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Abstract:We derive the exact distributions of order statistics from a �nite number of, in general, dependent
randomvariables following a joint ln,p-symmetric distribution. To this end,we �rst review the special cases of
order statistics fromspherical aswell as from p-generalizedGaussian sampledistributions from the literature.
To study the case of general ln,p-dependence, we use both single-out and cone decompositions of the events
in the sample space that correspond to the cumulative distribution function of the kth order statistic if they
aremeasured by the ln,p-symmetric probabilitymeasure.We show that in each case distributions of the order
statistics from ln,p-symmetric sample distribution can be represented asmixtures of skewed ln−ν,p-symmetric
distributions, ν ∈ {1, . . . , n − 1}.
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1 Introduction
Order statistics are a useful tool in numerous scienti�c areas with a wide-ranging applicability. In order to
mention just a fewareaswhere order statistics are needed,we refer to applications related to health data,mul-
tiple decision rules, multiple comparison problems, tests of hypotheses and digital image processing which
are presented in [15], [18], and [28], respectively. More recent applications to goodness-of-�t testing, predic-
tion in �nancial markets and outlier detection techniques for EEG signals are considered in [14], [36], and
[13], respectively. Many other examples such as the life time of k-out-of-n systems or linear estimation based
on order statistics can be found in standard references like [6], [7], and [11].

It is outlined in [37] that a preliminary analysis of independent realistic simulations of a string signal
being of interest in radio interferometry allows to show that the random process from which a certain string
signal arises is well modeled by generalized Gaussian distributions in wavelet space. The exponent parame-
ters can be considered as a measure of compressibility of the underlying distribution. Values of these param-
eters close to zero yield very compressible distributions being of particular interest for compressed sensing
imaging techniques in radio interferometry where astrophysical signals are probed through incomplete and
noisy Fourier measurements. Similarly, generalized Gaussian distributions are used to model signal gradi-
ent in compressed sensing reconstruction of a string signal from interferometric observations of the cosmic
microwave background in [38]. Moreover, the convergence of the so called peeling algorithm for wavelet de-
noising is proved in [23] under the usual assumption of signal processing that the wavelet coe�cient of a
signal from an independent and identically distributed (iid) family of generalized Gaussian variables. Gener-

*Corresponding Author: W.-D. Richter: University of Rostock, Institute of Mathematics, Ulmenstraße 69, Haus 3, 18057 Ros-
tock, Germany, E-mail: wolf-dieter.richter@uni-rostock.de
K. Müller: University of Rostock, Institute of Mathematics, Ulmenstraße 69, Haus 3, 18057 Rostock, Germany, E-mail:
klaus.mueller@uni-rostock.de

https://doi.org/10.1515/demo-2017-0013


222 | K.Müller and W.-D. Richter

alized Gaussian distributed variables are also used as balancedmultiwavelet coe�cients in digital image wa-
termarking in [21], and in scalar quantization of transform coe�cients obtained by modulated lapped trans-
form or modi�ed cosine transform �lter bank in [22]. Heavy tailed distributions, examples of which include
longmemory processes being appropriate for �nancial time series or telecommunication tra�c �ows, can be
modeled, according to [27], as a generalizedGaussian distributionhaving suitable variance and shape param-
eters. Due to the need of continuous monitoring of the respiratory mechanics during the acute exacerbations
of chronic obstructive pulmonary disease, respiratory signal modeling under non-invasive ventilation is of
interest in biomedical signal processing. Modeling of the measurement noise in the respiratory system has
been done in [35] with the help of the generalized Gaussian distribution. This approach appeared there to be
�exible and robust enough to deal with departs of the measurements noise from the Gaussian noise to the
sub-Gaussian area.

Note that within the general study of order statistics from a �nite number of, in general, dependent ran-
dom variables special emphasis is in the literature on the particular case of extreme values and their distri-
butions. In the background of related studies, the event in the sample space Rn, Ann(t) =

{
(x1, . . . , xn)T ∈

Rn : xi < t, i = 1, . . . , n
}
, t ∈ R, has been considered in di�erent ways. While part of authors make (directly

or indirectly) use of the single-out decomposition

Ann(t) =
n⋃
i=1

{
(x1, . . . , xn)T ∈ Rn : xn:n = xi , xi < t

}
(1)

where xn:n denotes themaximumof x1, . . . , xn, the event Ann(t) is represented in [26] for every ν ∈ {1, . . . , n−
1} as a union of ν + 1 cones such that each of them, which is an intersection of n half spaces from Rn, con-
tains the origin in the boundary of ν of its intersecting half spaces. Invariance properties of ln,p-symmetric
measures allow then to represent the probability of Ann(t) as the (ν + 1) multiple of the ln,p-symmetric mea-
sure of an arbitrary element of a class Cn−ν,ν

(
E(ν,n)1 ; t1n−ν

)
of cones being parameterized by the matrix

E(ν,n)1 ∈ Rν×(n−ν) whose �rst column is 1ν = (1, . . . , 1)T ∈ Rν and whose remaining columns are equal the
zero vector. Each such representation can be interpreted as a measure-of-cone representation of a certain
skewed ln−ν,p-symmetric distribution generalizing the results for two- and multivariate skewed elliptically
contoured distributions in [16] and [34], respectively.

Let us emphasize at this point that, on the one hand, the sets
{
(x1, . . . , xn)T ∈ Rn : xn:n = xi , xi < t

}
are not cones. On the other hand, studies making use of decomposition (1) nevertheless commonly also
end up with representations of the distribution of the maximum of the components of the considered ran-
dom vector as skewed distributions. However, these representations are di�erent to that just discussed and
they are only comparable if one considers there the particular case ν = n − 1. Moreover, we remark that
according to [5] a skewed ln−ν,p-symmetric distribution can be dealt with as the conditional distribution
of X(1) = (X1, . . . , Xn−ν)T given the linear random selection condition X(2) < E(ν,n)1 X(1) is satis�ed where
X(2) = (Xn−ν+1, . . . , Xn)T, the sign of inequality is to be read componentwise, and the random variables
X1, . . . , Xn being generally not independent follow a joint ln,p-symmetric distribution.

The sketched way of deriving exact extreme value distributions will be extended in the present paper to
the case of arbitrary order statistics if a sample vector is ln,p-dependent, i.e. it follows a joint ln,p-symmetric
distribution. Di�erent methods of deriving exact distributions in this case may be distinguished with respect
to how to (possibly indirectly) decompose the set to be considered in the sample space Rn,

Ank (t) =
{
(x1, . . . , xn)T ∈ Rn : xi < t for at least k values i ∈ {1, . . . , n}

}
,

when studying the distribution of the kth order statistic.
In [2, 3], the cumulative distribution function (cdf) and the probability density function (pdf) of linear

combinations of order statistics of a �nite number of arbitrary absolutely continuous dependent randomvari-
ables are determined in terms of a product of marginal pdfs and conditional distributions where particularly
the special cases of arbitrary exchangeable, of elliptically contoured, and of exchangeable elliptically con-
toured sample distributions are examined. Using exclusively skewed distributions to represent their results,
[19] present the exact distribution of order statistics and of linear combinations of order statistics of a �nite
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number of jointly elliptically contoured distributed randomvariables. For somemore detailed information on
this work see Section 3.1.1. The consideration of order statistics in ln,p-symmetrically distributed populations
started in [17] by obtaining the joint pdf of the vector of order statistics. A versatile study of di�erent meth-
ods for deriving exact extreme value distributions in di�erent ways can be found in [10] and [24–26]. More
generally, [8] considers multivariate order statistics from dependent and nonidentically distributed random
variables.

The present paper extends the results from [26] to the case of an arbitrary order statistic of n jointly ln,p-
symmetrically distributed random variables, and at the same time extends certain results in [2, 3] and [19]
from spherical dependence to the case of ln,p-dependence. To pursue this aim, on the one hand, we follow a
single-out decomposition of the randomeventAnk (t) as it is applied in [19] and several references cited therein.
On the other hand, we follow a cone decomposition of Ank (t) being analogously to that of Ann(t) mentioned
above, and employ an advanced geometric method by usingmeasure-of-cone representations of skewed ln,p-
symmetric distributions derived as well as applied in [26]. One might ask why it is useful to have di�erent
representations of one and the same cdf. A part of the answer is that sometimes di�erent representations
have di�erent numerical and mathematical properties. For another part of the answer, we refer to [16] where
it is shown that four di�erently motivated approaches to the skewed normal distribution can be uni�ed from
a geometric point of view. Now, given this uni�ed approach, it has the potential property of helping to identify
otherwise motivated applications of skewed distributions.

The rest of the paper is organized as follows. In Section 2, we introduce the families of ln,p-symmetric and
skewed ln,p-symmetric distributions. In Sections 3.1.1 and 3.1.2, we reviewknown results on the distribution of
order statistics for spherical and power exponential sample distribution, respectively. In Sections 3.2 and 3.3,
we present our main results on exact distributions of order statistics from continuous ln,p-symmetric sample
distributions based upon the two di�erent approaches of single-out and cone decompositions of the event
Ank (t), t ∈ R, to bemeasuredwhen deriving the cdf of the kth order statistic. Additionally, some visualizations
and an application are shown in Section 3.4. In order to strengthen the presentation of our main results, their
proofs and some discussions are given separately in Section 4 and the derivation of the pdf concerning the
cdf resulting from the second approach and its proof is outsourced to Appendices A.1 andA.2. In particular, in
Section 4.5,wediscuss a secondwayof achieving ourmain results basedupon the single-out decompositions.
In Section 5, some conclusions are drawn from the present paper and further scopes are outlined.

2 The classes of ln,p-symmetric and skewed ln,p-symmetric
distributions

Let p be a positive real number and denote |·|p the p-functional in the n-dimensional Euclidean space Rn

de�ned by |x|p =
( n∑
i=1
|xi|p

) 1
p

, x = (x1, . . . , xn)T ∈ Rn. Additionally, let us denote the ln,p-generalized surface

content of the ln,p-unit sphere Sn,p = {x ∈ Rn : |x|p = 1} by ωn,p. For the local de�nition and calculation of

the value ωn,p =
(
2Γ
(

1
p

))n
pn−1Γ

(
n
p

) see [29], and for a global or di�erential geometric approach to this notion see [30].

We remark that extensions of this basic notion to ellipsoids, norm and antinorm spheres as well as to more
general star spheres are given in [31–33], respectively.

A function g : (0,∞)→ (0,∞) satisfying 0 < In(g) < ∞ is called a density generating function (dgf) of an
n-variate distribution where In(g) =

∞∫
0
rn−1g(r) dr. For achieving uniqueness of this notion we assume that

In(g) = 1
ωn,p . Such dgf is called a density generator (dg) and denoted by g(n).

An n-dimensional random vector X : Ω → Rn de�ned on a probability space (Ω,A, P) and having the pdf

φg(n) ,p(x) = g
(n)
(
|x|p
)
, x ∈ Rn , (2)
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is said to follow a continuous ln,p-symmetric distribution with dg g(n) and shape parameter p > 0 (also tail
parameter). Particularly, note that the class of ln,2-symmetric distributions, n ∈ N, coincides with that of
spherical distributions. Further, the probability law of X is denoted by Φg(n) ,p and the components of X are
uncorrelated but generally dependent. In particular, they are independent if and only if X is n-dimensional
p-generalized Gaussian distributed. That is an important special case of ln,p-symmetric distributions which
is realized by choosing the dg g(n) as g(n)PE where

g(n)PE(r) =

 p1−
1
p

2Γ
(
1
p

)
n

exp
{
− r

p

p

}
, r > 0. (3)

Concerning these andmore details on ln,p-symmetric distributions, references to the literature and examples
of dgs, we refer to [17], [30] and [25, 26], respectively, and references cited therein.

To introduce the skewed lk,p-symmetric distributions, let Im be them×m unit matrix and 0m the zero vec-

tor in Rm. Furthermore, let X =
(
X(1)

T
, X(2)

T)T
be a random vector following a continuous lk+m,p-symmetric

distribution with dg g(k+m) where X(1) : Ω → Rk and X(2) : Ω → Rm. Recalling the minor change of notation
in [32] compared to earlier publications, described for the particular case of ln,p-symmetric distributions in
[25], and taking this subsequently into account, according to [5], the dg g(k)(k+m) of the marginal distribution of
X(1) in Rk allows the representation

g(k)(k+m)(z) =
ωm,p
p

∞∫
zp

(y − zp)
m
p −1 g(k+m)( p

√y) dy, z ∈ (0,∞). (4)

Additionally, for Λ ∈ Rm×k, Γ = (Λ, −Im), and Σ = ΓΓT = Im + ΛΛT, the cdf of ΓX will be denoted by
F(2)m,p

(
x; Σ, g(m)(k+m)

)
, x ∈ Rm. Moreover, for every x(1) ∈ Rk, the conditional density of X(2) given X(1) = x(1) is

g(k+m)( p
√
|x(1)|pp + |x(2)|pp)

g(k)(k+m)(|x(1)|p)
= g(m)[|x(1)|p ]

(|x(2)|p), x(2) ∈ Rm , (5)

and the corresponding distribution law is Φg(m)
[|x(1)|p ]

,p. Let Y be a random vector following this distribution,

Y ∼ Φg(m)
[|x(1)|p ]

,p, then its cdf satis�es

F(1)m,p
(
x; g(m)[|x(1)|p ]

)
=
∫
Rm+

g(m)[|x(1)|p ]

(
|x − u|p

)
du =

∫
v<x

g(m)[|x(1)|p ]
(|v|p) dv, x ∈ Rm .

A k-dimensional random vector Z having a pdf of the form

fZ(z) =
1

F(2)m,p(0m; Σ, g(m)(k+m))
g(k)(k+m)

(
|z|p
)
F(1)m,p

(
Λz; g(m)[|z|p ]

)
, z ∈ Rk , (6)

is said to follow the skewed lk,p-symmetric distribution SSk,m,p
(
Λ, g(k+m)

)
withdimensionality parameterm,

dg g(k+m) and skewness/ shape matrix-parameter Λ. Further, the parameter k is called the co-dimensionality
parameter and the cdf of Z is denoted by Fk,m,p

(
·;Λ, g(k+m)

)
. If Σ is a diagonal matrix, the normalizing con-

stant in (6) is F(2)m,p
(
0m; Σ, g(m)(k+m)

)
= 2−m. In the present framework, however, it will not be necessary to

determine this constant explicitly even for rather arbitrary matrix Σ.
As skewed lk,p-symmetric distributions are constructed via selectionmechanisms from lk+m,p-symmetric

distributions in [5], using the above introduced notations,

L
(
X(1)

∣∣∣ X(2) < ΛX(1)) = SSk,m,p (Λ, g(k+m)) (7)

where L(Y) denotes the distribution law of the random vector Y.
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Let us denote the set of all n × n permutations matrices by Πn. Note that, according to [26], if Z ∼
SSk,m,p

(
Λ, g(k+m)

)
and M1 ∈ Πn, then M1Z ∼ SSk,m,p

(
ΛMT

1, g(k+m)
)

where ΛMT
1 arises from Λ by inter-

changing columns. Moreover, if M2 ∈ Πm, then, for z ∈ Rk, Fk,m,p
(
z;M2Λ, g(k+m)

)
= Fk,m,p

(
z;Λ, g(k+m)

)
,

i.e. SSk,m,p
(
M2Λ, g(k+m)

)
= SSk,m,p

(
Λ, g(k+m)

)
where M2Λ arises from Λ by interchanging rows.

3 Distributions of order statistics from continuous ln,p-symmetric
sample distributions

3.1 Review of results from the literature

3.1.1 Spherically distributed sample distribution

In this section,we concisely review speci�c results on exact distributions of order statistics from the literature
especially concentrating on spherical sample distributions and on the work [2, 3] and [19]. As it is mentioned
in Section 2, the class of ln,2-symmetric distributions, n ∈ N, coincides with that of spherical distributions.
Hence, our present task to determine the exact distributions of order statistics from ln,p-symmetric sample
distributions is already done for the special case p = 2 in the three papersmentioned above. Moreover, spher-
ical distributions are centered elliptically contoured distributions with unit matrices as dispersion matrices,
i.e. exchangeable elliptically contoured distributions with parameters µ = 0, σ = 1 and ρ = 0 in the nota-
tion of the previous works. Let us denote the pdf and the cdf of an n-dimensional spherical distribution with
density generator h(n) by fS(·; h(n)) and FS(·; h(n)), respectively. The pdf f ◦k:n of the kth order statistic from an
n-dimensional spherical distribution with functional parameter h(n) according to [2, page 1889], [3] and [19,
Remark 5] (with results of both papers being specialized to the case µ = 0, σ = 1 and ρ = 0) is

f ◦k:n(t) =
(
n
k

)
k fS(t; h(1)) FS(Jn−1t; h(n−1)t2 ), t ∈ R, (8)

where Jn−1 =
(
1T
k−1, −1T

n−k
)T ∈ Rn−1 with 1m = (1, . . . , 1)T ∈ Rm,

h(1)(u) = π
n−1
2

Γ
( n−1

2
) ∞∫
0

u
n−1
2 −1h(n)(u + v) dv, u > 0,

is an univariate marginal density generator and

h(n−1)t2 (u) = h
(n)(u + t2)
h(1)(t2)

, u > 0,

an (n−1)-dimensional conditional density generator. Note that h(1) and h(n−1)t2 are special cases of themarginal
and conditional dgs (4) and (5), respectively, given in Section 2 having in mind the minor change of notation
in [32].

Arellano-Valle and Genton achieve the above formula (8) by certain steps of specialization. Their most
general results deals with the pdf of linear combinations of order statistics from arbitrary absolutely continu-
ous sample distributionswhich is represented as a sumof productswhose factors each are a speci�cmarginal
pdf multiplied with a speci�c conditional distribution. Note that these conditional distributions are di�erent
from that used in the de�nitions of skewed distributions in [19] and Section 2, respectively, and that their de-
terminationmay be nontrivial. Next, on the one hand, this result is speci�ed to the case of arbitrary exchange-
able absolutely continuous sample distributionswhere the connection of distributions of linear combinations
of order statistics from such sample distributions to fundamental skew distributions, see [1], is stated. On the
other hand, the special case of elliptically contoured sample distributions is considered there for which the
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conditional distributions are calculated explicitly yielding speci�c elliptically contoured distributions with
conditional functional parameters. Note that the corresponding pdf of a linear combination of order statistics
from elliptically contoured distribution was corrected by [19, Remark 10]. Finally, both specializations are si-
multaneously considered resulting in a representation of the pdf of a linear combination of order statistics
from exchangeable elliptically contoured sample distribution having parameters µ ∈ R, σ2 with σ > 0 and
ρ ∈ [0, 1) and a certain functional parameter. The latter representation yields (8) by specializing the linear
combination to a single order statistic and considering µ = 0, σ = 1 and ρ = 0.

After considering various special cases in their previous work, [19] deal with distributions of order statis-
tics and linear combination of order statistics from elliptically contoured sample distributions in term ofmix-
tures skeweddistributions. To be concrete, these are uni�edmultivariate skew-elliptically contoureddistribu-
tions being de�ned in this paper as speci�c conditional distributions and being special cases of multivariate
uni�ed skew-elliptically contoured distributions, see [4]. As it is indicated before, these conditional distribu-
tions di�er from those considered in [2, 3]. With the help of these skewed distributions, on the one hand, it
is shown in [19] that the distribution of an arbitrary order statistic from an elliptically contoured sample dis-
tribution is uni�ed univariate skew-elliptically contoured distributed where the corresponding parameters
are given. This result is specialized to exchangeable elliptically contoured sample distributions yielding (8) if
µ = 0, σ = 1, and ρ = 0 as well as to the cases of multivariate normal and t sample distribution, respectively.
On the other hand, the distribution of an linear combination of order statistics from an elliptically contoured
sample distribution is established to be amixture of uni�edmultivariate skew-elliptically contoured distribu-
tions having speci�c parameters. Note that this result, combined with Remark 10 in [19], coincides with that
in [2] if the skewed distributions are dissolved. Finally, the three special cases of exchangeable elliptically
contoured, multivariate normal and multivariate t sample distributions are discussed in [19].

3.1.2 Power exponential sample distribution

In this section, let the random vector ξ = (ξ1, . . . , ξn)T follow the n-dimensional p-generalized Gaussian
distribution, ξ ∼ Φg(n)PE ,p. It is already mentioned in Section 2 that the components of an continuous ln,p-

symmetrically distributed random vector having dg g(n) are independent if g(n) = g(n)PE and only in that case.
Furthermore, they are identically distributed due to their l1,p-symmetrically distributed univariate marginals
with dg g(1)(n) according to [5] and to permutation invariance of Φg(n) ,p according to [26].

The cdf F*k:n and the pdf f *k:n of the kth order statistic of X*1, . . . , X*n being i.i.d. random variables having
cdf F and pdf f , respectively, are

F*k:n(t) =
(
n
k

)
k

t∫
−∞

f (y)
(
F(y)

)k−1 (1 − F(y))n−k dy (9)

=
n∑
j=k

(
n
j

)(
F(t)

)j (1 − F(t))n−j , t ∈ R, (10)

and

f *k:n(t) =
(
n
k

)
k f (t)

(
F(t)

)k−1 (1 − F(t))n−k , t ∈ R, (11)

see [11]. We note that there are two representations of F*k:n being structured di�erently.
Let us denote the pdf and the cdf of the univariate distribution of ξ1 by φp(t) = g(1)PE(|t|) and Φp(t) =

t∫
−∞

φp(s) ds, respectively. Then, because of continuity and symmetry with respect to the point
(
0, 12

)
, we have

1 −Φp(t) = Φp(−t) and the pdf of the kth order statistic of the components of ξ follows from (11) with F = Φp
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and f = φp,

f *k:n(t) =
(
n
k

)
k φp(t)

(
Φp(t)

)k−1 (Φp(−t))n−k , t ∈ R. (12)

For visualizations of f *4:4 and f *3:4 for di�erent values of p > 0 we refer to Figures 5 and 6. Additionally, analog
representations can be achieved for the cdf of the kth order statistic of the components of ξ according to (9)
and (10), respectively.

In the next Sections 3.2 and 3.3, we provide our main results (Theorem 1 and Theorem 2).

3.2 The general case of ln,p-dependence making use of single-out decompositions
of An

k(t)

For the rest of the paper, let the random vector X = (X1, . . . , Xn)T follow the ln,p-symmetric distribution with
an arbitrary dg g(n), X ∼ Φg(n) ,p, and denote the cdf and the pdf of the kth order statistic of X1, . . . , Xn, Xk:n, by
Fk:n and fk:n, respectively, k = 1, . . . , n. Moreover, we put E(n−1) = 1n−11T

n−1 where 1n−1 = (1, . . . , 1)T ∈ Rn−1.

Theorem 1. For k ∈ {1, . . . , n} and every set J ⊆ {1, . . . , n − 1} consisting of k − 1 (di�erent) elements, Fk:n
allows the representation

Fk:n(t) =
(
n
k

)
k F(2)n−1,p

(
0n−1; In−1 + S(n−1)J E(n−1)S(n−1)J , g(n−1)(n)

)
· F1,n−1,p

(
t; S(n−1)J 1n−1, g(n)

)
, t ∈ R,

where S(n−1)J = diag(s1, . . . , sn−1) is a diagonal matrix with sj =
{
1 , j ∈ J
−1 , otherwise

.

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. For k ∈ {1, . . . , n} and every set J ⊆ {1, . . . , n − 1} having k − 1 elements, fk:n allows the repre-
sentation

fk:n(t) =
(
n
k

)
k g(1)(n)(|t|) F

(1)
n−1,p

(
S(n−1)J 1n−1t; g(n−1)[|t|]

)
, t ∈ R. (13)

The above representation of the distribution of the kth order statistic conforms well with earlier results in the
literature. Note that the representation of f2:2 is derived �rst in [10].Moreover, the general results of Theorem 1
andCorollary 1 coincide in the case k = nwith those derived in [26] if oneputs there ν = n−1. For theparticular
case p = 2 and the particular choice of diagonal matrix S(n−1)J such that S(n−1)J 1n−1 =

(
1T
k−1, −1T

n−k
)T = Jn−1,

the result of Corollary 1 coincides with (8) and thus is covered by [2, 3] and [19], respectively. Aside from that
[19] also proved Theorem 1 in the special case of p = 2 but allowing more general moments.

Notice that the result of Theorem 1 can be reformulated without referring to skewed distributions as

Fk:n(t) =
(
n
k

)
k

t∫
−∞

g(1)(n)

(
|y|p
)
F(1)n−1,p

(
S(n−1)J 1n−1y; g(n−1)[|y|p]

)
dy, t ∈ R, (14)

where g(1)(n) is the one-dimensional marginal dg of any component of X and F(1)n−1,p is the (n − 1)-variate cdf
de�ned in Section 2. In some sense, the mathematical structure behind the representations (14) and (13) is
thus close to that behind (9) and (11), respectively.
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3.3 General representations in case of ln,p-dependence based upon cone
decompositions of An

k(t)

It was discussed in Section 1 that di�erent decompositions of the event Ann(t) lead to di�erent representations
of Fn:n(t), t ∈ R. Similarly, Fk:n(t), t ∈ R, allows additional representations if one uses cone decompositions
of Ank (t) instead of single-out ones. To this end, for ν ∈ {1, . . . , n − 1} recalling the notation E(ν,n)1 of the
ν × (n − ν) matrix whose �rst column is 1ν and whose remaining elements are equal to zero, see Section 1, for
ν1 ∈ {1, . . . , n − k − 1} and ν2 ∈ {1, . . . , k − 1} with ν1 + ν2 > 0, let

E(ν1 ,ν2 ,n,k)1,1 =
(
E(ν1 ,n−k)1 0

0 E(ν2 ,k)1

)
∈ R(ν1+ν2)×(n−ν1−ν2)

be a block matrix with 0 denoting each time a suitably sized zero matrix. If ν1 = 0 or ν2 = 0, then the �rst or

second block row in E(ν1 ,ν2 ,n,k)1,1 is omitted, respectively. Moreover, E(ν1 ,ν2) =
(
E(ν1) 0
0T E(ν2)

)
∈ R(ν1+ν2)×(ν1+ν2)

denotes a block (diagonal) matrix. Additionally, in the sequel, we de�ne the sum
n−1∑
j=n

to be zero.

Theorem 2. For k ∈ {1, . . . , n}, every νj,1 ∈ {0, . . . , n − j − 1}and νj,2 ∈ {0, . . . , j − 1}with νj = νj,1+νj,2 > 0
for j = k, . . . , n − 1, and every νn ∈ {1, . . . , n − 1}, the cdf Fk:n allows the representation

Fk:n(t) =
n−1∑
j=k

(
n
j

)
(νj,1 + 1)(νj,2 + 1)F(2)νj ,p

(
0νj ; Iνj + E(νj,1 ,νj,2), g

(νj)
(n)

)
· Fn−νj ,νj ,p

((
−t1n−j−νj,1
t1j−νj,2

)
; E(νj,1 ,νj,2 ,n,j)1,1 , g(n)

)

+ (νn + 1)F(2)νn ,p
(
0νn ; Iνn + E(νn), g(νn)(n)

)
Fn−νn ,νn ,p

(
t1n−νn ; E(νn ,n)1 , g(n)

)
, t ∈ R.

If k = n, then Theorems 1 and 2 lead to the same results if one puts νn = n−1 in Theorem 2. Additionally, note
that the last summand in the representation of Fk:n(t) in Theorem 2 is already well known from [26] to be the
maximum cdf in ln,p-symmetrically distributed populations. We recall that the representation of Fk:n given
in Theorem 1makes use of a skewed distribution with dimensionality parameter n −1 and co-dimensionality
parameter 1. The result of Theorem 2means that Fk:n can also be represented as amixture of n− k+1 skewed
ln−νj ,p-symmetric distribution functions with dimensionality parameters νj each being smaller than n − 1 for
j = k, . . . , n−1and νn (and co-dimensionality parameters n−νj aswell asmatrix parameterΛj for j = k, . . . , n,
respectively). Note that Λj = E

(νj,1 ,νj,2 ,n,j)
1,1 if j ∈ {k, . . . , n − 1} and Λn = E(νn ,n)1 .Wherever, vice versa, onemeets

elsewhere some quantity expressed as such amixture of skewed distributions one thusmay think there about
a comprehensive representation in terms of a single skewed distribution similar to the one given in Theorem
1.

Furthermore, notice that the mathematical structure of the representation given in Theorem 2 is in a way
linked to that of (10), since the ith summand of both formulae represents the probability that exactly i + k −1
of the random variables X1, . . . , Xn and X*1, . . . , X*n are less than t, i = 1, . . . , n − k + 1, respectively.

Because of symmetry with respect to the origin and continuity of the probability distribution of X,Φg(n) ,p,
for k = 1, . . . , n and every t ∈ R, the well-known relation

Fn−k+1:n(t) = 1 − Fk:n(−t), t ∈ R, (15)

is ful�lled. This relation may be used to reduce the number of summands when applying the representation
of Theorem 2. More precisely, denoting the �oor and the ceiling function by b·c and d·e, respectively, if 1 ≤ k ≤⌊ n+1

2
⌋
, then, using �rst relation (15) and afterwards Theorem 2, the cdf consists of n−(n−k+1)+1 = k ≤

⌊ n+1
2
⌋

summandswhereas the cdf from the straightforwarduseof Theorem2consists of n−k+1 ≥ n+1−
⌊ n+1

2
⌋
≥
⌊ n+1

2
⌋

summands. In order to reduce both the computational expense and time, this fact may be succesfully used
when implementing Fk:n as given in Theorem 2.
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Moreover, notice that, according to the representation of the cdf Fk:n from Theorem 2, the pdf of the kth
order statistic Xk:n, fk:n(t), t ∈ R, is considered for k = 1, . . . , n in Appendix A.

At the end of this section, in view of what was said in Section 1 on the potential usefulness of a variety of
representations of one and the same numerical quantity, we present further representations of Fk:n according
to the approach via cone decompositions of the event Ank (t), t ∈ R. In order to do this, extending the notation
of the matrix E(ν,n)1 , for i = 1, . . . , n − ν, let E(ν,n)i be the ν × (n − ν) matrix whose ith column is 1ν and whose
remaining columns are 0ν. Analogously, for i1 = 1, . . . , n − k − ν1 and i2 = 1, . . . , k − ν2, the block matrices

E(ν1 ,ν2 ,n,k)i1 ,i2 =
(
E(ν1 ,n−k)i1 0

0 E(ν2 ,k)i2

)
∈ R(ν1+ν2)×(n−ν1−ν2)

extend the abvoe notation of E(ν1 ,ν2 ,n,k)1,1 . Recalling the notation Πn of the set of all n ×n permutationmatrices,
Theorem 2 is a special case of the following theorem.

Theorem 3. For k ∈ {1, . . . , n}, every νj,1 ∈ {0, . . . , n − j − 1} and νj,2 ∈ {0, . . . , j − 1} such that νj = νj,1 +
νj,2 > 0, every ij,1 ∈

{
1, . . . , n − j − νj,1

}
and ij,2 ∈

{
1, . . . , j − νj,2

}
, every Mj,1 ∈ Πn−νj and Mj,2 ∈ Πνj for

j = 1, . . . , n −1, and every νn ∈ {1, . . . , n − 1} and in ∈ {1, . . . , n − νn}, the cdf Fk:n allows the representation

Fk:n(t) =
n−1∑
j=k

(
n
j

)
(νj,1 + 1)(νj,2 + 1)F(2)νj ,p

(
0νj ; Iνj + E(νj,1 ,νj,2), g

(νj)
(n)

)
· Fn−νj ,νj ,p

(
Mj,1

(
−t1n−j−νj,1
t1j−νj,2

)
;Mj,2E

(νj,1 ,νj,2 ,n,j)
ij,1 ,ij,2 MT

j,1, g(n)
)

+ (νn + 1)F(2)νn ,p
(
0νn ; Iνn + E(νn), g(νn)(n)

)
Fn−νn ,νn ,p

(
t1n−νn ; E(νn ,n)in , g(n)

)
, t ∈ R.

3.4 Visualization and an application

In the present section, on the one hand, we visualize the pdf of the maximum statistic and the third order
statistic from l4,3-symmetric Kotz type and Pearson Type VII sample distributions, respectively, see Figures
1-4. For the de�nitions of the corresponding dgs g(4)Kt;M,β,γ and g(4)PT7;M,ν of these subclasses of continuous l4,p-
symmetric distributions, we refer to [26]. Note that the choice of parameters M, β, γ in Figures 1 and 2 and
M, ν in Figures 3 and 4 coincides with that in Figures 2d and 3d in [25] (where the median is considered for
sample size three) as well as with that in Figures 4d and 5d in [26] (where the maximum is considered for
sample size three), respectively. We recall that p-generalized Gaussian distributions are particular cases of
the class of light tailed Kotz type distributions and Student-t as well as Cauchy distributions belong to the
family of heavy tailed Pearson Type VII distributions. It turns out that the corresponding graphs of f3:4 and
f4:4 seem to be more similar to each other if the sample vector distribution is heavy tailed than if it is light
tailed. For a study of certain domain quantiles of ln,p-symmetric distributions, n ∈ {1, 2, 3}, we refer to [26].

On the other hand, assume data suggest that, as appropriate after centering and standardization, the
largest wavelet coe�cient of each of n signals, n ∈ {2, 3, . . .}, follows one and the same symmetric distribu-
tion having a pdf Dg(|x|), x ∈ R, for some D > 0. Moreover, assume that an additional visual inspection of
the level sets of their joint density indicates a joint pdf

Cnh
(
|x|p
)
= Cnh

( n∑
i=1
|xi|p

)1/p
 , x = (x1, . . . , xn)T ∈ Rn ,

could be true for some p > 0, a function h : [0,∞) → [0,∞) satisfying 0 <
∞∫
0
rn−1h(r) dr < ∞, and a suitable

normalizing constant Cn > 0. Then, an independence assumption with respect to the n signals is supported
by the data if and only if h can be chosen as h(r) = e−

rp
p and in consequence g(r) = e−

rp
p . Let us consider the

n = 4 largest wavelet coe�cients in an independence model for di�erent values of p. Figures 5 and 6 then
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show the density f *4:4 of the maximum and the density f *3:4 of the second largest order statistic, respectively.
For comparison, in the special case of p = 3we refer again to the speci�c visualizations of f4:4 and f3:4 in light
tailed dependence models of Kotz type in Figures 1 and 2 and in heavy tailed dependence models of Pearson
Type VII in Figures 3 and 4.

Summarizing this section, numerous comparisons regarding these visualizations can bemade. First, Fig-
ures 1–4 show the e�ects of di�erent choices of distributional parameters on the pdf of themaximum statistic
and the second largest order statistic in l4,3-symmetric Kotz type and Pearson Type VII modelings, respec-

-1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

M=2,β=2,γ=2
M=2,β=2,γ=5
M=2,β=2,γ=10
M=2,β=5,γ=2
M=2,β=10,γ=2
M=5,β=2,γ=2
M=10,β=2,γ=2

Figure 1:Maximum pdf from l4,3-symmetric sample vector distribution, f4:4, if the dg is g(4)Kt;M,β,γ .
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Figure 2: Pdf of the third order statistic from l4,3-symmetric sample vector distribution, f3:4, if the dg is g(4)Kt;M,β,γ .
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Figure 3:Maximum pdf from l4,3-symmetric sample vector distribution, f4:4, if the dg is g(4)PT7;M,ν.
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Figure 4: Pdf of the third order statistic from l4,3-symmetric sample vector distribution, f3:4, if the dg is g(4)PT7;M,ν.

tively. Moreover, in these �gures, one can compare f4:4 and f3:4 for a particular choice of the type of depen-
dence model and of the corresponding distributional parameters. Second, the impact of the parameter p > 0
on the graphs of f *4:4 and f *3:4 with F = Φp and f = φp, see (12), is shown in Figures 5 and 6. Third, as it is
stated before, one can draw comparisons between independence modeling and light as well as heavy tailed
dependence modeling in Figures 1, 3 and 5 and in Figures 2, 4 and 6 if p = 3.

Additionally, because of (30), we remark that the visualizations of fk:4 for k ∈ {1, 2} can be achieved by
re�ecting the graph of fk:4 for k ∈ {3, 4}, respectively, with respect to the ordinate axis.
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Figure 6: Pdf of the third order statistic from 4-dimensional p-generalized Gaussian sample distribution, f *3:4, for p ∈{
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4 Proofs and discussions

4.1 Proof of Theorem 1

Due to the single-out decomposition of Ank (t),

Ank (t) =
n⋃
i=1

{
(x1, . . . , xn)T ∈ Rn : xi < t, xk:n = xi

}
,

we have

Fk:n(t) = P(Xk:n < t) =
n∑
i=1

P(Xi < t, Xi = Xk:n), t ∈ R. (16)

The vector remaining after eliminating the ith component of X will be denoted by X[i], and the matrix after
eliminating both the ith column and the ith row of the quadratic matrix M by M[i]. Furthermore, Y d= Z
means that the random vectors Y and Z follow the same distribution law. We recall that S(n)J [i]X[i] d= X[i] for
i = 1, . . . , n and J ⊆ {1, . . . , n} \ {i}, thus

P
(
Xi < t, Xi = Xk:n

)
=

∑
J1⊆{1,...,n}\{i}
|J1|=k−1

P
(
Xi < t, max

{
Xj : j ∈ J1

}
< Xi , Xi < min

{
Xl : l ∈ JC1 \ {i}

})

=
∑

J1⊆{1,...,n}\{i}
|J1|=k−1

P
(
Xi < t, X[i] < S(n)J1 [i]1n−1Xi

)

=
∑

J1⊆{1,...,n}\{i}
|J1|=k−1

P
(
X[i] < S(n)J1 [i]1n−1Xi

)
P
(
Xi < t

∣∣ X[i] < S(n)J1 [i]1n−1Xi)

where JC1 = {1, . . . , n} \ J1 is the complementary set of J1 with respect to {1, . . . , n}. From the stochastic
representation of the skewed lκ+m,p-symmetric distribution, see (7) in Section 2, with κ = 1, m = n − 1,
X(1) = Xi, X(2) = X[i] and Λ = S(n)J1 [i]1n−1 for i = 1, . . . , n, it follows that

L
(
Xi
∣∣ X[i] < S(n)J1 [i]1n−1Xi) = SS1,n−1,p (S(n)J1 [i]1n−1; g(n)) .

Hence,

P
(
Xi < t, Xi = Xk:n

)
=

∑
J1⊆{1,...,n}\{i}
|J1|=k−1

F(2)n−1,p
(
0n−1; In−1 + Γ(n−1)i,J1 , g(n−1)(n)

)
· F1,n−1,p

(
t; S(n)J1 [i]1n−1, g

(n)
)

where Γ(n−1)i,J1 =
(
S(n)J1 [i]1n−1

)(
S(n)J1 [i]1n−1

)T
= S(n)J1 [i]E

(n−1)S(n)J1 [i]. For i ∈ {1, . . . , n} and J1, J2 ⊆ {1, . . . , n} \

{i} with |J1| = k − 1 = |J2| and n × n matrix M(n)
J1 ,J2 being the permutation matrix describing the permutation

σ(n)J1 ,J2 with σ(n)J1 ,J2 (J1) = J2 it follows SS1,n−1,p
(
S(n)J2 [i]1n−1; g

(n)
)
= SS1,n−1,p

(
M(n)
J1 ,J2 · S

(n)
J1 [i]1n−1; g

(n)
)
. Here, |J|

denote the number of elements of the set J. For i ∈ {1, . . . , n}, there are
(n−1
k−1
)
possible choices of index sets

J(i) ⊆ {1, . . . , n} \ {i} with |J(i)| = k − 1, thus

P (Xi < t, Xi = Xk:n) =
(
n − 1
k − 1

)
F(2)n−1,p

(
0n−1; In−1 + Γ(n−1)i,J(i) , g

(n−1)
(n)

)
F1,n−1,p

(
t; S(n)J(i) [i]1n−1, g

(n)
)
.

Because P(Xi < t, Xi = Xk:n) = P(Xj < t, Xj = Xk:n) for all i, j ∈ {1, . . . , n}, it follows

Fk:n(t) = n P (Xn < t, Xn = Xk:n)
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= n
(
n − 1
k − 1

)
F(2)n−1,p

(
0n−1; In−1 + S(n)J(n) [n]E

(n−1)S(n)J(n) [n], g
(n−1)
(n)

)
· F1,n−1,p

(
t; S(n)J(n) [n]1n−1, g

(n)
)
, t ∈ R,

where J(n) is an arbitrary subset of {1, . . . , n − 1} having k−1 elements. On using n
(n−1
k−1
)
=
(n
k
)
k and S(n)J(n) [n] =

S(n−1)J(n) , the assertion follows.

4.2 Measure-of-cone representations of skewed ln,p-symmetric distributions

Because the derivation of the results on Section 3.3 makes basically use of so called measure-of-cone repre-
sentations of skewed ln,p-symmetric distributions, the present section deals with results of this type which
may be of independent interest, too. Measure-of-cone representations of elliptically contoured distributions
are derived in [16] and [34] for dimension two and for arbitrary �nite dimension, respectively. A representation
of more general type is proved in [26] for ln,p-symmetric distributions.

For κ ∈ N and m ∈ N, let Λ =
(
Λj,i
)
j=1,...,m
i=1,...,κ

be a matrix from Rm×κ, and I = {i1, . . . , iκ} ⊂ {1, . . . ,κ + m}
with |I| = κ. Furthermore, let us denote the set of all (κ + m) × (κ + m) signs matrices by Sκ+m and assume
that D is an element of this set. Moreover, for z = (z1, . . . , zκ) ∈ Rκ, we put VI,D(Λ; z) = D · (v1, . . . , vκ+m)T

where vil = zl for l = 1, . . . ,κ and vjν = (Λz)ν =
κ∑
l=1
Λν,lzl for jν ∈ {1, . . . ,κ + m} \I and ν = 1, . . . ,m. It turns

out that the set

CI,D(Λ; z) = {Dx ∈ Rκ+m : xil < zl , l = 1, . . . ,κ,

xjν <
κ∑
l=1

Λν,lxil , jν ∈ {1, . . . ,κ + m} \I, ν = 1, . . . ,m}

is a cone with vertex in VI,D(Λ; z), for every z ∈ Rκ . The class of all such cones will be denoted by Cκ,m(Λ; z),
i.e.

Cκ,m(Λ; z) = {CI,D(Λ; z) : I ⊂ {1, . . . ,κ + m} with |I| = κ, D ∈ Sκ+m}.

Recalling the notation Πκ+m for the set of all (κ + m) × (κ + m) permutation matrices from Section 2 and
denoting the particular cone C{1,...,κ},Iκ+m (Λ; z) with vertex in V{1,...,κ},Iκ+m (Λ; z) =

(
zT, (Λz)T

)T by A0(z), it
follows that Cκ,m(Λ; z) = {MDA0(z) : M ∈ Πκ+m , D ∈ Sκ+m}.

Making use of this notations, in [26], the following measure-of-cone representations of skewed lκ,p-
symmetric distributions are derived.

Proposition 1. Let Z ∼ SSκ,m,p
(
Λ, g(κ+m)

)
. For every element CI,D(Λ; z) of Cκ,m(Λ; z), the cdf of Z satis�es

the representation

Fκ,m,p
(
z;Λ, g(κ+m)

)
= 1
F(2)m,p(0m; Im + ΛΛ>, g(m)(κ+m))

Φg(κ+m) ,p
(
CI,D (Λ; z)

)
, z ∈ Rκ .

4.3 Proof of Theorem 2

The event in the sample space Rn which is measured by the value of the cdf Fk:n(t) can be represented for
each k ∈ {1, . . . , n} as follows:

Ank (t) =
⋃

J⊆{1,...,n}
|J|=k

{
x ∈ Rn : xj < t ∀j ∈ J

}
(17)

=
⋃

J⊆{1,...,n}
|J|≥k

{
x ∈ Rn : xj < t ∀j ∈ J, xl ≥ t ∀l ∈ {1, . . . , n} \ J

}
. (18)
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Note that these decompositions make use of intersections of half spaces being pairwise disjoint in (18) but
not in (17). For a visualization of the set Ank (t) for some low-dimensional cases, see [24, 25]. Furthermore, Ank (t)
is an open cone with vertex in t1n.

For ν ∈ {1, . . . , n − 1}, t ∈ R and every i ∈ {1, . . . , n − ν}, let us denote B(n,ν)i (t) = B̃(n,ν)i,0 (t) and

B̃(n,ν)i,j (t) = {x ∈ Rn : xi+j < t, xl1 ≤ xi+j , ∀ l1 ∈ {i, . . . , i + j} \{i + j},

xl2 < xi+j , ∀ l2 ∈ {i + j, . . . , i + ν} \{i + j},
xl3 < t, ∀ l3 ∈ {1, . . . , n} \ {i, . . . , i + ν}}

for j = 0, 1, . . . , ν which are cones with vertex in t1n being neither open nor closed. According to the proof
of Theorem 1 in [26], for t ∈ R and every ν ∈ {1, . . . , n − 1}, the cone Ann(t) can be decomposed into ν + 1
disjoint cones such that each of them, which is an intersection of half spaces ofRn, contains the origin in the
boundary of ν of its n intersecting half spaces,

Ann(t) = B(n,ν)i (t) ∪

 ν⋃
j=1
B̃(n,ν)i,j (t)

 (19)

where the parameter i can be chosen arbitrarily from {1, . . . , n − ν}. Hence, the parameter ν ∈ {1, . . . , n − 1}
describes a certain degree of decomposition. Moreover, according to [26], it follows that

Φg(n) ,p(A
n
n(t)) = (ν + 1) Φg(n) ,p

(
B(ν)i (t)

)
, t ∈ R. (20)

Unless for the just considered case of the maximum statistic, in Lemma 1, we provide a recursive result
on the cdf Fk:n of the kth order statistic Xk:n of the ln,p-symmetrically distributed random vector X with the
help of the cdf Fk+1:n of Xk+1:n. To this end, we de�ne

D(n,k)(t) = Fk:n(t) − Fk+1:n(t), t ∈ R, for k ∈ {1, . . . , n − 1} .

The following lemma will form the basis of the proof of Theorem 2.

Lemma 1. For k ∈ {1, . . . , n − 1} and every ν1 ∈ {0, . . . , n − k − 1} and ν2 ∈ {0, . . . , k − 1} such that ν =
ν1 + ν2 > 0, the function D(n,k)(t), t ∈ R, allows the representation

D(n,k)(t)(n
k
)
(ν1 + 1)(ν2 + 1)

= F(2)ν,p
(
0ν; Iν + E(ν1 ,ν2), g(ν)(n)

)
Fn−ν,ν,p

((
−t1n−k−ν1
t1k−ν2

)
; E(ν1 ,ν2 ,n,k)1,1 , g(n)

)
.

Proof of Lemma 1. For k = 1, . . . , n − 1, according to the disjoint decomposition (18), Ank (t) can basically be
partitioned into the following disjoint recursive union

Ank (t) = A
n
k+1(t) ∪

⋃
J1⊂{1,...,n}
|J1|=k

{
x ∈ Rn : xj < t ∀j ∈ J1, xl ≥ t ∀l ∈ {1, . . . , n} \ J1

}
, t ∈ R.

Hence, with Fk:n(t) = P
(
X ∈ Ank (t)

)
, we have that

D(n,k)(t) =
∑

J1⊂{1,...,n}
|J1|=k

Φg(n) ,p
({
x ∈ Rn : xj < t ∀j ∈ J1, xl ≥ t ∀l ∈ {1, . . . , n} \ J1

})
.

For two sets J1, J2 ⊆ {1, . . . , n} with |J1| = |J2|, let σ(n)J1 ,J2 be the permutation such that σ(n)J1 ,J2 (J1) = J2, and let
M(n)
J1 ,J2 denote the corresponding permutation matrix. Furthermore, we recall the de�nition of the sign matrix

S(n)J1 from Theorem 1. For the rest of this proof, let J = {n − k + 1, . . . , n} be �xed with |J| = k. Because of
the permutation and sign invariance of the ln,p-symmetric probability measure, see [26], and its continuity,
it follows that

D(n,k)(t) =
∑

J1⊂{1,...,n}
|J1|=k

Φg(n) ,p
(
M(n)
J1 ,J
{
x ∈ Rn : xj < t ∀j ∈ J1, xl ≥ t ∀l ∈ {1, . . . , n} \ J1

})
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=
(
n
k

)
Φg(n) ,p

({
x ∈ Rn : xn−k+1 < t, . . . , xn < t, x1 > t, . . . , xn−k > t

})
=
(
n
k

)
Φg(n) ,p

(
S(n)J
{
x ∈ Rn : xn−k+1 < t, . . . , xn < t, x1 < −t, . . . , xn−k < −t

})
=
(
n
k

)
Φg(n) ,p

({
x ∈ Rn : (x1, . . . , xn−k)T ∈ An−kn−k(−t), (xn−k+1, . . . , xn)

T ∈ Akk(t)
})

.

In the following, at least one of the cones An−kn−k(−t) and A
k
k(t) will be decomposed. To this end, according to

(19), for ν1 ∈ {0, . . . , n − k − 1} and ν2 ∈ {0, . . . , k − 1} with ν1 + ν2 > 0, we choose

An−kn−k(−t) = B
(n−k,ν1)
1 (−t) ∪

 ν1⋃
j=1
B̃(n−k,ν1)1,j (−t)

 (21)

and

Akk(t) = B
(k,ν2)
1 (t) ∪

 ν2⋃
j=1
B̃(k,ν2)1,j (t)

 . (22)

Here, ν1 = 0 and ν2 = 0 means that An−kn−k(−t) and A
k
k(t) are not decomposed, respectively. Hence, (20) implies

D(n,k)(t)(n
k
)
(ν1 + 1)(ν2 + 1)

= Φg(n) ,p
({
x ∈ Rn : (x1, . . . , xn−k)T ∈ B(n−k,ν1)1 (−t),

(xn−k+1, . . . , xn)T ∈ B(k,ν2)1 (t)
})

. (23)

Note that the set measured by Φg(n) ,p in (23) is an element of the class of cones

Cn−ν1−ν2 ,ν1+ν2

(
E(ν1 ,ν2 ,n,k)1,1 ;

(
−t1n−k−ν1
t1k−ν2

))
. (24)

Because of the identity E(ν1 ,ν2 ,n,k)1,1 E(ν1 ,ν2 ,n,k)1,1
T
= E(ν1 ,ν2) and ν = ν1 + ν2, the measure-of-cone representation

from Proposition 1 yields

Φg(n) ,p
(
{x ∈ Rn : (x1, . . . , xn−k)T ∈ B(n−k,ν1)1 (−t), (xn−k+1, . . . , xn)T ∈ B(k,ν2)1 (t)}

)
= F(2)ν,p

(
0ν; Iν + E(ν1 ,ν2), g(ν)(n)

)
Fn−ν,ν,p

((
−t1n−k−ν1
t1k−ν2

)
; E(ν1 ,ν2 ,n,k)1,1 , g(n)

)
and the assertion follows from (23).

In order to proof Theorem 2, we start from the representation

Fk:n(t) =

n−1∑
j=k

D(n,j)(t)

 + Fn:n(t), t ∈ R, (25)

being a telescoping sum. Applying Lemma 1 to each summand D(n,j)(t), j = k, . . . , n − 1, in each step the two
parameters νj,1 ∈ {0, . . . , n − j − 1} and νj,2 ∈ {0, . . . , j − 1} satisfying νj = νj,1 + νj,2 > 0 can be chosen
di�erently. The assertion of Theorem 2 follows by inserting the cdf Fn:n of the maximum statistic derived in
[26] and based upon the cone decomposition (19) as well.

4.4 Proof of Theorem 3

Looking through the proof of Theorem 1 in [24] once again, there appear representations of the cdf Fn:n of the
maximum statistic Xn:n in ln,p-symmetrically distributed populations not used so far, see Lemma 2.
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Lemma 2. For every ν ∈ {1, . . . , n − 1} and i ∈ {1, . . . , n − ν}, the cdf Fn:n allows the representation

Fn:n(t) = (ν + 1)F(2)ν,p
(
0ν; Σ, g(ν)(n)

)
Fn−ν,ν,p

(
t1n−ν; E(ν,n)i , g(n)

)
, t ∈ R,

where Σ = Iν + E(ν,n)i E(ν,n)i
T
= Iν + E(ν).

As stated in [24], because of the exchangeability of the components of ln,p-symmetrically distributed random
vectors, the additional parameter i has nonumerical impactwhen evaluating the cdf Fn:n. Nevertheless, these
alternative representations may be helpful in identifying a maximum distribution if particular skewed ln,p-
symmetric distributions occur in other contexts.

Recall that the cones An−kn−k(−t) and A
k
k(t) are decomposed in relations (21) and (22) with the help of (19),

choosing in both cases particularly i = 1. Using now the entire variety of decompositions in (19), for every
i1 ∈ {1, . . . , n − k − ν1} and i2 ∈ {1, . . . , k − ν2},

An−kn−k(−t) = B
(n−k,ν1)
i1 (−t) ∪

 ν1⋃
j=1
B̃(n−k,ν1)i1 ,j (−t)

 (26)

und

Akk(t) = B
(k,ν2)
i2 (t) ∪

 ν2⋃
j=1
B̃(k,ν2)i2 ,j (t)

 . (27)

Following the rest of the proof of Lemma 1, but using now decompositions (26) and (27) instead of (21) and
(22), leads to the following result.

Lemma 3. For k ∈ {1, . . . , n − 1}, every ν1 ∈ {0, . . . , n − k − 1} and ν2 ∈ {0, . . . , k − 1} such that ν =
ν1 + ν2 > 0, and every i1 ∈ {1, . . . , n − k − ν1} and i2 ∈ {1, . . . , k − ν2}, the function D(n,k)(t), t ∈ R, satis�es
the representation

D(n,k)(t)(n
k
)
(ν1 + 1)(ν2 + 1)

= F(2)ν,p
(
0ν; Iν + E(ν1 ,ν2), g(ν)(n)

)
Fn−ν,ν,p

((
−t1n−k−ν1
t1k−ν2

)
; E(ν1 ,ν2 ,n,k)i1 ,i2 , g(n)

)
.

In the same sense as we commented the role of the parameter i in the representation of Fn:n in Lemma 2, the
additional parameters i1 and i2 in Lemma 3 do not have any numerical impact on the evaluation of D(n,k).
Subsequently, a further extension of the Lemmas 1 and 3 is considered. Both, after the �rst third of the proof
of Lemma 1 and of the complete proof of Lemma 3, respectively, using the permutation invariance of Φg(n) ,p,
an arbitrary subset of {1, . . . , n} with k elements is specialized to J = {n − k + 1, . . . , n}. This choice in-
�uences the positioning of both the rows of matrix parameter E(ν1 ,ν2 ,n,k)i1 ,i2 and the negative components of
(−t1T

n−k−ν1 , t1
T
k−ν2 )

T of the cone

Cn−ν1−ν2 ,ν1+ν2

(
E(ν1 ,ν2 ,n,k)i1 ,i2 ;

(
−t1n−k−ν1
t1k−ν2

))
.

By the application of themeasure-of-cone representations of skewed ln,p-symmetric distributions, see Propo-
sition 1, this impact is transmitted to the resulting di�erence function D(n,k) in Lemma 3. In Corollary 2, this
restriction is subsequently removed using the properties of skewed ln,p-symmetric distributions concerning
the permutation of the columns and the rows, respectively, in the matrix parameter described in the last
paragraph of Section 2.

Corollary 2. For k ∈ {1, . . . , n − 1}, every ν1 ∈ {0, . . . , n − k − 1} and ν2 ∈ {0, . . . , k − 1} such that ν =
ν1 + ν2 > 0, every i1 ∈ {1, . . . , n − k − ν1} and i2 ∈ {1, . . . , k − ν2}, every M1 ∈ Πn−ν and M2 ∈ Πν, the
function D(n,k) satis�es the representation

D(n,k)(t) =
(
n
k

)
(ν1 + 1)(ν2 + 1) F(2)ν,p

(
0ν; Iν + E(ν1 ,ν2), g(ν)(n)

)
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· Fn−ν,ν,p

(
M1

(
−t1n−k−ν1
t1k−ν2

)
;M2E(ν1 ,ν2 ,n,k)i1 ,i2 MT

1, g(n)
)
, t ∈ R.

Note that a possible inclusion of permutation matrices in the representations of Fn:n in Lemma 2 would not
yield any new results since permuting the rows of 1n−ν and E(ν,n)i , respectively, would not yield any numerical
changes, and the e�ect of eventually permuting the columns of E(ν,n)i would be covered by the e�ect of varying
the additional parameter i ∈ {1, . . . , n − ν}. Using Lemma 2 and Corollary 2 instead of Theorem 1 from [26]
and Lemma 1 in the proof of Theorem 2, see (25), we achieve the results of Theorem 3 on the cdf Fk:n of the
kth order statistic in ln,p-symmetrically distributed populations.

4.5 Discussion of combining Proposition 1 and the single-out decomposition of
An
k(t)

In this section, the consideration of the approach via single-out decomposition of the event Ank (t) is extended
concerning the usage of measure-of-cone representations of skewed ln,p-symmetric distributions.

As it is established in [20] for the case of order statistics of two jointly l2,p-symmetrically distributed
randomvariables, the approach in [19] and otherswhich is based upon the single-out decomposition of A22(t),
see Section 3.2, yields the same result as applying the geometric measure representation in [30] directly, see
[24], and transforming the results into terms of skewed distributions, see [10]. In higher dimensional cases,
analogous relations are not yet investigated. However, applying the advanced geometric method of proof
using measure-of-cone representations of skewed ln,p-symmetric distributions yields more representations
of the cdf of an arbitrary order statistic than the direct application of the geometric measure representation.

According to Section 4.1, and further using the P-almost sure uniqueness of order statistics from the
components of absolutely continuous random vectors de�ned on a probability space (Ω,A, P), we have

Ank (t) =
n⋃
i=1

{
x ∈ Rn : xi < t, xi = xk:n

}
=

n⋃
i=1

{
x ∈ Rn : xi < t, exactly k − 1 components of x are less than xi

and exactly n − k are greater than xi
}

=
n⋃
i=1

⋃
J1⊂{1,...,n}\{i}
|J1|=k−1

{
x ∈ Rn : xi < t, xj < xi ∀j ∈ J1, xi < xl ∀l ∈ {1, . . . , n} \ (J1 ∪ {i})

}
. (28)

Note that (28) is a decomposition of Ank (t) into cones such that each of them contains the origin in the bound-
ary of n−1of its intersectinghalf spaces. Further, representation (28) does not follow from thedecompositions
in (17) and (18), and vice versa. Moreover, for the particular case k = n, (28) is covered by (19) for ν = n − 1,
i.e.

n⋃
i=1

{
x ∈ Rn : xi < t, xj < xi ∀j ∈ [1, n] \ {i}

}
= B(n,n−1)1 (t) ∪

n−1⋃
j=1
B̃(n,n−1)1,j (t)

 (29)

where i = 1 is implicitly given by ν = n − 1.

Remark 1. In view of (28), Theorem 1 can also be achieved applying the measure-of-cone representations
from Proposition 1.

Proof of Remark 1. For k ∈ {1, . . . , n} and for an arbitrary but �xed index set J ⊆ {1, . . . , n − 1} with k − 1
elements, the application of (28) and of permutation and sign invariance property of Φg(n) ,p yields

Fk:n(t) =
(
n
k

)
k Φg(n) ,p

({
x ∈ Rn : xn < t, xj < xn ∀j ∈ J, xl < −xn ∀l ∈ {1, . . . , n − 1} \ J

})
.
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Since the above argument of Φg(n) ,p is a member of the class C1,n−1
(
S(n−1)J 1n−1; t

)
of cones, the result of

Theorem 1 is achieved by the application of Proposition 1.

5 Conclusion and outlook
Exact distributions of order statistics of a �nite number of independent and identically distributed random
variables are studied extensively. For the cases of dependent random variables, on the one hand, [2, 3] deter-
mine the distribution of order statistics of the components of arbitrary absolutely continuous random vectors
in terms of conditional distribution and, particularly, emphasize the case of elliptically contoured distribu-
tions. On the other hand, in [19], considering elliptically contoured distributed populations aswell, the distri-
butions of order statistics are represented as mixtures of uni�ed skew-elliptical distributions. In the present
paper, extending our studies from [26] and references cited therein, we examine the distributions of order
statistics from ln,p-symmetric distributions in terms of mixtures of skewed lκ,p-symmetric distributions, thus
generalizing part of results from [2, 3] and [19] to the case of ln,p-dependence.

Just to give a short outlook, in the future, one could study exact distributions of multivariate order statis-
tics as consideredunder another type ofmodel assumptions in [12] aswell as [9]. Furthermore, an extension of
our approaches to uni- ormultivariate order statistics fromdependent andnonidentically distributed random
variables is conceivable where studies on such model assumptions are made in [8].

Acknowledgement: The authors are grateful to the reviewers for their valuable hints leading to various im-
provements of exposition and making the paper more accessible to a broader readership.

A Additional remarks

A.1 Pdf fk:n according to Fk:n from Theorem 2

In this section, the pdf of the kth order statistic Xk:n, fk:n(t), t ∈ R, is determined for k = 1, . . . , n according
to the representation of the cdf Fk:n from Theorem 2. In order to represent this density in a concise manner,
for n ∈ N, a dg g(n), parameters k ∈ {1, . . . , n − 1}, ν1 ∈ {0, . . . , n − k − 1} and ν2 ∈ {0, . . . , k − 1} or

parameters k = n and (ν1, ν2) ∈
n−1⋃
l=1

{
(l, 0), (0, l)

}
and with ν = ν1 + ν2 > 0, we put

G(ν1 ,ν2 ,n,k)j (x; t)(n
k
)
(ν1 + 1)(ν2 + 1)

=
x∫

−∞

g(n−ν)(n)

(
p
√
|z|pp + |t|p

)
F(1)ν,p

a(ν1 ,ν2 ,n,k)j (z; t); g(ν)[
p
√
|z|pp+|t|p

]
 dz,

for t ∈ R and x ∈ Rn−ν−1, j ∈ {1, 2, 3}. Here, for z = (z1, . . . , zn−ν−1)T ∈ Rn−ν−1, a(ν1 ,ν2 ,n,k)1 (z; t) =(
z11ν1

zn−ν−11ν2

)
, a(ν1 ,ν2 ,n,k)2 (z; t) =

(
−t1ν1

zn−ν−11ν2

)
, and a(ν1 ,ν2 ,n,k)3 (z; t) =

(
z11ν1
t1ν2

)
. For the particular case

of k = n and (ν1, ν2) ∈
{
(n − 1, 0), (0, n − 1)

}
, we put

G(0,ν,n,n)3 (t1n−ν−1; t) = n g(1)(n)(|t|)F
(1)
n−1,p

(
t1n−1; g(n−1)[|t|]

)
, t ∈ R,

and assume that G(ν,0,n,n)1 (t1n−ν−1; t) is �nite.

Corollary 3. For k ∈ {1, . . . , n}, every νj,1 ∈ {0, . . . , n − j − 1} and νj,2 ∈ {0, . . . , j − 1} such that νj =
νj,1 + νj,2 > 0, j = k, . . . , n − 1, and every νn ∈ {1, . . . , n − 1}, the pdf fk:n allows the representation

fk:n(t) =
n−1∑
j=k

[
(k − νj,2 − 1) G

(νj,1 ,νj,2 ,n,k)
1

((
−t1n−k−νj,1
t1k−νj,2−1

)
; t
)
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− (n − k − νj,1 − 1) G
(νj,1 ,νj,2 ,n,k)
1

((
−t1n−k−νj,1−1
t1k−νj,2

)
; t
)

− G(νj,1 ,νj,2 ,n,k)2

((
−t1n−k−νj,1−1
t1k−νj,2

)
; t
)
+ G(νj,1 ,νj,2 ,n,k)3

((
−t1n−k−νj,1
t1k−νj,2−1

)
; t
) ]

+
〈
(n − νn − 1)G(νn ,0,n,n)1 (t1n−νn−1; t) + G

(0,νn ,n,n)
3 (t1n−νn−1; t)

〉
, t ∈ R.

Note that the sumwithin the brackets 〈·〉 is equal to themaximumpdf fn:n derived in [26]. Moreover, choosing
k = n and νn = n − 1 yields the representation from Corollary 1.

In order to implement fk:n according to Corollary 3, as in the case of Fk:n, the number of summands of
fk:n can be reduced making use of the general relation

fn−k+1:n(t) = fk:n(−t), t ∈ R, (30)

if 1 ≤ k ≤
⌊ n+1

2
⌋
in advance of applying Corollary 3.

Considering the particular case of order statistics from an n-dimensional p-generalized Gaussian dis-
tribution, i.e. the particular dg g(n) = g(n)PE, see (3), for every k ∈ {1, . . . , n} and any choice of parameters
νj,1 ∈ {0, . . . , n − j − 1} and νj,2 ∈ {0, . . . , j − 1} such that νj = νj,1 + νj,2 > 0 for j = k, . . . , n − 1 and
νn ∈ {1, . . . , n − 1}, the representation of fk:n from Corollary 3 admits the form (11). Recalling the notations
Φp(t) and φp(t) of the cdf and the pdf of the one-dimensional p-generalized Gaussian distribution, respec-
tively, we get the following result.

Remark 2. For g(n) = g(n)PE and k ∈ {1, . . . , n}, the pdf fk:n from Corollary 3 attains the representation in (12)
being nothing else then f *k:n for F = Φp and f = φp.

A.2 Proofs of Corollary 3 and Remark 2

As before, for a(n) ∈ Rn and i ∈ {1, . . . , n}, let a(n)i denote the ith component of a(n) and a(n)[i] the (n − 1)-
dimensional vector after eliminating a(n)i out of a(n). The following remark is useful for the derivation of the
pdf fk:n.

Remark 3. If Z(n) is an n-dimensional random vector having pdf fZ(n) , then

d
dt

(
P
(
Z(n) < a(n)t

))
=
{
a(1)fZ(1) (a(1)t) , n = 1
Dn(fZ(n) , a(n), t) , n ≥ 2

, t ∈ R,

for a(n) ∈ Rn where

Dn(fZ(n) , a
(n), t) =

n∑
i=1

a(n)i
∫
D(n)
i

fZ(n) (z1, . . . , zi−1, a
(n)
i t, zi+1, . . . , zn) dz

=
n∑
i=1

a(n)i

a(n)[i] t∫
−∞

fZ(n) (z1, . . . , zi−1, a
(n)
i t, zi+1, . . . , zn) d(z1, . . . , zi−1, zi+1, . . . , zn)

T

and for i = 1, . . . , n

D(n)
i = D(n)

i (a(n), t) = {z = (z1, . . . , zi−1, zi+1, . . . , zn)T ∈ Rn−1 : z < a(n)[i] t}.

Proof of Remark 3. This proof will be given by induction. If n = 1, the assertion follows immediately applying
the chain rule. If n = 2, the Leibniz integral rule yields

d
dt

(
P
(
Z(2) < a(2)t

))
=

a(2)1 t∫
−∞

∂
∂t

 a(2)2 t∫
−∞

fZ(2) (z1, z2) dz1

 dz2 + a(2)1

a(2)2 t∫
−∞

fZ(2) (z1, a
(2)
1 t) dz1
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= a(2)1

a(2)2 t∫
−∞

fZ(2) (a
(2)
1 t, z2) dz2 + a(2)2

a(2)1 t∫
−∞

fZ(2) (z1, a
(2)
2 t) dz1

= D2(fZ(2) , a
(2), t), t ∈ R.

The step of induction from n − 1 to n reads as

d
dt

(
P
(
Z(n) < a(n)t

))
= d
dt

 a(n)−n t∫
−∞

a(n)n t∫
−∞

fZ(n) (z1, . . . , zn−1, zn) dzn d(z1, . . . , zn−1)
T



= a(n)n

a(n)−n t∫
−∞

fZ(n) (z1, . . . , zn−1, a
(n)
n t) d(z1, . . . , zn−1)T

+Dn−1


 a(n)n t∫
−∞

fZ(n) (·, . . . , ·, zn) dzn

 , a(n)−n , t



= a(n)n

a(n)−n t∫
−∞

fZ(n) (z1, . . . , zn−1, a
(n)
n t) d(z1, . . . , zn−1)T

+
n−1∑
i=1

(
a(n)−n
)
i

(
a(n)−n
)
−i
t∫

−∞

a(n)n t∫
−∞

fZ(n) (z1, . . . , zi−1,
(
a(n)−n
)
i
t, zi+1, . . . , zn−1, zn)

dzn d(z1, . . . , zi−1, zi+1 . . . , zn−1)T

= Dn(fZ(n) , a
(n), t), t ∈ R,

as
(
a(n)[n]

)
i
= a(n)i and

((
a(n)[n][i]

)T
, a(n)n

)T

= a(n)[i] for i = 1, . . . , n − 1.

Note that the integrands fZ(n) (z1, . . . , zi−1, a
(n)
i t, zi+1, . . . , zn), i = 1, . . . , n, appearing in the above integral

representation of Dn(fZ(n) , a(n), t) simplify to fZ(n) (a
(n)
1 t, z2, . . . , zn) and fZ(n) (z1, . . . , zn−1, a

(n)
n t) if i = 1 and

i = n, respectively. Furthermore, the particular case of a(n) = 1n is already proven in [26].
Denoting the derivative of D(n,k)(t) with respect to t by d(n,k)(t), we have

d(n,k)(t) = fk:n(t) − fk+1:n(t) for k ∈ {1, . . . , n − 1} .

The following lemma provides a signi�cant step for the derivation of the representation of the pdf fk:n in
Corollary 3.

Lemma 4. For k ∈ {1, . . . , n − 1} and every ν1 ∈ {0, . . . , n − k − 1} and ν2 ∈ {0, . . . , k − 1}with ν = ν1+ν2 >
0, the function d(n,k) allows the representation

d(n,k)(t) = (k − ν2 − 1) G(ν1 ,ν2 ,n,k)1

((
−t1n−k−ν1
t1k−ν2−1

)
; t
)

− (n − k − ν1 − 1) G(ν1 ,ν2 ,n,k)1

((
−t1n−k−ν1−1
t1k−ν2

)
; t
)

− G(ν1 ,ν2 ,n,k)2

((
−t1n−k−ν1−1
t1k−ν2

)
; t
)
+ G(ν1 ,ν2 ,n,k)3

((
−t1n−k−ν1
t1k−ν2−1

)
; t
)
, t ∈ R.

Proof of Lemma 4. Let a(n−ν) =
(
−1n−k−ν1
1k−ν2

)
, and the (n − ν)-dimensional random vector Z(n−ν) follow the

distribution SSn−ν,ν,p
(
E(ν1 ,ν2 ,n,k)1,1 , g(n)

)
having pdf fZ(n−ν) . According to Lemma 1 and Remark 3, for t ∈ R, it
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follows
1(n

k
)
(ν1 + 1)(ν2 + 1)

d(n,k)(t)

= F(2)ν,p
(
0ν; Iν + E(ν1 ,ν2), g(ν)(n)

) d
dt

(
P
(
Z(n−ν) < a(n−ν)t

))
= F(2)ν,p

(
0ν; Iν + E(ν1 ,ν2), g(ν)(n)

)
Dn−ν

(
fZ(n−ν) , a

(n−ν), t
)

=
n−ν∑
j=1

a(n−ν)j

a(n−ν)[j] t∫
−∞

g(n−ν)(n)

(
p
√
|z(j,1)|pp + |a(n−ν)j t|p + |z(j,2)|pp

)

· F(1)ν,p

(
E(ν1 ,ν2 ,n,k)1,1

(
z(j,1)

T
, a(n−ν)j t, z(j,2)

T)T
; g(ν)[

p
√
|z(j,1)|pp+|a(n−ν)j t|p+|z(j,2)|pp

]
)
d
(
z(j,1)

z(j,2)

)
,

where z(j,1) = (z1, . . . , zj−1) ∈ Rj−1 and z(j,2) = (zj+1, . . . , zn−ν) ∈ Rn−ν−j for j = 1, . . . , n − ν. With regard
to the particular form of the vector a(n−ν) and the matrix E(ν1 ,ν2 ,n,k)1,1 , we distinguish the four cases j = 1,
j ∈ {1, . . . , n − k − ν1} \ {1}, j = j* and j ∈ {n − k − ν1 + 1, . . . , n − ν} \ {j*} where j* = n − k − ν1 + 1. On the
one hand, we have a(n−ν)j = −1 if j ∈ {1, . . . , n − k − ν1} and a(n−ν)j = 1 if j ∈ {n − k − ν1 + 1, . . . , n − ν}. On

the other hand, the matrix vector product E(ν1 ,ν2 ,n,k)1,1

(
z(j,1)

T
, a(n−ν)j t, z(j,2)

T)T
takes the value

(
z11T

ν1 , zj*1T
ν2
)T

if j ∈ {1, . . . , n − ν} \ {1, j*},
(
−t1T

ν1 , zj*1T
ν2
)T if j = 1, and

(
z11T

ν1 , t1T
ν2
)T if j = j*. Thus,

1(n
k
)
(ν1 + 1)(ν2 + 1)

d(n,k)(t) = −
n−k−ν1∑
j=2

ζ1∫
−∞

g(n−ν)(n)

(
p
√
|z(j,1)|pp + | − t|p + |z(j,2)|pp

)
· F(1)ν,p

( z11ν1
zj*1ν2

)
; g(ν)[

p
√
|z(j,1)|pp+|−t|p+|z(j,2)|pp

]
 d

(
z(j,1)

z(j,2)

)

−
ζ1∫

−∞

g(n−ν)(n)

(
p
√
| − t|p + |z(1,2)|pp

)
· F(1)ν,p

( −t1ν1
zj*1ν2

)
; g(ν)[

p
√
|−t|p+|z(1,2)|pp

]
 dz(1,2)

+
n−ν∑

j=n−k−ν1+2

ζ2∫
−∞

g(n−ν)(n)

(
p
√
|z(j,1)|pp + |t|p + |z(j,2)|pp

)
· F(1)ν,p

( z11ν1
zj*1ν2

)
; g(ν)[

p
√
|z(j,1)|pp+|t|p+|z(j,2)|pp

]
 d

(
z(j,1)

z(j,2)

)

+
ζ2∫

−∞

g(n−ν)(n)

(
p
√
|z(j* ,1)|pp + |t|p + |z(j* ,2)|pp

)
· F(1)ν,p

( z11ν1
t1ν2

)
; g(ν)[

p
√
|z(j* ,1)|pp+|t|p+|z(j* ,2)|pp

]
 d

(
z(j

* ,1)

z(j
* ,2)

)

where ζ1 =
(
−t1T

n−k−ν1−1, t1
T
k−ν2

)T and ζ2 =
(
−t1T

n−k−ν1 , t1
T
k−ν2−1

)
T. The assertion follows by renaming the

variables (z(j,1)
T
, z(j,2)

T
)T, j = 1, . . . , n − ν, to z ∈ Rn−ν−1, respectively, and the associated cancellation of

sums.

According to (25), the pdf fk:n satis�es

fk:n(t) =

n−1∑
j=k

d(n,j)(t)

 + fn:n(t), t ∈ R.
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By the application of Lemma 4 to each of the summands d(n,j)(t), j = k, . . . , n − 1, associated with the cor-
responding parameter choices of νj,1 and νj,2 and of fn:n derived in [26] but represented here in terms of
G(ν1 ,ν2 ,n,k)i , i = 1, 2, 3,

fn:n(t) = (n − ν − 1)G(ν,0,n,n)1 (t1n−ν−1; t) + G(0,ν,n,n)3 (t1n−ν−1; t) , t ∈ R.

Thus, the assertion of Corollary 3 is established.

Remark 4. Choosing in each case the largest possible parameters νj,1 = n − j − 1 and νj,2 = j − 1 for j =
k, . . . , n − 1, and νn = n − 1, according to Corollary 3, the representation of fk:n simpli�es as

fk:n(t) =
n−1∑
j=k

(
n
j

)
(n − j)j

−t∫
−∞

g(2)
(

p
√
|z|p + |t|p

)
F(1)n−2,p

((
z1n−j−1
t1j−1

)
; g(n−2)[

p
√
|z|p+|t|p

]
)
dz

−
n−1∑
j=k

(
n
j

)
(n − j)j

t∫
−∞

g(2,p)
(

p
√
|t|p + |z|p

)
F(1)n−2,p

((
−t1n−j−1
z1j−1

)
; g(n−2)[

p
√
|t|p+|z|p

]
)
dz

+ n g(1,p)(|t|) F(1)n−1,p
(
t1n−1; g(n−1)[|t|]

)
, t ∈ R.

In order to strengthen the proof of Remark 2, the following specialization of Lemma 4 to the case of the n-
dimensional p-generalized Gaussian sample distribution is considered.

Remark 5. For the particular dg g(n)PE and k ∈ {1, . . . , n − 1}, Lemma 4 asserts that

d(n,k)(t) =
(
n
k

)
φp(t)

(
Φp(t)

)k−1 (Φp(−t))n−k−1 (kΦp(−t) − (n − k)Φp(t)), t ∈ R.

Proof of Remark 5. Because of the independence of the components of X where X ∼ Φg(n)PE ,p, for x1 ∈ Rκ1 and
x2 ∈ Rκ2 , the dg is factorable such that

g(κ1+κ2)
PE ( p

√
|x1|pp + |x2|pp) = g(κ1)

PE (|x1|p) g(κ2)
PE (|x2|p).

Thus, it follows F(1)κ,p

(
ξ ; gPE(κ)

[|y|p]

)
=

κ∏
j=1
Φp(ξj) for κ ∈ {1, . . . , n − 1}, y ∈ Rn−κ and ξ = (ξ1, . . . , ξκ)T ∈ Rκ .

Using this product structure, the functions G(ν1 ,ν2 ,n,k)j (x; t), j ∈ {1, 2, 3}, for ν1 ∈ {0, . . . , n − k − 1} and
ν2 ∈ {0, . . . , k − 1} satisfying ν = ν1 + ν2 > 0, x ∈ Rn−ν−1 and t ∈ R allow the representations

G(ν1 ,ν2 ,n,k)1 (x; t)(n
k
)
(ν1 + 1)(ν2 + 1)

=
x∫

−∞

φp(t)
(n−ν−1∏

i=1
φp(zi)

)(
Φp(z1)

)ν1 (Φp(zn−ν−1))ν2 dz
= φp(t)

(n−ν−2∏
i=2

Φp(xi)
) x1∫
−∞

φp(s)
(
Φp(s)

)ν1 ds xn−ν−1∫
−∞

φp(s)
(
Φp(s)

)ν2 ds
and

G(ν1 ,ν2 ,n,k)2 (x; t) =
(
n
k

)
(ν1 + 1)(ν2 + 1) φp(t)

(
Φp(−t)

)ν1 (n−ν−2∏
i=1

Φp(xi)
) xn−ν−1∫
−∞

φp(s)
(
Φp(s)

)ν2 ds
as well as

G(ν1 ,ν2 ,n,k)3 (x; t) =
(
n
k

)
(ν1 + 1)(ν2 + 1) φp(t)

(
Φp(t)

)ν2 (n−ν−1∏
i=2

Φp(xi)
) x1∫
−∞

φp(s)
(
Φp(s)

)ν1 ds.
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By integration by parts,
y∫
−∞

φp(s)
(
Φp(s)

)m ds = 1
m+1

(
Φp(y)

)m+1 for m ∈ N. Hence,

G(ν1 ,ν2 ,n,k)1 (x; t)(n
k
) = φp(t)

(
Φp(x1)

)ν1+1(n−ν−2∏
i=2

Φp(xi)
)(

Φp(xn−ν−1)
)ν2+1 ,

G(ν1 ,ν2 ,n,k)2 (x; t)(n
k
)
(ν1 + 1)

= φp(t)
(
Φp(−t)

)ν1 (n−ν−2∏
i=1

Φp(xi)
)(

Φp(xn−ν−1)
)ν2+1

and

G(ν1 ,ν2 ,n,k)3 (x; t)(n
k
)
(ν2 + 1)

= φp(t)
(
Φp(t)

)ν2 (Φp(x1))ν1+1(n−ν−1∏
i=2

Φp(xi)
)
.

Choosing the values of xi with view to Lemma 4 �nishes the proof.

Proof of Remark 2. By Remark 5, relation Φp(t) + Φp(−t) = 1, t ∈ R, and using properties of binomial coe�-
cients, for all t ∈ R,

fk:n(t) = fn:n(t) +
n−1∑
j=k

d(n,j)(t)

= n φp(t)
(
Φp(t)

)n−1 + n−1∑
j=k

(
n
j

)
φp(t)

(
Φp(−t)

)n−j−1 (Φp(t))j−1 (jΦp(−t) − (n − j)Φp(t))

= n φp(t)
(
Φp(t)

)n−1 + n φp(t) n−1∑
j=k

(
n − 1
j − 1

)(
Φp(−t)

)n−j (Φp(t))j−1
− n φp(t)

(Φp(−t) + Φp(t))n−1 − k−1∑
j=0

(
n − 1
j

)(
Φp(−t)

)n−1−j (Φp(t))j


= n φp(t)
(
Φp(t)

)n−1 − n φp(t) + n φp(t) k−1∑
j=0

(
n − 1
j

)(
Φp(−t)

)n−1−j (Φp(t))j
+ n φp(t)

(
n − 1
k − 1

)(
Φp(−t)

)n−k (Φp(t))k−1
+ n φp(t)

[
−
(
Φp(t)

)n−1 + n−1∑
i=k

(
n − 1
i

)(
Φp(−t)

)n−1−i (Φp(t))i]

= n φp(t)
(
n − 1
k − 1

)(
Φp(−t)

)n−k (Φp(t))k−1 .
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