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1 Introduction
Conditional distributions can be used to incorporate information to a given random vector. They can also be
used to construct multivariate models (see [3]). Di�erent conditioning events can be considered in di�erent
practical cases. For example, if we have the random vector (X, Y), then we could consider the conditional
distributions: (Y|X > x), (Y|X ≤ x) and (Y|X = x) which have di�erent meanings (applications) in practice.

The distorted distribution of a baseline distribution function F is de�ned by Fq = q(F) where q : [0, 1]→
[0, 1] is a continuous increasing function such that q(0) = 0 and q(1) = 1. Distorted distributions appeared
in the theory of choice under risk (see [36]) to model the uncertainty in the distribution of the variable under
study and have applications in a variety of contexts. In reliability, e.g., they can be used to represent order
statistics, coherent systems or proportional hazard ratemodels (see, e.g., [21]); in risk theory, they are used to
de�ne premiumprinciples (see [14, 31, 35]); in the context of Bayesian analysis, they are used to de�ne classes
of prior distributions (see [2]). Theywere extended in [22] to builddistortions of n distribution functions. These
representations can be used to perform stochastic comparisons (see [18–23, 33]) and to provide bounds for
distributions and expectations (see [16, 17, 25]).

In the present paperweprove that conditional distributions can be represented as distorted distributions.
The distortion function depends on the underlying copula. These representations are used to obtain stochas-
tic comparisons and bounds and to explain the meaning of mathematical properties of copulas connecting
them with some dependence concepts. Some illustrative examples are provided as well.

The rest of the article is organized as follows. The di�erent representations of conditional distributions
as distorted distributions are given in Section 2. The resulting stochastic comparisons and bounds are given
in Sections 3 and 4, respectively. The connections with dependence properties are included in Section 3. Ap-
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plications in risk theory and economics are given in Section 5. Some illustrative examples are included in
Section 6 and the conclusions in Section 7.

Throughout the paper, we say that a function g is increasing (resp. decreasing) if g(x) ≤ g(y) (≥) for all
x ≤ y. Whenever we use a derivative, an expectation or a conditional distribution, we are assuming tacitly
that they exist.

2 Representations for conditional distributions
First, we give the formal de�nition of distorted distributions.

De�nition 1. We say that Fq is a distorted distribution of a distribution function F if

Fq(t) = q(F(t)) (2.1)

for all t, where q is a distortion function, that is, q : [0, 1]→ [0, 1] is a continuous increasing function such that
q(0) = 0 and q(1) = 1.

Note that the properties of the distortion function q imply that Fq is a proper distribution function for any
distribution function F. Also note that q is a restriction of a continuous distribution function with support
included in the interval [0, 1]. As a consequence we have a similar relationship between the respective relia-
bility functions

F̄q(t) = q̄(F̄(t)), (2.2)

where F̄q = 1 − Fq, F̄ = 1 − F and q̄ is another distortion function (called dual distortion function) given by
q̄(u) = 1− q(1−u). Representations (2.1) and (2.2) are equivalent but sometimes it is better to use (2.2) instead
of (2.1) (or vice versa).

Now we can study representations for conditional distributions. Let us consider �rst the bivariate case.
The representations for the general n dimensional case are similar and will be stated later. Thus, let (X, Y) be
a bivariate random vector over a probability space. Then, from the copula theory, it is well known (see, e.g.,
[10, 26]) that its joint distribution function F can be represented as

F(x, y) = Pr(X ≤ x, Y ≤ y) = C(F(x), G(y)),

where F(x) = Pr(X ≤ x) and G(y) = Pr(Y ≤ y) are the (marginal) distribution functions of X and Y, respectively,
and where C is a copula (i.e., C is a restriction of a continuous distribution function with uniform marginals
over the interval (0, 1)). Alternatively, we might use the joint reliability function F̄ which can also be repre-
sented as

F̄(x, y) = Pr(X > x, Y > y) = Ĉ(F̄(x), Ḡ(y)),

where F̄ = 1−F and Ḡ = 1−G are the (marginal) reliability functions of X and Y andwhere Ĉ is also a copula,
called survival copula. The survival copula Ĉ is determined by the “distributional” copula C (and vice versa)
by the following relationship

Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v).

We are going to consider three di�erent conditional distributions. The �rst one is the distribution of the
random variable (Y|X ≤ x) which can be written as

Pr(Y ≤ y|X ≤ x) = Pr(X ≤ x, Y ≤ y)
Pr(X ≤ x) = C(F(x), G(y))

F(x) = q1(G(y)), (2.3)

where the distortion function is given by

q1(u) = C(F(x), u)
F(x)
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for any x such that F(x) > 0. Analogously, its reliability function can be written as

Pr(Y > y|X ≤ x) = F(x) − C(F(x), G(y))
F(x) = q̄1(Ḡ(y)), (2.4)

where the dual distortion function is given by

q̄1(u) = 1 − q1(1 − u) = F(x) − C(F(x), 1 − u)
F(x) = u − Ĉ(F̄(x), u)

F(x) .

Note that, as a consequence, the function u − Ĉ(p, u) is increasing in u for any p ∈ [0, 1) and for any copula
Ĉ. Similar representations can be obtained for (X|Y ≤ y).

The second option is the random variable (Y|X > x) whose reliability can be written as

Pr(Y > y|X > x) = Pr(X > x, Y > y)
Pr(X > x) = Ĉ(F̄(x), Ḡ(y))

F̄(x)
= q̄2(Ḡ(y)), (2.5)

where the dual distortion function is given by

q̄2(u) = Ĉ(F̄(x), u)
F̄(x)

for any x such that F̄(x) > 0. Analogously, its distribution function can be written as

Pr(Y ≤ y|X > x) = F̄(x) − Ĉ(F̄(x), Ḡ(y))
F̄(x)

= q2(G(y)), (2.6)

where the distortion function is given by

q2(u) = F̄(x) − Ĉ(F̄(x), 1 − u)
F̄(x)

= u − C(F(x), u)
F̄(x)

.

Note that, as a consequence, we obtain again that the function u − C(p, u) is increasing in u for any p ∈ [0, 1)
and for any copula C. Similar representations can be obtained for (X|Y > y).

In the third option we consider the usual conditional distribution, that is, the distribution of the random
variable (Y|X = x). In this case we need to assume that the random vector has an absolutely continuous joint
distribution. Throughout the paper, we assume this as long as we consider this case. Then the (one) joint
probability density function (pdf) f of (X, Y) can be written as

f (x, y) =a.e. f (x)g(y)∂1∂2C(F(x), G(y)), (2.7)

where =a.e. denotes equality almost everywhere, f (x) =
∫ +∞
−∞ f (x, z)dz =a.e. F′(x) and g(y) =∫ +∞

−∞ f (z, y)dz =a.e. G′(y) are the (some) marginal density functions of X and Y and where ∂iC(u, v) denotes
the partial derivative with respect to the ith variable of C, for i = 1, 2. We use these marginal pdf throughout
the paper. Hence we have the following representation.

Proposition 2.1. For almost surely all x, a version of a distribution function of (Y|X = x) can be written as

Pr(Y ≤ y|X = x) = q3(G(y)), (2.8)

where q3 is a distortion function given by q3(u) = ∂1C(F(x), u) for u ∈ (0, 1).

Proof. For a �xed x such that

f (x) =
+∞∫
−∞

f (x, z)dz > 0,
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from (2.7), a version of the distribution function of the random variable Y conditioned on the set X = x can
be written as

Pr(Y ≤ y|X = x) =
y∫

−∞

f (x, z)
f (x) dz

=
y∫

−∞

g(z)∂2∂1C(F(x), G(z))dz

= ∂1C(F(x), G(y)) − lim
u→0+

∂1C(F(x), u).

In particular, we have

1 = lim
y→∞

Pr(Y ≤ y|X = x) = lim
u→1−

∂1C(F(x), u) − lim
u→0+

∂1C(F(x), u). (2.9)

Moreover, we know from Theorem 2.2.7 in [26, p. 13] that ∂1C(F(x), u) is an increasing function of u and that
0 ≤ ∂1C(F(x), u) ≤ 1, which, together with (2.9), implies

lim
u→1−

∂1C(F(x), u) = 1 and lim
u→0+

∂1C(F(x), u) = 0.

Therefore, q3 is a distortion function and (2.8) holds.

The joint pdf of (X, Y) can also be written as

f (x, y) =a.e. f (x)g(y)∂1∂2Ĉ(F̄(x), Ḡ(y)).

Then, under the assumptions of the preceding proposition, the reliability function of the conditional random
variable (Y|X = x) can be written as

Pr(Y > y|X = x) = q̄3(Ḡ(y)), (2.10)

where the dual distortion function q̄3 is given by

q̄3(u) = 1 − ∂1C(F(x), 1 − u) = ∂1Ĉ(F̄(x), u).

Similar representations can be obtained for a version of (X|Y = y) when g(y) =
∫ +∞
−∞ f (z, y)dz > 0.

Open Problem 1. One anonymous reviewer note that the property

lim
v→0+

∂1C(u, v) = 0 for 0 < u < 1,

(obtained in the proof of the preceding proposition) is not true for all the copulas providing the following coun-
terexample. Let C(u, v) = uv/(u + v − uv) for (u, v) ∈ [0, 1]2 be a Clayton copula and let us consider the copula
D de�ned by

D(u, v) =
{

(v − C(1 − 2u, v))/2, for 0 ≤ u ≤ 1/2, 0 ≤ v ≤ 1
(v + C(2u − 1, v))/2, for 1/2 < u ≤ 1, 0 ≤ v ≤ 1.

The copula D is twice di�erentiable and ∂1D(1/2, v) = 1 for all 0 < v < 1. Hence the limit when v tends to 0+

is 1 not 0. The explanation is the following. A straightforward calculation shows that the pdf d of D satis�es
d(1/2, v) = 0 for all 0 < v < 1. Hence the �rst marginal at 1/2 is d1(1/2) =

∫ 1
0 d(1/2, v)dv = 0. So we cannot

apply Proposition 2.1 to (V|U = 1/2). The survival copula of D gives the counterexample to the second limit

lim
v→1−

∂1C(u, v) = 1 for 0 < u < 1.
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There are other conditional distributions that can also be represented as distorted distributions which
will not be studied in this paper (since the results are similar). For example, the distribution function of the
random variable (Y|X ≤ x, Y ≤ y) can be written as

Pr(Y ≤ z|X ≤ x, Y ≤ y) = Pr(X ≤ x, Y ≤ z)
Pr(X ≤ x, Y ≤ y) = C(F(x), G(z))

C(F(x), G(y)) = q4(Gy(z))

for z ≤ y, where Gy(z) = G(z)/G(y) is the distribution function of (Y|Y ≤ y) and where the distortion function
is given by

q4(u) = C(F(x), uG(y))
C(F(x), G(y))

for any x, y such that C(F(x), G(y)) > 0. Similar representations can be obtained for the random variables
(Y|X > x, Y > y), (Y|X ≤ x, Y > y) and (Y|X > x, Y ≤ y). The case x = y = t is examined in [9] given some
connections with positive dependence properties. Other cases are studied in [8, 18, 20, 24].

In the general case the joint distribution function of the random vector (X1, . . . , Xn) can be represented
as

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . , Xn ≤ xn) = C(F1(x1), . . . , Fn(xn)),
where Fi is the (marginal) distribution of Xi for i = 1, . . . , n. Alternatively, we might use the joint reliability
function represented as

F̄(x1, . . . , xn) = Pr(X1 > x1, . . . , Xn > xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)),

where F̄i is the (marginal) reliability of Xi for i = 1, . . . , n. The survival copula Ĉ is determined by the “distri-
butional” copula C and vice versa. Proceeding as in the bivariate case, we can obtain the following represen-
tations for the di�erent conditional distributions. In the �rst case, we have

Pr(Xn ≤ xn|X1 ≤ x1, . . . , Xn−1 ≤ xn−1) = C(F1(x1), . . . , Fn−1(xn−1), Fn(xn))
C(F1(x1), . . . , Fn−1(xn−1), 1) = q1(Fn(xn)), (2.11)

where the distortion function is given by

q1(u) = C(F1(x1), . . . , Fn−1(xn−1), u)
C(F1(x1), . . . , Fn−1(xn−1), 1)

whenever C(F1(x1), . . . , Fn−1(xn−1), 1) > 0.
In the second case, we get

Pr(Xn > xn|X1 > x1, . . . , Xn−1 > xn−1) = Ĉ(F̄1(x1), . . . , F̄n−1(xn−1), F̄n(xn))
Ĉ(F̄1(x1), . . . , F̄n−1(xn−1), 1)

= q2(F̄n(xn)), (2.12)

where the distortion function is given by

q2(u) = Ĉ(F̄1(x1), . . . , F̄n−1(xn−1), u)
Ĉ(F̄1(x1), . . . , F̄n−1(xn−1), 1)

whenever Ĉ(F̄1(x1), . . . , F̄n−1(xn−1), 1) > 0.
Finally, in the third option, we obtain

Pr(Xn ≤ xn|X1 = x1, . . . , Xn−1 = xn−1) = ∂1 . . . ∂n−1C(F1(x1), . . . , Fn−1(xn−1), Fn(xn))
∂1 . . . ∂n−1C(F1(x1), . . . , Fn−1(xn−1), 1)

= q3(Fn(xn)), (2.13)

where the distortion function is given by

q3(u) = ∂1 . . . ∂n−1C(F1(x1), . . . , Fn−1(xn−1), u)
∂1 . . . ∂n−1C(F1(x1), . . . , Fn−1(xn−1), 1)

for any x1, . . . , xn−1 such that ∂1 . . . ∂n−1C(F1(x1), . . . , Fn−1(xn−1), 1) > 0 and

lim
u→0+

∂1 . . . ∂n−1C(F1(x1), . . . , Fn−1(xn−1), u) = 0.

Similar expressions can be obtained from the survival copula Ĉ.
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3 Stochastic comparisons and dependence properties
We are going to study the following stochastic orders. Their basic properties can be seen in [28]. Let X and Y
be two random variables having distribution functions F and G, and reliability (survival) functions F̄ = 1 − F
and Ḡ = 1−G, respectively. If these distributions are absolutely continuous, f and g represent their respective
probability density functions. Then we say that X is smaller than Y:
• in the usual stochastic order (denoted by X ≤ST Y) if F̄(t) ≤ Ḡ(t) for all t;
• in the hazard rate order (denoted by X ≤HR Y) if the ratio Ḡ(t)/F̄(t) is increasing;
• in the reversed hazard rate order (denoted by X ≤RHR Y) if the ratio G(t)/F(t) is increasing;
• in the likelihood ratio order (denoted by X ≤LR Y) if the ratio g(t)/f (t) is increasing;
• in themean residual life order (denoted by X ≤MRL Y) if, and only if,

E(X − t| X > t) ≤ E(Y − t| Y > t)

for all t such that these conditional expectations exist.
• in the increasing convex order (denoted by X ≤ICX Y) if

∞∫
x

F̄ (t) dt ≤
∞∫
x

Ḡ (t) dt for all x.

Some of these stochastic orders may be expressed in terms of comparisons of the residual lifetimes or inac-
tivity times of the corresponding random variables. Thus:
• X ≤HR Y if, and only if, (X − t| X > t) ≤ST (Y − t| Y > t) for all t;
• X ≤RHR Y if, and only if, (t − X| X ≤ t) ≥ST (t − Y| Y ≤ t) for all t;
• X ≤LR Y if, and only if, (X| a ≤ X ≤ b) ≤ST (Y| a ≤ X ≤ b) for all a ≤ b;
• X ≤MRL Y if, and only if, (X − t| X > t) ≤ICX (Y − t| Y > t) for all t.
The very well known relationships among these stochastic orders are summarized in Table 1. The reverse
implications do not hold.

Table 1: Relationships among univariate stochastic orders.

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤MRL Y
⇓ ⇓ ⇓

X ≤RHR Y ⇒ X ≤ST Y ⇒ X ≤ICX Y ⇒ E(X) ≤ E(Y)

Ordering properties for distorted distributions were obtained in [21, 23] (see also [18, 19, 22]). For com-
pleteness we include some of them in the following proposition.

Proposition 3.1. Let X1 and X2 be two random variables with distribution functions Fq1 = q1(F) and Fq2 =
q2(F) obtained as distorted distributions from the same distribution function F and from the distortion functions
q1 and q2, respectively. Let q̄1 and q̄2 be the respective dual distortion functions. Then:
(i) X1 ≤ST X2 for all F if and only if q1 ≥ q2 (or q̄1 ≤ q̄2) in (0, 1).
(ii) X1 ≤HR X2 for all F if and only if q̄2/q̄1 is decreasing in (0, 1).
(iii) X1 ≤RHR X2 for all F if and only if q2/q1 is increasing in (0, 1).
(iv) X1 ≤LR X2 for all absolutely continuous F if and only if q′2/q′1 is increasing (or q̄′2/q̄′1 is decreasing) in (0, 1).
(v) X1 ≤MRL X2 for all F such that E(X1) ≤ E(X2) if q̄2/q̄1 is bathtub in (0, 1) (i.e., it is decreasing in (0, u0) and

increasing in (u0, 1) for a u0 ∈ (0, 1]).

Clearly, these results can be applied to compare conditional distributions by using the representations ob-
tained in the preceding section. Note that to apply the condition in (iv) for the LR order we need to assume
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that both derivatives exist. Herewe have several options. For example, we can compare the conditional distri-
butions with the marginal distributions. Thus, for (Y|X ≤ x), we have the following ordering properties from
(2.3), (2.4) and Proposition 3.1.

Proposition 3.2. Let (X, Y) be a random vector with copulas C and Ĉ and marginal distributions F and G.
Then:
(i) Y ≥ST (Y|X ≤ x) (≤ST) for all G if and only if C(F(x), u) ≥ uF(x) (≤) for all u ∈ (0, 1).
(ii) Y ≥ST (Y|X ≤ x) (≤ST) for all G if and only if Ĉ(F̄(x), u) ≥ uF̄(x) (≤) for all u ∈ (0, 1).
(iii) Y ≥HR (Y|X ≤ x) (≤HR) for all G if and only if Ĉ(F̄(x), u)/u is decreasing (increasing) in u in the interval

(0, 1).
(iv) Y ≥RHR (Y|X ≤ x) (≤RHR) for all G if and only if C(F(x), u)/u is decreasing (increasing) in u in the interval

(0, 1).
(v) Y ≥LR (Y|X ≤ x) (≤LR) for all G if and only if C(F(x), u) is concave (convex) in u in the interval (0, 1).
(vi) Y ≥LR (Y|X ≤ x) (≤LR) for all G if and only if Ĉ(F̄(x), u) is concave (convex) in u in the interval (0, 1).
(vii)Y ≥MRL (Y|X ≤ x) (≤MRL) for all G if Ĉ(F̄(x), u)/u is bathtub (upside-down bathtub) in u in the interval (0, 1)

and E(Y) ≥ E(Y|X ≤ x) (≤).

The positive (negative) quadrant dependent, PQD (NQD), property of (X, Y) can be characterized by C ≥ Π
(≤), where Π(u, v) = uv is the product copula (see [9] or [26, p. 188]). It can also be characterized by Ĉ ≥ Π
(≤). Hence, from Proposition 3.2, (i) or (ii), the PQD (NQD) property is equivalent to Y ≥ST (Y|X ≤ x) (≤ST)
for all F, G (a well known result, see, e.g., [26, p. 191]). Moreover, from Table 1, all the properties given in
the preceding proposition can be seen as positive (negative) dependence conditions and all of them (except
that for the MRL order) imply PQD (NQD). Hence, under these conditions, Spearman’s rho and Kendall’s tau
coe�cients are nonnegative (nonpositive), see [10, p. 62].

Analogously, from (2.5), (2.6) and Proposition 3.1, we have the following ordering properties for the con-
ditional random variable (Y|X > x). Note that they are equivalent to the properties given in the preceding
proposition and so they can also be seen as positive (negative) dependence properties. This equivalence is
due to the following representation

G(y) = F(x) Pr(Y ≤ y|X ≤ x) + F̄(x) Pr(Y ≤ y|X > x)

valid for any F such that 0 < F(x) < 1. Note that the marginal distribution of Y is a mixture of the conditional
distributions of (Y|X ≤ x) and (Y|X > x) with weights F(x) and F̄(x).

Proposition 3.3. Let (X, Y) be a random vector with copulas C and Ĉ and marginal distributions F and G.
Then:
(i) Y ≤ST (Y|X > x) (≥ST) for all G if and only if C(F(x), u) ≥ uF(x) (≤) for all u ∈ (0, 1).
(ii) Y ≤ST (Y|X > x) (≥ST) for all G if and only if Ĉ(F̄(x), u) ≥ uF̄(x) (≤) for all u ∈ (0, 1).
(iii) Y ≤HR (Y|X > x) (≥HR) for all G if and only if Ĉ(F̄(x), u)/u is decreasing (increasing) in u in the interval

(0, 1).
(iv) Y ≤RHR (Y|X > x) (≥RHR) for all G if and only if C(F(x), u)/u is decreasing (increasing) in u in the interval

(0, 1).
(v) Y ≤LR (Y|X > x) (≥LR) for all G if and only if C(F(x), u) is concave (convex) in u in the interval (0, 1).
(v) Y ≤LR (Y|X > x) (≥LR) for all G if and only if Ĉ(F̄(x), u) is concave (convex) in u in the interval (0, 1).
(vi) Y ≤MRL (Y|X > x) (≥MRL) for all G if Ĉ(F̄(x), u)/u is bathtub (upside-down bathtub) in u in the interval (0, 1)

and E(Y) ≤ E(Y|X > x) (≥).

By replacing in the preceding proposition x with the quantile F−1(p) for a p ∈ (0, 1), we obtain the results
given in [34] for the ST, HR and RHR orders.

Finally, in the case of an absolutely continuous joint distribution, from (2.8), (2.10) and Proposition 3.1,
we obtain the following ordering properties for (Y|X = x).
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Proposition 3.4. Let (X, Y) be a random vector with absolutely continuous copulas C and Ĉ, absolutely con-
tinuous marginal distributions F and G and probability density functions f (x) =

∫ +∞
−∞ f (x, z)dz and g(y) =∫ +∞

−∞ f (z, y)dz. Let x such that f (x) > 0. Then:
(i) Y ≤ST (Y|X = x) (≥ST) for all G if and only if ∂1C(F(x), u) ≤ u (≥) for all u ∈ (0, 1).
(ii) Y ≤ST (Y|X = x) (≥ST) for all G if and only if ∂1Ĉ(F̄(x), u) ≥ u (≤) for all u ∈ (0, 1).
(iii) Y ≤HR (Y|X = x) (≥HR) for all G if and only if ∂1Ĉ(F̄(x), u)/u is decreasing (increasing) in u in the interval

(0, 1).
(iv) Y ≤RHR (Y|X = x) (≥RHR) for all G if and only if ∂1C(F(x), u)/u is increasing (decreasing) in u in the interval

(0, 1).
(v) Y ≤LR (Y|X = x) (≥LR) for all G if and only if ∂1C(F(x), u) is convex (concave) in u in the interval (0, 1).
(vi) Y ≤LR (Y|X = x) (≥LR) for all G if and only if ∂1Ĉ(F̄(x), u) is concave (convex) in u in the interval (0, 1).
(vii)Y ≤MRL (Y|X = x) (≥MRL) for all G if ∂1Ĉ(F̄(x), u)/u is bathtub (upside-down bathtub) in u in the interval

(0, 1) and E(Y) ≤ E(Y|X = x) (≥).

Note that, by using a similar procedure, we can also compare a conditional distribution with a di�erent con-
ditional distribution or with a similar one at a di�erent point x. For example, (Y|X = x) ≤ST (Y|X > x) holds
for all F, G such that F̄(x) > 0 and f (x) > 0 if, and only if,

F̄(x)∂1Ĉ(F̄(x), u) ≤ Ĉ(F̄(x), u) (3.1)

for all u ∈ (0, 1). Hence (3.1) implies E(Y|X = x) ≤ E(Y|X > x). If X and Y represent the lifetimes of two units,
then the expected value of the second one is greater when the �rst one is alive at time x than when it fails at
time x. Analogously, from (2.3) and Proposition 3.1, (Y|X ≤ x1) ≤ST (Y|X ≤ x2) holds for all G if, and only if,

C(F(x1), v)
F(x1) ≥ C(F(x2), v)

F(x2) (3.2)

for all v ∈ (0, 1).
The randomvector (X, Y) is said to be Left Tail Decreasing in Y, shortlywritten as LTD(Y|X), if Pr(Y ≤ y|X ≤

x) is decreasing in x for all y, that is, if (Y|X ≤ x) is ST-increasing in x. Hence, from (3.2), it is LTD(Y|X) for all
F, G if and only if C(u, v)/u is decreasing in u for all v ∈ [0, 1]. This property was given in [9] and [26, p. 192].
The analogous negative dependence property is de�ned as follows: (X, Y) is said to be Left Tail Increasing in
Y, shortly written as LTI(Y|X), if Pr(Y ≤ y|X ≤ x) is increasing in x for all y, that is, if (Y|X ≤ x) is ST-decreasing
in x. Then (X, Y) is LTI(Y|X) for all F, G if and only if C(u, v)/u is increasing in u for all v ∈ [0, 1]. Similar prop-
erties can be obtained for the other orders. They can be used to de�ne other tail dependence properties which
only depend on copula properties. The respective conditions are given in the following proposition. It is well
known that LTD(Y|X) (resp. LTI(Y|X)) implies the PQD (NQD) property of (X, Y) (see [26, p. 192]). Hence, from
Table 1, all the positive (negative) dependence conditions given in the following proposition (except that for
the MRL order) imply LTD(Y|X) (resp. LTI(Y|X)) and PQD (NQD). Hence, under these conditions, Spearman’s
rho and Kendall’s tau coe�cients are nonnegative (nonpositive). Therefore, all the properties given in this
proposition can also be seen as positive (negative) dependence properties.

Proposition 3.5. Let (X, Y)be a randomvectorwith copulas C and Ĉ andmarginal distributions F and G. Then:
(i) (Y|X ≤ x) is ST-increasing (decreasing) in x for all F, G if and only if C(u, v)/u is decreasing (increasing) in

u for all v ∈ (0, 1).
(ii) (Y|X ≤ x) is ST-increasing (decreasing) in x for all F, G if and only if (v − Ĉ(1 − u, v))/u is increasing (de-

creasing) in u for all v ∈ (0, 1).
(iii) (Y|X ≤ x) is HR-increasing (decreasing) in x for all F, G if and only if (v− Ĉ(u2, v))/(v− Ĉ(u1, v)) is increasing

(decreasing) in v for all 0 < u1 ≤ u2 < 1.
(iv) (Y|X ≤ x) is RHR-increasing (decreasing) in x for all F, G if and only if C(u2, v)/C(u1, v) is increasing (de-

creasing) in v for all 0 < u1 ≤ u2 < 1.
(v) (Y|X ≤ x) is LR-increasing (decreasing) in x for all F, G if and only if ∂2C(u2, v)/∂2C(u1, v) is increasing

(decreasing) in v for all 0 < u1 ≤ u2 < 1.
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(vi) (Y|X ≤ x) is MRL-increasing (decreasing) in x for all F, G if and only if (v− Ĉ(u2, v))/(v− Ĉ(u1, v)) is bathtub
(upside-down bathtub) in v for all 0 < u1 ≤ u2 < 1 and E(Y|X ≤ x) is increasing (decreasing) in x.

Analogously, from (2.5) and Proposition 3.1, (Y|X > x1) ≤ST (Y|X > x2) holds for all G if, and only if,

Ĉ(F̄(x1), v)
F̄(x1)

≤ Ĉ(F̄(x2), v)
F̄(x2)

(3.3)

for all v ∈ (0, 1). The random vector (X, Y) is said to be Right Tail Increasing in Y, shortly written as RTI(Y|X),
if Pr(Y > y|X > x) is increasing in x for all y, that is, if (Y|X > x) is ST-increasing in x. Hence, from (3.3),
it is RTI(Y|X) for all F, G if and only if Ĉ(u, v)/u is decreasing in u for all v ∈ [0, 1]. The analogous negative
dependence property is de�ned in a similar way: (X, Y) is said to be Right Tail Decreasing in Y, shortly written
as RTD(Y|X), if Pr(Y > y|X > x) is decreasing in x for all y, that is, if (Y|X ≤ x) is ST-decreasing in x. Then
(X, Y) is RTD(Y|X) for all F, G if and only if Ĉ(u, v)/u is increasing in u for all v ∈ [0, 1]. Similar properties
can be obtained for the other orders. They can be used to de�ne other right tail dependence properties which
only depend on copula properties. The respective conditions are given in the following proposition. Note that
they can be obtained by replacing Cwith Ĉ in the preceding proposition. It is well known that RTI(Y|X) (resp.
RTD(Y|X)) implies the PQD (NQD) property of (X, Y). Hence, from Table 1, all the positive (negative) depen-
dence conditions given in the following proposition (except that for the MRL order) imply RTI(Y|X) (resp.
RTD(Y|X)) and PQD (NQD). Hence, under these conditions, Spearman’s rho and Kendall’s tau coe�cients are
nonnegative (nonpositive).

Proposition 3.6. Let (X, Y) be a random vector with copulas C and Ĉ and marginal distributions F and G.
Then:
(i) (Y|X > x) is ST-increasing (decreasing) in x for all F, G if and only if Ĉ(u, v)/u is decreasing (increasing) in

u for all v ∈ (0, 1).
(ii) (Y|X > x) is ST-increasing (decreasing) in x for all F, G if and only if (v − C(1 − u, v))/u is increasing (de-

creasing) in u for all v ∈ (0, 1).
(iii) (Y|X > x) is HR-increasing (decreasing) in x for all F, G if and only if Ĉ(u2, v)/Ĉ(u1, v) is increasing (de-

creasing) in v for all 0 < u1 ≤ u2 < 1.
(iv) (Y|X > x) is RHR-increasing (decreasing) in x for all F, G if and only if (v − C(u2, v))/(v − C(u1, v)) is in-

creasing (decreasing) in v for all 0 < u1 ≤ u2 < 1.
(v) (Y|X > x) is LR-increasing (decreasing) in x for all F, G if and only if ∂2Ĉ(u2, v)/∂2Ĉ(u1, v) is increasing

(decreasing) in v for all 0 < u1 ≤ u2 < 1.
(vi) (Y|X > x) is MRL-increasing (decreasing) in x for all F, G if and only if Ĉ(u2, v)/Ĉ(u1, v) is upside-down

bathtub (bathtub) in v for all 0 < u1 ≤ u2 < 1 and E(Y|X > x) is increasing (decreasing) in x.

Note that the conditions of the preceding proposition can be related with those in Proposition 3.3. For ex-
ample, if (Y|X > x) is ST-increasing (decreasing) in x, then Y =ST limx→−∞(Y|X > x) ≤ST (Y|X > x) (≥ST),
obtaining (i) of Proposition 3.3. We can do the same with the other orderings in the preceding proposition
and with the properties in Proposition 3.5.

The representations for (Y|X = x) can also be used to study the following dependence property de�ned in
[26, p. 196]: Y is Stochastically Increasing (Decreasing) in X, shortlywritten as SI(Y|X) (SD(Y|X)), if (Y|X = x) is
ST-increasing (decreasing) in x. A random vector (X, Y) is said to be positively (negative) dependent through
stochastic ordering, shortly written as PDS (NDS), if it is both SI(Y|X) and SI(X|Y) (SD(Y|X) and SD(X|Y)),
see [5]. Hence, from representation (2.8), (X, Y) is PDS (NDS) if and only if C(u, v) is concave (convex) in u
and v (Theorem 5.2.11 in [26, p. 197]). Analogously, from representation (2.10), (X, Y) is PDS (NDS) if and only
if Ĉ(u, v) is concave (convex) in u and v. We can de�ne similar dependence properties by using the other
orderings. The results for (Y|X = x) are given in the following proposition. The results for (X|Y = y) are
similar. Again note that these dependence properties only depend on the underlying copula and that all of
them (except that for the MRL) imply the SI(Y|X) (SD(Y|X)) property.
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Proposition 3.7. Let (X, Y) be a random vector with absolutely continuous copulas C and Ĉ, absolutely con-
tinuous marginal distributions F and G and probability density functions f (x) =

∫ +∞
−∞ f (x, z)dz and g(y) =∫ +∞

−∞ f (z, y)dz. Let S1 = {x : f (x) > 0}. Then:
(i) (Y|X = x) is ST-increasing (decreasing) in x in the set S1 for all F, G if and only if C(u, v) is concave (convex)

in u for all v ∈ (0, 1).
(ii) (Y|X = x) is ST-increasing (decreasing) in x in the set S1 for all F, G if and only if Ĉ(u, v) is concave (convex)

in u for all v ∈ (0, 1).
(iii) (Y|X = x) is HR-increasing (decreasing) in x in the set S1 for all F, G if and only if ∂1Ĉ(u2, v)/∂1Ĉ(u1, v) is

increasing (decreasing) in v for all 0 < u1 ≤ u2 < 1.
(iv) (Y|X = x) is RHR-increasing (decreasing) in x in the set S1 for all F, G if and only if ∂1C(u2, v)/∂1C(u1, v)

is increasing (decreasing) in v for all 0 < u1 ≤ u2 < 1.
(v) (Y|X = x) is LR-increasing (decreasing) in x in the set S1 for all F, G if and only if ∂1,2C(u2, v)/∂1,2C(u1, v)

is increasing (decreasing) in v for all 0 < u1 ≤ u2 < 1.
(vi) (Y|X = x) is MRL-increasing (decreasing) in x in the set S1 for all F, G if and only if ∂1Ĉ(u2, v)/∂1Ĉ(u1, v)

is upside-down bathtub (bathtub) in v for all 0 < u1 ≤ u2 < 1 and E(Y|X = x) is increasing (decreasing) in
x.

From the preceding results some surprising connections can be stated between some positive (or negative)
dependence properties. For example, it is easy to prove that the following conditions are equivalent:
(i) (X, Y) is LTD(X|Y).
(ii) Y ≥RHR (Y|X ≤ x) for all x.
(iii) Y ≤RHR (Y|X > x) for all x.
(iv) (Y|X ≤ x) ≤RHR (Y|X > x) for all x.
(v) C(u, v)/v is decreasing in v for all u.
The equivalence between (i) and (iv) corresponds with the result in Lemma 2.1 (i) of [7]. Analogously, we can
also prove that the following conditions are equivalent:
(i) (X, Y) is RTI(X|Y).
(ii) Y ≥HR (Y|X ≤ x) for all x.
(iii) Y ≤HR (Y|X > x) for all x.
(iv) (Y|X ≤ x) ≤HR (Y|X > x) for all x.
(v) Ĉ(u, v)/v is decreasing in v for all u.
The equivalence between (i) and (iv) corresponds with the result in Lemma 2.1 (ii) of [7]. Analogously, for the
SI notion, we have that the following conditions are equivalent:
(i) (X, Y) is SI(X|Y).
(ii) Y ≥LR (Y|X ≤ x) for all x.
(iii) Y ≤LR (Y|X > x) for all x.
(iv) (Y|X ≤ x) ≤LR (Y|X > x) for all x.
(v) C(u, v) is concave in v for all u.
(vi) Ĉ(u, v) is concave in v for all u.
Analogous equivalences can be stated for the respective negative dependence notions.

We can go further by taking into account the following two positive dependence properties (see, e.g., [26,
p. 198]): X and Y are Left Corner Set Decreasing (shortly written as LCSD) if Pr(X ≤ x1, Y ≤ y1|X ≤ x2, Y ≤ y2) is
decreasing in x2 and y2 for all x1 and y1. Similarly, X and Y are Right Corner Set Increasing (shortly written as
RCSI) if Pr(X > x1, Y > y1|X > x2, Y > y2) is increasing in x2 and y2 for all x1 and y1. It is shown in Corollary
5.2.17 of [26, p. 200] that LCSD holds if and only if C is totally positive of order two (TP2), which means that
C (u1, v1) C (u2, v2) ≥ C (u1, v2) C (u2, v1) for all 0 < u1 ≤ u2 < 1 and 0 < v1 ≤ v2 < 1. Similarly, it is shown
that RCSI holds if and only if Ĉ is TP2. Since C is TP2 if and only if C(u2, v)/C(u1, v) is increasing in v for all
0 < u1 ≤ u2 < 1, it follows from Proposition 3.5 (iv) that the following conditions are equivalent:
(i) LCSD.
(ii) (Y|X ≤ x) is RHR-increasing.
(iii) C is TP2.
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By using a similar argument, it follows from Proposition 3.6 (iii) that the following conditions are equivalent:
(i) RCSI.
(ii) (Y|X > x) is HR-increasing.
(iii) Ĉ is TP2.
Similar results can be obtained for the analogous negative dependence properties Left Corner Set Increasing
(LCSI) and Right Corner Set Decreasing (RCSD).

The dependence properties given in Proposition 3.7 can be shortly written as SIORD(Y|X) and SIORD(X|Y)
replacing ORD with the respective orderings. For example, SIHR(Y|X) means that (Y|X = x) is HR-increasing
in x. The negative dependence properties can be written as SDORD(Y|X) and SDORD(X|Y). From Proposition
3.7 (iv), we have the following equivalences:
(i) SIRHR (X|Y).
(ii) (Y|X ≤ x) is LR-increasing.
(iii) ∂2C is TP2.
Moreover, from Proposition 3.7 (iii), the following properties are also equivalent:
(i) SIHR (X|Y).
(ii) (Y|X > x) is LR-increasing.
(iii) ∂2Ĉ is TP2.
The preceding equivalences can be used to prove the following relationships from the ordering relationships
given in Table 1. Some of them are well known (see, Figure 5.8 in [26, p. 200]).

SILR(X|Y) ⇒ SIRHR(X|Y) ⇒ LCSD
⇓ ⇓ ⇓

SIHR(X|Y) ⇒ SIST(X|Y) ⇒ LTD(X|Y)
⇓ ⇓ ⇓

RCSI ⇒ RTI(X|Y) ⇒ PQD

Analogous relationships hold for (Y|X) and for the respective negative dependence properties. Moreover
note that the copulas given in Exercises 5.30, 5.32 and 5.33 of [26, p. 204-205] can be used to prove that Y ≥HR
(Y|X ≤ x) (or Y ≥RHR (Y|X ≤ x)) is not equivalent to Y ≥LR (Y|X ≤ x) and that the conditions in Proposition 3.5
(i) and (iv) (or in Proposition 3.6 (i) and (iii)) are not equivalent.

Similar results to those given in this section can be stated for the general n-dimensional case by using
Proposition 3.1 and representations (2.11), (2.12) and (2.13) obtained in the preceding section. They can be used
to de�ne the respective dependence multivariate notions.

4 Bounds
The representations given in Section 2 can also be used to obtain bounds for conditional distribution (or
reliability) functions and conditional expectations. The results are based on the corresponding results for
distorted distributions obtained in [6, 13, 25]. Again we just state the results for the bidimensional case. The
results for the general case can be stated in a similar way. For the �rst conditional distribution we obtain the
following bounds.

Proposition 4.1. Let (X, Y)be a randomvectorwith copulas C and Ĉ andmarginal distributions F and G. Then:

G(y) inf
u∈(0,1]

C(F(x), u)
uF(x) ≤ Pr(Y ≤ y|X ≤ x) ≤ G(y) sup

u∈(0,1]

C(F(x), u)
uF(x) (4.1)

and
Ḡ(y) inf

u∈(0,1]
u − Ĉ(F̄(x), u)

uF(x) ≤ Pr(Y > y|X ≤ x) ≤ Ḡ(y) sup
u∈(0,1]

u − Ĉ(F̄(x), u)
uF(x) (4.2)
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whenever F(x) > 0. The bounds are sharp.

Proof. The bounds in (4.1) trivially hold when G(y) = 0 and F(x) > 0. For x, y such that F(x)G(y) > 0, from
(2.3), we have

Pr(Y ≤ y|X ≤ x)
G(y) = C(F(x), G(y))

G(y)F(x) ≤ sup
u∈(0,1]

C(F(x), u)
uF(x)

and we obtain the upper bound in (4.1). The lower bound is obtained in a similar way.
To show that the upper bound in (4.1) can be attained we consider two cases. If the supremum is attained

at u0 ∈ (0, 1], we consider the distribution function

G(y) =


0 for y < 0
u0 for 0 ≤ y < 1
1 for y ≥ 1

and then, for 0 ≤ y < 1, we have
Pr(Y ≤ y|X ≤ x)

G(y) = C(F(x), u0)
u0F(x) = sup

u∈(0,1]

C(F(x), u)
uF(x) .

If the supremum is attained when u → 0+, then it is attained in the limit when n → ∞ with the following
distributions

Gn(y) =


0 for y < 0
un for 0 ≤ y < 1
1 for y ≥ 1

where un → 0+ when n →∞. The proofs for the other bounds are similar.

As an immediate consequence we have the following bounds for the conditional expectations when the ran-
dom vector is nonnegative.

Corollary 4.2. Let (X, Y) be a nonnegative random vector with copulas C and Ĉ and marginal distributions F
and G. Then:

E(Y) inf
u∈(0,1]

u − Ĉ(F̄(x), u)
uF(x) ≤ E(Y|X ≤ x) ≤ E(Y) sup

u∈(0,1]

u − Ĉ(F̄(x), u)
uF(x)

whenever F(x) > 0. The bounds are sharp.

The proof is an immediate consequence of (4.2) and the representation of the mean for nonnegative random
variables as

E(Y|X ≤ x) =
∞∫

0

Pr(Y > y|X ≤ x)dy.

If Y can take negative values, similar bounds can be obtained by using (4.1) and (4.2) and the representation
of the mean as

E(Y|X ≤ x) = −
0∫

−∞

Pr(Y ≤ y|X ≤ x)dy +
∞∫

0

Pr(Y > y|X ≤ x)dy.

Analogously, for the other conditional distributions, we have the following results. The proofs are similar.

Proposition 4.3. Let (X, Y) be a random vector with copulas C and Ĉ and marginal distributions F and G.
Then:

G(y) inf
u∈(0,1]

u − C(F(x), u)
uF̄(x)

≤ Pr(Y ≤ y|X > x) ≤ G(y) sup
u∈(0,1]

u − C(F(x), u)
uF̄(x)

and
Ḡ(y) inf

u∈(0,1]
Ĉ(F̄(x), u)
uF̄(x)

≤ Pr(Y > y|X > x) ≤ Ḡ(y) sup
u∈(0,1]

Ĉ(F̄(x), u)
uF̄(x)

whenever F̄(x) > 0. The bounds are sharp.
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Corollary 4.4. Let (X, Y) be a nonnegative random vector with copulas C and Ĉ and marginal distributions F
and G. Then:

E(Y) inf
u∈(0,1]

Ĉ(F̄(x), u)
uF̄(x)

≤ E(Y|X > x) ≤ E(Y) sup
u∈(0,1]

Ĉ(F̄(x), u)
uF̄(x)

whenever F̄(x) > 0. The bounds are sharp.

Proposition 4.5. Let (X, Y) be a random vector with absolutely continuous copulas C and Ĉ, absolutely con-
tinuous marginal distributions F and G and marginal density functions f (x) =

∫ +∞
−∞ f (x, z)dz and g(y) =∫ +∞

−∞ f (z, y)dz. Then there exists a version of the conditional probability such that:

G(y) inf
u∈(0,1]

∂1C(F(x), u)
u ≤ Pr(Y ≤ y|X = x) ≤ G(y) sup

u∈(0,1]

∂1C(F(x), u)
u

and
Ḡ(y) inf

u∈(0,1]
∂1Ĉ(F̄(x), u)

u ≤ Pr(Y > y|X = x) ≤ Ḡ(y) sup
u∈(0,1]

∂1Ĉ(F̄(x), u)
u

whenever f (x) > 0. The bounds are sharp.

Corollary 4.6. Under the assumptions of the preceding proposition we have

E(Y) inf
u∈(0,1]

∂1Ĉ(F̄(x), u)
u ≤ E(Y|X = x) ≤ E(Y) sup

u∈(0,1]

∂1Ĉ(F̄(x), u)
u

whenever f (x) > 0 (and these expectations and partial derivative exist). The bounds are sharp.

Note that we have obtained bounds for the regression curve E(Y|X = x) which are distribution-free with
respect to the distribution of Y. Some illustrative examples are given in the following section.

Finally we use the technique developed in [13] (see also [6]) to obtain bounds in terms of the Gini mean
di�erence dispersion measure de�ned by

∆G = 2
∞∫

−∞

G(y)(1 − G(y))dy.

Thus we obtain the following bounds.

Proposition 4.7. Let (X, Y) a be nonnegative random vector with copulas C and Ĉ and marginal distributions
F and G. Then:

inf
u∈(0,1)

uF̄(x) − Ĉ(F̄(x), u)
2u(1 − u)F(x) ≤ E(Y|X ≤ x) − E(Y)

∆G
≤ sup
u∈(0,1)

uF̄(x) − Ĉ(F̄(x), u)
2u(1 − u)F(x) (4.3)

whenever F(x) > 0, ∆G > 0 and 0 = inf{y : G(y) > 0}. The bounds are sharp.

Proof. Let β = sup{y : Ḡ(y) > 0}. Then, from (2.4), we have

E(Y|X ≤ x) − E(Y) =
∞∫

0

Ḡ(y) − Ĉ(F̄(x), Ḡ(y))
F(x) − Ḡ(y)dy

=
β∫

0

Ḡ(y)F̄(x) − Ĉ(F̄(x), Ḡ(y))
2F(x)Ḡ(y)(1 − Ḡ(y))

2Ḡ(y)(1 − Ḡ(y))dy

≤ sup
u∈(0,1)

uF̄(x) − Ĉ(F̄(x), u)
2u(1 − u)F(x)

β∫
0

2G(y)(1 − G(y))dy

≤ ∆G sup
u∈(0,1)

uF̄(x) − Ĉ(F̄(x), u)
2u(1 − u)F(x)
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and we obtain the upper bound in (4.3). The lower bound is obtained in a similar way. To prove that they are
sharp we proceed as in Proposition 4.1.

Analogously, for the other conditional expectations, we have the following bounds.

Proposition 4.8. Let (X, Y) be a nonnegative random vector with copulas C and Ĉ and marginal distributions
F and G. Then:

inf
u∈(0,1)

Ĉ(F̄(x), u) − uF̄(x)
2u(1 − u)F̄(x)

≤ E(Y|X > x) − E(Y)
∆G

≤ sup
u∈(0,1)

Ĉ(F̄(x), u) − uF̄(x)
2u(1 − u)F̄(x)

whenever F(x) > 0, ∆G > 0 and 0 = inf{y : G(y) > 0}. The bounds are sharp.

Proposition 4.9. Let (X, Y) be a nonnegative random vector with absolutely continuous copulas C and Ĉ, ab-
solutely continuous marginal distributions F and G and marginal density functions f and g. Then there exists a
version of the conditional expected value such that:

inf
u∈(0,1)

∂1Ĉ(F̄(x), u) − u
2u(1 − u) ≤ E(Y|X = x) − E(Y)

∆G
≤ sup
u∈(0,1)

∂1Ĉ(F̄(x), u) − u
2u(1 − u)

whenever f (x) =
∫ +∞
−∞ f (x, z)dz > 0, ∆G > 0 and 0 = inf{y : G(y) > 0}. The bounds are sharp.

5 Applications

5.1 Applications in Risk Theory

Let (X, Y) be a randomvector describing losses of a portfolio of risks, with copula C andmarginal distribution
functions F and G. In portfolio risk theory, conditional distributions of the form (Y|X ≤ x), (Y|X > x) and
(Y|X = x) are specially interesting when x = VaRα [X], where

VaRα [X] = F−1(α) = sup{x : F(x) ≤ α}, α ∈ (0, 1),

is the value-at-risk (VaR) of X at level α (or the α-quantile of X), the benchmark risk measure in today’s �-
nancial world. It is well-known that X ≤ST Y if and only if VaRα [X] ≤ VaRα [Y] for all α ∈ (0, 1). In this
framework, conditional distributions of the form (Y|X > VaRα [X]), (Y|X ≤ VaRα [X]) and (Y|X = VaRα [X]), for
some α ∈ (0, 1), describe the risk of one component (or even the aggregate risk of the portfolio) given that the
other component is under stress. Risk measures associated to these conditional distributions are called co-
risk measures (the pre�x “co” stands for conditional, comovement or contagion). They are used to assess the
systemic risk,which is related to the risk that the failure or loss of a component spreads to another one or even
to the system. There are basically two approaches to adjust VaR to dependence between X and Y . The two
notions appear in the literature under the name Conditional Value-at-Risk (CoVaR). The �rst one, introduced
in [11], is based on the stress scenario {X ≤ VaRα [X]} (which, depending on the context, sometimes takes the
form {X > VaRα [X]}). The second one was introduced in [1] based on the stress scenario {X = VaRα [X]} . The
following de�nition follows the notation of [15].

De�nition 2. For α, β ∈ (0, 1), we de�ne:
(a) CoVaR ≤α,β [Y|X] =VaRβ (Y|X ≤ VaRα [X]) ,
(b) CoVaR >

α,β [Y|X] =VaRβ (Y|X > VaRα [X]) ,
(c) CoVaR =

α,β [Y|X] =VaRβ (Y|X = VaRα [X]).

In words: CoVaR in (a) (respectively, (b), (c)) is the Value-at-Risk at level β of the conditional distribution of Y
given {X ≤ VaRα [X]} (respectively, {X > VaRα [X]}, {X = VaRα [X]}). Due to the increasing interest in the study
of the systemic risk, some papers related to CoVaR have recently appeared in the literature. For example, [4]
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and [12] provide a directory of CoVaR values (of type a) for di�erent families of copulas and [30] studies the
consistency of CoVaRs (of type b) and their contributions to risk with respect to di�erent stochastic orderings
under di�erent positive dependence assumptions. Now we give a result on the consistency of CoVaR of type
(c) with respect to the stochastic order of the marginals. Whenever we use CoVaR =

α,β [Y|X], we assume that
the (a version) conditional random variable (Y|X = VaRα [X]) exists.

Proposition 5.1. Let (X, Y) and (X′, Y ′) be two random vectors with the same copula C. Then Y ≤ST Y ′ implies

CoVaR =
α,β [Y|X] ≤ CoVaR =

α,β
[
Y ′|X′

]
, ∀α, β ∈ (0, 1) . (5.1)

Proof. Let G and G′ be the marginal distributions of Y and Y ′ respectively and let α ∈ (0, 1) . Then we know
from (2.10) that

Pr(Y > y|X = VaRα [X]) = h(Ḡ(y))
and

Pr(Y ′ > y|X′ = VaRα
[
X′
]
) = h(Ḡ′(y))

where h(u) = 1 − ∂1C(α, 1 − u). Clearly, the condition Ḡ(y) ≤ Ḡ′(y) holds for all y implies h(Ḡ(y)) ≤ h(Ḡ′(y))
for all y, that is,

(Y|X = VaRα [X]) ≤ST (Y ′|X′ = VaRα
[
X′
]
) ∀α ∈ (0, 1)

which is the same as (5.1).

Another important univariate risk measure (which is more sensitive than VaR to the losses in the tail of the
distribution) is the expected shortfall (ES) given by

ESα [X] = 1
1 − α

1∫
α

VaRt [X] dt, α ∈ (0, 1) .

It is well-known (see, for example, Lemma 2.1 in [32]) that

X ≤ICX Y if and only if ESα [X] ≤ ESα [Y] ∀α ∈ (0, 1) . (5.2)

In [15], ES is adjusted to dependence between X and Y de�ning CoES as follows.

De�nition 3. For α, β ∈ (0, 1), we de�ne:
(a) CoES ≤α,β [Y|X] = 1

1−β
∫ 1
β CoVaR

≤
α,t [Y|X] dt,

(b) CoES >
α,β [Y|X] = 1

1−β
∫ 1
β CoVaR

>
α,t [Y|X] dt,

(c) CoES =
α,β [Y|X] = 1

1−β
∫ 1
β CoVaR

=
α,t [Y|X] dt.

In words: CoES in (a) (respectively, (b), (c)) is the Expected Shartfall at level β of the conditional distribution
of Y given {X ≤ VaRα [X]} (respectively, {X > VaRα [X]}, {X = VaRα [X]}). [15] and [30] study the consistency
of CoES of types (a) and (b) with respect to copula dependence parameters in the case where the marginals
are stochastically ordered. Now we make a similar study in terms of CoES of type (c).

Proposition 5.2. Let (X, Y) and (X′, Y ′) be two random vectors with the same copula C such that ∂1C(α, u) is
convex in u. Then Y ≤ICX Y ′ implies

CoES =
α,β [Y|X] ≤ CoES =

α,β
[
Y ′|X′

]
, ∀α, β ∈ (0, 1) . (5.3)

Proof. We have seen in the proof of Proposition 5.1 that (Y|X = VaRα [X]) and (Y ′|X′ = VaRα
[
X′
]
) are random

variableswith survival functions h(Ḡ(y)) and h(Ḡ′(y)), respectively,where h is givenby h(u) = 1−∂1C(α, 1−u).
From the assumptions, h(u) is a concave distortion. Then it follows from Y ≤ICX Y ′ and Theorem 2.6 (v) in [21]
that

(Y|X = VaRα [X]) ≤ICX (Y ′|X′ = VaRα
[
X′
]
) ∀α ∈ (0, 1) .

From this inequality, by using (5.2), we obtain (5.3).
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5.2 An application in Economics

The variance Var(X) and the Gini mean di�erence ∆G can be de�ned as special cases of a covariance (see,
e.g., [39]):

Var(Y) = Cov(Y , Y), ∆G = 4Cov(Y , G(Y)).
Given a random vector (X, Y) withmarginal distributions F and G, bothmeasures can be generalized to study
dependence properties between X and Y . On one hand, we have the covariance Cov(X, Y) and its standarized
version, the Pearson’s correlation coe�cient, given by

ρ = Cov(X, Y)(
Var(X)Var(Y)

)1/2 ,

a very popular symmetric measure of dependence. On the other hand, we have two covariance-equivalents
associated with ∆G given by Cov(X, G(Y)) and Cov

(
Y , F(X)

)
and the corresponding asymmetric Gini corre-

lation coe�cients given by
ΓXY = Cov(X, G(Y))

Cov(X, F(X)) , ΓYX = Cov(Y , F(X))
Cov(Y , G(Y)) .

Many properties and applications of Gini correlation coe�cients can be found in [37–39]. For some connec-
tions with stochastic dominance see [29]. The Gini correlation coe�cients are related to the absolute con-
centration curve (see [37]), a tool used in the �eld of income distributions to describe the impact of taxes on
income distributions. It is de�ned as follows.

De�nition 4. The absolute curve of concentration of Y with respect to X, denoted by AY◦X , is de�ned by

AY◦X (p) =
F−1(p)∫
−∞

m(x)dF(x), 0 ≤ p ≤ 1,

where m(x) = E
(
Y | X = x

)
.

It is well-known (see [38]), that

Cov
(
Y , F(X)

)
=

1∫
0

[pE (Y) − AY◦X (p)] dp.

Consequently,

ΓYX =
4
∫ 1

0 [pE (Y) − AY◦X (p)] dp
∆G

.

Observing that AY◦X (p) = pE
(
Y | X ≤ F−1(p)

)
, we can write

ΓYX =
4
∫ 1

0 p
[
E (Y) − E

(
Y | X ≤ F−1(p)

)]
dp

∆G
.

Now, from Proposition 4.7 we obtain, after a straightforward manipulation, the following bounds for ΓYX,
which only depend on the copula of the vector:

inf
u∈(0,1)

∫ 1
0

[
Ĉ (1 − p, u) − u (1 − p)

]
dp

2u (1 − u) ≤ ΓYX ≤ sup
u∈(0,1)

∫ 1
0

[
Ĉ (1 − p, u) − u (1 − p)

]
dp

2u (1 − u)

Bounds for ΓXY can be obtained similarly. Even more, using that

p
[
E (Y) − E

(
Y | X ≤ F−1(p)

)]
= (1 − p)

[
E
(
Y | X > F−1(p)

)
− E (Y)

]
, p ∈ (0, 1) ,

we see that ΓYX can alternatively be written as

ΓYX =
4
∫ 1

0 (1 − p)
[
E
(
Y | X > F−1(p)

)
− E (Y)

]
dp

∆G
and we may obtain bounds for ΓYX using Proposition 4.8 (rather than Proposition 4.7).
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6 Examples
In this section we study ordering properties and bounds for conditional distributions with speci�c depen-
dence models (copulas). In the �rst example, we study the results for a speci�c Clayton-Oakes copula.

Example 1. Let us consider a random vector (X, Y) with the following Clayton-Oakes (distributional) copula:

C(u, v) = uv
u + v − uv

for 0 ≤ u, v ≤ 1. Then the distortion function of (Y|X ≤ x) is

q1(u) = u
F(x) + u − uF(x) .

From Proposition 3.2, (i), we have Y ≥ST (Y|X ≤ x) since C(F(x), u) ≥ uF(x) for all 0 < u, F(x) < 1. Even more, as

C(F(x), u) = uF(x)
F(x) + u − uF(x)

is concave in u in the interval (0, 1), from Proposition 3.2, (v), we have Y ≥LR (Y|X ≤ x) for all F, G and x such
that F(x) > 0. In a similar way, from Proposition 3.3, (v), we can prove that Y ≤LR (Y|X > x) for all F, G and x
such that F̄(x) > 0. Even more, from Propositions 3.5, 3.6 and 3.7, (v), we can prove that (Y|X ≤ x), (Y|X > x) and
(Y|X = x) are LR-increasing in x. Hence we have a positive dependence. Spearman’s rho and Kendall’s tau are
given by ρS = −39 + 4π2 ∼= 0.478417 and τ = 1/3.

Analogously, we obtain

q3(u) = ∂1C(F(x), u) =
(

u
F(x) + u − uF(x)

)2
= (q1(u))2.

Hence, as q3(u)/q1(u) = q1(u) is increasing, we have from Proposition 3.1, (iii), that (Y|X = x) ≥RHR (Y|X ≤ x)
for all F, G and x such that F(x), f (x) > 0. Even more, as q′3(u)/q′1(u) = 2q1(u) is increasing, we have from
Proposition 3.1, (iv), that (Y|X = x) ≥LR (Y|X ≤ x) for all absolutely continuous distributions F, G and x such
that F(x), f (x) > 0. From Proposition 3.4, (iii), we have Y ≤HR (Y|X = x) when F(x) ≥ 1/2 and f (x) > 0. However,
they are not ST ordered when 0 < F(x) < 1/2.

Moreover, from Section 4, we can obtain bounds for the conditional distribution (reliability) functions and
expectations. Thus, from Proposition 4.1, for F(x) > 0, we have

G(y) ≤ Pr(Y ≤ y|X ≤ x) ≤ 1
F(x)G(y)

and
0 ≤ Pr(Y > y|X ≤ x) ≤ Ḡ(y).

Then E(Y|X ≤ x) ≤ E(Y). Note that, from the �rst expression, a lower bound for Pr(Y > y|X ≤ x) is

1 − 1
F(x)G(y) ≤ Pr(Y > y|X ≤ x).

Analogously, from Proposition 4.5, for f (x) > 0, we have

0 ≤ Pr(Y ≤ y|X = x) ≤ G(y)

when F(x) ≥ 1/2 and
0 ≤ Pr(Y ≤ y|X = x) ≤ 1

4F(x)F̄(x)
G(y)

when F(x) < 1/2.
For the reliability functions, we have

Ḡ(y) ≤ Pr(Y > y|X = x) ≤ 2F(x)Ḡ(y)
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when F(x) ≥ 2/3 and

min(1, 2F(x))Ḡ(y) ≤ Pr(Y > y|X = x) ≤ (2 − F(x))2

4 − 4F(x) Ḡ(y)

when F(x) < 2/3. Then for nonnegative random vectors we have

E(Y) ≤ E(Y|X = x) ≤ 2F(x)E(Y)

when F(x) ≥ 2/3 and

min(1, 2F(x))E(Y) ≤ E(Y|X = x) ≤ (2 − F(x))2

4 − 4F(x) E(Y)

when F(x) < 2/3.

In the following example we study the results for all the Farlie-Gumbel-Morgenstern (FGM) bidimensional
copulas which include positive and negative (weak) dependence.

Example 2. Let us consider the random vector (X, Y) with the following FGM distributional copula:

C(u, v) = uv[1 + θ(1 − u)(1 − v)]

for 0 ≤ u, v ≤ 1 and −1 ≤ θ ≤ 1. In this case, the survival copula coincides with the distributional copula, that is,
Ĉ(u, v) = C(u, v) for all 0 ≤ u, v ≤ 1.

The function
C(F(x), u) = uF(x)[1 + θ(1 − u)F̄(x)]

is concave (convex) in u in the interval (0, 1) for θ > 0 (θ < 0). Hence from Proposition 3.2, (v), we have Y ≥LR
(Y|X ≤ x) (≤LR) for all θ > 0 (θ < 0) and for all F, G and x such that F(x) > 0. In a similar way, from Proposition
3.3, (v), we can prove that Y ≤LR (Y|X > x) (≥LR) for all θ > 0 (θ < 0) and for all F, G and x such that F̄(x) > 0.
Of course, if θ = 0 (product copula), we have Y =ST (Y|X ≤ x) =ST (Y|X > x) (since they are independent).
Analogously, the function

∂1C(F(x), u) = u(1 + θ − 2θF(x)) + u2θ(2F(x) − 1)

is convex (concave) in u if θ(2F(x)−1) > 0 (θ(2F(x)−1) < 0). Thenwe have Y ≥LR (Y|X = x) (≤LR) if θ(2F(x)−1) >
0 (θ(2F(x) − 1) < 0), for all absolutely continuous distributions F, G and for all x such that f (x) > 0. In a similar
way, it can be proved that (Y|X ≤ x), (Y|X > x) and (Y|X = x) are LR-increasing (decreasing) in x when θ > 0
(θ < 0). From Proposition 4.1, we obtain the following bounds

G(y) ≤ Pr(Y ≤ y|X ≤ x) ≤ (1 + θF̄(x))G(y)

for θ ≥ 0 and
(1 + θF̄(x))G(y) ≤ Pr(Y ≤ y|X ≤ x) ≤ G(y)

for θ ≤ 0. For the reliability functions we have

(1 − θF̄(x))Ḡ(y) ≤ Pr(Y > y|X ≤ x) ≤ Ḡ(y)

for θ ≥ 0 and
Ḡ(y) ≤ Pr(Y > y|X ≤ x) ≤ (1 − θF̄(x))Ḡ(y)

for θ ≤ 0. Finally, for the expectations we have

min(1, 1 − θF̄(x))E(Y) ≤ E(Y|X ≤ x) ≤ max(1, 1 − θF̄(x))E(Y).

Sometimes we can study the properties obtained above in families of copulas. Let us see an example where
we consider strict Archimedean copulas as in Exercice 5.34 of Nelsen [26, p. 205] (see also [7]).
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Example 3. If the copula C is a strict Archimedean copula then it can be written as

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)),

where ϕ is a strict generator (see, e.g., [26, p. 112]), that is, ϕ is a strictly decreasing continuous and convex
function from [0, 1] to [0,∞] such that ϕ(0) = ∞ and ϕ(1) = 0. Then

ϕ(C(u, v)) = ϕ(u) + ϕ(v)

and, if we assume that ϕ is di�erentiable, we have

∂1C(u, v) = ϕ′(u)
ϕ′(C(u, v))

whenever ϕ′(C(u, v)) < 0.
From Proposition 3.5 (i) we know that (Y|X ≤ x) is ST-increasing (decreasing) in x, i.e., (X, Y) is LTD(Y|X)

(LTI(Y|X)), if and only if, the function g(u) = C(u, v)/u is decreasing in (0, 1) for all v ∈ (0, 1). Di�erentiating,
we have

g′(u) =sign u∂1C(u, v) − C(u, v) =sign C(u, v)ϕ′(C(u, v)) − uϕ′(u).
Moreover, we know that u = C(u, 1) ≥ C(u, v). Hence if uϕ′(u) is increasing (decreasing) in (0, 1), then g′(u) ≤ 0
(≥) and (Y|X ≤ x) is ST-increasing (decreasing) in x for all F, G. Moreover, (X|Y ≤ y) is also ST-increasing
(decreasing) in y for all F, G. Similar properties can be obtained for (Y|X > x) by using Proposition 3.6, (i) when
the survival copula is a strict Archimedean copula.

Therefore it is easy to study if (Y|X ≤ x) is ST-increasing (decreasing) in x for a strict Archimedean copula
with a given generator (some of them can be seen in, e.g., Table 4.1 of [26, p. 116]). For example, if ϕ(u) = − ln(u),
then uϕ′(u) = −1 is constant and we have that (Y|X ≤ x) is ST-constant as expected since this generator leads
to the product copula. In a similar way the Clayton-Oakes family of copulas is obtained from ϕ(u) = (u−θ −
1)/θ which is a strict generator when θ > 0 (see line 1 in Table 4.1 of [26, p. 116]). Hence uϕ′(u) = −u−θ is
increasingand then (Y|X ≤ x) is ST-increasing in x for all F, G.Analogously, theAli-Mikhail-Hak family of copulas
is obtained from ϕ(u) = ln(1 − θ(1 − u)) − ln(u) for θ ∈ [−1, 1) (see line 3 in Table 4.1 of [26, p. 116]). Hence

uϕ′(u) = −1 + uθ
1 − θ + θu

which is increasing (decreasing) when θ ≥ 0 (θ ≤ 0) and then (Y|X ≤ x) is ST-increasing (decreasing) in x for all
F, G when θ ≥ 0 (θ ≤ 0). Here the product copula is obtained with θ = 0. Finally, the Gumbel family of copulas
is obtained from ϕ(u) = (− ln(u))θ for θ ≥ 1 (see line 4 in Table 4.1 of [26, p. 116]). Hence uϕ′(u) = −θ(− ln u)θ−1

is increasing and then (Y|X ≤ x) is ST-increasing in x for all F, G.
We can study other orders in a similar way. For example, from Proposition 3.5, (v), we have that (Y|X ≤ x)

is LR-increasing (decreasing) in x for all F, G if and only if −ϕ′(C(u, v)) is RR2 (TP2), that is, reverse regular of
order two (totally positive of order two); see, e.g., [26, p. 199].

We can determine the monotonicity of (Y|X = x) in a similar way from Proposition 3.7. Capéraà and Genest
[7] proved that (X, Y) is PDS if and only if − ln(−φ′(u)) is convex where φ(u) = ϕ−1(u) is the inverse function
of ϕ. From Proposition 3.7 (i) we have that (X, Y) is PDS (NDS) if and only if ϕ′(C(u, v))/ϕ′(u) is increasing
(decreasing) in u. From Proposition 3.7 (ii) the same property holds for the survival copula. For example, for the
Clayton-Oakes family we obtain ϕ′(u) = −u−θ−1 and

ϕ′(C(u, v))
ϕ′(u) =

[
C(u, v)
u

]−θ−1

which is increasing in u (from the �rst part of this example and θ > 0). So (X, Y) is PDS. Analogously, for the
Gumbel family we have ϕ′(u) = −θu−1(− ln u)θ−1 and

ϕ′(C(u, v))
ϕ′(u) = u

C(u, v)

[
− ln C(u, v)
− ln u

]θ−1
= u
C(u, v)

[
1 +
(
− ln v
− ln u

)θ](θ−1)/θ

which is increasing in u (from the �rst part of this example and θ ≥ 1). So (X, Y) is PDS.
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The upper bound in (4.1) is 1 for many copulas. The following example shows that the upper bound can be
greater than 1 for some copulas.

Example 4. We consider (X, Y) with distributional copula obtained in Example 2.1 of [27] with m = 1 and
n = 2:

C(u, v) =


3uv for 0 ≤ u, v ≤ 1/3
uv + (1−u)(1−v)

2 for 1/3 < u, v ≤ 1
min(u, v) otherwise

for 0 ≤ u, v ≤ 1. Then the survival copula is

Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v) =


3uv

2 for 0 ≤ u, v ≤ 2/3
2 − 2u − 2v + 3uv for 2/3 ≤ u, v ≤ 1
min(u, v) otherwise.

As C(F(x), u) ≥ uF(x) for 0 < F(x) < 1, from Proposition 3.2, (i), we have Y ≥ST (Y|X ≤ x). Even more, by
Proposition 3.2, (ii), we get Y ≥HR (Y|X ≤ x). Also, from Proposition 3.3, (ii), we have Y ≤HR (Y|X > x).

From Proposition 4.1, for 0 < F(x) ≤ 1/3, we have

G(y) ≤ Pr(Y ≤ y|X ≤ x) ≤ 3G(y)

and for 1/3 < F(x) < 1, we have
G(y) ≤ Pr(Y ≤ y|X ≤ x) ≤ 1

F(x)G(y).

Analogously, by Proposition 4.1, for 0 < F̄(x) ≤ 2/3, we have

2 − 3F̄(x)
2 Ḡ(y) ≤ Pr(Y > y|X ≤ x) ≤ Ḡ(y)

and for 2/3 < F̄(x) < 1, we have
0 ≤ Pr(Y > y|X ≤ x) ≤ Ḡ(y).

Then, for the conditional expectations, we have

max
(

0, 2 − 3F̄(x)
2

)
E(Y) ≤ E(Y|X ≤ x) ≤ E(Y).

Moreover, we have

(Y|X ≤ x1) =ST (Y|X ≤ q1/3) ≤LR (Y|X ≤ x2) ≤LR (Y|X ≤ x3) ≤LR Y

for x1 ≤ q1/3 ≤ x2 ≤ x3 and F(q1/3) = 1/3.

7 Conclusions
The copula representation is a successful way to model the dependence in a random vector. Many depen-
dence concepts are de�ned in terms of (di�erent) conditional distributions. In the present paper we have
obtained copula representations for the di�erent conditional distributions. These representations are based
on the concept of distorted distributions. Hence we can apply the results for distorted distributions (obtained
recently) to compare conditional distributions or to obtain bounds for them. These comparisons and bounds
only depend on the underlying copula. The comparison results can be used to characterize well known de-
pendence concepts (as PQD/NQD, LTD/LTI, RTI/RTD and SI/SD) by using the usual stochastic order. They
can also be used to de�ne similar dependence concepts (which only depend on the copula) based on other
orders. The bounds can be used to get bounds for the di�erent regression curves E(Y|X = x), E(Y|X ≤ x) and
E(Y|X > x). We focus the paper on the bivariate case, but the results can be extended to the multivariate case
(with n > 2) by using the representations included in Section 2.
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The procedures and results obtained here are a starting point to develop and study new dependence con-
cepts based on mathematical properties of copulas. These concepts should be studied for particular copulas
and for families of copulas built using particular methods. In particular, we should �nd more examples in
which the dependence concepts de�ned in Propositions 3.2-3.7 do not coincide.

Acknowledgement: Wewould like to thank the anonymous reviewers for several helpful suggestions. We are
especially grateful to the reviewer which provides the counterexample included in Remark 1.

JN was supported in part by Ministerio de Economía, Industria y Competitividad of Spain under grant
MTM2016-79943-P and MAS by Ministerio de Economía, Industria y Competitividad of Spain under grant
MTM2017-89577-P.

References
[1] Adrian T. and M. K. Brunnermeier (2016). CoVaR. Am. Econ. Rev. 106(7), 1705–1741.
[2] Arias-Nicolás J. P., F. Ruggeri, and A. Suárez-Llorens (2016). New classes of priors based on stochastic orders and distortion

functions. Bayesian Anal. 11(4), 1107–1136.
[3] Arnold B. C., E. Castillo, and J. M. Sarabia (1999). Conditional Speci�cation of Statistical Models. Springer-Verlag, New York.
[4] Bernardi M., F. Durante, and P. Jaworski (2017). CoVaR of families of copulas. Statist. Probab. Lett. 120, 8–17.
[5] Block H.W., T. H. Savits, andM. Shaked (1985). A concept of negative dependence using stochastic ordering. Statist. Probab.

Lett. 3(2), 81–86.
[6] Burkschat M. and J. Navarro (2018). Stochastic comparisons of systems based on sequential order statistics via properties

of distorted distributions. Probab. Eng. Inform. Sci. 32(2), 246–274.
[7] Capéraà P. and C. Genest (1993). Spearman’s ρ is larger than Kendall’s τ for positively dependent random variables. J.

Nonparametr. Stat. 2(2), 183–194.
[8] Durante F. and R. Foschi (2014). Dependence of exchangeable residual lifetimes subject to failure. Appl. Math. Comput. 235,

502–511.
[9] Durante F., R. Foschi, and F. Spizzichino (2008). Threshold copulas and positive dependence. Statist. Probab. Lett. 78(17),

2902–2909.
[10] Durante F. and C. Sempi (2016). Principles of Copula Theory. CRC Press, Boca Raton FL.
[11] Girardi G. and A. T. Ergün (2013). Systemic risk measurement: multivariate GARCH estimation of CoVaR. J. Bank. Financ.

37(8), 3169–3180.
[12] Jaworski P. (2017). On Conditional Value at Risk (CoVaR) for tail-dependent copulas. Depend. Model. 5, 1–19.
[13] Kozyra P. M. and T. Rychlik (2017). Sharp bounds on the expectations of L-statistics expressed in the Gini mean di�erence

units. Comm. Statist. Theory Methods 46(6), 2921–2941.
[14] López-Díaz M., M.A. Sordo, and A. Suárez-Llorens (2012). On the Lp-metric between a probability distribution and its dis-

tortion. Insurance Math. Econom. 51(2), 257–264.
[15] Mainik G. and E. Schaanning (2014). On dependence consistency of CoVaR and some other systemic risk measures. Stat.

Risk Model. 31(1), 49–77.
[16] Miziuła P. and J. Navarro (2017a). Sharp bounds for the reliability of systems and mixtures with ordered components. Naval

Res. Logist. 64(2), 108–116.
[17] Miziuła P. and J. Navarro (2017b). Bounds for the reliability functions of coherent systems with heterogeneous components.

Appl. Stoch. Models Bus. Ind. 34(2), 158–174.
[18] Navarro J. (2018). Distribution-free comparisons of residual lifetimes of coherent systems based on copula properties.

Statist. Papers 59(2), 781–800.
[19] Navarro J. and Y. del Águila (2017). Stochastic comparisons of distorted distributions, coherent systems and mixtures with

ordered components.Metrika 80(6-8), 627–648.
[20] Navarro J. and F. Durante (2017). Copula-based representations for the reliability of the residual lifetimes of coherent sys-

tems with dependent components. J. Multivariate Anal. 158, 87–102.
[21] Navarro J., Y. del Águila, M. A. Sordo, and A. Suárez-Llorens (2013). Stochastic ordering properties for systems with depen-

dent identically distributed components. Appl. Stoch. Models Bus. Ind. 29(3), 264–278.
[22] Navarro J., Y. del Águila, M. A. Sordo, and A. Suárez-Llorens (2016). Preservation of stochastic orders under the formation

of generalized distorted distributions.Methodol. Comput. Appl. Probab. 18(2), 529–545.
[23] Navarro J. and M. C. Gomis (2016). Comparisons in the mean residual life order of coherent systems with identically dis-

tributed components. Appl. Stoch. Models Bus. Ind. 32(1), 33–47.
[24] Navarro J., M. Longobardi, and F. Pellerey (2017). Comparison results for inactivity times of k-out-of-n and general coherent

systems with dependent components. TEST 26(4), 822–846.



Stochastic comparisons and bounds for conditional distributions | 177

[25] Navarro J and T. Rychlik (2010). Comparisons and bounds for expected lifetimes of reliability systems. Eur. J. Oper. Res.
207(1), 309–317.

[26] Nelsen R.B. (2006). An Introduction to Copulas. Second edition. Springer, New York.
[27] Rodríguez-Lallena J. A. and M. Úbeda-Flores (2004). A new class of bivariate copulas. Statist. Probab. Lett. 66(3), 315–325.
[28] Shaked M. and J. G. Shanthikumar (2007). Stochastic Orders. Springer, New York.
[29] Shaked M., M.A. Sordo, and A. Suárez-Llorens (2012). Global dependence stochastic orders. Methodol. Comput. Appl.

Probab. 14(3), 617–648.
[30] Sordo M. A., A. J. Bello, and A. Suárez-Llorens (2018). Stochastic orders and co-risk measures under positive dependence.

Insurance Math. Econom. 78, 105–113.
[31] Sordo M. A., A. Castaño-Martínez, and G. Pigueiras (2016). A family of premium principles based on mixtures of TVaRs.

Insurance Math. Econom. 70, 397–405.
[32] SordoM. A. and H.M. Ramos (2007). Characterizations of stochastic orders by L-functionals. Statist. Papers 48(2), 249–263.
[33] Sordo M. A. and A. Suárez-Llorens (2011). Stochastic comparisons of distorted variability measures. Insurance Math.

Econom. 49(1), 11–17.
[34] Sordo M. A., A. Suárez-Llorens, and A. J. Bello (2015). Comparison of conditional distributions in portfolios of dependent

risks. Insurance Math. Econom. 61, 62–69.
[35] Wang S. (1996). Premium calculation by transforming the layer premium density. Astin Bull. 26(1), 71–92.
[36] Yaari M. E. (1987). The dual theory of choice under risk. Econometrica 55(1), 95–115.
[37] Yitzhaki S and I. Olkin (1991). Concentration indices and concentration curves. In K.Mosler andM. Scarsini (Eds.), Stochastic

Orders and Decision Under Risk, pp. 380–392. Inst. Math. Statist., Hayward CA.
[38] Yitzhaki S. (2003). Gini’s mean di�erence: a superior measure of variability for non-normal distributions. Metron LXI(2),

285–316.
[39] Yitzhaki S. and E. Schechtman (2013). The Gini Methodology: A Primer on a Statistical Methodology. Springer-Verlag, New

York.


	1 Introduction
	2 Representations for conditional distributions
	3 Stochastic comparisons and dependence properties
	4 Bounds
	5 Applications
	5.1 Applications in Risk Theory
	5.2 An application in Economics

	6 Examples
	7 Conclusions

