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Abstract: Because of its many advantages, the use of decision trees has become an increasingly popular al-
ternative predictive tool for building classi�cation and regression models. Its origins date back for about �ve
decades where the algorithm can be broadly described by repeatedly partitioning the regions of the explana-
tory variables and thereby creating a tree-based model for predicting the response. Innovations to the origi-
nal methods, such as random forests and gradient boosting, have further improved the capabilities of using
decision trees as a predictive model. In addition, the extension of using decision trees with multivariate re-
sponse variables started to develop and it is the purpose of this paper to apply multivariate tree models to
insurance claims data with correlated responses. This extension to multivariate response variables inherits
several advantages of the univariate decision tree models such as distribution-free feature, ability to rank
essential explanatory variables, and high predictive accuracy, to name a few. To illustrate the approach, we
analyze a dataset drawn from theWisconsin Local Government Property Insurance Fund (LGPIF)which o�ers
multi-line insurance coverage of property,motor vehicle, and contractors’ equipments.Withmultivariate tree
models, we are able to capture the inherent relationship among the response variables and we �nd that the
marginal predictive model based on multivariate trees is an improvement in prediction accuracy from that
based on simply the univariate trees.

Keywords: Tree-based models, univariate regression trees, random forests, gradient boosting, multivariate
regression trees, multivariate tree boosting, predictive model of insurance claims

1 Introduction
A decision tree model, with origins that date back to early 1960’s, is a data mining algorithm that can broadly
be described by repeatedly partitioning the regions of the explanatory variables and thereby creating a tree-
based model for predicting the response. [25] developed the very �rst naive regression tree algorithm and
called it the Automatic Interaction Detection (AID). For more details about the historical development of de-
cision trees including alternative algorithms such as GUIDE and C4.5 algorithms, see [21]. Today, the use of
decision trees has become an increasingly popular alternative predictive tool for building classi�cation and
regressionmodels. Considered a supervised learning technique, it hasmany advantages which are especially
important for analyzing actuarial data.

First, a decision tree model is considered to be nonparametric and thereby does not require distribution
assumptions. Unlike classical statistical methods, decision tree models do not require the input of any prob-
ability distributions about the response. Second, it is an e�ective algorithm that can handle missing data.
For many real datasets, the absence and the unrecording of some information is not uncommon. Third, apart
from the ability to handle missing data, it can detect non-linear e�ects and possible interactions among the
explanatory variables. Traditional linear models typically capture only linear e�ects, and detection for non-
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Figure 1: Insurance claims: segmentation of the explanatory variables
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Figure 2: Insurance claims: segmentation of the explanatory variables

linearity as well as interactions requires further analysis. Fourth, it can be considered as a variable selection
procedure by assessing the relative importance of the explanatory variables. Such variable selection is usu-
ally important in actuarial science for purposes such as risk classi�cation and collection of risk variables.
Finally, decision trees, especially with smaller-sized trees, are straightforward to interpret by a visualization
of the tree structure in the plot. These advantages are particularly useful for actuarial and insurance data.
See [34].

It should be pointed out that comparing prediction accuracy between traditional linear models and de-
cision tree models (and their ensemble methods) may be unsuitable due to the manner in which rules and
principles are applied. However, in practice, it is understandable to make such comparison in order to better
evaluate the quality betweenmodels. Indeed, in the literaturewhere applications are emphasized, there have
been some papers that make direct comparison of prediction accuracy between traditional statistical models
and machine learning algorithms. For example, see [22], [26], and [37].

For a simple illustration of how regression trees are constructed, consider the insurance claims data ob-
tained from the R package MASS. Here we have 64 observed claims and we consider three potential explana-
tory variables: Age, District, and Group. In Figure 1, we show how the amount of claims are segmented by
Age and District. Note that Group is omitted in this �gure because it is not considered signi�cant. Figure 2
shows the �nal structure of the decision tree. This tree corresponds to the segmentation of Age and District
as demonstrated in Figure 1 where it clearly makes the separation according to shade. This illustrates a sim-
ple diagram of the separation of nodes within a regression tree model. We can conclude from these �gures
that claims are generally signi�cantly larger for ages 35 and above, while districts 3 and 4 have slightly lower
claims than districts 1 and 2. For similar �gures of how decision trees are constructed for classi�cation, see
[21] and [34].
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The early methods of decision trees have the potential disadvantages of producing irregular patterns re-
sulting in over�tting and bias in variable selection. Innovations and extensions to the original methods, such
as random forests and gradient boosting, further improved the capabilities of using decision trees as a pre-
dictive model. Random forest refers to the process of generating ensembles of trees with a set of unpruned
fully-grown trees. These trees are generated based on a bootstrap sampling of the original data and using a
subsample of the explanatory variables. [1] showed that the use of random forests led to signi�cant improve-
ments in prediction accuracy.

Boosting algorithms have increased in popularity in machine learning because they help to �nd a good
balance between bias and variance through the tuning parameters. For decision tree models, boosting al-
gorithms build trees sequentially so that for each new iteration, a tree is grown using the residuals from
previously grown trees. This procedure combines weak learners to produce strong learner. Early methods of
boosting decision trees, as discussed in [10], used optimization based on gradient descent algortihms and
this gave rise to the term gradient boosting.

Here we cite some interesting applications of decision tree models in actuarial science and insurance.
Interestingly, for example, [27] provided an alternative look of the life table construction using tree-based
models and concluded that tree-basedmethodshave inherent characteristics that capture intrinsic data struc-
ture useful for identifying primary risk factors. In their lecture notes on data analytics for non-life insurance
pricing, [39] used classi�cation trees to determine whether a policy belongs to a male or female driver given
some policy characteristics. [13] used the idea of gradient boosting (GB) to predict auto accident loss cost and
concluded that this method provided more superior predictive accuracy than that of traditional Generalized
Linear Models (GLMs). [19] introduced Delta Boosting (DB) as an alternative boosting algorithm and showed
that this algorithm is optimal under a variety of loss functions. Using claims data on collision coverage for
vehicle insurance from a Canadian insurer, the article also demonstrated that the DB algorithm outperforms
the GB algorithm. [38] applied classi�cation and regression trees to calculate reserves on individual claims
data. [4] applied the Poisson regression tree and its boosting ensemble to examine the quality of mortality
models in understanding di�erent causes of death.

As evident fromourpreviousdiscussion, applications of decision treemodels havepractically beenbased
on a single-valued response variable. This paper extends the concept of decision trees in the case where we
have a multiple-valued, or multivariate, response variable. In the literature in recent years, we have seen a
large potential for actuarial and insurance applications where we encounter multivariate responses. To illus-
trate, here are some sources of dependencies that we often encounter in actuarial and insurance problems:
(a) a single policyholdermay have several insurance coverages, (b) a policyholdermay own a bundle of insur-
ance contracts such as homeowners and automobile, (c) a taxicab company may own an umbrella coverage
for several automobiles, (d) a corporation may own several types of insurances for its employees such as
workers compensation and health insurance, and (e) time and spatial dependencies are typical insurance
data structures.

To demonstrate the potential bene�ts of �tting multivariate decision trees, we examine a multivariate
response variable with six di�erent components; each component is associated with one of the six types of
property and casualty insurance coverages for local government units established by the Wisconsin Local
Government Property Insurance Fund (LGPIF). Earlier works on this dataset have used the concept of para-
metric copulas to analyze the multivariate structure of the data. Our paper examines the bene�ts of using
multivariate decision tree models without having to specify probability distributions. Yet another advantage
of using decision tree models is avoiding the use of a two-part frequency-severity model. When compared to
univariate decision tree models, we �nd that multivariate decision tree models have generally a better pre-
dictive accuracy.

The remainder of this paper has beenorganized as follows. In Section 2,wediscuss the concept of univari-
ate regressions and its extensions. In section 3, we describe the concept of decision trees when the response
variable is multivariate. In Section 4, we describe the dataset used for our empirical investigation and pro-
vide some preliminary data exploration. Results of model calibration and model validation are presented in
Section 5 and Section 6, respectively. Finally, we provide concluding remarks in Section 7.
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2 Univariate decision trees and its extensions
In this section, we introduce the concept of the univariate regression tree and its extensions. Here we assume
that we have a dataset consisting of a vector of p explanatory variables, denoted by xi = (xi1, xi2 . . . , xip) and
a response variable, yi, for each of N observations. This dataset is best represented as (xi , yi) for i = 1, . . . , N.
For our paper, we discuss the three of the most widely used univariate decision trees: CART (Classi�cation
and Regression Tree), random forests, and gradient boosted regression trees.

2.1 CART (Classi�cation and Regression Trees)

First introducedby [2], thismethoduses recursivepartitioning tobuilddecision trees applicable for predicting
either a continuous response, in the case of regression, or a categorical response, in the case of classi�cation.
In our subsequent discussion, we focus on regression trees for predicting continuous response variable. We
adopt notation from [15]. In this algorithm, a regression tree, denoted by T(x, Θ), is produced by partitioning
the space of the explanatory variables into M disjoint regions R1, R2, . . . , RM and then assigning a constant
cm for each region Rm, for m = 1, 2, . . . ,M. Given a regression tree, each observation can then be modeled
based on the expression

f (xi|Θ) =
M∑
m=1

cm1Rm (xi), (1)

where Θ = {Rm , cm}Mm=1 denotes the partition with the assigned constants. Under CART, the constants
cm are determined by minimizing the sum of squares error (SSE) loss function:

L(yi , ŷi) =
N∑
i=1

(yi − ŷi)2, (2)

where ŷi = f̂ (xi|Θ) =
∑M

m=1 ĉm1Rm (xi) is the predicted value of the response variable. It can be shown
that the optimal value, ĉm, is the average of yi in the region Rm:

ĉm = average(yi|xi ∈ Rm) =
1
Nm

∑
xi∈Rm

yi , (3)

where Nm is the number of observations in region Rm.
The regions in the regression tree are determined according to an algorithm called recursive binary split-

ting. The initial step in this algorithm is to �nd one explanatory variable X·j which best divides the data into
two subregions, for example, R1(j, s) = {xi|X·j < s} and R2(j, s) = {xi|X·j ≥ s} in the case of a continuous
explanatory variable. This division is determined as the solution to

argmin
j,s

∑
i:xi∈R1(j,s)

(yi − ĉR1(j,s))
2 +

∑
i:xi∈R( j,s)

(yi − ĉR2(j,s))
2, for any j and s.

Subsequently, the algorithm looks for the next explanatory variablewith the best division into two subregions
and this process is applied recursively until reaching aminimumsize of observations in the terminal region or
some other prede�ned threshold. The algorithm can handle other types of numerical explanatory variables,
such as those with rank order, as well as categorical variables. Furthermore, regression trees can deal with
missing values in the explanatory variables using ‘surrogate splitting’ which involves �nding a surrogate
variable that best approximates the original split. Observations with missing values are assigned according
to the split on the surrogate variable rather than on the original splitting variable.

For many instances, the result is a fully grown tree, T0, with many terminal regions that may lead to
over�tting and unnecessary model complexity. This complexity can be controlled by using cost-complexity
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pruning to trim the fully grown tree T0. From equations (2) and (3), de�ne the loss in region Rm by

Lm(T) = 1
Nm

∑
xi∈Rm

(yi − ĉm)2.

For any subtree T ⊂ T0, denote the number of terminal regions in this subtree by |T|. To control the number
of terminal regions, we introduce the tuning parameter α ≥ 0 to the loss function by de�ning the new cost
function as

Cα(T) =
|T|∑
m=1

NmLm(T) + α|T|.

Clearly according to this cost function, the tuning parameter penalizes large number of regions. The idea then
is to �nd the subtrees Tα ⊂ T0 for each α, and choose the subtree that minimizes Cα(T). Furthermore, the
tuning parameter α governs the tradeo� between size of the tree and its goodness of �t to the data similar to
the regularization parameter in a penalized regression. Large values of α result in smaller trees and as the
notation suggests, α = 0 leads to the fully grown tree T0. The estimation of this tuning parameter α is done
using K-fold cross-validation.

Algorithm 1 summarizes the details of implementing the CART procedure using the R-package rpart. See
[17] and [36].
Algorithm 1: CART R-package: rpart
Input: Training dataset x, y, K
Output: Best subtree Tα

1 Grow a full tree T0 on a training dataset using recursive binary splitting. Use the stopping criterion
minsplit which is the minimum number of observations in a region for a split to be attempted;

2 Prune the full tree T0 to subtrees Tα using cost-complexity pruning;
3 Divide the training dataset into K folds to determine the optimal tuning parameter α;
4 for k = 1, . . . , K do
5 Repeat steps 1 and 2 on all except for the k-th fold;
6 Compute the mean squared prediction error on the hold out k-th fold using Tα;
7 end
8 Average the results for each value of α and pick α that minimizes the average prediction error;
9 Return the best subtree Tα;

2.2 Random forests

Random forest regression was �rst developed by [1] and it refers to an ensemble of unpruned regression trees
{T(x, Θb), b = 1, 2, ..., B} which are generated based on a bootstrap sampling from the original training
dataset. As a result, we can think of {Θb} as independent and identically distributed random vectors. With
B as the total number of bootstrap samples, we de�ne the model for the response variable as the average of
all the regression trees in the random forest:

fB(x|Θ) =
1
B

B∑
b=1

f (x|Θb)

By the Strong Law of Large Numbers, as B →∞, we have

Ex,y(y − fB(x|Θ))2 → Ex,y(y − Eθ f (x|Θ))2 a.s.

Random forests produce a limiting value of the generalization error and this explains why they do not over�t
as more trees are added.

For each bootstrap sample, the regression trees are produced using a random subset of explanatory vari-
ables in order to decrease the similarity among the trees. The average prediction of multiple regression trees
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is expected to have a lower variance than that of individual regression trees. While larger random set of ex-
planatory variables can improve the predictive capability of individual trees, it can also increase the similar-
ity among the trees and could therefore void any gains from averaging multiple predictions. The size of the
random subset of explanatory variables can be optimally chosen through cross validation; some use rule of
thumbs such as the square root of the total number of explanatory variables,√p, in the training dataset.

The bootstrap resampling of the data for training each tree also increases the variation between the trees.
The accuracy of a random forest depends on the strength of the individual tree and ameasure of the similarity
between them.

For implementing random forests in R, see [20]. The procedure to produce random forests is summarized
in Algorithm 2.
Algorithm 2: R-package: randomForest
Input: Training dataset x, y, B
Output: {T(x;Θb), b = 1, 2, ..., B}

1 for b = 1, . . . , B (ntree) do
2 Draw a bootstrap sample of size sampsize from the training data;
3 Grow a full tree Tb(x;Θb) on the bootstrap sample using recursive binary splitting and selecting

mtry variables at random from the p explanatory variables with stopping criterion nodesize;
4 end
5 Return the ensemble of trees {T(x;Θb), b = 1, 2, ..., B};
6 Average fB(x|Θ) =

1
B
∑B

b=1 f (x|Θb);

2.3 Gradient boosted regression trees

Developed by [9], gradient boosting algorithm involves building several regression trees sequentially. For
each new iteration in the sequential process, a regression tree is grown using information from previously
grown regression trees. In other words, each subsequent regression tree focuses on learning from the resid-
uals obtained from previous trees. The result is a set of S regression trees Ts(x;Θs), for s = 1, . . . , S. The
gradient boosted regression tree model is expressed as the sum of such trees:

FS(x|Θ) =
S∑
s=1

fs(x|Θs),

where Θs = {Rms , cms}Ms
m=1 and fs(x|Θs) are the correponding models produced by the trees Ts(x;Θs). Here,

S is also referred to as the number iterations in the process. For each step s, we �nd the optimal Θs by solving
the problem:

Θ̂s = argmin
Θs

N∑
i=1

L(yi , Fs−1(xi|Θ) + fs(xi|Θs)). (4)

We note that

Fs(xi|Θ̂) = Fs−1(xi|Θ̂) +
Ms∑
m=1

ĉms1Rms (xi),

where ĉms = argmin
c

∑
xi∈Rms L(yi , Fs−1(xi|Θ) + c).

Under the sum of squared errors (SSE) loss function, it simpli�es to the regression tree that best predicts
the current residuals yi − Fs−1(xi|Θ̂), and ĉms is the mean of these residuals in each corresponding region.

For other di�erentiable loss functions, the solution to equation (4) can be obtained by numerical opti-
mization via gradient boosting as described in [9]. The regression trees Ts(x;Θs) produced at each step are
analogous to the components of the negative gradient:

gis = −∇fs−1L(yi , Fs−1(xi|Θ)) = −
[
∂L(yi , F(xi|Θ))
∂F(xi|Θ)

]
F(xi|Θ)=Fs−1(xi|Θ)

for i = 1, . . . , N .
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Therefore, solving equation (4) is equivalent to solving the following:

Fs(xi|Θ) = Fs−1(xi|Θ) + γs

N∑
i=1

gis

where

γs = argmin
γ

N∑
i=1

L
(
yi , Fs−1(xi|Θ) + γgis

)
Gradient boosting regression models can be implemented using the R package gbm. See [29] and [30]. The
process is summarized in in Algorithm 3.
Algorithm 3: R-package: gbm
Input: Training dataset x, y, B
Output: FS(x|Θ) =

∑S
s=1 λfs(x|Θs)

1 for s = 1, . . . , S (ntree) do
2 for i = 1, . . . , N * p (p is bag.fraction) do
3 Compute gis = −∇Fs−1L(yi , Fs−1(xi|Θ));
4 Fit a regression tree Ts(x;Θs) to the targets gis giving terminal regions R1, R2 . . . , RMs :

interaction.depth = Ms and stopping criteria is n.minobsinnode;
5 for m = 1, . . . ,Ms do
6 compute ĉms = argmin

c

∑
xi∈Rms L(yi , Fs−1(xi|Θ) + c);

7 end
8 end
9 Update Fs(xi|Θ) = Fs−1(xi|Θ) + λ

∑Ms
m=1 cms1Rms (x) where shrinkage λ is used to reduce the impact

of each additional �tted base-learner, regression tree, Ts(x;Θs).
10 end
11 Return FS(x|Θ) =

∑S
s=1 λfs(x|Θs);

3 Extensions to multivariate decision trees
Decision trees discussed in the previous section are based on a single-valued response variable. In this sec-
tion, we extend the concept of decision trees in the case where we have a multiple-valued, or multivariate,
response variable. This extension has a large potential for actuarial and insurance applications where we
commonly encounter multivariate responses. See, for example, [8] and [7]. To �x ideas, we assume to have a
dataset of N observations with p explanatory variables and q response variables. That is, for i = 1, . . . , N, we
have (xi , yi) where xi = (xi1, xi2 . . . , xip) and yi = (yi1, yi2 . . . , yiq). Multivariate decision trees are naturally
extended from the univariate trees by expressing the loss function that is based on the multivariate nature of
the responses in order to capture the possible association of the multiple responses. Here we discuss three
possible extensions: multivariate regression trees (MRT), multivariate random forests, and multivariate tree
boosting. The steps in Algorithms 1-3 are very similar to that of multivariate decision trees; the only di�erence
lies in the splitting criteria which is based on multivariate loss function.

3.1 Multivariate regression trees

The idea of multivariate regression trees originated in ecology by [3] where the author analyzed relationships
between multiple species and the environment. Similar to the univariate case, we produce regression tree by
partitioning the space of the explanatory variables intoM disjoint regions R1, R2, . . . , RM and then assigning
constant cmk for each region Rm, m = 1, 2, . . . ,M in the k-th response for k = 1, 2, . . . , q. De�ne the vector
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of k constants as cm = (cm1 , cm2 , . . . , cmq ). Given the regression tree, the multivariate response variable for
each observation is then modeled as

f (xi|Θ) =
M∑
m=1

cm · 1Rm (xi), (5)

where Θ = {Rm , cm}Mm=1 denotes the partition with the assigned constants. In themultivariate regression
trees (MRT) developedby [3], onemethod to�nd the constants cm is tominimize amultivariate sumof squared
error loss function as:

L(yi , ŷi) =
N∑
i=1

(yi − ŷi)T(yi − ŷi), (6)

where ŷi is the predicted value of the multivariate response based on equation (5). For the conventional
sums of squared deviations, each terminal nodes can be represented by the multivariate mean of response
variables, the number of observations at the terminal node, and the explanatory variable that de�nes the
segmentation. This is similar to the univariate case where in the multivariate extension, we can demonstrate
that ĉmk is the average of the k-th response yik in the region Rm.

Although [3] primarily focused on the sums of squared deviations, he discussed extensions of the concept
of multivariate regression trees by using two other multivariate loss functions. One of these loss functions is
based on the multivariate sums of absolute deviations about the median as de�ned below:

L(yi , ŷi) =
N∑
i=1

q∑
k=1
|yik − ỹk| (7)

where ỹk is themedian for the response variable k. Thismeasure is generallymore robust to outlierswhen
compared to the conventional sums of squared deviations. The other extension is using a distance-based
measure by considering the sums of squared dissimilarities within decision nodes. Therefore in this case,
because we want regions to be as dissimilar as possible, the splitting criterion is to maximize the reduction
of within-node sums of squared distances at each split.

As with univariate regression trees, this extension to multivariate regression trees also inherits some of
its advantages such as improved predictions, especially when the data includes missing values, lack of bal-
ance, nonlinearity, andhigh order interactions. Furthermore,multivariate regression trees provide bene�ts of
grouping e�ects on the response variables. In otherwords,we can consider this procedure to be characterized
as a constrained clustering. There are a few ways that we can interpret this. First, we can visualize the contri-
butions of the relative importance of each explanatory variable in the split of the tree model. Second, we can
display the multivariate group means in the terminal nodes, as well as clustering information, through the
use of tree biplots constructed with dimension reduction by principal components. This is further discussed
in the section on data estimation. We use the R package mvpart for calibrating the multivariate regression
trees to data.

In his survey paper, [21] provided a short discussion about similar work on regression trees for longitudi-
nal and multiresponse variables. It is worth mentioning that the unbiased recursive partitioning framework
for building trees proposed in [16] can be extended to multivariate regression trees.

3.2 Multivariate random forests

Recall that in the univariate case, we describe the concept of random forest where we generate an ensemble
of regression trees using bootstrapping resampling. This technique has the advantage of producing better
predictions by avoiding over�tting, an aspect of random forest regression that is often underappreciated. To
similarly improve predictions with multiple responses, [31] extended the idea of multivariate random forests
for applying regression treeswhen theremaybeanticipateddependencies among the several responses. First,
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in this technique, recursive binary splitting for partitioning the space of explanatory variables byminimizing
a ‘covariance’ weighted loss function as de�ned by

L(yi , ŷi) =
N∑
i=1

(yi − ŷi)TV−1(yi − ŷi), (8)

where V = Cov(y) represents the covariance matrix of the multivariate response variable. The depen-
dence structure is characterized by this covariance that can be described to capture di�erent patterns (e.g.,
compound symmetry, unstructured, autoregressive, spatial power). Similar to univariate random forests, we
generate an ensemble of such multivariate decision trees using bootstrap resampling.

In [40], multivariate random forests was applied in the area of genetics to examine and analyze “tran-
scriptional regulation networks” that are said to be important for understanding the physiological processes
in yeast under various stress conditions. In ecology, [31] applied multivariate random forests to identify var-
ious environmental characteristics and understand their e�ects on the habitat of several spider species. In
particular, the results revealed a “dynamic relationship between environment and species”. To be able to
compare the results betweenmultivariate regression trees andmultivariate random forests, [31] used the same
dataset as that used by [3]. Themultivariate random forests did not produce reasonable results for our dataset
and therefore, we did not present the results from this technique. However, this technique has advantages
that may work for other datasets and therefore we provide this discussion.

3.3 Multivariate tree boosting

In order to �nd and interpret structure in datasets with multiple response variables and several explana-
tory variables (even possibly exceeding the sample size), [24] introduced the idea of extending the gradient
boosted regression models to the multivariate case. This gives rise to the term multivariate tree boosting. In
their abstract, [24] said that this extension “is amethod for nonparametric regression that is useful for identi-
fying important predictors, detecting predictors with nonlinear e�ects and interactions without speci�cation
of such e�ects” where the multivariate response variable represents several outcomes that are correlated.

The concept of multivariate tree boosting has similarities to the multivariate regression trees discussed
in section 3.1. Regression trees are also constructed based on the multivariate response variable where each
tree is modeled in terms of the optimal partitions of the space of explanatory variables into regions. The con-
stants assigned in the regions are identi�ed according to the solution ofmiminimizing themultivariate sumof
squared error (SSE) loss function as de�ned in equation (7). However, unlike themultivariate regression trees,
the multivariate tree boosting constructs several trees, as in the univariate tree boosting, done sequentially
where at each iteration, a regression tree is grown through learning and using information from previously
grown trees. Learning is accomplished by an examination of the residuals; those with smaller residuals (ob-
servationswith goodpredictions) are assigned smallerweights than thosewithhigher residuals (observations
with bad predictions) in the next iteration. During the learning process, splits are limited for each iteration
without having to produce a fully grown tree which may result in over�tting. In essence, the model perfor-
mance is “boosted” by correcting bad predictions. Multivariate tree boosting can be implemented using the
R package mvtboost that is based on [24].

In [24], multivariate tree boosting was applied in the area of psychology to understand the impact of
demographic characteristics as well as physical and health states on the psychological well-being of aging
adults. In the paper, psychological well-being is the multivariate response variable with six scales: “auton-
omy, environmental mastery, personal growth, positive relationships with others, purpose in life, and self-
acceptance.” Interestingly, [28] applied the concept of gradient multivariate tree boosting for longitudinal
data that is based on understanding the health status of patients over time after lung transplantation.

Todescribe the algorithms for themultivariate extension,weuse themultivariate responsewith the corre-
spondingmultivariate loss function inAlgortihms 1, 2, and3. To easeuseof theRpackages,wealso summarize
the hyperparameters that required tuning for the various decision tree methods in Table 6 in the appendix.
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4 The LGPIF Data
For the empirical section of this paper, we use the dataset with information about the insurance coverage
for buildings, vehicles, and equipments of local government units in Wisconsin. These units include, for ex-
ample, cities, towns, villages, counties, school districts, �re departments, and other miscellaneous entities
in the state. Funds to cover property and casualty insurance coverages for these local government units are
established by the Wisconsin Local Government Property Insurance Fund (LGPIF). This dataset was drawn
from a project of the actuarial research group at the University of Wisconsin and additional details about this
project can be found at the website. This dataset has been extensively studied and analyzed in [6], [7], and
[32]. We do not replicate the GLM approach used on this same dataset in earlier works. Instead, to analyze
the multivariate structure of the data, these previous works used mainly parametric models; this paper em-
phasizes the bene�ts of using tree-based models without having to specify probability distributions. For our
purpose, we used observations for years 2006-2010 as training set and year 2011 as validation set.

In the LGPIF data, there are six types of insurance coverage: Building and Contents (BC), Contractor’s
Equipment (IM), Comprehensive New (PN), Comprehensive Old (PO), Collision New (CN), and Collision Old
(CO). BC provides insurance for buildings and their contents, IM provides insurance for equipments mainly
belonging to contractors, and the rests provide comprehensive and collision coverages for moving vehicles.
For more description of these types of coverages, please refer to Table 3 of [6]. For our purpose of �tting
tree-based models, we examine a multivariate response variable with six di�erent components, with each
component associated to each of the six types of insurance coverages.We describe these six variables in Table
1. We note that these variables are transformed with a logarithmic scale where we added one to each average
claim size, per year, to accommodate the zero claims. Zero claims indicate either there was no claims made
or simply no coverage provided for the year. From hereon, we will simply describe these as the logarithm of
the claim size.

Table 1: Description of the six components of the multivariate response variable.

Variable code Description

yAvgBC Log of the average building and contents claim size
yAvgIM Log of the average contractor’s equipment claim size
yAvgPN Log of the average comprehensive new vehicles claim size
yAvgPO Log of the average comprehensive old vehicles claim size
yAvgCN Log of the average new vehicle collision claim size
yAvgCO Log of the average old vehicle collision claim size

Table 2 provides summary statistics for the logarithm of the claim sizes for the training dataset, which
consists of observations for the period years 2006-2010. The proportion of positive claims for BC is about 30%,
the highest among all types of coverage; for all other types of coverage, the proportion of positive claims
ranges between 4% and 6%. The means of the logarithm of the claim sizes for all types are in the range of 7.5
to 9.0, or in terms of the original dollar scale, this range is between 1800 and 6500, with BC giving the largest
mean claim size. The table also indicates that the largest claim size comes from the BC type of coverage.

Figure 3 provides density plots of the logarithm of the claim sizes where we excluded the zeroes and, for
ease of comparison, we used the same scale for all types of coverage. The top portion gives the frequency
by count while the bottom portion gives the frequency by proportion. We can deduce some interesting ob-
servations from these plots. First, as also indicated in Table 2, the BC coverage clearly shows most frequent
positive claims and the top portion of the �gure shows that this is also true for all ranges of claim sizes. Sec-
ond, as shown in both the top and bottom portion, the BC coverage has the largest variability among all types
and also the most positively skewed distribution. Finally, we also observe a variety of distribution shapes for

https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund
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Table 2: Summary statistics of the six components of the multivariate response variable, 2006-2010 (training dataset).

yAvgBC yAvgIM yAvgPN yAvgPO yAvgCN yAvgCO

Percent of zeroes 70.34 95.84 94.42 95.35 93.45 93.55
Minimum 0.69 0.69 3.58 3.71 5.24 0.69
1st Quantile 7.79 7.24 7.19 7.08 7.35 7.56
Mean 8.75 8.42 7.64 7.71 8.12 8.22
Median 8.56 8.41 7.76 7.71 7.96 8.08
3st Quantile 9.55 9.46 8.18 8.37 8.85 8.85
Maximum 16.37 13.09 10.71 12.04 10.68 12.41

the di�erent types of coverage. If we consider the large point mass at zero, this presents a challenging task
of specifying marginal parametric distributions for these claims. This is one reason we use distribution-free
tree-based models to �t these claim sizes.

We also provide Figure 4 which also shows how frequent claims are for the BC coverage because of the
dominance of the shade for this coverage. This �gure is a stacked density graphwhich includes the zero claim
sizes. However, at zero claim size, BC does not dominate; as shown in Table 2, BC has the smallest proportion
of zeroes.

Our primary interest is to build tree-based models that account for the dependence among the compo-
nents of amultivariate response variable. Hence,we also need to examine evidence of the presence of correla-
tion between the components. In this case, we present Figure 5 to show the strength of dependence between
the components, with a darker shade and larger circle indicating stronger correlation. To illustrate, we �nd
that coverage PN andPOhas the largest correlation of 0.51. Interestinglywe also note that all pairs of coverage
have positive correlations.

In the Appendix, we de�ne the explanatory variables we consider in constructing the regression trees. In
general, the continuous explanatory variables are logarithms of the coverage amount for each type andnotice
that for coverage type BC and IM, we have deductible amounts. No deductible amounts are available for the
other types. Similarly, for the categorical explanatory variables, we have indicators for entity type (e.g., city,
town, school district) aswell as indicators for “no claim credit” for each type of coverage. The latter indicators
provide information about the presence or absence of claims in the prior year. See Appendix for more details
including statistics.

Asdone in the two-partmodel of [7],weused log-transformedcoverageamounts as explanatory variables.
In other approaches especially for the severity component, coverage amounts may be alternatively used as
exposures in the model. However, treating them as explanatory variables is the correct approach for us since
we do not separate the frequency and severity components. The zero part of the claim will lose coverage
information when treated as exposure.

5 Model calibration
In this section, we calibrate and build regression tree-based models to the LGPIF data described in Section
4. For the purpose of this section, we use the data for years 2006 to 2010 as our training sample. A cruical
part of successfully training a tree-based model is to control model complexity in order to maintain a good
balance between bias and variance that leads to high prediction accuracy. More speci�cally, a simple tree-
based model may cause under�tting (low variance) with high bias; on the other hand, a complex tree-based
model may cause over�tting (low bias) with high variance. See [15]. To address these issues, for training tree-
based models, we use k-fold cross-validation on the training sample in tuning the parameters. In applying
cross-validation to �nd the optimal set of tuning hyperparameters, the grid search is the most commonly
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Figure 3: Density plots of the logarithm of the positive claim size by type of coverage, 2006-2010 (training dataset)
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Figure 5: Correlations between components of the multivariate response variable

used algorithm that employs an exhaustive search process on speci�ed subset of hyperparameter space. We
choose the �nal model with the lowest cross-validation prediction error.

R codes can be readily provided upon request and at a future date, these codes will be posted on our
research grant website.

5.1 Fitting univariate decision tree models

5.1.1 The univariate regression trees based on CART

In �tting the CART procedure to our training dataset, without loss of generality, we only consider the com-
ponent BC. We �rst grow a full tree using recursive binary splitting starting with a minimum number of �ve
observations in a region for a split to be attempted. The stopping criterion of a minimum number of �ve ob-
servations is the result of tuning this parameter; the default for the rpart package is 20. We next prune this
full grown tree using cost-complexity pruning with 10-fold cross validation to determine the optimal number
of splits, which in our case is 8. The result of the pruning process can be visualized in Figure 6 that shows the
cost-complexity parameter, or equivalently the number of splits, in relation to the cross-validation relative er-
ror. This cross validation relative error is simply the percentage change in the mean squared prediction error.
By choosing the cost-complexity parameter that corresponds to the smallest cross validation relative error,
the �gure shows that the optimal number of splits is 14. However, it is recommended to adjust the choice of
this optimal number of splits by considering one standard error above this minimum relative error as indi-
catedwith a horizontal line. This adjustment is necessary to avoid over�tting. Hence, this gives parsimonious
model to choose 8 as the optimal number of splits. See [2]. The red dot corresponds to the smallest cross val-
idation relative error while the orange dot corresponds to the one standard error above this cross validation
relative error.
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Figure 6: Choosing the optimal number of splits

In Figure 6, the green dots refer to the training relative error with each successive split reducing themean
squared prediction error.

After accounting for the optimal cost-complexity, we produce the optimal univariate regression tree in
Figure 7 using [23]. The nodes at the bottom provide the information on prediction values. The �gure shows
the set of explanatory variables and split points used to form the nodes. The explanatory variable with the
most signi�cant e�ect is selected for the �rst split and each following split is conditioned on all previously
selected explanatory variables. For example, the �rst split uses CoverageBC which has the most signi�cant
e�ect and divides into two child nodes. Hence, the decision tree model can capture interactions between
explanatory variables.

5.1.2 Random forest regression

The recursive partitioning algorithm used in constructing decision trees often lead to the problems of over�t-
ting. It is well established that such over�tting can lead to unreliable prediction of future or newobservations.
In other words, decision tree models can drastically change from sample to sample, which leads to low pre-
diction accuracy. A remedy for over�tting is the use of random forests. Because of themultiplicy of regression
trees necessary in random forests, we focus our discussion on two important aspect of �tting random forest
regression.

An important phase is determining the number of trees to generate that will eventually be used for pre-
diction. Figure 8 shows the relationship between the number of trees and the out-of-bag (OOB) error rate. The
performance of the estimation is measured based on the out-of-bag samples that were not used during the
learning stage. The prediction error computed from this estimation is called the OOB error. As to be expected,
the fewer the trees, the larger this OOB error. However, due to large sample theory, the OOB error rate will
eventually level o� and deciding on the number of trees for building the random forests is based on this lev-
eling o�, as demonstrated in Figure 8. In deciding on the number of trees, we need to address the balance of
using many trees in order to get more stable prediction and using fewer trees in order to achieve e�ciency.
Based on the �gure, we decid that the optimal number of trees to use is 200.
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Figure 9: Variable importance in random forest regression

Another important phase is themeasurement of the variable importance produced by the random forests
using the selected optimal number of trees. In this case, there are two popular variable important measures
used. The �rst one incorporates a weighted mean of the improvement of the individual trees based on the
splitting criterion produced by each explanatory variable; [9]. The “IncNodePurity” measures the degree of
impurities of a split at each node of a tree based on the loss function. This is accomplished by adding up
all the decreases in the loss function for each explanatory variable over all the trees in the random forests.
A higher value of the “IncNodePurity” represents a higher variable importance. Figure 9 shows CoverageBC
has highest IncNodePurity with 28414 and followed by lnDeductBC with 4623.

The second commonly used measurement is the permutation accuracy importance. “%IncMSE” calcu-
lates the deterioration of the prediction accuracy of the random forests when permuting the values of each
explanatory variable of the test set in order to break the association with the response variable. For random
forest regression, it is the average increase in squared residuals of the test set when the explanatory variable
is permuted. A higher %IncMSE value represents a higher variable importance. Figure 9 shows CoverageBC
has highest %IncMSE with 7.95%, followed by TypeSchool with 1.26% and lnDeductBC with 1.21%.

It is typically understood that %IncMSE provides the more accurate measure for variable selection be-
cause the IncNodePuritymayhave abias in the variable selection inherited by the regression tree. To illustrate
such a bias, potential explanatory variables may vary in their scale of measurement or their number of cat-
egories. This explains the variable importance may vary signi�cantly between the two measures for some
datasets, however, our dataset does not present this issue. Random forests variable importance measures
may still be a sensible means for variable selection in many applications, but may not be too reliable in other
situations. See [33].

5.1.3 Gradient boosting

Both the random forests and the gradient boosting aremajor improvements to the CART algorithm in terms of
prediction accuracy. While both create ensemble of trees fromweak learners, gradient boosting is performed
iteratively to develop a strong learner. For details of the procedure for gradient boosting, please see section
2.3. In �tting gradient boosted trees to our dataset, wemainly used the gbm R package. The procedure includs
tuning for the number of trees to grow and the size of the weak learner tree. Based on our dataset, we use
10-fold cross validation to determine these tuning parameters and we �nd that the optimal number of trees
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is 1000, the interaction depth is 5, the minimum number of observations to terminate the splitting process is
5, and the shrinkage parameter is 0.005.

The result of creating gradient boosted regression trees is best summarized in terms of the relative in�u-
ence of the explanatory variables. In this case, the relative in�uence is calculated by the number of times an
explanatory variable is selected for splitting, weighted by the improvement in the sum of squared errors to
themodel as a result of each split, and then, averaged over all the trees. See [11]. The relative in�uence of each
variable is further standardized so that the sum adds up to 100%, with the larger value indicating a stronger
in�uence on the response variable. Figure 10 displays the relative in�uence of the explanatory variables with
the highest impact in predicting yAvgBC. According to this �gure, it is not surprising to �nd that CoverageBC
is the most dominant explanatory variable with 60.28%; this is followed by lnDeductBC with 13.56%.

5.2 Fitting multivariate decision tree models

5.2.1 Multivariate regression trees

In this and the subsequent subsection,wediscuss the results of �ttingmultivariate tree-basedmodels. Similar
to the univariate case,we select the complexity parameter to determine the optimal size of the tree andwe can
accomplish this by examining Figure 11, which displays the relationship between the complexity parameter
and the cross-validation relative error of the prediction. It can be inferred from this �gure to select 0.0064 as
the cost-complexity parameter. See Figure 6 for additional details.

After the cross-validation, we produce the �nal multivariate regression trees using our training dataset
and this is displayed in Figure 12. This is the smallest tree within one standard error of the minimum relative
error. This tree has eight terminal nodes with an estimated predictive error that explains (1-0.739)*100% of
total variance. During each recursive binary splitting, it also shows the cyclical shadings across the bar plots
that indicate the six response variables di�erentiated from left to right. At each terminal node, the height
of each bar gives the mean of the respective response variables and n indicates the number of observations
within that node. Recall that the split is determined according to the multivariate squared error loss function
that captures the dependence structure of the multivariate response. Colored circles help to identify each
node.
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Figure 11: Choosing the optimal number of splits for the multivariate regression trees

The length of the branch is strictly proportional to the reduced amount of the variance (SSE) by the ex-
planatory variable used in the split. The length of each branch is proportional to the percentage of explained
variance and the splits are in descending order of importance. Note from Figure 11 that TypeCounty variable
explains most of the variance; in particular, immediately following the �rst split, the �nal tree explains (1-
0.841)% of the variance, while the rest of the splits together account for (0.841-0.739)% of the variance. This
is in contrast from Figure 7 where CoverageBC was chosen as the �rst split.

It is di�cult to compare the di�erences of the level of claims for each component of the response vector:
BC, IM, PN, PO, CN, and CO. This is because the mean response is multivariate for each terminal node. How-
ever, multivariate regression trees can be viewed as constrained clustering. The terminal nodes are similar to
clusters with respect to a measure of dissimilarity, e.g., squared error loss function, with each cluster de�ned
by the region {R}Mm=1. See [14]. Still this makes it di�cult to visualize but we reduced the dimensionality us-
ing the �rst two principal components in a Principal Component Analysis (PCA); the details of this dimension
reduction are not necessary for our purpose. We refer the reader to [18].

In Figure 13, we show the biplots representing the tree structure in Figure 12. See [12] and [35]. In the tree
biplot, the large colored circles, consistent with the terminal nodes, represent the response vector means in
the terminal nodes. The small colored points, again consistent with each node, represent PCA-projected indi-
vidual observations. The label for each response variable in the �gure is indeed the corresponding weighted
mean calculated from the means of all the terminal nodes. From the �gure, we deduce that the overall aver-
age claim for BC is very far apart from those of the lines of coverage. We can also see that the overall average
claims for CN, CO, PN, and PO are relatively close; these lines of coverage all refer to moving vehicles. In
addition, this helps explain the relatively weak dependence between BC and other lines; see also [7].

5.2.2 Multivariate tree boosting

In this subsection,we improve themultivariate regression treeswith gradient boostingwherewe sequentially
grow trees by learning the information from previously grown trees. The �rst important step is to determine
the optimal size of the tree as well as other tuning parameters. Figure 14 displays the mean squared error in
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Figure 14: Determining the optimal size of the tree for the multivariate tree boosting

relation to the size of the tree. Here we show the mean squared error based on the training dataset as well
as the result based on 10-fold cross-validation. From this �gure, we conclude that the optimal size of the tree
should be 1495. We note that this �gure was based on a shrinkage of 0.005; this shrinkage parameter was
determined on a trial-and-error basis through several iterations.

Similar to the univariate gradient tree boosting, it is important to determine the relative in�uence of each
explanatory variable because this reveals their degrees of variable importance. Excluding some irrelevant
explanatory variables from the models is favorable for prediction accuracy. To understand the variable im-
portance of all the explanatory variables with respect to all response variables, we display this in the form
of a heat map Figure 15 which lists the explanatory variables on the x-axis and the six response variables
on the y-axis. To illustrate, consider the BC coverage where we �nd that these three explanatory variables
have the following relative variable importance: CoverageBC with 59.2%, CoverageIM with 19.0%, and lnD-
eductBC with 10.7%. Furthermore, it is apparent from the �gure that the variable TypeCounty is important
across the di�erent coverage. We recall that the explanatroy variable TypeCounty is used at the �rst split in
the MRT, see the �gure 12. For each coverage in the �gure, we can examine the relative variable importance
horizontally. In the �gure, the numbers displayed, as well as the darkness of the shade, provide a sense of the
degree of variable importance. The variable importance here account for the dependence structure between
the variables.

Another way to explain the e�ect of each explanatory variable to the dependence structure is to measure
the contribution of each variable to the changes in the covariance. [24] de�ned the covariance discrepancy,
D, to measure the di�erence between sample covariance matrices, Σ̂, of multiple response variables at each
gradient descent step. At each gradient descent step b, the explanatory variable chosen by the algorithm,
explains the covariance discrepancy, Db,k, after the k-th response variable �tted where

Db,k = ‖Σ̂(b−1) − Σ̂(b,k)‖.

Summing overall the covariance discrepancies at each step measures the contribution to the covariance ex-
plained by each speci�c explanatory variable. Figure 16 shows a heatmap of the covariance discrepancies
for any pair of response variables (y-axis) as explained by each explanatory variable (x-axis). We can deduce
from the �gure that TypeCounty, CoverageCN, and CoverageCO explain covariance discrepancies across a
wide range of pairwise response variables. In essence, these explanatory variables are useful for detecting
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Figure 15: A heatmap of variable importance using multivariate tree boosting

the presence of dependency for the multivariate response. On the other hand, coverageBC explains most of
the covariance discrepancies only for pairs that contain BC, and coverageIM explains most of the covariance
discrepancies only for pairs that contain BC or IM.

Additional information that provides the e�ect of each explanatory variable for each response variable
is provided in the appendix.

6 Model validation and comparison
This section provides details about the result of comparing the performance of our �ve di�erent models. For
this purpose, we use the calibrated models discussed in the previous sections to make predictions based
on the validation (or test) dataset. In addition, we compare the various models only for BC; we extracted
the prediction for yAvgBC from the marginals for multivariate tree-based models. This is done in order not
to overwhelm the reader, and at the same time, BC coverage has the most number of observations. Similar
comparisons can bemade for other coverages. For summary statistics for this test dataset, we refer the reader
to the appendix.

There are several prediction accuracy measures but there is no unique perfect measure that can be used
to judge prediction accuracy under all circumstances. Each measure has its own focus, which also leads to
its shortcomings. To make a fair comparison between di�erent models, we utilize a few popular measures.
These measures are: coe�cient of determination R2, Gini index, mean error (ME), mean percentage error
(MPE), mean squared error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
These validation measures are each de�ned in the appendix.

The results of comparing the performance measures of the �ve tree-based models we calibrated are sum-
marized in Table 3. The comparative values from these tables are straightforward to interpret, however, it is
better to make model comparisons based on these values graphically. Figure 17 provides a heatmap compar-
ing the performance of the variousmodels according to the validationmeasures. For ease of comparison, this
heatmap has been organized by rescaling all themeasures so that for eachmeasure, a value of 100 is the best
and a value of 0 is theworst. For R2 and theGini index,we know that the higher the better; for thesemeasures,
we �nd the highest value in each column and scale it to 100. For all the other measures, since the smaller the
better, wemultiplicatively invert (take the reciprocal) the original value and then apply the rescale. The �gure
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Figure 16: A heatmap of covariance discrepancies for pairs of response variables

is also color coded so that dark blue represents the best and the dark red represents the worst. Anything that
performs in between is relatively measured according to their degree of closeness to each of these colors.

Overall, we can say thatmultivariate tree-basedmodels generally outperform univariate tree-basedmod-
els. From �gure 17, althoughmultivariate tree boosting is not always the best predictivemodel, it is clear that,
overall, multivariate tree boosting generally outperforms all the other predictive models. Gradient boosting
and random forests, on the other hand, provide values of validation measures that are fairly close to those
from multivariate tree boosting. Multivariate tree boosting has the unique additional feature that captures
the dependency structure of the response variables. This helps the prediction accuracy only slightly better
because we do not have very strong presence of dependencies of BC with the other coverages. Not surpris-
ingly, both the univariate and the multivariate regression trees underperformed in comparison to the ensem-
ble models. This is because as already pointed out, ensemble models, such as gradient boosting and random
forsts, make weak learners into strong learners.

Table 3: Comparison of model validation measures.

Model R2 Gini ME MPE MSE MAE MAPE

Regression tree (CART) 0.177 0.346 0.065 54.300 14.572 3.026 58.381
Random forests 0.220 0.406 0.089 50.308 13.805 2.806 54.916
Gradient boosting 0.226 0.410 0.033 51.001 13.701 2.893 55.585
Multivariate regression trees 0.204 0.376 0.047 51.907 14.097 2.974 58.229
Multivariate tree boosting 0.229 0.414 0.048 50.920 13.651 2.883 55.823
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Figure 17: A heatmap of model performance according to the various validation measures

7 Concluding remarks
In this paper, we explore decision trees and its extensions as predictive models for insurance claims. Decsion
tree, or tree-based, models have increased in popularity in various disciplines (e.g., psychology, ecology, and
biology) and in recent years because of its advantages as an alternative predictive tool. In particular, we ex-
tend the usefulness of tree-based predictivemodels to the case where we have amultivariate response vector.
For the empirical part of our investigation, we analyze the LGPIF data that contains claims information about
insurance coverage for properties owned by local government units in Wisconsin. We compare the predic-
tive performance of various univariate tree-basedmodels (regression trees, random forests, boosting) against
multivariate tree-based models (multivariate regression trees andmultivariate tree boosting). Broadly speak-
ing, the multivariate tree-based models generally outperform the univariate tree-based models using a set of
di�erent validation measures. In particular, multivariate tree boosting provides the best model according to
several validationmeasures. These results explain the importance of building predictivemodels that account
for dependencies. In actuarial science, insurance, and �nance, we have witnessed in recent years the impor-
tance of capturing the dependency structure of amultivariate response when developing tools for prediction.
For future work, we plan to explore the use of multivariate decision trees where the loss function is di�erent
from the sum of squares; an evenmore interesting extension is the use of amultivariate loss function tailored
for a zero-in�ated claim structure. Another interesting theoretical and practical problem is related to dealing
with zero claims in decision trees.

Appendix A. Summary statistics for both the training and validation datasets

As stated in Section 4, we use the observations for years 2006-2010 as training dataset. In this appendix, we
provide useful summary statistics for the explanatory variables used in our analysis: eight (8) are continuous
variables and thirteen (13) are categorical variables. In addition, we also provide summary statistics of the
response variables as well as the explanatory variables for year 2011, observations of which were used as
validation dataset.
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Appendix B. The impact of each explanatory variable using multivariate tree
boosting

While boosted regression treemodels are considered black-box, we can visualize the e�ect of the explanatory
variables on the response variable using partial dependence plots. These plots provide a visual e�ect after
accounting and holding the average e�ects of all other explanatory variables. It helps to detect explanatory
variables with non-linear e�ects or interactions. However, these plots cannot be similarly interpreted to the
e�ect of coe�cients in an ordinary regression framework because of possible biases present when there are
interactions between explanatory variables. See, for example, [5].

Figure 18 shows partial dependence plots for each explanatory variables that are directly associated with
yAvgBC. This �gure also includes variable importance information as shown in �gure 15 to see how the impor-
tant explanatory variables drive the response variable when holding the average e�ects of the others. From
the �gure, we can see the non-linear e�ects of CoverageBC and lnDeductBC on yAvgBC.

Figure 19 shows partial dependence plots for each explanatory variables that are from other coverages
and that are not directly associated with yAvgBC. This �gure also demonstrates the importance of accounting
for the association of the BC coverage with the other coverages. From the �gure, we can see that CoverageIM
has a 19% relative importance but also non-linear e�ects on yAvgBC. The �gure also shows the non-linear
e�ects of several other explanatory variables, e.g. CoverageCO and CoveragePN, but these same variables
also have very low relative importance.

Appendix C. R packages for decision trees

Table 6: R packages for decision trees with tuning hyperparameters.

R package Description

rpart Classi�cation and regression tree (CART)

cp complexity parameter
minsplit minimum number of observations in a node in order to be

considered for splitting
maxdepth maximum depth of any node of the �nal tree

mvpart Multivariate regression trees

minauto automatic choice for minsplit based on number of observations
xv choices for the size of tree based on cross-validation:

“1se” one standard error rule
“min” smallest cross-validation error
“pick” interactively pick size of tree
“none” no cross-validation

gbm Gradient boosting
mvtboost Multivariate tree boosting

n.trees number of additive trees (iterations)
interaction.depth maximum depth of variable interactions:

1 implies an additive model
2 means a model with up to 2-way interactions

n.minobsinnode minimum number of observations in the region
shrinkage shrinkage parameter (the learning rate)
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Figure 18: Partial dependence plots of yAvgBC with explanatory variables that are directly associated with the BC coverage
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Figure 19: Partial dependence plots of yAvgBC with explanatory variables that are not directly associated with the BC coverage
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Appendix D. Validation measures

For purposes of comparing the models in this paper, we use the following validation measures:

• Coe�cient of Determination: R2 = 1 −
∑N

i=1(ŷi − yi)2∑N
i=1

(
yi −

1
n
∑n

i=1 yi
)2

• Gini Index: Gini = 1 − 2
N − 1

(
N −

∑N
i=1 iỹi∑N
i=1 ỹi

)
,

where ỹ is the corresponding observed value y after ranking, from lowest to highest, the corresponding
predicted values ŷ. To accommodate ties in the ranking, uniform random sampling is used.

• Mean Error: ME = 1
N
∑N

i=1(ŷi − yi)

• Mean Percentage Error: MPE = 1
N
∑N

i=1
ŷi − yi
yi

• Mean Squared Error: MSE = 1
N
∑N

i=1(ŷi − yi)2

• Mean Absolute Error: MAE = 1
N
∑N

i=1
∣∣ŷi − yi∣∣

• Mean Absolute Percentage Error: MAPE = 1
N
∑N

i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣
We generally make the following conclusions regarding these measures:
• Higher R2 is better;
• Higher Gini index is better;
• Lower ME is better;
• Lower MPE is better;
• Lower MSE is better;
• Lower MAE is better; and
• Lower MAPE is better;
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