.08) (0.03) (0.07) (0.03)

γ 0.22 *** 0.08 ** 0.17 *** 0.06 ** 0.23 *** 0.07 ** 0.22 *** 0.09 **
(0.07) (0.04) (0.07) (0.03) (0.07) (0.04) (0.08) (0.04)

λ -0.37 *** -0.27 *** -0.28 *** -0.25 *** -0.30 *** -0.26 *** -0.36 *** -0.26 ***
(0.04) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

η 12.13 *** 11.99 *** 9.70 *** 15.38 *** 14.03 *** 14.01 *** 16.38 *** 13.98 ***
(0.46) (0.89) (0.57) (0.47) (0.47) (0.61) (0.52) (0.47)

(a) (b) (a) (c )

θst=1 0.3877 *** τL 0.1477 ** θst=1 0.1139 ** τL 0.1055 *
(0.16) (0.07) (0.07) (0.07)

θst=2 0.2742 *** τU 0.1636 *** θst=2 0.3577 *** τU 0.0783 *
(0.06) (0.05) (0.09) (0.05)

p11 0.9838 *** p11 0.9866 *** p11 0.9979 *** p11 0.9982 ***
(0.01) (0.01) (0.00) (0.00)

p22 0.9956 *** p22 0.9978 *** p22 0.9986 *** p22 0.9979 ***
(0.00) (0.00) (0.00) (0.00)

LL 3104.40 LL 3024.09 LL 2980.38 LL 3031.68

The table reports the estimates and the standard deviation (in parenthesis) for the parameters of themarginal
model in Equations (4),(5) and (6) and for the best copulamixture according to Table 6. LL is the log-Likelihood
value.
* * */**/* indicates statistical signi�cance at 1/5/10%
The copula parameter is assumed to evolve according to a two-state Switching Markov speci�cation. pii indi-
cates the probability of remaining in state i, i.e. st = i, given thatwe have been in the same state in the previous
period where i = 1, 2
Each pair of columns x − L represents a full estimated model for the joint distribution between a stock
market sector (x) and oil returns (L: OIL). x could be A: EUROSTOXX; B: OIL&GAS; C: BASICMATS; D:
INDUSTRIALS; E: CONSUMERGDS; F: HEALTHCARE; G: CONSUMERSVS; H: TELECOM; I:UTILITIES;
J: FINANCIALS; K: TECHNOLOGY.
Copula mixtures: (a) 90R Clayton- Clayton; (b) Independence- BB1; (c) BB1- Independence; (d) Student-
Gaussian; (e) Gaussian-Clayton; (f) Independence- Clayton; (g) R90 Gumbel-BB1.



Structural change in the link between oil and the European stock market | 77

Table 8b: Parameter estimates for the joint distribution using a mixture of copulas where the weights are given by the forecast
probability of each state

E L F L G L H L

ϕ0 0.00 -0.00 0.00 ** 0.00 0.00 0.00 -0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ϕ1 -0.04 0.03 -0.10 *** 0.04 -0.06 ** 0.03 -0.03 0.02
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

ω 0.00 *** 0.00 * 0.00 0.00 * 0.00 ** 0.00 * 0.00 * 0.00 *
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

α 0.00 0.05 ** 0.04 * 0.04 ** 0.00 0.04 * 0.04 ** 0.04 **
(0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03)

β 0.82 *** 0.90 *** 0.88 *** 0.90 *** 0.87 *** 0.90 *** 0.91 *** 0.90 ***
(0.05) (0.03) (0.07) (0.03) (0.04) (0.03) (0.03) (0.03)

γ 0.22 *** 0.08 ** 0.06 0.07 ** 0.17 *** 0.09 ** 0.06 ** 0.07 **
(0.07) (0.04) (0.05) (0.04) (0.05) (0.04) (0.04) (0.04)

λ -0.25 *** -0.28 *** -0.21 *** -0.23 *** -0.25 *** -0.26 *** -0.08 * -0.27 ***
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

η 11.90 *** 11.12 *** 8.77 *** 13.98 *** 8.02 *** 11.50 *** 7.26 *** 12.84 ***
(0.88) (1.43) (0.86) (0.89) (0.57) (1.45) (0.53) (0.72)

(a) (d) (e) (a)

θst=1 0.6372 ** ρ -0.2788 *** ρ -0.4848 *** θst=1 0.2465 ***
(0.28) (0.09) (0.10) (0.09)

θst=2 0.2397 *** ν 6.7021 *** θ 0.2382 *** θst=2 0.2314 ***
(0.06) (1.54) (0.07) (0.07)

p11 0.9523 *** ρ 0.1279 ** p11 0.9343 *** p11 0.9952 ***
(0.03) (0.06) (0.03) (0.00)

p22 0.9903 *** p11 0.9793 *** p22 0.9862 *** p22 0.9977 ***
(0.01) (0.01) (0.01) (0.00)

LL 3104.28 p22 0.9890 *** LL -3130.98 LL 2957.72
(0.01)

LL 3086.64

The table reports the estimates and the standard deviation (in parenthesis) for the parameters of the marginal
model in Equations (4),(5) and (6) and for the best copula mixture according to Table 6. LL is the log-Likelihood
value.
* * */**/* indicates statistical signi�cance at 1/5/10%
Thecopulaparameter is assumed to evolve according to a two-state SwitchingMarkov speci�cation. pii indicates
the probability of remaining in state i, i.e. si, given that we have been in the same state in the previous period
where i = 1, 2
Each pair of columns x − L represents a full estimated model for the joint distribution between a stock market
sector (x) and oil returns (L:OIL). x could beA: EUROSTOXX; B:OIL&GAS; C: BASICMATS; D: INDUSTRIALS;
E: CONSUMERGDS; F: HEALTHCARE; G: CONSUMERSVS; H: TELECOM; I:UTILITIES; J: FINANCIALS; K:
TECHNOLOGY.
Copula mixtures: (a) 90R Clayton- Clayton; (b) Independence- BB1; (c) BB1- Independence; (d) Student-
Gaussian; (e) Gaussian-Clayton; (f) Independence- Clayton; (g) R90 Gumbel-BB1.

Next subsection computes the e�ects of extreme changes in oil prices on the Value-at-Risk for Eurostoxx
and for the di�erent European industrial subsectors at 5% and 95% con�dence level.
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Table 8c: Parameter estimates for the joint distribution using a mixture of copulas where the weights are given by the forecast
probability of each state

I L J L K L

ϕ0 0.00 0.00 0.00 -0.00 0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ϕ1 -0.03 0.03 -0.03 0.03 -0.05 * 0.06 *
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

ω 0.00 ** 0.00 * 0.00 *** 0.00 * 0.00 ** 0.00 **
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

α 0.00 0.05 ** 0.00 0.05 ** 0.03 0.02
(0.04) (0.03) (0.04) (0.03) (0.02) (0.02)

β 0.80 *** 0.90 *** 0.85 *** 0.90 *** 0.92 *** 0.90 ***
(0.08) (0.03) (0.04) (0.03) (0.02) (0.03)

γ 0.19 *** 0.07 ** 0.24 *** 0.07 ** 0.07 ** 0.11 ***
(0.07) (0.04) (0.05) (0.04) (0.03) (0.04)

λ -0.20 *** -0.25 *** -0.34 *** -0.27 *** -0.17 *** -0.26 ***
(0.05) (0.05) (0.05) (0.05) (0.05) (0.04)

η 7.91 *** 14.73 *** 11.23 *** 11.80 *** 11.32 *** 13.83 ***
(0.66) (0.56) (0.51) (0.68) (0.43) (4.91)

(f) (a) (g)

θ 0.3325 *** θst=1 0.4767 *** θ 1.4572 ***
(0.09) (0.15) (0.20)

p11 0.9967 *** θst=2 0.2089 *** τL 0.0137
(0.00) (0.06) (0.03)

p22 0.9976 *** p11 0.9848 *** τU 0.0840 **
(0.00) (0.01) (0.04)

LL -3093.82 p22 0.9936 *** p11 0.9287 ***
(0.00) (0.05)

LL 2918.88 p22 0.9896 ***
(0.01)

LL -2800.53

The table reports the estimates and the standard deviation (in parenthesis) for
the parameters of the marginal model in Equations (4),(5) and (6) and for the best
copula mixture according to Table 6. LL is the log-Likelihood value.
* * */**/* indicates statistical signi�cance at 1/5/10%
The copula parameter is assumed to evolve according to a two-state Switching
Markov speci�cation. pii indicates theprobability of remaining in state i, i.e. st = i,
given that we have been in the same state in the previous period where i = 1, 2
Each pair of columns x − L represents a full estimated model for the joint
distribution between a stock market sector (x) and oil returns (L: OIL). x
could be A: EUROSTOXX; B: OIL&GAS; C: BASICMATS; D: INDUSTRIALS;
E: CONSUMERGDS; F: HEALTHCARE; G: CONSUMERSVS; H: TELECOM;
I:UTILITIES; J: FINANCIALS; K: TECHNOLOGY.
Copula mixtures: (a) 90R Clayton- Clayton; (b) Independence- BB1; (c) BB1-
Independence; (d) Student-Gaussian; (e) Gaussian-Clayton; (f) Independence-
Clayton; (g) R90 Gumbel-BB1.
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Table 9: Likelihood ratio test between the constant and the time-varying model

A B C D E F G H I J K

LR - (a) 7,523 6,637 10,932 7,219 12,581 11,188 6,765 6,704 9,326 6,770 3,413
p-value - (a) 0,056 0,160 0,040 0,120 0,006 0,026 0,064 0,088 0,050 0,074 0,466

LR - (b) 13,703 15,966 15,139 7,270 15,571 10,342 16,946 16,288 9,326 17,338 18,088
p-value - (b) 0,002 0,000 0,000 0,016 0,002 0,018 0,000 0,004 0,012 0,008 0,000

This tables shows in the top row the likelihood ratio, i.e. LR = −2(log(LikelihoodR) − log(LikelihoodUR)), where the
distribution under the null hypothesis is obtained by a Monte Carlo simulation.
The two �rst rows (a) indicate the likelihood ratio test where the restricted model is the constant model and the unre-
stricted model is the model that only allow for changes in the copula parameter. The last two rows (b) indicate the likeli-
hood ratio test where the restricted model is the constant model and the unrestricted model is the model that allow for a
change in the copula itself. The copulas employed is the best one according AICC in tables 4 and 6.
LR shows the statistic of the likelihood ratio.
The p − value indicates the p-value for the Likelihood test where the null hypothesis indicates that the restricted model
(constant) and the unrestricted model (time-varying model) are not statistically di�erent between them, while the alter-
native hypothesis is the unrestricted model is statistically better than the restricted model.
Note that for some cases where we can not reject under the case (a) we can do it under case (b) due to a better �tting and
a lower number of parameters, e.g. for the cases where the copula is combined with the independence case.
A: EUROSTOXX; B: OIL&GAS; C: BASICMATS; D: INDUSTRIALS; E: CONSUMERGDS; F: HEALTHCARE; G:
CONSUMERSVS; H: TELECOM; I:UTILITIES; J: FINANCIALS; K: TECHNOLOGY.

Figure 7:Model risk assessment when we assume a constant dependence compared to the time-varying model.

These �gures show the di�erence between the estimation of the same percentile of Eurostoxx returns under the same oil-related scenario using the
Switching Markov model that allows for changes in the copula against the constant model. Top �gures focuses on a low quantile (β = 5%) whilst
bottom graphs estimate the high quantile (β = 95%). Left �gures show a percentile of stock returns under a bearish scenario for oil returns, i.e. oil
returns below its percentile 5%, and right �gures show a percentile of stock returns under a bullish scenario for oil returns, i.e. oil returns above its
percentile 95%. These charts indicate the higher model risk in the lower tail than in the upper tail when assuming a constant dependence across

markets.
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4.2 Implications of structural changes in joint tail dependence for risk management

This section presents �rst the results of the CoVaR(0.05, 0.05) and CoVaR(0.05, 0.95) for each stock sector
conditioned to a bearish or bullish scenario for oil returns. Second, a table summarizes di�erent quantiles of
the change in the VaR measure once considered the oil scenario before and after the �nancial crisis. Third,
a Kolgomorov-Smirnov bootstrap test is performed to check that the risk of overlooking the oil scenario is
statistically signi�cant. Fourth, I build a portfolio using Eurostoxx and healthcare to minimize (in absolute
terms) the mean Conditional Value-at-Risk at 5% con�dence level. I rebalance the portfolio every four
months from 23 October 2015, the last day of the in-sample period, to 27 July 2018.

Figures 8 and 9 plot on the right axis the VaR estimates, which is depicted by the dash-dotted black
line. These �gures present on the right axis the di�erence CoVaR − VaR for the best copula (solid blue line)
according to AICC values from Table 6 and its 90% con�dence interval computed byMonte Carlo simulations
(see Appendix C).

Figure 8 shows a bearish oil scenario for the CoVaRm|o,t(0.05, 0.05). The oil & gas sector has always
a CoVaRm|o,t(0.05, 0.05) more negative than VaRm,t although this di�erence is smaller during the period
2003-2005. During period 2003-2005 the di�erence CoVaRm|o,t(0.05, 0.05) − VaRm,t is positive for most of
the sectors (Eurostoxx, �nancial, healthcare, basicmaterials, utilities, telecommunications, consumer goods,
consumer services). There is no change in the VaRm,t for the industrial sector before 2008. The period 2007-
2008 also presents CoVaRm|o,t(0.05, 0.05) less negative than VaRm,t. The healthcare sector looks quite in-
sensitive in its lower tail to negative shocks on the oil price with a maximum negative di�erence between
2% and 7% depending on the copula choice while for most of the sectors the di�erence reaches two-digit
numbers.

Figure 9 shows a bullish oil scenario for CoVaRm|o,t(0.05, 0.05), where the unconditional VaRm,t seems
to be overestimating the losses. The healthcare sector is one exceptionwhere the CoVaRm|o,t(0.05, 0.05) has
higher losses than the VaRm,t(0.05) during the period 2003-2008. Moreover, healthcare sector shows this
pattern after the 2008 �nancial crisis, during 2012-2014, moving in the opposite direction of Eurostoxx or oil
& gas sector given extreme upward movements in oil prices. This feature makes it a potential good asset to
reduce the tail dependence of a stock portfolio with the oil returns.

Figure for the upper tail of the stock market sectors, i.e. VaRm,t(0.95), and CoVaRm,t(0.05, 0.95) −
VaRm,t(0.95) show a much lower change than in the lower tail, where two-digit values are reached. Figures
for the upper tail along with the CoES charts are provided in Appendix D. CoES �gures provide a robustness
check and give information the quantile of the CoVaR. The CoES plots support the main conclusions shown
by the CoVaR.

Table 10 displays the p-values of the Kolgomorov-Smirnov (KS) bootstrap test for the cumulative distri-
bution function of CoVaR and VaR in the pre-crisis and post-crisis sample.⁶ Within the pre-crisis sample,
the null hypothesis of equal cumulative distribution function of CoVaR and VaR can not be rejected for the
industrial sector, but within the post-crisis period it is rejected for all the oil scenarios and con�dence levels.
The KS null hypothesis can not be rejected either for the consumer services under a bullish oil scenario for
CoVaRm|o,t(0.05, 0.05) in the pre-crisis sample, but it is rejected in the post-crisis period. The utilities sector
presents the same results under a bullish oil scenario for CoVaRm|o,t(0.05, 0.95).

Table 11 shows the 75 − th, 50 − th and 25 − th quantiles for the di�erence CoVaRm|o,t(0.05, 0.05) −
VaRm,t(0.05) and CoVaRm|o,t(0.05, 0.95) − VaRm,t(9.05) given a upward or downward movement in oil
prices for the pre-crisis and post-crisis sample. The red cells indicates an underestimation of the VaR
measure given a certain scenario higher than 2% while the green cells represents an overestimation of the

6 Themain reason to build bootstrap tests in estimatedmeasures is due to the introduction of a nuisance parameter in the sample
distribution. The distribution under the null hypothesis might be di�erent because of the estimated parameters, a�ecting to the
con�dence interval and the p-values. See [2], [16] and [58] for further details about Kolgomorov-Smirnov bootstrap test.
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Figure 8: CoVaRm|o,t(0.05, 0.05) for a certain sector given a bearish scenario for oil prices

(a) Oil- EUROSTOXX index (b) Oil - OIL & GAS sector (c) Oil - BASIC MATS sector

(d) Oil - INDUSTRIALS sector (e) Oil - CONSUMER GDS sector (f) Oil - HEALTH CARE sector

(g) Oil- CONSUMER SVS sector (h) Oil - TELECOM sector (i) Oil - UTILITIES sector

(j) Oil - FINANCIALS sector (k) Oil - TECHNOLOGY sector

Left axis shows the di�erence in percentage between the CoVaRm,t(0.05) of the returns for a certain sector under a extreme
downward movement in oil price, i.e. below its 5-th quantile, and its unconditional VaRm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoVaRm|o,t(0.05, 0.05) and VaRm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the VaRm,t(0.05) in percentage. The dash-dotted black line indicate the VaR level over time.
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Figure 9: CoVaRm|o,t(0.05, 0.05) for a certain sector given a bullish scenario for oil prices

(a) Oil- EUROSTOXX index (b) Oil - OIL & GAS sector (c) Oil - BASIC MATS sector

(d) Oil - INDUSTRIALS sector (e) Oil - CONSUMER GDS sector (f) Oil - HEALTH CARE sector

(g) Oil- CONSUMER SVS sector (h) Oil - TELECOM sector (i) Oil - UTILITIES sector

(j) Oil - FINANCIALS sector (k) Oil - TECHNOLOGY sector

Left axis shows the di�erence in percentage between the CoVaRm|o,t(0.05, 0.05) of the returns for a certain sector under a
extreme upward movement in oil prices, i.e. above its 95-th quantile, and its unconditional VaRm,t(0.05, 0.05). Solid blue line
shows this di�erence given the best copula mixture according to table 6. Grey area indicates the 90% con�dence interval of the
di�erence between CoVaRm|o,t(0.05) and VaRm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right

axes shows the value of the VaRm,t(0.05) in percentage. The dash-dotted black line indicate the VaR level over time.
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Table 10: Kolgomorov-Smirnov bootstrap p-values

A B C D E F G H I J K

BE05
Pre-
crisis

0,000 0,000 0,000 0,255 0,000 0,001 0,000 0,000 0,000 0,000 0,000

Post-
crisis

0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

BU05
Pre-
crisis

0,000 0,000 0,000 1,000 0,000 0,000 0,109 0,000 0,009 0,000 0,001

Post-
crisis

0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000

BE95
Pre-
crisis

0,000 0,000 0,000 0,991 0,000 0,000 0,015 0,001 0,000 0,009 0,001

Post-
crisis

0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000

BU95
Pre-
crisis

0,000 0,000 0,071 0,986 0,041 0,007 0,000 0,000 0,678 0,000 0,000

Post-
crisis

0,004 0,000 0,000 0,000 0,058 0,000 0,030 0,000 0,000 0,078 0,000

This table shows the p-values of the Kolgomorov-Smirnov bootstrap test using 2000 simulations to compare
the distribution of CoVaR with the values of VaR before and after the 2008 �nancial crisis. For more informa-
tion about the Kolmogorov Smirnov bootstrap test see for instance [2], [16], [58].
A: EUROSTOXX; B: OIL&GAS; C: BASICMATS; D: INDUSTRIALS; E: CONSUMERGDS; F: HEALTHCARE;
G: CONSUMERSVS; H: TELECOM; I:UTILITIES; J: FINANCIALS; K: TECHNOLOGY.
BE05: bearish CoVaRm|o,t(0.05, 0.05), BU05: bullish CoVaRm|o,t(0.05, 0.05), BE95: bearish
CoVaRm|o,t(0.05, 0.95), BU95: bullish CoVaRsU ,oU (0.05, 0.95). BE05 and BU05 are compared with the
VaRm,t(0.05) while BE95 and BU95 are compared with VaRm,t(0.95).
Pre-crisis subsample goes from January 7th, 2000 to September 12th, 2008. Post-crisis subsample goes from
19th September 2008 to 23rd October 2015.
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Table 11: Quantiles of the CoVaR − VaR distribution before and after the 2008 �nancial crisis.

bearish CoVaRm|o,t(0.05, 0.05) − VaRm,t(0.05) (%)

Q A B C D E F G H I J K

Pr
e-
cr
is
is 75 0,8 -2,8 0,6 0,0 -1,5 0,4 -1,4 1,0 0,0 1,6 -2,0

50 -2,1 -4,1 0,4 -0,1 -2,2 -0,4 -2,5 0,8 -0,3 -1,0 -2,7
25 -3,5 -4,8 -2,6 -0,3 -2,7 -0,8 -3,6 -1,5 -1,4 -2,7 -5,2

Po
st
-c
ris
is 75 -2,8 -4,3 -3,6 -3,1 -2,2 -0,6 -2,3 -2,7 -3,5 -3,2 -2,1

50 -3,2 -4,8 -4,1 -3,7 -2,6 -0,8 -2,6 -3,0 -3,9 -3,7 -2,5
25 -4,3 -5,9 -5,1 -4,8 -3,3 -0,9 -3,3 -3,6 -4,8 -5,4 -3,2

bearish CoVaRm|o,t(0.05, 0.95) − VaRm,t(0.95) (%)

Q A B C D E F G H I J K

Pr
e-
cr
is
is 75 1,6 -0,5 1,1 0,0 1,8 1,7 1,1 2,6 0,0 2,3 0,2

50 0,4 -1,5 0,9 0,0 0,2 0,9 -0,2 2,2 0,0 1,4 -0,8
25 -0,7 -1,8 0,0 0,0 -0,4 -0,1 -0,6 1,9 -0,2 -0,2 -1,7

Po
st
-c
ris
is 75 -0,5 -1,7 -1,1 -1,0 -0,3 0,6 -0,3 -0,8 -1,0 -0,4 -0,7

50 -0,7 -1,9 -1,2 -1,1 -0,6 -0,1 -0,5 -0,9 -1,1 -0,6 -0,9
25 -0,9 -2,3 -1,5 -1,5 -0,8 -0,5 -0,7 -1,1 -1,4 -0,9 -1,2

bullish CoVaRm|o,t(0.05, 0.05) − VaRm,t(0.05) (%)

Q A B C D E F G H I J K

Pr
e-
cr
is
is 75 1,2 2,5 0,7 0,1 0,8 0,2 0,8 0,0 0,3 0,7 1,7

50 0,5 2,1 -0,2 0,0 0,6 -1,3 0,2 -0,2 0,1 0,0 0,4
25 -0,4 0,9 -0,2 0,0 0,0 -2,5 -1,8 -0,3 0,0 -0,6 -2,2

Po
st
-c
ris
is 75 1,5 3,2 1,9 2,2 1,1 0,8 0,9 1,1 1,6 1,7 1,3

50 1,1 2,6 1,6 1,7 0,8 0,1 0,7 0,9 1,3 1,2 1,0
25 1,0 2,3 1,4 1,5 0,7 -0,9 0,4 0,8 1,1 1,0 0,5

bullish CoVaRm|o,t(0.05, 0.95) − VaRm,t(0.95) (%)

Q A B C D E F G H I J K

Pr
e-
cr
is
is 75 0,2 2,3 0,1 0,1 0,2 0,5 0,2 -0,6 0,1 0,1 3,5

50 0,0 2,0 -0,3 0,0 0,1 0,3 0,1 -0,7 0,0 -0,3 1,8
25 -0,6 1,3 -0,4 0,0 -0,3 -0,3 -0,4 -0,8 0,0 -0,9 1,3

Po
st
-c
ris
is 75 0,3 2,9 0,4 1,5 0,2 0,6 0,2 0,3 0,4 0,3 2,2

50 0,2 2,3 0,3 1,2 0,2 0,5 0,2 0,3 0,3 0,2 1,7
25 0,2 2,1 0,3 1,0 0,1 0,4 0,1 0,2 0,3 0,2 1,4

The table shows di�erent quantiles (75-th, themedian and the 25-th) of the CoVaR−VaR
distribution in the pre-crisis and post-crisis samples. Values that implies an underestima-
tion (overestimation) of the VaR higher than 2% are in red (green).
A: EUROSTOXX; B:OIL&GAS; C: BASICMATS; D: INDUSTRIALS; E: CONSUMERGDS;
F: HEALTHCARE; G: CONSUMERSVS; H: TELECOM; I:UTILITIES; J: FINANCIALS; K:
TECHNOLOGY.
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VaRmeasure when a certain oil-related scenario occurs higher than 2%. The change in VaRm,t(0.05) occurs
in more sectors than in the VaRm,t(0.95) given a bearish oil scenario. This change also increases after the
�nancial crisis getting even in the highest 25-th quantile an excess of losses greater than 2% for all sectors
with the exception of the healthcare.

The following subsection performs a forecast exercise to test the healthcare sector’s features as a hedging
asset against extreme oil movement.

4.3 Portfolio exercise using an out-of-sample period

Results in previous sections suggest that the healthcare sector may have useful features to reduce the expo-
sure of the stock portfolio to extrememovements in oil prices. To test the hedging possibilities, I build a port-
folio given the information available up to the end of the in-sample period, i.e. 23 October 2015. The portfolio
is rebalanced every four months until 27 July 2018. It consists of long positions in a benchmark stock market
index, the Eurostoxx, and the healthcare sector. I useMonte Carlo simulations to obtain the weekly returns of
Eurostoxx and healthcare sector four months ahead⁷. The same seed is used for all the simulations of the oil
quantile to be sure that the paths for Eurostoxx and healthcare returns are consistent, i.e. obtained under the
same oil scenario. Then, I compute the VaR, the bullish CoVaR and the bearish CoVaR for di�erent weights
of the portfolio. The top subgraph from Figure 10 presents the forecast for the nine rebalancing periods of
VaR in the brown line, the bearish CoVaR(0.05, 0.05) in the red line and the bullish CoVaR(0.05, 0.05)
in the blue line. Eurostoxx returns have lower bearish CoVaR(0.05, 0.05) than healthcare sector but higher
bullish CoVaR(0.05, 0.05) for most of the forecast periods. To weight equally the extreme downward and
upward movements in oil prices I assess the mean CoVaR(0.05, 0.05) as the mean between the bearish and
bullish CoVaR(0.05, 0.05) in the black line. Not surprisingly, the optimal weight to minimize VaR (vertical
dash-dotted brown line) and the optimal weights tominimizemean CoVaR(0.05, 0.05) (vertical dash-dotted
black line) coincide for most of the periods. Due to the simulation procedure, Eurostoxx and healthcare re-
turns are conditionally independent, i.e. they are dependent only through the common exposure to oil re-
turns. Hence, decreasing the exposure of the portfolio to extrememovements in oil prices implies a reduction
in the degree of dependence between both assets. The lower subgraph from Figure 10 presents a performance
measure where expected return is weighted by its risk, de�ned by its 5% lowest return in absolute value. The
higher this ratio is, the lower is the risk to be faced by the investor for the same expected return. Note that the
relationship between this ratio and the weights of the portfolio is not linear, and its sign depends on the oil
scenario. This result indicates potential advantages introducing healthcare into the stock portfolio. Finally, I
show the joint distribution of oil, Eurostoxx, healthcare sector and our optimal portfolio in Figure 11 for the
out-of-sample period. The scatter plot combines with the histograms of the marginal distribution in the axes,
smoothed by a kernel function. The x-axis shows the marginal distribution of the oil returns. The yellowish
area indicates the scenario where oil prices experience a bullish period (top subplot) or a bearish period (bot-
tom subplot). The y-axis indicates the conditional distribution histogram (smoothed by a kernel function),
where the portfolio behaviour is closer to the distribution of the returns of the Eurostoxx or healthcare sector
depending on the oil scenario. This features gives to our portfolio a better performance in terms of CoVaR⁸.

7 Detailed information about the simulation process is provided in Appendix C
8 The CoVaR is employed taking the 10% lowest returns of the equity portfolios given that the oil returns is above its 10% best
case scenario or below its 10% worst case scenario
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Figure 10: Forecast exercise : building a portfolio without tail dependence using Eurostoxx and health sector assets

(a) Forecast CoVaR(0.05, 0.05) andoptimumweights betweenEUROSTOXXandHEALTHCAREsec-
tor

(b) Ratio between the median return of the portfolio and its 95% higher losses

A four-month period forecast for the bearish and bullish CoVaR(0.05, 0.05), and the VaR(0.05) is calculated out-of-sample
using Monte Carlo simulations (W=100000) for a portfolio of Eurostoxx and health care. Top sub�gure shows the forecast

estimation for the di�erent four-month periods and the optimal portfolio weights to minimize the mean CoVaR(0.05, 0.05), i.e.
the mean between the bullish and the bearish CoVaR(0.05, 0.05). Lower sub�gure shows a performance measure, which

consists of the ratio between the mean returns of the portfolio and its CoVaR(0.05, 0.05) in absolute values. The higher this
ratio is, the lower risk has to be faced by the investor for the same expected return.
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Figure 11: Empirical joint distribution during the out-of-sample period, where the current oil scenario is shaded in yellow

(a) Y-axis shows the conditional distribution for the stock portfo-
lios given a downward movement in oil prices

(b) Y-axis shows the conditional distribution for the stock portfo-
lios given a upward movement in oil prices

The scatter plot shows the joint distribution between the returns of oil and equity. The x-axis shows the unconditional marginal
distribution of the oil returns in the out-of-sample period. The y-axis shows the conditional distribution of the returns of

Eurostoxx, healthcare sector and our optimal portfolio given the oil scenario, de�ned as being below the 10% or above the 90%
percentile. The yellowish are indicates these scenarios. The CoVaR shows the 10% worst case scenario for the Eurostoxx,

healthcare sector and our portfolio.
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5 Conclusions
This article quanti�es the spillovers from oil returns to the European stock market using CoVaR measures
during the period 2000-2015. The Conditional Value-at-Risk helps us to understand better the unexpected
link arising on extreme scenarios, i.e. it provides a more robust estimation to outliers than mean response
results where non-linear spillovers and asymmetric tail dependence might be overlooked. Furthermore, the
CoVaR measure is coherent with the risk aversion of economic agents, who are more interested on realising
how adverse the portfolio behaviour can become than on knowing how its performance can be on average.
The relationship between oil and stock markets is known to be characterised by non-linearities, asymmetric
dependence and structural changes. A Switching Markov approach is then useful because it can identify
hidden patterns in dependence across regimes and it can capture non-linear features and asymmetries
that evolve over time. Allowing for a change not only in the copula parameter but in the copula itself
provides us with an econometric analysis that can produce very signi�cant results for risk management. I
show that such �exibility in themodel prevents us frommistaking negative dependence for null dependence.

The model identi�es a switch from negative to positive lower tail dependence. During the period
2003-2008, lower quantiles in oil returns imply higher quantiles in stock returns while, after the �nancial
crisis, lower quantiles in stock returns are associated with lower oil returns. This structural change in the
oil-stock market relationship is led by the oil-intensive sectors, e.g. basic materials or consumer goods. The
dependence switch might be closely related to the economic cycle. Indeed, the dependence on the negative
lower tail indicates that a decrease in oil prices would generally increase the margin between �nal prices
and the unit cost of production before the crisis, while a rise in oil prices may have usually been re�ected
in the �nal price. The increase in prices would not necessarily lead to a lower demand because the income
increases in the expansion phase of the business cycle. This could explain the negative lower tail dependence
and the absence of upper tail dependence. The 2008 crisis led to a credit crunch and losses for European
companies that implied a drop in oil demand, which in turn led to a decrease in its price explaining the
positive dependence on the lower tail. The link in the co-movement between the economic sectors and oil
prices through the business cycle is already pointed out by [7] for the US economy.

The results are relevant for investors, who want to reduce the oil exposure of their stock portfolios. The
healthcare sector helps to decrease the exposure of stock market portfolio to oil shocks without taking a
short position in commodities. Such strategy decreases the dependence between the stock portfolio and oil
returns reducing the maximum loss provided by the unconditional Value-at-Risk. The market authorities
need a quantitative analysis of the impact of oil shifts on the stock market to properly monitor the behaviour
of companies in the stock exchange. Given an extreme movement in oil prices or its expectation, CoVaR
provides useful information that may suggest placing in trading halt a certain quote in the stock exchange,
or to update the variation margin for some stock derivatives. Sector analysis has implications for policy
makers who are concerned about the e�ect on stock markets of extreme changes in oil prices, as their
consequences can be felt in terms of growth and employment. In fact, policy makers can use CoVaR as a
short-term quantitative assessment of the e�ects of sharp movements in oil prices on the economic sectors
to have an estimate of the consequences to households income through losses in their portfolios.

Further research should analyse the potential role of exchange rate to mitigate the negative e�ects of
abrupt movements in oil prices on the stock market. Since oil prices are denominated in dollars that are then
translated into Euros, a transitory shock in oil prices can be alleviated by the rightmovement in the exchange
rate.Additional robustness checks canbeperformedby slightlymodifying themodel. As [64] claims, volatility
may be the trigger conditioning the type of relationship between oil and the stock market. This hypothesis
could be checked by building a Switching Markov model where the transition probabilities of the copula
function depend on the transition probabilities of the volatility of the stock market.
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Appendices

A Bivariate Copula set

Gaussian and Student copula are elliptical copulas, i.e., the bivariate joint density under these copulas has
elliptic isodensities.
Gumbel, Clayton and BB1 are Archimedean copulas, which implies that can be expressed as a function of the
generate function ϕ and its inverse ϕ−1, i.e. C(u1, u2, θ) = ϕ−1

[
ϕ(u1; θ) + ϕ(u2; θ); θ

]
where θ is the copula

parameter.
To enhance the features of copulas that only allow for positive dependence, they are rotated to capture neg-
ative tail dependence. The next table shows the tail dependence for the 90◦ rotated copulas. The 90◦ rotated
copulas are built modifying slightly the standard copula, i.e.

C90(u1, u2) = u2 − C (1 − u1, u2)

A.0.1 Gaussian copula.
This copula has a parameter ρ that gathers linear correlation. When ρ = 1 the tail dependence is 1, otherwise
this copula does not present tail dependence. There is not a closed form expression due to the fact that Gaus-
sian copula is an implicit copula. [52] takes a in-depth look at this copula.
The copula probability density function is

c(u1, u2; ρ) = 1√
1 − ρ2

exp
{
−ρ

2Φ−1(u1)2 − 2ρΦ−1(u1)Φ−1(u2) + ρ2Φ−1(u2)2
2(1 − ρ2)

}
,

where Φ−1 stands for the Gaussian inverse cumulative distribution function.
The conditional copula C2|1(u2|u1; ρ) is

Φ
(
Φ−1(u2) − ρΦ−1(u1)√

1 − ρ2

)
.

A.0.2 Student copula.
This copula allows for positive and negative symmetric tail dependence. The parameter ρ measures corre-
lation and the parameter η, the number of degrees of freedom, controls the probability mass assigned to
extreme joint co-movements of risk factors changes.⁹ When η → ∞ corresponds to the Gaussian copula.¹⁰
Student copula has not a closed form because it is a implicit copula.

9 For more information about the properties of the t-Student copula see [27]
10 TheGaussian copulaunderestimates theprobability of joint extreme co-movements inhigh volatility and correlation scenarios
(see [13])
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Table 12: Tail dependence for the 90◦ rotated copulas

τL|U τU|L

90◦R Clayton 2−1/θ -

90◦R Gumbel - 2 − 21/θ

90◦R BB1 2
−1
θδ 2 − 21/δ

θ and δ are the copula param-
eters from the original copula.
Further information about the
rotated copula can be found in
[18], [20], [31] and [49].
Let u1 and u2 denote two
variables uniformly distributed
across (0,1).
– The negative lower tail depen-
dence, τL|U , is de�ned as τL|U =
limq→0P(u2 < q|u1 > 1 − q).
– The negative upper tail depen-
dence, τU|L is de�ned as τU|L =
limq→1P(u2 > q|u1 < 1 − q).
Figure 12 shows an example of
how change the distribution and
the tail joint behaviour when the
90◦ rotated copula is employed.
See [76] for further details about
negative tail dependence.

The copula probability density function is

c(u1, u2; η, ρ) = K 1√
1 − ρ2[

1 +
T−1η (u1)2 − 2ρT−1η (u1)T−1η (u2) + T−1η (u2)2

η(1 − ρ2)

]− η+22
[
(1 + η−1T−1η (u1)2)(1 + η−1T−1η (u2)2)

] η+1
2 ,

where K = Γ( η2 )Γ(
η+1
2 )−2Γ( η+22 ).

The conditional copula C2|1(u2|u1; ρ, η) is

Tη+1

(√
η + 1

η + (T−1η (u1))2
T−1η (u2) − ρT−1η (u1)√

1 − ρ2

)

where Tη is the cdf of a t-Student with the numbers of degrees of freedom equal to η and T−1η represents its
inverse footnoteSee for instance [20]



Structural change in the link between oil and the European stock market | 91

Figure 12: Rotated copulas employed to capture negative tail dependence
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This �gure shows 800 simulations from the same seed but under di�erent copula assumptions. Rotating 90 degrees allows us to capture negative
upper tail dependence (90◦ rotated Gumbel), negative lower tail dependence (90◦ rotated Clayton) or negative asymmetric tail dependence (90◦

rotated BB1). The red line indicates the threshold below which the 5% of the u2 are found given the values taken by u1. Gumbel and Clayton
copula has a copula parameter θ = 2. BB1 has copula parameters θ = 2 and δ = 2.5.

A.0.3 Clayton copula.
This copula allows positive dependence and asymmetric lower tail dependence. The Clayton copula has a
dependence parameter θ ∈ (0, +∞). When θ → 0 implies independence and when θ → ∞ implies perfect
dependence.
The Clayton copula is

C(u1, u2; θ) =
(
u−θ1 + u−θ2 − 1

)−1/θ
,

and the copula probability density function is

c(u1, u2; θ) = (θ + 1)
(
u−θ1 + u−θ2 − 1

)−2− 1
θ (u1u2)−θ−1.

The conditional copula C2|1(u2|u1; θ) is (
u−θ1 + u−θ2 − 1

)− 1+θ
θ u−θ−11

A.0.4 Gumbel copula.
This copula allows for positive dependence and asymmetric upper tail dependence. The Gumbel copula has
a dependence parameter θ ∈ [1, +∞). When θ = 1 implies independence and when θ → ∞ implies perfect
dependence.
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The Gumbel copula is

C(u1, u2; θ) = exp
(
−
{
(− log u1)θ + (− log u2)θ

}1/θ)
,

and the copula probability density function is

c(u1, u2; θ) = (A + θ − 1)A1−2θ exp(−A)
(u1u2)−1(− log u1)θ−1(− log u2)θ−1,

where A =
[
(− log u1)θ + (− log u2)θ

] 1
θ .

The conditional copula C2|1(u2|u1; θ) is

exp
(
−
{
(− log u1)θ + (− log u2)θ

}1/θ){
(− log u1)θ + (− log u2)θ

}1/θ−1
(− log u1)θ−1

1
u1

A.0.5 BB1 copula.
The BB1 copula, also known as the Clayton-Gumbel copula, allows asymmetric tail dependence. The BB1
copula has two dependence parameters: one for the Clayton behaviour θ ∈ (0, +∞) and another one for the
Gumbel behaviour δ ∈ [1, +∞). When δ = 1 and θ > 0 we get the Clayton copula and as a consequence upper
tail independence and lower tail dependence. When θ → 0 and δ > 0 the Gumbel copula is obtained with
upper tail dependence only. In the case of θ → 0 and δ = 1 we get upper and lower tail independence.¹¹
The BB1 copula is

C(u1, u2; θ, δ) =
(
1 +
[
(u−θ1 − 1)δ + (u−θ2 − 1)δ

]1/δ)−1/θ
,

and the copula probability density function is

c(u1, u2; θ, δ) = (u1u2)−θ−1(ab)δ−1c
1
δ −2d−

1
θ −1
{
d−1c

1
δ (1 + θ) + θ(δ − 1)

}
,

where a = u−θ1 − 1 , b = u−θ2 − 1, c = aδ + bδ and d = 1 + c
1
δ .

The conditional copula C2|1(u2|u1; θ, δ)(
1 +
[
Aδ + Bδ

]1/δ)− 1+θ
θ [

Aδ + Bδ
] 1
δ −1 Aδ−1u−θ−11

where A = (u−θ1 − 1) and B = (u−θ2 − 1)

B Switching Markov speci�cation for modelling joint dependence

This appendix sums up brie�y the Switching Markov estimation procedure of the joint distribution using a
copula approach.
Given the [72]’s representation of the joint distribution in terms of copulas, we can assumed that the depen-
dence between variables depends on an unobservable regime. This assumptionmeans rewriting Equation (1)
as Equation (7). Equation (11) shows the result of deriving Equation (7) from its inputs. We obtain the joint
density function as the product of the marginal density functions and the copula density function.
Let us de�ne Ψ as a vector 2x1 that gathers the conditional copula density between ro,t and rm,t for each of
the two di�erent regimes, i.e.

Ψ =

[
c (uo,t , um,t; θst=1, st = 1)
c (uo,t , um,t; θst=2, st = 2)

]
, (12)

11 See for instance [74] or [57]
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where θst is the copula parameter under the regime st and uo,t and um,t refer to the marginal cumulative
distribution function of oil and stock market returns.
I assume that these conditional densities depend only on the current regime st but not on previous regimes,
i.e. c

(
uo,t , um,t; It−1, st = j; θst=j

)
= c
(
uo,t , um,t; It−1, st = j, st−1 = i, ...; θst=j

)
for i, j = 1, 2 and It−1 refers to

the information set at t − 1. I assume that the evolution of st follows a �rst order Markov chain independent
from past observations for oil and stock market returns, i.e.

pij = P(st = j|st−1 = i) = P(st = i|st−1 = j, st−2 = k, It−1), (13)

for i, j, k = 1, 2.
The transition matrix is shown in Equation (9) where each column i indicates the probability of remaining
on the state i (pii) or moving to state j (pij) conditioned to the fact that we are currently at state i for i, j = 1, 2
and i ≠ j. Obviously, pii + pij = 1 because we only consider two states. That is the reason why Equation (9)
presents pij as 1−pii. We can obtain two concepts with signi�cant economic implications from the transition
matrix: the expected duration and the unconditional probabilities of each state.
The expected length for state i can be assessed as

1
1 − pii

,

for i = 1, 2. [34, Chapter 22]. The expected length for each state can give us an idea about the persistence in
the dependence given by each regime, which is extremely useful from an economic point of view.
The unconditional probability of each state is the results of computing the ergodic probabilities. These prob-
abilities make up the eigenvector of the matrix P from Equation (9) associated to the unit eigenvalue, such
that its elements sums one, i.e.

Pπ = π,

where π = (α, 1 − α)′ Hence, p11α + (1 − p22)(1 − α) = α so the unconditional probability of being in the state
1 is α = 1−p22

2−p11−p22 and for the state 2 is 1 − α = 1−p11
2−p11−p22 .

Let us assume that the marginal distribution of the variables employed as input in the copula and the set
of copula parameters θ are known. Let us gather the probability assigned to the observation at time t of being
the result of regime j, i.e. P(st = j|It; θ), in a vector ξ̂t|t,

ξ̂t|t =
[
P(st = 1|It; θ), P(st = 2|It; θ)

]′ .
ξ̂t|t comprises the inference about the regime at time t given the information available at that period. The
probability assigned to the observation at time t + 1 of being the result of regime j given the information at
time t is collected in vector ξ̂t+1|t,

ξ̂t+1|t =
[
P(st = 1|It−1; θ), P(st = 2|It−1; θ)

]′ .
ξ̂t+1|t is the probability forecast of being in the next period t+1 at each regime given the information available
at t.
The link between ξ̂t|t and ξ̂t+1|t is obtained by the updated probabilities. The updated probabilities include
the new available information through Bayes’ theorem, i.e.

P(st = j|It; θ) =
P(st = j|It−1; θ)f (ro,t , rm,t|It−1;Θst=j)

Lt(ro,t , rm,t; It−1, Θ)
,

where f (ro,t , rm,t|It−1;Θst=j) is given by Equation (11) and Lt(ro,t , rm,t; It−1, Θ) is the likelihood function in
Equation (10). Observe that in Equation (10) we are multiplying the joint density of ro,t and rm,t conditioned
to the occurrence of each possible state at t by its probability at t given the information set at t −1. Assuming
that the marginal behaviour of each variable does not depend on the state and only the dependence changes
across states we can rewrite the previous equation that connects ξ̂t|t and ξ̂t+1|t in a matrix form as

ξ̂t|t =
ξ̂t|t−1 � Ψ

1′2(ξ̂t|t−1 � Ψ)
,
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where Ψ was de�ned in Equation (12) while the forecast probability for the next period is obtained as the
product of the inference probability by the transition matrix, i.e.

ξ̂t+1|t = Pξ̂t|t .

To start the iteration we need a value for ξ̂1|0, for which I use the unconditional probabilities of each state
that can be expressed in a matrix form as

ξ̂1|0 = π = (A′A)−1A′(0, 0, 1)′

where

A =

[
I2 − P
1′2

]
=

1 − p11 p22 − 1
p11 − 1 1 − p22

1 1

 .
To �nish this appendix I present the [47]’s algorithm to obtain smoothed inferences, which are used to present
the probabilities of being in each state at each time t given the complete sample T, i.e.

ξ̂t|T = ξ̂t|t �
{
P′
[
ξ̂t+1|T(÷)ξ̂t+1|t

]}
,

where� and (÷) represents the element-wise product and division respectively.

C Algorithms employed to simulate returns under the data generating process

D Extra �gures
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Figure 15a: Model risk assessment when we assume a constant dependence compared to the time-varying model.

These �gures show the di�erence between the estimation of the same percentile of stock sector returns under the same oil-related scenario using
the Switching Markov model that allows for changes in the copula against the constant model. Top �gures focuses on a low quantile (β = 5%)

whilst bottom graphs estimate the high quantile (β = 95%). Left �gures show a percentile of stock returns under a bearish scenario for oil returns,
i.e. oil returns below its percentile 5%, and right �gures show a percentile of stock returns under a bullish scenario for oil returns, i.e. oil returns

above its percentile 95%. These charts indicate the higher model risk in the lower tail than in the upper tail when assuming a constant
dependence across markets.
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Figure 15b:Model risk assessment when we assume a constant dependence compared to the time-varying model.

These �gures show the di�erence between the estimation of the same percentile of stock sector returns under the same oil-related scenario using
the Switching Markov model that allows for changes in the copula against the constant model. Top �gures focuses on a low quantile (β = 5%)

whilst bottom graphs estimate the high quantile (β = 95%). Left �gures show a percentile of stock returns under a bearish scenario for oil returns,
i.e. oil returns below its percentile 5%, and right �gures show a percentile of stock returns under a bullish scenario for oil returns, i.e. oil returns

above its percentile 95%. These charts indicate the higher model risk in the lower tail than in the upper tail when assuming a constant
dependence across markets.
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Algorithm 1: Simulation of the dependence under a copula and a dynamic following a two-state
Switching Markov in dimension N=2 over a time period T.

procedure Sim-Dependence(Θst=1, Θst=2, ξ1|0(st = 1), p11, p22)
for ω ← 1, . . . ,W do

for t ← T do
ut,ω,1 = rand
if rand < ξ1|0(st = 1) then

state = 1
else

state = 2
end if
ut,ω,2 = C−12|1 (rand|ut,ω,1;Θst=state,12)
if state = 1 then

if rand < p11 then
ξ1|0(st = 1) = 1

else
ξ1|0(st = 1) = 0

end if
else if state = 2 then

if rand < p22 then
ξ1|0(st = 1) = 0

else
ξ1|0(st = 1) = 1

end if
end if

end for t
end for ω
Return u

end procedure

Θst=1 and Θst=2 are the set of parameters for the copula structure under state 1 and 2. ξ1|0(st = 1) is the
unconditional probability of being in state 1, i.e. ξ1|0(st = 1) = 1−p22

2−p11−p22 .
p11 and p22 are the diagonal values from the transition matrix (see Equation (9)).
rand refers to an uniform-distributed random realization.
The OUTPUT u is a uniform-distributed matrix that has the joint dependence presented in the model of size
TxWx2
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Algorithm 2: Simulation from a AR(1)-TGARCH(1,1) over a time period T and skewed t distribution
assumption for the innovation process.

procedure Sim-Path(u, ϕ0, ϕ1, ν, λ, ω, α, β, γ)
for n ← 1, . . . , 2 do

for w ← 1, . . . ,W do
r1,w,n = ϕ0,i/(1 − ϕ1,i)
σ21,w,n = ω0,i/(1 − αi − βi − γFνi ,λi (0))
for t ← 1, . . . , T do

ϵt,w,n = F−1νi ,λi (ut,w,n)
σ2t+1,w,n = ωi + (α + 1ϵt,w,n<0)ϵ2t,w,n + βσ2t,w,n
rt+1,w,n = ϕ0,i + ϕ1,irt,w,n + ϵt,w,nσt,w,n

end for t
end for w

end for n
Return r

end procedure

u is a three-dimension matrix (TxWx2) obtained from previous algorithm.
ϕ0 and ϕ1 are vectors of parameters of length N = 2 that drive the dynamic in Equation (4).
ω, α, β and γ are vectors of parameters of length N = 2 that drive the dynamic in Equation (5).
ν and λ are vectors of length N gathering the values of asymmetry and number of degrees of freedom from
Equation (6).
The OUTPUT r is a three dimension matrix ((T + 1)xWx2) ofW simulated paths of length T + 1 for the N = 2
returns.

Figure 15c:Model risk assessment of when we assume a constant dependence compared to the time-varying model.

These �gures show the di�erence between the estimation of the same percentile of stock sector returns under the same oil-related scenario using
the Switching Markov model that allows for changes in the copula against the constant model. Top �gures focuses on a low quantile (β = 5%)

whilst bottom graphs estimate the high quantile (β = 95%). Left �gures show a percentile of stock returns under a bearish scenario for oil returns,
i.e. oil returns below its percentile 5%, and right �gures show a percentile of stock returns under a bullish scenario for oil returns, i.e. oil returns

above its percentile 95%. These charts indicate the higher model risk in the lower tail than in the upper tail when assuming a constant
dependence across markets.
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Algorithm 3: Assessment of the risk measures of the stock market returns at time t under a certain
scenario for oil returns.

procedure RiskMeasuret(W , Θst=1, Θst=2, ξt|T(st = 1), µt , σt , ν, λ)
u = rand(W , 3)
u1:W ,1 = α(u1:W ,1) . u1:W ,1 = 1 − α(u1:W ,1) would be a bullish scenario

4: for ω ← 1, . . . ,W do
if uω,3 < ξt|T(st = 1) then

state = 1
else

8: state = 2
end if
uω,2 = C−12|1 (uω,2|uω,1;Θst=state,12)

end for ω
12: q = u1:W ,2

rt = µt + σtF−1ν,λ(q)
CoVaRt = max (rω,t such that # {rω,t ≤ CoVaRt} = Wγ)
CoESt =

∑W
ω=1 rω,t1rω,t <CoVaRt∑W
ω=1 1rω,t <CoVaRt

. The upper tail CoESt would be
∑W

ω=1 rω,t1rω,t >CoVaRt∑W
ω=1 1rω,t >CoVaRt

16: Return CoVaRt, CoESt
end procedure

Θst=1 and Θst=2 are the set of parameters for the copula structure under state 1 and 2. ξt|T(st = 1) is the
smoothed probability of being in state 1 at time t.
µt refers to the conditional mean at time t obtained from Equation (4).
σt is the conditional standard deviation at time t obtained from Equation (5).
ν and λ gather the values of asymmetry and number of degrees of freedom from Equation (6).
rand(W , N) refers to a matrix ofW uniform-distributed random realizations for N variables.
The OUTPUT contains the CoVaR and the CoES measures.
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Figure 16a: CoVaRm|o,t(0.05, 0.95) for a certain sector given a bearish scenario for oil prices

(a) Oil- EUROSTOXX index (b) Oil - OIL & GAS sector

(c) Oil - BASIC MATS sector (d) Oil - INDUSTRIALS sector

Left axis shows the di�erence in percentage between the CoVaRm,t(0.05, 0.95) of the returns for a certain sector under a
extreme downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional VaRm,t(0.95). Solid blue line

shows this di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the
di�erence between CoVaRm|o,t(0.05, 0.95) and VaRm,t(0.95) following a Monte Carlo technique explained in Appendix C. The

right axes shows the value of the VaRm,t(0.95) in percentage. The dash-dotted black line indicate the VaR level over time.
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Figure 16b: CoVaRm|o,t(0.05, 0.95) for a certain sector given a bearish scenario for oil prices

(e) Oil - CONSUMER GDS sector (f) Oil - HEALTH CARE sector

(g) Oil- CONSUMER SVS sector (h) Oil - TELECOM sector

Left axis shows the di�erence in percentage between the CoVaRm,t(0.05, 0.95) of the returns for a certain sector under a
extreme downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional VaRm,t(0.95). Solid blue line

shows this di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the
di�erence between CoVaRm|o,t(0.05, 0.95) and VaRm,t(0.95) following a Monte Carlo technique explained in Appendix C. The

right axes shows the value of the VaRm,t(0.95) in percentage. The dash-dotted black line indicate the VaR level over time.
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Figure 16c: CoVaRm|o,t(0.05, 0.95) for a certain sector given a bearish scenario for oil prices

(i) Oil - UTILITIES sector (j) Oil - FINANCIALS sector

(k) Oil - TECHNOLOGY sector

Left axis shows the di�erence in percentage between the CoVaRm,t(0.05, 0.95) of the returns for a certain sector under a
extreme downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional VaRm,t(0.95). Solid blue line

shows this di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the
di�erence between CoVaRm|o,t(0.05, 0.95) and VaRm,t(0.95) following a Monte Carlo technique explained in Appendix C. The

right axes shows the value of the VaRm,t(0.95) in percentage. The dash-dotted black line indicate the VaR level over time.
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Figure 17a: CoVaRm|o,t(0.05, 0.95) for a certain sector given a bullish scenario for oil prices

(a) Oil- EUROSTOXX index (b) Oil - OIL & GAS sector

(c) Oil - BASIC MATS sector (d) Oil - INDUSTRIALS sector

Left axis shows the di�erence in percentage between the CoVaRm,t(0.05, 0.95) of the returns for a certain sector under a
extreme upward movement in oil prices, i.e. above its 95-th quantile, and its unconditional VaRm,t(0.95). Solid blue line shows

this di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the
di�erence between CoVaRm|o,t(0.05, 0.95) and VaRm,t(0.95) following a Monte Carlo technique explained in Appendix C. The

right axes shows the value of the VaRm,t(0.95) in percentage. The dash-dotted black line indicate the VaR level over time.
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Figure 17b: CoVaRm|o,t(0.05, 0.95) for a certain sector given a bullish scenario for oil prices

(e) Oil - CONSUMER GDS sector (f) Oil - HEALTH CARE sector

(g) Oil- CONSUMER SVS sector (h) Oil - TELECOM sector

Left axis shows the di�erence in percentage between the CoVaRm,t(0.05, 0.95) of the returns for a certain sector under a
extreme upward movement in oil prices, i.e. above its 95-th quantile, and its unconditional VaRm,t(0.95). Solid blue line shows

this di�erence given the best copula mixture according to Table 6.Grey area indicates the 90% con�dence interval of the
di�erence between CoVaRm|o,t(0.05, 0.95) and VaRm,t(0.95) following a Monte Carlo technique explained in Appendix C. The

right axes shows the value of the VaRm,t(0.95) in percentage. The dash-dotted black line indicate the VaR level over time.
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Figure 17c: CoVaRm|o,t(0.05, 0.95) for a certain sector given a bullish scenario for oil prices

(i) Oil - UTILITIES sector (j) Oil - FINANCIALS sector

(k) Oil - TECHNOLOGY sector

Left axis shows the di�erence in percentage between the CoVaRm,t(0.05, 0.95) of the returns for a certain sector under a
extreme upward movement in oil prices, i.e. above its 95-th quantile, and its unconditional VaRm,t(0.95). Solid blue line shows

this di�erence given the best copula mixture according to Table 6.Grey area indicates the 90% con�dence interval of the
di�erence between CoVaRm|o,t(0.05, 0.95) and VaRm,t(0.95) following a Monte Carlo technique explained in Appendix C. The

right axes shows the value of the VaRm,t(0.95) in percentage. The dash-dotted black line indicate the VaR level over time.
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Figure 18a: CoESm|o,t(0.05, 0.05) for a certain sector given a bearish scenario for oil prices

(a) Oil- EUROSTOXX index (b) Oil - OIL & GAS sector

(c) Oil - BASIC MATS sector (d) Oil - INDUSTRIALS sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.05) of the returns for a certain sector under a extreme
downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional ESm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.05) and ESm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.05) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 18b: CoESm|o,t(0.05, 0.05) for a certain sector given a bearish scenario for oil prices

(e) Oil - CONSUMER GDS sector (f) Oil - HEALTH CARE sector

(g) Oil- CONSUMER SVS sector (h) Oil - TELECOM sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.05) of the returns for a certain sector under a extreme
downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional ESm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.05) and ESm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the VaRm,t(0.05) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 18c: CoESm|o,t(0.05, 0.05) for a certain sector given a bearish scenario for oil prices

(i) Oil - UTILITIES sector (j) Oil - FINANCIALS sector

(k) Oil - TECHNOLOGY sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.05) of the returns for a certain sector under a extreme
downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional ESm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.05) and ESm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.05) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 19a: CoESm|o,t(0.05, 0.05) for a certain sector given a bearish scenario for oil prices

(a) Oil- EUROSTOXX index (b) Oil - OIL & GAS sector

(c) Oil - BASIC MATS sector (d) Oil - INDUSTRIALS sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.05) of the returns for a certain sector under a extreme
downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional ESm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.95) and ESm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.05) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 19b: CoESm|o,t(0.05, 0.05) for a certain sector given a bearish scenario for oil prices

(e) Oil - CONSUMER GDS sector (f) Oil - HEALTH CARE sector

(g) Oil- CONSUMER SVS sector (h) Oil - TELECOM sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.05) of the returns for a certain sector under a extreme
downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional ESm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.05) and ESm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.05) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 19c: CoESm|o,t(0.05, 0.05) for a certain sector given a bearish scenario for oil prices

(i) Oil - UTILITIES sector (j) Oil - FINANCIALS sector

(k) Oil - TECHNOLOGY sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.05) of the returns for a certain sector under a extreme
downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional ESm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.05) and ESm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.05) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 20a: CoESm|o,t(0.05, 0.05) for a certain sector given a bullish scenario for oil prices

(a) Oil- EUROSTOXX index (b) Oil - OIL & GAS sector

(c) Oil - BASIC MATS sector (d) Oil - INDUSTRIALS sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.05) of the returns for a certain sector under a extreme
upward movement in oil prices, i.e. above its 95-th quantile, and its unconditional ESm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.05) and ESm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.05) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 20b: CoESm|o,t(0.05, 0.05) for a certain sector given a bullish scenario for oil prices

(e) Oil - CONSUMER GDS sector (f) Oil - HEALTH CARE sector

(g) Oil- CONSUMER SVS sector (h) Oil - TELECOM sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.05) of the returns for a certain sector under a extreme
upward movement in oil prices, i.e. above its 95-th quantile, and its unconditional ESm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to Table 6.Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.05) and ESm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.05) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 20c: CoESm|o,t(0.05, 0.05) for a certain sector given a bullish scenario for oil prices

(i) Oil - UTILITIES sector (j) Oil - FINANCIALS sector

(k) Oil - TECHNOLOGY sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.05) of the returns for a certain sector under a extreme
upward movement in oil prices, i.e. above its 95-th quantile, and its unconditional ESm,t(0.05). Solid blue line shows this

di�erence given the best copula mixture according to Table 6.Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.05) and ESm,t(0.05) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.05) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 21a: CoESm|o,t(0.05, 0.95) for a certain sector given a bearish scenario for oil prices

(a) Oil- EUROSTOXX index (b) Oil - OIL & GAS sector

(c) Oil - BASIC MATS sector (d) Oil - INDUSTRIALS sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.95) of the returns for a certain sector under a extreme
downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional ESm,t(0.95). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.95) and ESm,t(0.95) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.95) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 21b: CoESm|o,t(0.05, 0.95) for a certain sector given a bearish scenario for oil prices

(e) Oil - CONSUMER GDS sector (f) Oil - HEALTH CARE sector

(g) Oil- CONSUMER SVS sector (h) Oil - TELECOM sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.95) of the returns for a certain sector under a extreme
downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional ESm,t(0.95). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.95) and ESm,t(0.95) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.95) in percentage. The dash-dotted black line indicate the ES level over time.
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Figure 21c: CoESm|o,t(0.05, 0.95) for a certain sector given a bearish scenario for oil prices

(i) Oil - UTILITIES sector (j) Oil - FINANCIALS sector

(k) Oil - TECHNOLOGY sector

Left axis shows the di�erence in percentage between the CoESm,t(0.05, 0.95) of the returns for a certain sector under a extreme
downward movement in oil prices, i.e. below its 5-th quantile, and its unconditional ESm,t(0.95). Solid blue line shows this

di�erence given the best copula mixture according to Table 6. Grey area indicates the 90% con�dence interval of the di�erence
between CoESm|o,t(0.05, 0.95) and ESm,t(0.95) following a Monte Carlo technique explained in Appendix C. The right axes

shows the value of the ESm,t(0.95) in percentage. The dash-dotted black line indicate the ES level over time.
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