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Abstract: The aim of the present paper is to develop and examine association coe�cients which can be help-
fully applied in the framework of regression analysis. The construction of the coe�cients is connected with
the well-known Spearman coe�cient and extensions of it (see Liebscher [5]). The proposed coe�cient mea-
sures the discrepancy between the data points and a function which is strictly increasing on one interval
and strictly decreasing in the remaining domain. We prove statements about the asymptotic behaviour of the
estimated coe�cient (convergence rate, asymptotic normality).
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1 Introduction
The aim of this paper is to investigate measures for dependence which can be useful in performing regres-
sion analysis. The measures to be introduced are based on copulas since one intention is to eliminate the
in�uence of the marginal distribution. These measures are then robust against outliers. Moreover, they are
invariant undermonotone transformations. In themodelling step of regression analysis, the task often arises:
How well can data points be approximated by a function which is increasing on one interval and decreasing
on the remaining region? For this reason, we develop special dependence coe�cients for monotonicity in
certain subdomains which can be helpfully applied in the framework of regression analysis. Especially, the
coe�cients can support checks on whether the regression function is convex because nonconvex functions
can be ruled out. The result of the dependence analysis should give us an idea what kind of functions can be
used to describe a regression relationship or to improve an established regression function.

We consider a coe�cient on the basis of the dependence measure introduced in Liebscher [5]. This mea-
sure represents a generalization of Spearman’s rho. In [6], Chapter 4, the reader �nds a review of classical
copula-based dependence measures. Schmid et al. [10] give a good survey on multivariate dependence mea-
sures. We refer also to the references and the discussion in [5]. In the paper Grothe et al. [3], the authors deal
with dependence measures of two random vectors. Though the aim is di�erent than ours, these association
measures can also be applied in the framework of regression analysis, especially for model-building.

Several authors examined methods for checking the regression function to be convex. Juditsky and Ne-
mirovski [4] considered tests for convexity in a general framework by using kernel estimators for the regres-
sion function. Incorporating spline estimates,Wang andMeyer developed tests formonotonicity and convex-
ity in [14]. The advantage of our approach is that we avoid using nonparametric estimators for the regression
function and so obtain estimators with a faster convergence rate. Moreover, we do not have the di�culty of
choosing knots in splines or bandwidths for kernel estimators.
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The paper is organized as follows: In Section 2 we discuss known dependence coe�cients. In Section
3 we introduce a coe�cient of monotonicity of order 2, and discuss properties of it. Section 4 is devoted to
the estimation of the measure introduced in Section 3. We provide results on the asymptotic behaviour of
the estimated coe�cient including the convergence rate and the asymptotic normality of the estimator. The
reader �nds the proofs of the theorems of Section 4 in Section 5.

2 Dependence coe�cients of two variables
In this section we consider dependence measures of real random variables X and Y. Let F and G be the dis-
tribution functions of X, Y, respectively. It is assumed that F and G are continuous. H denotes the joint dis-
tribution function of X and Y. In view of Sklar’s Theorem in [12], we have

H(x, y) = C(F(x), G(y)) for x, y ∈ R.

Hereby C ∈ C is the uniquely determined copula of X, Y.C denotes the set of all bivariate copulas. Spearman’s
ρ can be computed by the following formulas (cf. [6], p. 167):

ρS(C) = 1 − 6 ·
∫

[0,1]2

(u − v)2 dC(u, v) = 12
∫

[0,1]2

uv dC(u, v) − 3

= 12
1∫

0

1∫
0

C(u, v) dudv − 3 (1)

= 1 − 6E(F(X) − G(Y))2.

Note that in theses formulas, ρS is a map C → [−1, 1]. This notation emphasizes that the coe�cient only
depends on the copula and not on the marginal distributions. This property holds for all coe�cients in this
paper. Next we consider a dependence coe�cient as a generalization of Spearman’s rho. Let ψ : [−1, 1]→ R
be a function satisfying the following assumption:

AssumptionA1: ψ(0) = 0, ψ(x) ≥ 0 and ψ(−x) = ψ(x) holds for x ∈ [0, 1]. Assume that ψ is strictly increasing
on [0, 1] and Lipschitz-continuous.

According to [5], the generalized coe�cient ofmonotonically increasingdependence of X and Y is de�ned
by:

ζ(C) = 1 −
∫

[0,1]2

ψ(u − v) dC(u, v) · ψ̄−1, (2)

where ζ is a map C→ [ζmin, 1], and

ψ̄ = 2
1∫

0

(1 − u)ψ(u) du, ζmin = 1 −
1∫

0

ψ(u) du · ψ̄−1. (3)

This implies
ζ(C) = 1 − Eψ(F(X) − G(Y)) · ψ̄−1.

The coe�cients ρS(C) and ζ(C) measure the discrepancy between the random data points (X, Y) and a (suit-
ably chosen) monotonically increasing function, and simultaneously, the discrepancy between the points
(F(X), G(Y)) having distribution function C and the line from (0, 0) to (1, 1). Two copulas are of special inter-
est here:

M(u, v) = min(u, v), Π(u, v) = uv.
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Coe�cient ζ achieves the maximum value 1 only in the case of C = M (comonotonicity); i.e. in the case where
Y is a strictly increasing function of X almost surely. Coe�cient ζ gives the value 0 in the case C = Π where
X and Y are independent. Thus the coe�cient ζ is a linear transformation of the integral in (2) such that
ζ(Π) = 0 and ζ(M) = 1. Moreover, ζmin = ζ(W) whereW(u, v) = max(0, u + v − 1) (antimonotonicity).

The following table shows several potential functions ψ.

coe�cient ψ(t) ψ̄

Spearman coe�cient t2 1
6

Spearman footrule |t| 1
3

power with p ≥ 1 |t|p 2
p2+3p+2

Huber function with κ = 0.5 1
2 t

2 for |t| ≤ 1
2 ,

1
2 |t| −

1
8 otherwise 5

64

A detailed discussion about the dependence measure ζ(C) according to (2) can be found in [5]. In the
following, we adopt this approach to develop association measures in the situation of piecewise monotonic
functions.

3 Measures of piecewise monotonicity
We call a function h : R → R piecewise monotonic of order 2 i� h is strictly increasing on D and strictly
decreasing on R\(D ∪ {x0}) where D = (−∞, x0) or (x0, +∞). Non-monotonic convex functions and non-
monotonic concave ones represent prominent classes of functions which are piecewise monotonic of order
2. Furthermore there are non-convex functions being piecewise monotonic of order 2. One example is h(x) =
x2

x2+1 . Now we are searching for a statistical coe�cient describing how well the response variable Y can be
approximated by a functional value h(X) of the regressor X where h is a suitable function.

Let all settings of the previous section (e.g. X, Y , H, F, G,ψ. . . ) be also valid in Section 3. Suppose that
F, G are continuous and H is strictly increasing. Let I be a closed subinterval of (0, 1), and a ∈ I. The condi-
tional distribution functions of X and Y given F(X) ≤ a are denoted by F≤a and G≤a, respectively. F>a and G>a
are these conditional distribution function given F(X) > a. Hence

F≤a(x) = P
{
X ≤ x | F(X) ≤ a

}
= min{ 1

a F(x), 1},
F>a(x) = P

{
X ≤ x | F(X) > a

}
= max{ 1

1−a
(
F(x) − a

)
, 0},

G≤a(y) = P
{
Y ≤ y | F(X) ≤ a

}
= H(F−1(a), y)

a , and

G>a(y) = P
{
Y ≤ y | F(X) > a

}
= G(y) − H(F−1(a), y)

1 − a

for x, y ∈ R. In the following, we establish a coe�cient for piecewise monotonicity in the case D = (−∞, x0).
Here two main ideas are involved: First, we split the copula domain into two parts [0, a] × [0, 1] and [a, 1] ×
[0, 1]. Secondly, the copula distribution in the second region [a, 1] × [0, 1] is re�ected over the line v = 1

2 .
Here F−1(y) = inf{x : F(x) ≥ y} is the generalised inverse function of F.

De�ne U = F(X), V = G(Y). Let C̃1
a be the copula of X and Y given F(X) ≤ a, which is the distribution

function of F≤a(X) and G≤a(Y) given F(X) ≤ a. Observe that given F(X) ≤ a, G≤a(Y) = a−1C(a, V) a.s. holds
and

C̃1
a(u, v) = P

{
F≤a(X) ≤ u, G≤a(Y) ≤ v | F(X) ≤ a

}
= 1

aP
{
U ≤ au, a−1C(a, V) ≤ v

}
= 1

a

∫
[0,au]×[0,1]

1
(
a−1C(a, t) ≤ v

)
dC(s, t) (4)
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(u, v ∈ [0, 1]). Here 1(.) is the indicator of an inequality being 1 exactly in the case where the inequality
between the parentheses is ful�lled. According to (4), C̃1

a is completely based on the copula C and it is inde-
pendent of F and G. Nowwe consider the copula in the second region [a, 1]× [0, 1]. Let Ḡa be the distribution
function of −Y given F(X) > a. This distribution function is related to G>a as follows:

Ḡa(y) := P
{
−Y ≤ y | F(X) > a

}
= 1 − G>a(−y)

for y ∈ R. Therefore
Ḡa(−Y) = 1 − G>a(Y) = 1 − V − C(a, V)

1 − a a.s.

Further the copula C̃2
a of X and −Y given F(X) > a can be computed as the distribution function of F>a(X) and

Ḡa(−Y) given F(X) > a:

C̃2
a(u, v) = P

{
F>a(X) ≤ u, Ḡa(−Y) ≤ v | F(X) > a

}
= 1

1−aP
{ 1

1−a (U − a) ≤ u, 1 − 1
1−a (V − C(a, V)) ≤ v, U > a

}
= 1

1−a

∫
[a,a+u−ua]×[0,1]

1
(

1 − 1
1−a
(
t − C(a, t)

)
≤ v
)
dC(s, t) (5)

(u, v ∈ [0, 1]). Geometrically, copula C̃2
a of X and −Y given F(X) > a is obtained from the copula of X and Y

given F(X) > a by re�ecting the distribution over the line v = 1
2 :

C̃2
a(u, v) = u − P

{
F>a(X) ≤ u, G>a(Y) ≤ 1 − v | F(X) > a

}
.

The reason for considering here the copula of X and −Y (i.e. the distribution function of U and 1−V) and not
the copula of X and Y is that we measure the deviation of Y from a decreasing function. As in the case of C̃1

a,
we see that C̃2

a is completely based on the copula C and it is independent of F and G according to (5).
Let Assumption A1 be satis�ed. For �xed a, we de�ne the �rst coe�cient of piecewise monotonicity of

order 2 of X, Y as the combination of the coe�cients for increasing behaviour on the two subintervals:

ζ+−
a (C) := ζ(C̃1

a)a + ζ(C̃2
a) (1 − a) (6)

where ζ(.) is the dependence coe�cient de�ned in (2). De�ne 1 {A} of an event A to be 1 if A occurs, and to
be 0 if A not occurs. Hence

ζ+−
a (C) =

(
1 − E

(
ψ
(
F≤a(X) − G≤a(Y)

)
| F(X) ≤ a

)
· ψ̄−1

)
a

+
(

1 − E
(
ψ
(
F>a(X) − Ḡa(−Y)

)
| F(X) > a

)
· ψ̄−1

)
(1 − a)

= 1 − E
(
ψ(F≤a(X) − G≤a(Y))1

{
F(X) ≤ a

}
+ψ
(
F>a(X) − Ḡa(−Y)

)
1
{
F(X) > a

})
· ψ̄−1.

= 1 −
∫

[0,1]2

(
ψ( 1

a u −
1
a C(a, v))1(u ≤ a) +ψ

( 1
1−a (u − 1 + v − C(a, v))

)
1(u > a)

)
dC(u, v) · ψ̄−1. (7)

We introduce the �rst total coe�cient of piecewise monotonicity of order 2 of X, Y by

ζ+−(C) := max
a∈I

ζ+−
a (C). (8)

The maximizer in (8) exists (not necessarily unique) since a ; ζ+−
a (C) is a continuous function in view of

Lemma 5. The coe�cient ζ+−
a (C) describes the discrepancy between the random data points (X, Y) and a

function which is strictly increasing on (−∞, F−1(a)) and strictly decreasing on (F−1(a), +∞), see also the
detailed explanation about ζ in [5]. Moreover, ζ+−(C) represents a measure on how Y approaches a piecewise
monotonic function of X which is initially increasing.

Important properties of the ζ-coe�cients are summarized in the next theorem. These properties are sim-
ilar to that in the de�nition of a "measure of concordance" by Scarsini; see [9]. Since some assertions uses
several copulas depending on the corresponding random variables, we denote the copula of random vari-
ables X, Y by CX,Y .
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Theorem 1. Suppose that AssumptionA1 is satis�ed. Then for C ∈ C, a ∈ (0, 1),
a) ζmin ≤ ζ+−(C) ≤ 1 and ζmin ≤ ζ+−

a (C) ≤ 1, ζmin as in (3),
b) ζ+−

a (Π) = 0 and ζ+−(Π) = 0,
c) ζ+−

a (M) = a + ζmin(1 − a) and ζ+−
a (W) = aζmin + 1 − a.

For random variables X, Y with copula CX,Y ∈ C, we have:
d) For every a ∈ (0, 1), the identity ζ+−

a (CX,Y ) = 1 holds i� Y = h1(X) a.s. forω : F(X) ≤ a and Y = h2(X) a.s.
for ω : F(X) > a with a suitable strictly increasing function h1 and a suitable strictly decreasing function h2.

e) The identity ζ+−(CX,Y ) = 1 holds i� Y = h(X) a.s. with a suitable strictly piecewise monotonic function h
of order 2 which is initially increasing.

f) ζ+−
a (C−X,Y ) = ζ+−

1−a(CX,Y ) for a ∈ (0, 1) and ζ+−(C−X,Y ) = ζ+−(CX,Y ) provided that I = [ε, 1 − ε] for some
ε > 0.

g) ζ+−
a (Cg(X),h(Y)) = ζ+−

a (CX,Y ) and ζ+−(Cg(X),h(Y)) = ζ+−(CX,Y ) hold for all strictly increasing functions g, h
and a ∈ (0, 1).

Moreover, for copulas C, C* ∈ C, the following properties hold:
h) Let C̃1

a and C̃2
a be the copulas de�ned by (4) and (5). If C is replaced by C* in (4) and (5), we obtain copulas

C̆1
a and C̆2

a. Then, for every a ∈ I, C̃ja ≺ C̆ja for j = 1, 2 implies that ζ+−
a (C) ≤ ζ+−

a (C*). Hereby C1 ≺ C2 means
C1(u, v) ≤ C2(u, v) for all u, v ∈ [0, 1].

i) Let {Cn} be any sequence of copulas tending pointwise to C. Then ζ+−
a (Cn)→ ζ+−

a (C) for every a ∈ (0, 1)
and ζ+−(Cn)→ ζ+−(C).

Proof. a) Obvious in view of (6).
b) In the case C = Π, C̃1

a = C̃2
a = Π holds for all a and

ζ(C̃1
a) = ζ(C̃2

a) = 0.

c) Observe that C̃1
a = M and C̃2

a = W if C = M, and C̃1
a = W and C̃2

a = M if C = W. This leads directly to assertion
c).
d) Equation ζ+−

a (CX,Y ) = 1 holds exactly in the case where ζ(C̃1
a) = 1 and ζ(C̃2

a) = 1. This is, in turn, equivalent
to C̃ja(u, v) = min(u, v) for j = 1, 2, u, v ∈ [0, 1], and equivalent to F≤a(X(ω)) = G≤a(Y(ω)) a.s. forω : F(X(ω)) ≤
a and F>a(X(ω)) = Ḡa(−Y(ω)) a.s. for ω : F(X(ω)) > a in view of (4) and (5). Now the claim c) follows since
F, G−1

≤a and Ḡ−1
a are strictly increasing functions.

e) Equation ζ+−(CX,Y ) = 1 is ful�lled i� ζ+−
a0 (CX,Y ) = 1 for some a0. Hence part d) yields claim e).

Claim f) follows immediately from (7) by a change of variables.
Claim g) is trivial since Cg(X),h(Y) = CX,Y .
h) From Theorem 2.1b) in [5], it follows that

ζ(C̃ja) ≤ ζ(C̆ja) for j = 1, 2

which implies claim h).
Claim i) follows from Lemma 7.

Property b) of Theorem 1 means that for independent random variables X and Y, the coe�cient is equal to
0. Property e) shows that the coe�cient equals 1 exactly in the case where the data points (X, Y) lie almost
surely on a piecewise monotonic function which is initially increasing. Claim h) states that the concordance
inequality carries over from ζ to ζ+−

a in a certain way. Part i) represents the continuity property of the coe�-
cients w.r.t. the copula.

Observe that
CX,−Y (u, v) := u − CX,Y (u, 1 − v) for u, v ∈ [0, 1]

is the copula of (X, −Y). Further we de�ne the second (total) coe�cient of piecewise monotonicity of order 2 of
X, Y by

ζ−+
a (CX,Y ) := ζ+−

a (CX,−Y ) and ζ−+(CX,Y ) := max
a∈I

ζ−+
a (CX,Y ).
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Hence
ζ−+(CX,Y ) = ζ+−(CX,−Y ).

Similarly to the above identity (6), we have

ζ+−
a (C) = ζ(C̃3

a)a + ζ(C̃4
a) (1 − a) ,

where C̃3
a is the the copula of X and −Y given F(X) ≤ a, and C̃4

a is the copula of X and Y given F(X) > a.
The coe�cient ζ−+(CX,Y ) describes the discrepancy between the data points (X, Y) and a function which is
strictly decreasing on an interval (−∞, x0) and strictly increasing on (x0, +∞) for some x0. From these iden-
tities, one can see that there is a close relationship between ζ−+ and ζ+−, and properties of ζ−+ can be derived
immediately from Theorem 1.

Theorem 2. Let AssumptionA1 be satis�ed. Then, for C ∈ C, a ∈ (0, 1),
a) ζmin ≤ ζ−+(C) ≤ 1 and ζmin ≤ ζ−+

a (C) ≤ 1, ζmin as in (3),
b) ζ−+

a (Π) = 0 and ζ−+(Π) = 0,
c) ζ−+

a (M) = aζmin + 1 − a and ζ−+
a (W) = a + ζmin(1 − a).

For random variables X, Y with copula CX,Y ∈ C, we have:
d) For every a ∈ (0, 1), the identity ζ−+

a (CX,Y ) = 1 holds i� Y = h1(X) a.s. forω : F(X) ≤ a and Y = h2(X) a.s.
for ω : F(X) > a with a suitable strictly decreasing function h1 and a suitable strictly increasing function h2.

e) The identity ζ−+(CX,Y ) = 1 holds i� Y = h(X) a.s. with a suitable strictly piecewise monotonic function h
of order 2 which is initially decreasing.

f) ζ−+
a (C−X,Y ) = ζ−+

1−a(CX,Y ) for a ∈ (0, 1) and ζ−+(C−X,Y ) = ζ−+(CX,Y ) provided that I = [ε, 1 − ε] for some
ε > 0.

g) ζ−+
a (Cg(X),h(Y)) = ζ−+

a (CX,Y ) and ζ−+(Cg(X),h(Y)) = ζ−+(CX,Y ) hold for all strictly increasing functions g, h
and a ∈ (0, 1).

Moreover, for copulas C, C* ∈ C, the following properties hold:
h) Let {Cn} be a sequence of copulas tending pointwise to C. Then ζ−+

a (Cn) → ζ−+
a (C) for every a ∈ (0, 1)

and ζ−+(Cn)→ ζ−+(C).

The remarks after Theorem 1 apply to this theorem analogously.
The concept presented in this section canbe carried over tomonotonicity of higher order. For this purpose

the copula domain [0, 1]2 is split intomore than two subdomains. The corresponding coe�cient of piecewise
monotonicity of higher order can then be established as a weighted sum of the appropriately de�ned coe�-
cients for the subdomains.

4 Estimating the coe�cient of piecewise monotonicity

4.1 Estimator

Let (X1, Y1), . . . , (Xn , Yn) be a sample of independent random vectors with distribution function H and cop-
ula C. F and G are the marginal distribution functions of Xi and Yi, respectively. Suppose that F and G are
continuous with densities f and g, respectively. In Section 4, we deal with properties of estimators for as-
sociation measures ζ+−

a (C) and ζ+−(C). Similarly, one can treat estimators for the other coe�cients. First, we
introduce estimators for the distribution functions F, G≤a and Ḡa:
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Fn(x) = 1
n

n∑
i=1

1 {Xi ≤ x} ,

Gn,a(y) = 1
an

n∑
i=1

1
{
Yi ≤ y, Fn(Xi) ≤ a

}
,

Ḡn,a(y) = 1
n − an

n∑
i=1

1
{
−Yi ≤ y, Fn(Xi) > a

}
.

The coe�cient ζ+−
a (C) can be estimated by

ζ̂
+−
n (a) = 1 − 1

nψ̄

n∑
i=1

(
ψ( 1

a Fn(Xi) − Gn,a(Yi))1
{
Fn(Xi) ≤ a

}
+ψ( 1

1−a
(
Fn(Xi) − a

)
− Ḡn,a(−Yi))1

{
Fn(Xi) > a

})
.

Let I ⊂ (0, 1) be a given closed interval. For de�ning an estimator of ζ+−(C), it is reasonable to consider a
maximization on a grid In = { jn ∈ I, j ∈ {0, . . . , n}}:

ζ̂
+−
n = max

a∈In
ζ̂

+−
n (a) = ζ̂n(an)

with a suitable an. Applying this approach to the modi�ed data (X1, −Y1), . . . , (Xn , −Yn), we arrive at the
coe�cients ζ̂−+

n (a) and ζ̂−+
n . These coe�cients can support the detection of non-monotonic convex or concave

functions in data points. If ζ̂+−
n , respectively ζ̂−+

n , is rather small, then we cannot expect that the Y values can
be approximated well by a non-monotonic concave function of the X values, respectively a non-monotonic
convex function of the X values.

The following theorem gives a convergence rate of the estimator ζ+−
n to the true underlying coe�cient

ζ+−(C).

Theorem 3. Assume that AssumptionA1 is satis�ed.
a) Then

ζ̂
+−
n = ζ+−(C) + O

(√
ln n
n

)
a.s.

b) If a ; ζ+−
a (C) has a unique maximizer a0 on I, then an → a0 a.s.

The a.s. convergence rate O
(
n−1/2√ln n

)
of the estimator ζ̂+−

n is only slightly worse than the usual a.s.

rate O
(
n−1/2√ln ln n

)
of estimators for dependence coe�cients. The reason for this di�erence can be seen

in the maximization w.r.t. a.
De�ne ā := F−1(a). Let us now introduce the conditional distribution function γ(y, x) =

P {Y1 ≤ y | X1 = x}, ψ̃(x) = E
(
ψ(1 − G≤a(Y1)) − ψ(Ḡa(−Y1)) | X1 = x

)
, and assumptions which will be needed

in the next Theorem 4:
AssumptionA2: Suppose that for any sequence ηn → 0,

lim
n→∞

sup
x:ā−ηn≤x≤ā+ηn

sup
y∈R

∣∣γ(y, x) − γ(y, ā)
∣∣ = 0.

AssumptionA3: Assume that

sup
x1 ,x2∈[0,1]

∣∣ψ′(x1) − ψ′(x2)
∣∣

|x1 − x2|α
< +∞ for some α ∈ (0, 1].

The following theorem provides the asymptotic normality result for the coe�cient ζ+−
a (C) with �xed pa-

rameter a.
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Theorem 4. Let a ∈ I be �xed. Suppose that Assumptions A1 to A3 are satis�ed. Assume that f and ψ̃ are
continuous at ā, and f (ā) > 0. Then

√
n
(
ζ̂

+−
n (a) − ζ+−

a (C)
)

d−→ N(0, σ2)

where d−→ denotes convergence in distribution, σ2 = 4 VarΦ(X1, Y1)ψ̄−2,

Φ(ξ, χ)

=
∫

(−∞,ā]×R

ψ′(F≤a(x) − G≤a(y))
( 1
a
(
1 (ξ ≤ x) − F(x)

)
− 1
a1 (χ ≤ y, ξ ≤ ā) + G≤a(y) + 1

a (1 (ξ ≤ ā) − a) γ(y, ā)
)
dH(x, y)

+
∫

[ā,∞)×R

ψ′(F>a(x) − Ḡa(−y))
( 1

1−a
(
1 (ξ ≤ x) − F(x)

)
+ Ḡa(−y)

− 1
1−a1 (y ≤ χ, ξ > ā) − 1

1−a (1 (ξ ≤ ā) − a)
(

1 − γ(y, ā)
))

dH(x, y)
−ψ̃(ā) (1 (ξ ≤ ā) − a) + ψ(F≤a(ξ) − G≤a(χ))1 (ξ ≤ ā)
+ψ(F>a(ξ) − Ḡa(−χ))1 (ξ > ā) − ζ̌(a).

The structure of the variance is rather complicated, and it is not easy to establish a reasonable estimator of
it. The conditional expectations are problematic in this respect.

4.2 Applications

In connection with this paper, an R script was prepared and used for the computations. In this section we
report on the results for one example dataset and the results of simulations.

Example:We consider the dataset "engine" of [1]. Variable X contains the values of the fuel/air ratio whereas
variable Y gives the nitrogen oxides output of the engine. The dataset comprises n = 80 data points.

The unit two-dimensional interval [0, 1]2 is split in two parts at a* = 0.52, themaximizer of ζ̂+−
n (a). In the

left subarea and in the right subarea, wemeasure the distance of the data points to the dashed line separately.
The estimated coe�cient gives information as to how far the data points are from the ideal situation in which
they would lie on the dashed line.

The following table provides the values of the coe�cients.

ζ̂
+−
n

Spearman (S) 0.9497953
Spearman’s footrule (F) 0.7975014
Huber κ = 0.5 (H) 0.9464483
power p = 1.5 (P) 0.9011831

For all coe�cients, the maximum is achieved at the same point 64
n on the u-axis. We can see that the data

points are rather close to a piecewise monotonic function of order 2 which is initially increasing. In the con-
text of regression analysis, it makes sense to look for a suitable piecewise monotonic regression function
describing the trend of the data.
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Figure 1: empirical copula of the dataset "engine". The dashed line shows the ideal line for perfect piecewise monotonicity.

Simulations: Let us consider the copula

C(u, v) =
{
aC̆1( ua , v) for u ≤ a
av + (u − a) − (1 − a)C̆2( u−a1−a , 1 − v) for u > a

where C̆1 and C̆2 are Clayton copulas with parameter θ. We put a = 0.6. This copula C can simulated by the
following algorithm

1) Generate random value W ∼ U[0,1] from uniform distribution, and random vectors (U1, V1) ∼
C̆1, (U2, V2) ∼ C̆2.

2) IfW ≤ a, then V = V1, U = U1 · a.
3) IfW > a, then V = 1 − V2, U = a + U1(1 − a).
We generated 50000 samples of di�erent sizes (n = 100, 200) for (U, V). For each sample, the estimator

ζ̂
+−
n is computed (S=Spearman, F=Spearman’s footrule, H=Huber function, P=power function with p = 1.5).

On the other hand, the exact theoretical value of the coe�cients is calculated for comparisons. Some simu-
lation results are summarized in the following table:
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θ n coe�. average bias standard deviation

0.5 100 F 0.19685 0.01004 0.06211
200 F 0.19236 0.00556 0.04453
100 S 0.31053 0.01559 0.09054
200 S 0.30461 0.00966 0.06492
100 P 0.25816 0.01161 0.07826
200 P 0.25340 0.00685 0.05612
100 H 0.29350 0.01418 0.08818
200 H 0.28806 0.00874 0.06321

2 100 F 0.48146 -0.00382 0.05322
200 F 0.48330 -0.00198 0.03776
100 S 0.68268 0.00045 0.05991
200 S 0.68398 0.00175 0.04240
100 P 0.59908 -0.00230 0.05854
200 P 0.60106 -0.00033 0.04145
100 H 0.66540 0.00014 0.06162
200 H 0.66687 0.00160 0.04359

20 100 F 0.89297 -0.0126 0.01664
200 F 0.89843 -0.00717 0.01034
100 S 0.98251 -0.00455 0.00592
200 S 0.98498 -0.00209 0.00333
100 P 0.95776 -0.00843 0.00995
200 P 0.96205 -0.00414 0.00596
100 H 0.98135 -0.00486 0.00631
200 H 0.98398 -0.00223 0.00355

From this table, we see that the bias is negligibly small in comparison to the standard deviation. In few
cases, the bias increases from n = 100 to n = 200, but it keeps signi�cantly smaller than the standard
deviation. Furthermore, the standarddeviationdecreases as n increases. Consequently, themean square error
decreases as n increases.

5 Proofs

5.1 Auxiliary statements

In this section, we prove continuity properties of the ζ-coe�cient and later, a convergence property of the
maximum of the coe�cient.

Lemma 5. Under the AssumptionA1, the function a ; ζ+−
a (C) is Lipschitz continuous.

Proof. Let I = [a, ā]. We obtain

sup
a,a′∈I:a≤a′≤a+∆

∣∣ζ+−
a′ (C) − ζ+−

a (C)
∣∣ ≤ ψ̄−1

(
A*n(∆) + B*n(∆) + D*n(∆)

)
,
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where

A*n(∆) = sup
a,a′∈I:a≤a′≤a+∆

∫
[0,a]×[0,1]

∣∣ψ( 1
a′ u −

1
a′ C(a′, v)) − ψ( 1

a u −
1
a C(a, v))

∣∣dC(u, v),

B*n(∆) = sup
a,a′∈I:a≤a′≤a+∆

∫
(a′ ,1]×[0,1]

∣∣ψ ( 1
1−a′ (u − 1 + v − C(a′, v))

)
−ψ
( 1

1−a (u − 1 + v − C(a, v))
)∣∣dC(u, v),

D*n(∆) = sup
a,a′∈I:a≤a′≤a+∆

∫
(a,a′]×[0,1]

(
ψ( 1

a′ u −
1
a′ C(a′, v)) + ψ

( 1
1−a (u − 1 + v − C(a, v))

))
dC(u, v)

Observe that C is Lipschitz continuous on [0, 1]2 with Lipschitz constant 1. Hence, by the Lipschitz continuity
of ψ,

A*n(∆) ≤ κ0 sup
a,a′∈I:a≤a′≤a+∆

∫
[0,a]×[0,1]

(
a−2∆u +

∣∣ 1
a′ C(a′, v) − 1

aC(a, v)
∣∣)dC(u, v)

≤ κ0
(

2a−2∆ + a−1∆
)
,

B*n(∆) ≤ κ0 sup
a,a′∈I:a≤a′≤a+∆

∫
(a′ ,1]×[0,1]

(
(1 − a′)−2∆ |u − 1 + v| +

∣∣ 1
1−a′ C(a′, v)) − 1

1−a C(a, v)
∣∣)dC(u, v)

≤ κ0
(

2(1 − ā)−2∆ + (1 − ā)−1∆
)
, and

D*n(∆) ≤ κ0 sup
a,a′∈I:a≤a′≤a+∆

(
C(a′, 1) − C(a, 1)

)
≤ κ0∆

for any ∆ > 0 with a suitable constant κ0 > 0. This proves the lemma.

From Proposition 2.3 of [2] or from Theorem 7.33 of [8], one obtains immediately the following statement:

Proposition 6. Let {ϕn} be a sequence of continuous functions on a compact set D ⊂ R. Assume that for every
sequence {xn} with xn → x̄ ∈ D,

lim
n→∞

ϕn(xn) = ϕ(x̄)

holds with a continuous function ϕ. Then

lim
n→∞

max
x∈D

ϕn(x) = max
x∈D

ϕ(x).

Lemma 7. Suppose that AssumptionA1 is satis�ed and {Cn} is a sequence of copulas tending pointwise to C.
Let ϕn(a) = ζ+−

a (Cn), and ϕ(a) = ζ+−
a (C) for a ∈ I. Then

a) lim
n→∞

ϕn(a) = ϕ(a) for any a ∈ I and

b) lim
n→∞

max
a∈I

ϕn(a) = max
a∈I

ϕ(a).

Proof. Here we show that the assumptions of Proposition 6 are satis�ed such that the claim of Lemma 7 fol-
lows from this proposition. In view of Lemma 5,ϕn andϕ are continuous. Let a be any real number belonging
to I, and {an} be any sequence of real numbers with an → a. We have

lim
n→∞

(
ζ+−
an (Cn) − ζ+−

a (C)
)

= ψ̄−1 lim
n→∞

(bn + dn − en − fn − gn) , (9)
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where

bn =
∫

[0,a]×[0,1]

(
ψ( 1

a u −
1
a C(a, v)) − ψ( 1

an u −
1
an Cn(an , v))

)
dCn(u, v),

dn =
∫

(a,1]×[0,1]

(
ψ
( 1

1−a (u − 1 + v − C(a, v))
)
− ψ

(
1

1−an (u − 1 + v − Cn(an , v))
))

dCn(u, v),

en =
∫

[0,a]×[0,1]

ψ( 1
a u −

1
a C(a, v))d

(
Cn(u, v) − C(u, v)

)
fn =

∫
(a,1]×[0,1]

ψ
( 1

1−a (u − 1 + v − C(a, v))
)
d
(
Cn(u, v) − C(u, v)

)
gn =

∫
[0,1]2

(
ψ( 1

an u −
1
an Cn(an , v))

(
1(u ≤ an) − 1(u ≤ a)

)
+ψ
(

1
1−an (u − 1 + v − Cn(an , v))

) (
1(u > an) − 1(u > a)

))
dCn(u, v)

Since C is continuous and Cn is increasing for every n, the convergence of Cn to C is uniform. Using this
uniform convergence and Lipschitz continuity of ψ, we obtain

lim
n→∞

|bn| ≤ const · lim
n→∞

 2
a −

2
an + 1

an

∫
[0,a]×[0,1]

∣∣C(a, v) − Cn(an , v)
∣∣dCn(u, v)


≤ const · lim

n→∞

(
2
a −

2
an + 1

an |a − an| + sup
v∈[0,1]

∣∣C(a, v) − Cn(a, v)
∣∣)

= 0.

Analogously, one shows that
lim
n→∞

dn = 0.

By the Portmanteau Theorem (cf. [13], p. 6),

lim
n→∞

en = 0 and lim
n→∞

fn = 0.

Moreover, we can derive

|gn| ≤ 2 sup
t∈[−1,1]

ψ(t)
∣∣Cn(an , 1) − Cn(a, 1)

∣∣ = 2 sup
t∈[−1,1]

ψ(t) |an − a| ,

which implies limn→∞ gn = 0. Consequently, the limit in (9) is equal to zero and the assumptions of Proposi-
tion 6 are proved.

The next lemma provides convergence rates of the joint empirical distribution function Hn, of the marginal
empirical distribution function Fn of X and conditional empirical distribution functions Gn,a and Ḡn,a of Y
which are de�ned in Section 4.1.

Lemma 8. We have
a)

sup
x,y∈R

∣∣Hn(x, y) − H(x, y)
∣∣ = O

(√
ln ln n
n

)
a.s.,

b)

sup
x∈R

∣∣Fn(x) − F(x)
∣∣ ≤ κ1

√
ln ln n
n a.s.



210 | Eckhard Liebscher

for n ≥ n0(ω) with a constant κ1 > 1
2
√

2,
c)

1
n sup
a∈I

n∑
i=1

∣∣1{Fn(Xi) ≤ a
}
− 1{F(Xi) ≤ a}

∣∣ = O
(√

ln ln n
n

)
a.s.,

d)

sup
y∈R,a∈I

∣∣Gn,a(y) − G≤a(y)
∣∣ = O

(√
ln ln n
n

)
a.s. and

sup
y∈R,a∈I

∣∣Ḡn,a(y) − Ḡa(y)
∣∣ = O

(√
ln ln n
n

)
a.s.

Proof. Claim a) follows immediately from the law of iterated logarithm for the empirical process (cf. [13], p.
268, for example). Furthermore, the law of iterated logarithm implies

lim sup
n→∞

√
n

ln ln n sup
x∈R

∣∣Fn(x) − F(x)
∣∣ ≤ 1

2
√

2.

Claim b) is a consequence of this inequality. Let bxc be the largest integer less than or equal to x. Further

1
n sup
a∈I

n∑
i=1

∣∣1{Fn(Xi) ≤ a
}
− 1{F(Xi) ≤ a}

∣∣
= sup

a∈I

1
n

n∑
i=1

(
1
{
Fn(Xi) ≤ a, F(Xi) > a

}
+ 1{Fn(Xi) > a, F(Xi) ≤ a}

)
= sup

a∈I

1
n

n∑
i=1

(
1
{
F−1(a) < Xi ≤ F−1

n (banc /n)
}

+ 1{F−1
n (banc /n) < Xi < F−1(a)}

)
≤ sup

a∈I

∣∣∣banc /n − Fn(F−1(a))
∣∣∣ ≤ sup

a∈I

∣∣∣Fn(F−1(a)) − F(F−1(a))
∣∣∣ + O(n−1)

= O
(√

ln ln n
n

)
a.s.

which is assertion c). Next we prove part d). In view of a) and c), we can derive

sup
y∈R,a∈I

∣∣Gn,a(y) − G≤a(y)
∣∣ ≤ sup

y∈R,a∈I

1
an

∣∣∣∣∣
n∑
i=1

1
{
Yi ≤ y, Xi ≤ F−1

n (banc /n)
}
− nH(F−1

n (banc /n), y)

∣∣∣∣∣
+ sup
y∈R,a∈I

a−1
∣∣∣(H(F−1

n (banc /n), y) − H(F−1(a), y)
)∣∣∣

≤ O(1) · sup
x,y∈R

∣∣Hn(x, y) − H(x, y)
∣∣ + sup

a∈I
a−1

∣∣∣F(F−1
n (banc /n)) − a

∣∣∣
≤ O

(√
ln ln n
n

)
+ sup
a∈I

a−1
∣∣∣F(F−1

n (banc /n)) − Fn(F−1
n (banc /n))

∣∣∣ + O(n−1)

= O
(√

ln ln n
n

)
a.s.

The corresponding assertion about Ḡn,a is proved analogously.

5.2 Proof of convergence rate of the estimated coe�cient

Throughout the remainder of Section 5, we assume that AssumptionA1 is ful�lled. We start with the proof of
strong convergence rate of the coe�cient of piecewise monotonicity. Nowwe prove a lemmawhich is used in
the subsequent proof:
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Lemma 9. We have

sup
a∈I

∣∣Λn(a) − EΛn(a)
∣∣ = O

(√
ln n
n

)
and

sup
a∈I

∣∣Λ̄n(a) − EΛ̄n(a)
∣∣ = O

(√
ln n
n

)
a.s.,

where

Λn(a) = 1
n

n∑
i=1

ψ( 1
a F(Xi) − G≤a(Yi))1

{
F(Xi) ≤ a

}
,

Λ̄n(a) = 1
n

n∑
i=1

ψ( 1
1−a
(
F(Xi) − a

)
− Ḡa(−Yi))1

{
F(Xi) > a

}
Proof. We divide I into n closed intervals J1, . . . , Jn ⊂ I of length 1

n such that
⋃n
i=1 Jn = I, ak is the centre of

the interval Jk. Observe that

sup
a∈I

∣∣Λn(a) − EΛn(a)
∣∣ ≤ max

k=1,...,n
sup
a∈Jk

∣∣Λn(a) − EΛn(a)
∣∣

≤ max
k=1,...,n

∣∣Λn(ak) − EΛn(ak)
∣∣ + sup

a,a′∈I:a≤a′≤a+n−1

∣∣Λn(a) − Λn(a′)
∣∣

+ sup
a,a′∈I:a≤a′≤a+n−1

∣∣EΛn(a) − EΛn(a′)
∣∣ . (10)

Let Z1, . . . , Zn be independent randomvariableswith |Zi| ≤ M a.s.,M > 0 is a constant. Bernstein’s inequality
(see [7], p.193) says that

P

{∣∣∣∣∣
n∑
i=1

(Zi − EZi)

∣∣∣∣∣ > ε
}
≤ 2 exp

(
− ε2

2
∑n

i=1 Var Zi + 4
3Mε

)
(11)

for all ε > 0. Let Zi = 1
nψ( 1

a F(Xi) − G≤a(Yi))1{F(Xi) ≤ a},M0 = supt∈[−1,1] |ψ(t)|. Then M = M0n−1 and

n∑
i=1

Var Zi ≤ n−2
n∑
i=1

Eψ( 1
a F(Xi) − G≤a(Yi))2 ≤ n−1M2

0 for every a ∈ I.

Let λn =
√

ln nn−1/2. By Bernstein’s inequality (11), we obtain

P
{

max
k=1,...,n

∣∣Λn(ak) − EΛn(ak)
∣∣ > ελn} ≤

n∑
k=1

P
{∣∣Λn(ak) − EΛn(ak)

∣∣ > ελn}
≤ 2n exp

(
− ε2λ2

n
n−1M2

0 + 4
3M0n−1ελn

)

≤ 2n exp
(
− ε2 ln n
M2

0 + 4
3M0ε

√
ln nn−1/2

)

≤ 2n exp
(
−κ2ε

2 ln n
1 + ε

)
for all ε > 0 and n ≥ n0, where κ2 > 0 is an appropriate constant. Hence,

∞∑
n=1

P
{

max
k=1,...,n

∣∣Λn(ak) − EΛn(ak)
∣∣ > ελn} < +∞

for large ε. Then, by the Borel-Cantelli lemma,

P
{

max
k=1,...,n

∣∣Λn(ak) − EΛn(ak)
∣∣ > ελn for a �nite number of n’s

}
= 1.
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Therefore max
k=1,...,n

∣∣Λn(ak) − EΛn(ak)
∣∣ = O

(√
ln n
n

)
a.s. (12)

Next we analyse the two remaining terms in (10) concerning the convergence rate. Note that

sup
a,a′∈I:a≤a′≤a+n−1

sup
y∈R

∣∣G≤a(y) − G≤a′ (y))
∣∣ ≤ sup

a,a′∈I:a≤a′≤a+n−1

(∣∣ 1
a −

1
a′
∣∣ + 1

a′ sup
y∈R

∣∣∣H(F−1(a′), y) − H(F−1(a), y)
∣∣∣)

≤ O(n−1) + sup
a,a′∈I:a≤a′≤a+n−1

(
1
a′
∣∣∣F(F−1(a′)) − F(F−1(a))

∣∣∣)
= O(n−1). (13)

By the Lipschitz property of ψ, Lemma 8b) and (13), we obtain

supa,a′∈I:a≤a′≤a+n−1
∣∣Λn(a) − Λn(a′)

∣∣ ≤ O
(

1
n

)(
sup

a,a′∈I:a≤a′≤a+n−1

n∑
i=1

(
F(Xi)

∣∣ 1
a −

1
a′
∣∣ +
∣∣G≤a(Yi) − G≤a′ (Yi))

∣∣)
+ sup
a,a′∈I:a≤a′≤a+n−1

n∑
i=1

∣∣1{F(Xi) ≤ a
}
− 1
{
F(Xi) ≤ a′

}∣∣)
≤ O(n−1) + O(1) · sup

a,a′∈I:a≤a′≤a+n−1

(
Fn(F−1(a′)) − Fn(F−1(a))

)
≤ O(n−1) + O(1) ·

(
2 sup
x∈R

∣∣Fn(x) − F(x)
∣∣ + sup

a,a′∈I:a≤a′≤a+n−1
|a − a′|

)

= O
(√

ln ln n
n

)
a.s.

On the other hand,

sup
a,a′∈I:a≤a′≤a+n−1

∣∣EΛn(a) − EΛn(a′)
∣∣

≤ O(1) · sup
a,a′∈I:a≤a′≤a+n−1

(∣∣ 1
a −

1
a′
∣∣EF(X1) + E

∣∣G≤a(Y1) − G≤a′ (Y1)
∣∣

+E
∣∣1{F(X1) ≤ a

}
− 1
{
F(X1) ≤ a′

}∣∣)
≤ O(n−1) + O(1)
· sup
a,a′∈I:a≤a′≤a+n−1

(
E
∣∣∣H(F−1(a), Y1) − H(F−1(a′), Y1)

∣∣∣ + P
{
a ≤ F(X) ≤ a′

})
≤ O(n−1) + O(1) sup

a,a′∈I:a≤a′≤a+n−1

∣∣a − a′∣∣ = O(n−1).

Consequently, the �rst assertion of the lemma is a consequence of (10) and (12). The second assertion can be
proved analogously.

Proof of Theorem 3. a) Observe that

sup
a∈I

∣∣∣ζ̂+−
n (a) − ζ+−

a (C)
∣∣∣ ≤ 1

nψ̄ (Sn + Tn) + 1
ψ̄

sup
a∈I

(∣∣Λn(a) − EΛn(a)
∣∣ +
∣∣Λ̄n(a) − EΛ̄n(a)

∣∣) , (14)

where Λn and Λ̄n as in Lemma 9,

Sn = sup
a∈I

( n∑
i=1

∣∣ψ( 1
a Fn(Xi) − Gn,a(Yi)) − ψ( 1

a F(Xi) − G≤a(Yi))
∣∣

+
n∑
i=1

∣∣ψ( 1
1−a
(
Fn(Xi) − a

)
− Ḡn,a(−Yi)) − ψ( 1

1−a
(
F(Xi) − a

)
− Ḡa(−Yi))

∣∣) ,

Tn = 2 sup
t∈[−1,1]

|ψ(t)| sup
a∈I

n∑
i=1

∣∣1{Fn(Xi) ≤ a
}
− 1{F(Xi) ≤ a}

∣∣ .
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Further, in view of Lemma 8, we can deduce

Sn ≤ O(n) · sup
a∈I

(( 1
a + 1

1−a
)

sup
x∈R

∣∣Fn(x) − F(x)
∣∣ + sup

y∈R

∣∣Gn,a(y) − G≤a(y)
∣∣ + sup

y∈R

∣∣Ḡn,a(y) − Ḡa(y)
∣∣)

= O
(√

n ln ln n
)
a.s. (15)

using the Lipschitz continuity of ψ. Lemma 8c) implies

Tn = O
(√

n ln ln n
)
a.s. (16)

Combining (14) to (16) and using Lemma 9, we obtain

sup
a∈I

∣∣∣ζ̂+−
n (a) − ζ+−

a (C)
∣∣∣ = O

(√
ln n
n

)
a.s. (17)

Let ã and an be maximizer of a ; ζ+−
a (C) on I, and of ζ̂+−

n (.) on In, respectively. Then we have

ζ+−
ã (C) ≥ ζ+−

an (C) ≥ ζ̂+−
n (an) − O

(√
ln n
n

)
a.s.

There is a ăn ∈ In such that |ăn − ã| ≤ 1
n . Since a ; ζ+−

a (C) is Lipschitz continuous in view of Lemma 5 and
(17) holds, it follows that

ζ̂
+−
n (an) ≥ ζ̂+−

n (ăn) ≥ ζ+−
ăn (C) − O

(√
ln n
n

)
≥ ζ+−

ã (C) − O
(√

ln n
n

)
a.s.

Combining these inequalities, we obtain∣∣∣ζ+−
ã (C) − ζ̂+−

n (an)
∣∣∣ = O

(√
ln n
n

)
a.s.

This identity proves part a) of Theorem 3.
b) There exist subsequences {amn} and {aMn} of {an} almost surely such that

ā0 := lim inf
n→∞

an = lim
n→∞

amn ≤ ã0 := lim sup
n→∞

an = lim
n→∞

aMn a.s.

By part a),
lim
n→∞

ζ̂
+−
mn (amn ) = lim

n→∞
ζ̂

+−
Mn (aMn ) = ζ+−

a0 (C) a.s.

By (17),
lim
n→∞

ζ+−
amn (C) = lim

n→∞
ζ+−
aMn (C) = ζ+−

a0 (C) a.s.

which implies ζ+−
ā0 (C) = ζ+−

ã0
(C) = ζ+−

a0 (C) by virtue of Lemma 5. Therefore ā0 = ã0 = a0 holds a.s. since a0 is
the unique maximizer, and the the claim b) is proved.

5.3 Proof of asymptotic normality of the estimated coe�cient

Before giving the proof of Theorem 4, we introduce some de�nitions and provide three useful auxiliary state-
ments:

G̃n,a(y) : = 1
an

n∑
i=1

1
{
Yi ≤ y, F(Xi) ≤ a

}
,

˜̄Gn,a(y) : = 1
n − an

n∑
i=1

1
{
−Yi ≤ y, F(Xi) > a

}
.

De�ne ā := F−1(a), γ(y, x) := P {Y1 ≤ y | X1 = x}. From Corollary 21.5 in the book [13] by van der Vaart, we
can derive the following Proposition:
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Proposition 10. Assume that f (ā) > 0. Then

F−1
n (a) − ā = − 1

f (ā)
(
Fn(ā) − a

)
+ oP(n−1/2).

Lemma 11. Suppose that AssumptionA2 is ful�lled. Assume that f is continuous at ā and f (ā) > 0. Then

a) sup
y∈R

∣∣∣∣Gn,a(y) − G̃n,a(y) + 1
a (Fn(ā) − a)γ(y, ā)

∣∣∣∣ = oP(n−1/2), and

b) sup
y∈R

∣∣∣∣Ḡn,a(y) − ˜̄Gn,a(y) − 1
1 − a (Fn(ā) − a)

(
1 − γ(−y, ā)

)∣∣∣∣ = oP(n−1/2).

Proof. a) Denote the empirical distribution function of (X, Y) by Hn. Let δ̄ > 0 such that f is bounded from
below on [F−1(a − δ̄), F−1(a + δ̄)]. Therefore, we can derive

sup
p:|p−a|<δ̄

∣∣F−1(p) − F−1(a)
∣∣

|p − a| ≤ sup
q:|q−a|≤δ̄

1
f (F−1(q)) ≤ κ3 (18)

with a suitable constant κ3 > 0. Obviously,∣∣∣Fn(F−1
n (banc /n)) − a

∣∣∣ = |banc /n − a| ≤ n−1

for n ≥ n0(ω). Applying Lemma 8b), we obtain∣∣∣F(F−1
n (banc /n)) − a

∣∣∣ ≤ κ1

√
ln ln n
n + n−1

for n ≥ n0(ω). By (18), ∣∣∣F−1
n (banc /n) − ā

∣∣∣ ≤ κ3

(
κ1

√
ln ln n
n + n−1

)
=: δn (19)

for n ≥ n0(ω). We have

Gn,a(y) − G̃n,a(y) = 1
an

n∑
i=1

(
1
{
Yi ≤ y, Xi ≤ F−1

n (banc /n)
}
− 1 {Yi ≤ y, Xi ≤ ā}

)
= 1

a

(
Hn(F−1

n (banc /n), y) − Hn(ā, y)
)

= 1
a

(
H(F−1

n (banc /n), y) − H(ā, y) +∆n(y, F−1
n (banc /n))

)
, (20)

where ∆n(y, x) := Hn(x, y) − Hn(ā, y) − H(x, y) + H(ā, y). Since the empirical process
√
n
(
Hn(.) − H(.)

)
con-

verges weakly to a Gaussian process, this process is asymptotically equicontinuous which in turn leads to

sup
y∈R

∣∣∣∆n(y, F−1
n (banc /n))

∣∣∣ = oP(n−1/2) (21)

by virtue of (19). Note that F−1
n (banc /n) − F−1

n (a) = oP(n−1/2) in view of Lemma 21.7 in [13]. Consequently, by
Proposition 10 and AssumptionA2, we have

H(F−1
n (banc /n), y) − H(ā, y) =

F−1
n (banc/n)∫
ā

P {Y1 ≤ y | X1 = x} f (x) dx

= (F−1
n (banc /n) − ā)

(
γ(y, ā)f (ā) + oP(1)

)
= −(Fn(ā) − a)

(
γ(y, ā) + oP(1)

)
+ oP(n−1/2)

= −(Fn(ā) − a)γ(y, ā) + oP(n−1/2)
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uniformly in y ∈ R. In view of (20) and (21), we obtain the �rst assertion of the lemma.
b) Further

Ḡn,a(y) − ˜̄Gn,a(y) = 1
n − an

n∑
i=1

(
1
{
−Yi ≤ y, Xi > F−1

n (banc /n)
}
− 1 {−Yi ≤ y, Xi > ā}

)
= 1

1 − a

(
1
n

n∑
i=1

(
1
{
Xi > F−1

n (banc /n)
}
− 1 {Xi > ā}

)
−H̄n(F−1

n (banc /n), −y) + H̄n(ā, −y)
)

= 1
1 − a

(
n − banc

n −
(

1 − Fn(ā)
)

−H̄(F−1
n (banc /n), −y) + H̄(ā, −y) + ∆̄n(−y, F−1

n (banc /n))
)
, (22)

where H̄(x, y) = P {Yi < y, Xi > x}, H̄n is the corresponding empirical counter-part, and ∆̄n(y, x) := H̄n(ā, y)−
H̄(ā, y) − H̄n(x, y) + H̄(x, −y). Similarly to the �rst part, one shows that

sup
y∈R

∣∣∣∆n(−y, F−1
n (banc /n))

∣∣∣ = oP(n−1/2) (23)

Taking into account AssumptionA2, we can deduce

H̄(F−1
n (banc /n), −y) − H̄(ā, −y) =

ā∫
F−1
n (banc/n)

P {Y1 ≤ −y | X1 = x} f (x) dx

= (ā − F−1
n (banc /n))

(
γ(−y, ā)f (ā) + oP(1)

)
= (Fn(ā) − a)γ(−y, ā) + oP(n−1/2)

uniformly in y ∈ R. Combing this identity with (22), (23) and Proposition 10, it follows that

Ḡn,a(y) − ˜̄Gn,a(y) = 1
1 − a (Fn(ā) − a)

(
1 − γ(−y, ā)

)
+ oP(n−1/2)

uniformly in y ∈ R. This identity proves the second claim.

Lemma 12. Let Ψ : R→ R be a bounded function. De�ne γ̄(x) := E(Ψ(Y1) | X1 = x), and

Wn := 1
n

n∑
i=1

Ψ(Yi)
(
1
{
Fn(Xi) ≤ a

}
− 1
{
F(Xi) ≤ a

})
.

If γ̄ and f are continuous at ā with f (ā) > 0, then

Wn = −(Fn(ā) − a)γ̄(ā) + oP(n−1/2).

Proof. Let ηn(x) = E
(
Ψ(Y1)1 {X1 ≤ x}

)
and ∆̃n = Wn − ηn(F−1

n (banc /n)) + ηn(ā). Note that

Wn = 1
n

n∑
i=1

Ψ(Yi)
(
1
{
ā < Xi ≤ F−1

n (banc /n)
}
− 1
{
F−1
n (banc /n) < Xi ≤ ā

})
.

Using (19), we deduce √
n
∣∣∆̃n∣∣ ≤ sup

b∈[−δn ,δn ]
Rn(b),

where

Rn(b) = 1√
n

n∑
i=1

Zni(b),
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Zni(b) =
(
Ψ(Yi) (1 {ā < Xi ≤ ā + b} − 1 {ā + b < Xi ≤ ā})

−EΨ(Yi)1 {ā < Xi ≤ ā + b} + EΨ(Yi)1 {ā + b < Xi ≤ ā}
)
.

First we decompose the interval [−δn , δn] into N = 4n closed intervals In1, . . . , InN :
⋃2n
l=1 Inl =

[−δn , 0],
⋃4n
l=2n+1 Inl = [0, δn] with bl , b̄l as the smallest/largest element of Inl and b̄l−bl ≤ 1

n δn for l = 1, . . . , N.
Then

sup
b∈[−δn ,δn ]

∣∣∣∣∣ 1√
n

n∑
i=1

Zni(b)

∣∣∣∣∣ = max
l=1...N

sup
b∈Inl

∣∣∣∣∣ 1√
n

n∑
i=1

Zni(b)

∣∣∣∣∣
≤ max

l=1...N

∣∣∣∣∣ 1√
n

n∑
i=1

Zni(bl)

∣∣∣∣∣ + 1√
n

max
l=1...N

n∑
i=1

sup
b∈Inl

∣∣Zni(b) − Zni(bl)
∣∣

≤ max
l=1...N

∣∣∣∣∣ 1√
n

n∑
i=1

Zni(bl)

∣∣∣∣∣
+ sup
t∈R

∣∣Ψ(t)
∣∣ max
l=1...N

(∣∣∣∣∣ 1√
n

n∑
i=1

Z̃nil

∣∣∣∣∣ + 2
√
nQnl

)
, (24)

where Qnl := P
{
ā + bl < X1 ≤ ā + b̄l

}
and Z̃nil := 1

{
ā + bl < Xi ≤ ā + b̄l

}
− Qnl. Notice that |Zni(b)| ≤

supt∈R
∣∣Ψ(t)

∣∣ and
sup

b∈[−δn ,δn ]
Var

(
Zni(b)

)
≤ sup

t∈R
Ψ2(t) sup

b∈[0,δn ]
(P {ā − b < X1 ≤ ā + b})

≤ sup
t∈R

Ψ2(t) sup
x∈[ā−δn ,ā+δn ]

f (x) δn .

Applying Bernstein’s inequality (11), we obtain
∞∑
n=1

P

{
max
l=1...N

∣∣∣∣∣ 1√
n

n∑
i=1

Zni(bl)

∣∣∣∣∣ > ε
}

≤
∞∑
n=1

N∑
l=1

P

{∣∣∣∣∣
n∑
i=1

Zni(bl)

∣∣∣∣∣ > ε√n
}

≤ O(1)
∞∑
n=1

n · exp

− ε2√n
κ4
(√

ln ln n + ε
)
 < +∞

for ε > 0 with constant κ4 > 0, and hence

max
l=1...N

∣∣∣∣∣ 1√
n

n∑
i=1

Zni(bl)

∣∣∣∣∣ = o(1) a.s. (25)

Analogously, one obtains

max
l=1...N

∣∣∣∣∣ 1√
n

n∑
i=1

Z̃nil

∣∣∣∣∣ = o(1) a.s.

Notice that

max
l=1...N

Qnl ≤ max
l=1...N

P
{
ā + bl < X1 ≤ ā + b̄l

}
≤ δn

n sup
x∈[ā−δn ,ā+δn ]

f (t) = o(n−1/2).

Taking (24) and (25) into account, we can conclude

∆̃n = oP(n−1/2).

Moreover,

Wn =
F−1
n (banc/n)∫
ā

γ̄(x)f (x) dx + oP(n−1/2)

= (F−1
n (banc /n) − ā)γ̄(ā)f (ā) + oP(n−1/2)

since γ̄ is continuous at ā. An application of Proposition 10 completes the proof.
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Suppose that AssumptionA3 is satis�ed and a ∈ I is �xed. We have the following decomposition of the term
ζ̂

+−
n (a) − ζ+−

a (C) whose asymptotic normality has to be shown:

ζ̂
+−
n (a) − ζ+−

a (C) = − (An + Bn1 − Bn2 − Bn3 + Dn) ψ̄−1, (26)

where ζ̌(a) = Eψ(F≤a(Xi) − G≤a(Yi))1
{
F(Xi) ≤ a

}
+ Eψ(F>a(Xi) − Ḡa(−Yi)) 1

{
F(Xi) > a

}
,

An = 1
n

n∑
i=1

(
ψ(F≤a(Xi) − G≤a(Yi))1

{
F(Xi) ≤ a

}
+ ψ(F>a(Xi) − Ḡa(−Yi))1

{
F(Xi) > a

}
− ζ̌(a),

+ 1
n

n∑
i=1

(
ψ′(F≤a(Xi) − G≤a(Yi))(

1
a
(
Fn(Xi) − F(Xi)

)
− G̃n,a(Yi) + G≤a(Yi)

)
1
{
F(Xi) ≤ a

}
+ψ′(F>a(Xi) − Ḡa(−Yi))(

1
1−a
(
Fn(Xi) − F(Xi)

)
− ˜̄Gn,a(−Yi) + Ḡa(−Yi)

)
1
{
F(Xi) > a

})
,

|Bn1| ≤ O
(

1
n

) n∑
i=1

(( 1
a
(
Fn(Xi) − F(Xi)

)
− Gn,a(Yi) + G≤a(Yi)

)1+α 1
{
F(Xi) ≤ a

}
+
( 1

1−a
(
Fn(Xi) − F(Xi)

)
− Ḡn,a(−Yi) + Ḡa(−Yi)

)1+α 1
{
F(Xi) > a

})
,

Bn2 = 1
n

n∑
i=1

ψ′(F≤a(Xi) − G≤a(Yi))
(
Gn,a(Yi) − G̃n,a(Yi)

)
1
{
F(Xi) ≤ a

}
,

Bn3 = 1
n

n∑
i=1

ψ′(F>a(Xi) − Ḡa(−Yi))
(
Ḡn,a(−Yi) − ˜̄Gn,a(−Yi)

)
1
{
F(Xi) > a

}
,

Dn = 1
n

n∑
i=1

(
ψ( 1

a Fn(Xi) − Gn,a(Yi)) − ψ( 1
1−a
(
Fn(Xi) − a

)
− Ḡn,a(−Yi))

)
(
1
{
Fn(Xi) ≤ a

}
− 1
{
F(Xi) ≤ a

})
(α is introduced in AssumptionA3). Further by Lemma 8,

|Bn1| = O
((

ln ln n
n

)(1+α)/2
)

= oP(n−1/2). (27)

The next lemma deals with an asymptotic representation of Dn.

Lemma 13. Let ψ̃(x) = E
(
ψ(1 − G≤a(Y1)) − ψ(Ḡa(−Y1)) | X1 = x

)
. Assume that f and ψ̃ are continuous at ā =

F−1(a) and f (ā) > 0. Then
Dn = −ψ̃(ā)

(
Fn(ā) − a

)
+ oP(n−1/2).
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Proof. The term Dn is decomposed into three parts: Dn = Dn1 + Dn2 + Dn3,

Dn1 = 1
n

n∑
i=1

(
ψ( 1

a Fn(Xi) − Gn,a(Yi)) − ψ( 1
1−a
(
Fn(Xi) − a

)
− Ḡn,a(−Yi))

−ψ( 1
a F(Xi) − G≤a(Yi)) + ψ( 1

1−a
(
F(Xi) − a

)
− Ḡa(−Yi))

)(
1
{
Fn(Xi) ≤ a

}
− 1
{
F(Xi) ≤ a

})
,

Dn2 = 1
n

n∑
i=1

∣∣ψ( 1
a F(Xi) − G≤a(Yi)) − ψ(1 − G≤a(Yi))

+ ψ( 1
1−a
(
F(Xi) − a

)
− Ḡa(−Yi)) − ψ(−Ḡa(−Yi))

∣∣(
1
{
Fn(Xi) ≤ a

}
− 1
{
F(Xi) ≤ a

})
,

Dn3 = 1
n

n∑
i=1

(
ψ(1 − G≤a(Yi)) − ψ(−Ḡa(−Yi))

)
(
1
{
Fn(Xi) ≤ a

}
− 1
{
F(Xi) ≤ a

})
.

In view of Lemma 8, we obtain

|Dn1| ≤ O(1) · sup
x,y∈R

(∣∣Fn(x) − F(x)
∣∣ +
∣∣Gn,a(y) − G≤a(y)

∣∣ +
∣∣Ḡn,a(y) − Ḡa(y)

∣∣)
· 1n

n∑
i=1

∣∣1{Fn(Xi) ≤ a
}
− 1
{
F(Xi) ≤ a

}∣∣
= O

(
ln ln n
n

)
a.s. (28)

For ω : ā < Xi ≤ F−1
n (banc /n) or F−1

n (banc /n) < Xi ≤ ā,

max
i=1...n

∣∣F(Xi) − a
∣∣ ≤

∣∣∣F(F−1
n (banc /n)) − F(ā)

∣∣∣ =
(
f (ā) + oP(1)

) ∣∣∣F−1
n (a) − ā

∣∣∣
=

∣∣Fn(ā) − a
∣∣ (1 + oP(1)

)
= oP(n−1/2√ln ln n),

where we used Proposition 10 and Lemma 8a). In view of Lemmas 8b) and by Lipschitz continuity of ψ, we
have

|Dn2| ≤ 1
n

n∑
i=1

(∣∣ 1
a F(Xi) − 1

∣∣ +
∣∣ 1

1−a
(
F(Xi) − a

)∣∣) ∣∣1{Fn(Xi) ≤ a
}
− 1{F(Xi) ≤ a}

∣∣
≤ O

(
1
n

) n∑
i=1

∣∣F(Xi) − a
∣∣ (1{ā < Xi ≤ F−1

n ( bancn )
}

+ 1{F−1
n ( bancn ) < Xi ≤ ā}

)
= oP(n−3/2√ln ln n)

n∑
i=1

∣∣1{Fn(Xi) ≤ a
}
− 1{F(Xi) ≤ a}

∣∣
= oP(n−1/2). (29)

Let Ψ(y) := ψ(1 − G≤a(y)) − ψ(−Ḡa(−y)). Applying Lemma 12, we have

Dn3 = −ψ̃(ā)(Fn(ā) − a) + oP(n−1/2). (30)

The lemma is a consequence of (28), (29) and (30).

Proof of Theorem 4. Let ā = F−1(a). Using Lemma 11, we obtain

Bn2 = − 1
na

n∑
i=1

ψ′( 1
a F(Xi) − G≤a(Yi))(Fn(ā) − a)γ(Yi , ā)1

{
F(Xi) ≤ a

}
+ oP(n−1/2)
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and

Bn3 = 1
n(1 − a)

n∑
i=1

ψ′( 1
1−a
(
F(Xi) − a

)
− Ḡa(−Yi))(Fn(ā) − a)

·
(

1 − γ(Yi , ā)
)
1
{
F(Xi) > a

}
+ oP(n−1/2).

Using (26), (27) and Lemma 13, we can rewrite
√
n
(
ζ̂

+−
n (a) − ζ+−

a (C)
)
as a U-statistic plus remaining term:

√
n
(
ζ̂

+−
n (a) − ζ+−

a (C)
)

= −
√
nĀnψ̄−1 + oP(1),

Ān = 1
n2

n∑
i=1

n∑
j=1

Ψ(Xi , Yi , Xj , Yj).

= 2
n(n − 1)

n∑
i=1

n∑
j=i+1

Ψ̄(Xi , Yi , Xj , Yj) ·
n − 1
n + oP(n−1/2),

where Ψ̄(x1, y1, x2, y2) = Ψ(x1, y1, x2, y2) + Ψ(x2, y2, x1, y1),

Ψ(x1, y1, x2, y2) = ψ(F≤a(x1) − G≤a(y1))1
(
F(x1) ≤ a

)
+ψ(F>a(x1) − Ḡa(−y1))1

(
F(x1) > a

)
− ζ̌(a)

+ψ′(F≤a(x1) − G≤a(y1))1
(
F(x1) ≤ a

)( 1
a
(
1 (x2 ≤ x1) − F(x1)

)
− 1
a1
(
y2 ≤ y1, F(x2) ≤ a

)
+ G≤a(y1)

)
+ψ′(F>a(x1) − Ḡa(−y1))1

(
F(x1) > a

)( 1
1−a
(
1 (x2 ≤ x1) − F(x1)

)
− 1

1−a1
(
−y2 ≤ −y1, F(x2) > a

)
+ Ḡa(−y1)

)
+ 1
aψ

′(F≤a(x1) − G≤a(y1)) (1 (x2 ≤ ā) − a) γ(y1, ā)1
(
F(x1) ≤ a

)
− 1

1−aψ
′(F>a(x1) − Ḡa(−y1)) (1 (x2 ≤ ā) − a)

(
1 − γ(y1, ā)

)
1
(
F(x1) > a

)
−ψ̃(ā) (1 (x2 ≤ ā) − a) .

Further,

E
(
Ψ(X1, Y1, x2, y2)

)
=

∫
(−∞,ā]×R

ψ′(F≤a(x) − G≤a(y))
( 1
a
(
1 (x2 ≤ x) − F(x)

)
− 1
a1
(
y2 ≤ y, F(x2) ≤ a

)
+ G≤a(y) + 1

a (1 (x2 ≤ ā) − a) γ(y, ā)
)
dH(x, y)

+
∫

[ā,∞)×R

ψ′(F>a(x) − Ḡa(−y))

( 1
1−a
(
1 (x2 ≤ x) − F(x)

)
− 1

1−a1
(
−y2 ≤ −y, F(x2) > a

)
+ Ḡa(−y)

− 1
1−a (1 (x2 ≤ ā) − a)

(
1 − γ(y, ā)

))
dH(x, y) − ψ̃(ā) (1 (x2 ≤ ā) − a) ,

and

E
(
Ψ(x1, y1, X1, Y1)

)
= ψ(F≤a(x1) − G≤a(y1))1

(
F(x1) ≤ a

)
+ψ(F>a(x1) − Ḡa(−y1))1

(
F(x1) > a

)
− ζ̌(a).

Nowwe apply the central limit theorem for U-statistics (see Theorem 5.5.1A in [11]) to obtain the theorem.
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