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Abstract: The aim of the present paper is to develop and examine association coefficients which can be help-
fully applied in the framework of regression analysis. The construction of the coefficients is connected with
the well-known Spearman coefficient and extensions of it (see Liebscher [5]). The proposed coefficient mea-
sures the discrepancy between the data points and a function which is strictly increasing on one interval
and strictly decreasing in the remaining domain. We prove statements about the asymptotic behaviour of the
estimated coefficient (convergence rate, asymptotic normality).
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1 Introduction

The aim of this paper is to investigate measures for dependence which can be useful in performing regres-
sion analysis. The measures to be introduced are based on copulas since one intention is to eliminate the
influence of the marginal distribution. These measures are then robust against outliers. Moreover, they are
invariant under monotone transformations. In the modelling step of regression analysis, the task often arises:
How well can data points be approximated by a function which is increasing on one interval and decreasing
on the remaining region? For this reason, we develop special dependence coefficients for monotonicity in
certain subdomains which can be helpfully applied in the framework of regression analysis. Especially, the
coefficients can support checks on whether the regression function is convex because nonconvex functions
can be ruled out. The result of the dependence analysis should give us an idea what kind of functions can be
used to describe a regression relationship or to improve an established regression function.

We consider a coefficient on the basis of the dependence measure introduced in Liebscher [5]. This mea-
sure represents a generalization of Spearman’s rho. In [6], Chapter 4, the reader finds a review of classical
copula-based dependence measures. Schmid et al. [10] give a good survey on multivariate dependence mea-
sures. We refer also to the references and the discussion in [5]. In the paper Grothe et al. [3], the authors deal
with dependence measures of two random vectors. Though the aim is different than ours, these association
measures can also be applied in the framework of regression analysis, especially for model-building.

Several authors examined methods for checking the regression function to be convex. Juditsky and Ne-
mirovski [4] considered tests for convexity in a general framework by using kernel estimators for the regres-
sion function. Incorporating spline estimates, Wang and Meyer developed tests for monotonicity and convex-
ity in [14]. The advantage of our approach is that we avoid using nonparametric estimators for the regression
function and so obtain estimators with a faster convergence rate. Moreover, we do not have the difficulty of
choosing knots in splines or bandwidths for kernel estimators.
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The paper is organized as follows: In Section 2 we discuss known dependence coefficients. In Section
3 we introduce a coefficient of monotonicity of order 2, and discuss properties of it. Section 4 is devoted to
the estimation of the measure introduced in Section 3. We provide results on the asymptotic behaviour of
the estimated coefficient including the convergence rate and the asymptotic normality of the estimator. The
reader finds the proofs of the theorems of Section 4 in Section 5.

2 Dependence coefficients of two variables

In this section we consider dependence measures of real random variables X and Y. Let F and G be the dis-
tribution functions of X, Y, respectively. It is assumed that F and G are continuous. H denotes the joint dis-
tribution function of X and Y. In view of Sklar’s Theorem in [12], we have

H(x,y) = C(F(x), G(y)) forx,ycR.

Hereby C € Cis the uniquely determined copula of X, Y. C denotes the set of all bivariate copulas. Spearman’s
p can be computed by the following formulas (cf. [6], p. 167):

ps(C) = 1-6- /(u—v)de(u,v)=12 / wv dCQu, v) - 3
[0,1]2 [0,1]2
11
= 12//C(u,v)dudv—3 6))
00

1 - 6E(F(X) - G(Y))>.

Note that in theses formulas, ps is a map ¢ — [-1, 1]. This notation emphasizes that the coefficient only
depends on the copula and not on the marginal distributions. This property holds for all coefficients in this
paper. Next we consider a dependence coefficient as a generalization of Spearman’s rho. Let v : [-1, 1] - R
be a function satisfying the following assumption:

Assumption A;: ¥(0) = 0, 1(x) = 0 and ¥(-x) = ¥(x) holds for x € [0, 1]. Assume that v is strictly increasing
on [0, 1] and Lipschitz-continuous.

According to [5], the generalized coefficient of monotonically increasing dependence of X and Y is defined
by:
(=1 [ vu-vdowy- i, @
[0,1]?
where ¢ is amap C — [(yin, 1], and

1

1
ﬂmz/u—mwmw,cmfl—/wmmwaﬁ 3)
0

0

This implies
¢(C0) = 1 -Ep(F(X) - G(Y)) - ¢~ .

The coefficients ps(C) and ¢(C) measure the discrepancy between the random data points (X, Y) and a (suit-
ably chosen) monotonically increasing function, and simultaneously, the discrepancy between the points
(F(X), G(Y)) having distribution function C and the line from (0, 0) to (1, 1). Two copulas are of special inter-
est here:

M(u,v) = min(u,v), H(u,v)=uv.
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Coefficient ¢ achieves the maximum value 1 only in the case of C = M (comonotonicity); i.e. in the case where
Y is a strictly increasing function of X almost surely. Coefficient ¢ gives the value 0 in the case C = II where
X and Y are independent. Thus the coefficient ¢ is a linear transformation of the integral in (2) such that
¢(IT) = 0 and ¢(M) = 1. Moreover, (min = ¢(W) where W(u, v) = max(0, u + v - 1) (antimonotonicity).

The following table shows several potential functions .

coefficient P(t) )
Spearman coefficient t? %
Spearman footrule |¢| 1
power withp > 1 |t]P SEer )
Huber function with x = 0.5 1t for |t| < 3, 3 |t| - § otherwise &

A detailed discussion about the dependence measure ¢(C) according to (2) can be found in [5]. In the
following, we adopt this approach to develop association measures in the situation of piecewise monotonic
functions.

3 Measures of piecewise monotonicity

We call a function h : R — R piecewise monotonic of order 2 iff h is strictly increasing on D and strictly
decreasing on R\(D U {xo}) where D = (-o0, X¢) Or (Xg, +o0). Non-monotonic convex functions and non-
monotonic concave ones represent prominent classes of functions which are piecewise monotonic of order
2. Furthermore there are non-convex functions being piecewise monotonic of order 2. One example is h(x) =
%. Now we are searching for a statistical coefficient describing how well the response variable Y can be
approximated by a functional value h(X) of the regressor X where h is a suitable function.

Let all settings of the previous section (e.g. X, Y, H, F, G, ...) be also valid in Section 3. Suppose that
F, G are continuous and H is strictly increasing. Let I be a closed subinterval of (0, 1), and a € I. The condi-
tional distribution functions of X and Y given F(X) < a are denoted by F<q and G<q, respectively. F>; and Gsq4
are these conditional distribution function given F(X) > a. Hence

Fea(x) P{X <x|F(X)<a} =min{1F(x), 1},
Fsax) = P{X=x|F(X)>a}=max{{; (F(x)-a),O0},

P{Y<y|FOO<a} = P @) g

Gea (Y) a

P{Y<y|F(X)>a}= G(y)-HF Y(a),y)

G>a()’) 1-a

for x, y € R. In the following, we establish a coefficient for piecewise monotonicity in the case D = (-oo, Xo).
Here two main ideas are involved: First, we split the copula domain into two parts [0, a] x [0, 1] and [a, 1] x
[0, 1]. Secondly, the copula distribution in the second region [a, 1] x [0, 1] is reflected over the line v = %
Here F~1(y) = inf{x : F(x) > y} is the generalised inverse function of F.

Define U = F(X), V = G(Y). Let CL be the copula of X and Y given F(X) < a, which is the distribution
function of F<4(X) and G« (Y) given F(X) < a. Observe that given F(X) < a, G<a(Y) = a *C(a, V) a.s. holds
and

Chu,v)

P{Fewa(X) < u, Gea(Y) <v|F(X) < a}
= %P{U <au,a C(a,V) < v}

1 / 1 (a'1C(a, t) < v) dcC(s, t) (4)

a
[0,au]x[0,1]
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(u,v € [0, 1]). Here 1(.) is the indicator of an inequality being 1 exactly in the case where the inequality
between the parentheses is fulfilled. According to (4), C& is completely based on the copula C and it is inde-
pendent of F and G. Now we consider the copula in the second region [a, 1] x[0, 1]. Let G4 be the distribution
function of -Y given F(X) > a. This distribution function is related to G as follows:

Ga(y) =P {-Y<y|FX)>a} =1-Gsal-y)

for y € R. Therefore
Gal-1)=1-Go(r) = 1- L2V g
Further the copula C2 of X and -Y given F(X) > a can be computed as the distribution function of F4(X) and

Ga(-Y) given F(X) > a:

Ci(u,v) = P {Fsa(X) < u, Ga(-Y)<Vv|F(X)>a}
= ZP{ZU-a=<u,1-2(V-Cla, V) =v,U>a}
= & / 1(1- L (t-Cla, ) <v)dC(s, t) 5)

[a,a+u-ualx[0,1]

(u, v € [0, 1]). Geometrically, copula C2 of X and -Y given F(X) > a is obtained from the copula of X and Y

given F(X) > a by reflecting the distribution over the line v = %:

C2u,v)=u —]P’{F>a(X) su,Gsq(Y)<1-v|FX)> a} .

The reason for considering here the copula of X and -Y (i.e. the distribution function of U and 1 - V) and not
the copula of X and Y is that we measure the deviation of Y from a decreasing function. As in the case of C%,
we see that C2 is completely based on the copula C and it is independent of F and G according to (5).

Let Assumption A; be satisfied. For fixed a, we define the first coefficient of piecewise monotonicity of
order 2 of X, Y as the combination of the coefficients for increasing behaviour on the two subintervals:

Ca (0) = ¢(Caa+¢(C) (1 -a) (6)

where ¢(.) is the dependence coefficient defined in (2). Define 1 {A} of an event A to be 1if A occurs, and to
be 0 if A not occurs. Hence

G© = (1-E(@(Fal®)-GaV) | FX) <a) -3 )

+(1-E (0 (Fal0 - Ga(-1)) F0) > @) - 37 ) (1- @)

1-E (¢(Fea(X) - Gea(Y)1 {FX) < a} +v (Fsa(X) - Ga(-Y)) 1 {F(X) > a}) - 4™

1- / (w(bu- 1@ s @ +o (g -1+v-Cla, ) > @) dcw,v) - 5. ()

(0,12

We introduce the first total coefficient of piecewise monotonicity of order 2 of X, Y by
¢"(C) :=max ¢z (C). €
acl

The maximizer in (8) exists (not necessarily unique) since a ~+ (3~ (C) is a continuous function in view of
Lemma 5. The coefficient ¢;~(C) describes the discrepancy between the random data points (X, Y) and a
function which is strictly increasing on (-oo, F~(a)) and strictly decreasing on (F~1(a), +o0), see also the
detailed explanation about ¢ in [5]. Moreover, ¢*~(C) represents a measure on how Y approaches a piecewise
monotonic function of X which is initially increasing.

Important properties of the ¢-coefficients are summarized in the next theorem. These properties are sim-
ilar to that in the definition of a "measure of concordance" by Scarsini; see [9]. Since some assertions uses
several copulas depending on the corresponding random variables, we denote the copula of random vari-
ables X, Y by Cyx y.
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Theorem 1. Suppose that Assumption A, is satisfied. Then for C € €, a € (0, 1),

@) Cmin < ¢"7(C) < 1 and (pin < o (C) < 1, (min as in (3),

b) (g (I1) =0 and " (IT) = O,

C) C;_(M) =a+ Cmin(l - a) and C;_(W) =almnt+1-a.

For random variables X, Y with copula Cx y € C, we have:

d)Forevery a € (0, 1), theidentity (7~ (Cx,y) = L holdsiff Y = h1(X) a.s.forw : F(X) < aand Y = hy(X) a.s.
for w : F(X) > a with a suitable strictly increasing function h, and a suitable strictly decreasing function h.

e) The identity ("~ (Cx,y) = 1 holds iff Y = h(X) a.s. with a suitable strictly piecewise monotonic function h
of order 2 which is initially increasing.

P ¢ (Coxy) = (i24(Cx.y) fora € (0,1) and (" (C_x,y) = ¢*"(Cx,y) provided that I = [e, 1 - €] for some
e>0.

g C;_(Cg(x)’h(y)) = (5 (Cx,y) and C+_(Cg(x),h(y)) = (*"(Cyx,y) hold for all strictly increasing functions g, h
and a € (0, 1).

Moreover, for copulas C, C* € C, the following properties hold:

h) Let CL and C2 be the copulas defined by (4) and (5). If C is replaced by C” in (4) and (5), we obtain copulas
Ck and C3. Then, for every a € I, C‘L =< C‘L forj = 1,2 implies that ¢;~(C) < ¢4~(C"). Hereby C; < C» means
C1(u,v) < Cy(u,v)forallu,v € [0, 1].

i) Let {Cn} be any sequence of copulas tending pointwise to C. Then (3~ (Cn) — (5~ (C) for every a € (0, 1)
and ¢*(Cn) — ¢ (C).

Proof. a) Obvious in view of (6).
b) In the case C = I, CL = C2 = IT holds for all @ and

¢(Ca) = ¢(CQ) = 0.

c) Observe that Ci = Mand C2 = Wif C = M, and CL = W and C2 = Mif C = W. This leads directly to assertion
o).

d) Equation ¢;(Cx,y) = 1 holds exactly in the case where ¢(C}) = 1 and ¢(C3) = 1. This s, in turn, equivalent
to C{z(u, v) = min(u, v)forj = 1,2, u, v € [0, 1], and equivalent to F<;(X(w)) = G<a(Y(w)) a.s. forw : F(X(w)) <
a and F>4(X(w)) = Ga(-Y(w)) a.s. for w : F(X(w)) > a in view of (4) and (5). Now the claim c) follows since
F, G2} and G;! are strictly increasing functions.

e) Equation ¢*7(Cx,y) = 1 is fulfilled iff (5, (Cx,y) = 1 for some ao. Hence part d) yields claim e).

Claim f) follows immediately from (7) by a change of variables.

Claim g) is trivial since Cg(x) n(y) = Cx,y-

h) From Theorem 2.1b) in [5], it follows that

(@) s ¢(C)forj=1,2

which implies claim h).
Claim i) follows from Lemma 7. O

Property b) of Theorem 1 means that for independent random variables X and Y, the coefficient is equal to
0. Property e) shows that the coefficient equals 1 exactly in the case where the data points (X, Y) lie almost
surely on a piecewise monotonic function which is initially increasing. Claim h) states that the concordance
inequality carries over from ¢ to ¢;~ in a certain way. Part i) represents the continuity property of the coeffi-
cients w.r.t. the copula.
Observe that
Cx-y(u,v):=u-Cxyu,1-v)foru,vel0,1]

is the copula of (X, —Y). Further we define the second (total) coefficient of piecewise monotonicity of order 2 of
X, Yby
Ca (Cx,y) == Ca (Cx,—y) and (" (Cx,y) := max ¢ (Cx,y)-
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Hence
M (Cxy) = ¢ (Cx—y).

Similarly to the above identity (6), we have
¢ (0 =¢(Ca+¢(CH(1-a),

where C} is the the copula of X and -Y given F(X) < a, and C% is the copula of X and Y given F(X) > a.
The coefficient (**(Cx,y) describes the discrepancy between the data points (X, Y) and a function which is
strictly decreasing on an interval (-oo, xo) and strictly increasing on (xg, +oo) for some xq. From these iden-
tities, one can see that there is a close relationship between ¢~* and ¢*~, and properties of ¢(”* can be derived
immediately from Theorem 1.

Theorem 2. Let Assumption A, be satisfied. Then, for C € €, a € (0, 1),

@) Cmin < ¢ (C) < 1 and Cpin < ¢ (C) £ 1, Cin as in (3),

b) ¢g"(IT) = 0 and ¢~ (I) = 0O,

) Ca" (M) = almin + 1 - aand (g (W) = a + {pin(1 - a).

For random variables X, Y with copula Cx y € C, we have:

d) Forevery a € (0, 1), theidentity (3" (Cx,y) = 1 holdsiff Y = h1(X) a.s. forw : F(X) < aand Y = hy(X) a.s.
for w : F(X) > a with a suitable strictly decreasing function hy and a suitable strictly increasing function hs.

e) The identity ("*(Cx,y) = 1 holds iff Y = h(X) a.s. with a suitable strictly piecewise monotonic function h
of order 2 which is initially decreasing.

)¢ (Coxy) = (i24(Cx,y) fora € (0,1) and (T*(C_x,y) = (" (Cx,y) provided that I = [e, 1 - €] for some
e>0.

8) Ca" (Cox),n(v)) = Ca"(Cx,y) and ¢ (Cypx) nev)) = ¢ " (Cx,y) hold for all strictly increasing functions g, h
and a € (0, 1).

Moreover, for copulas C, C* € G, the following properties hold:

h) Let {Cn} be a sequence of copulas tending pointwise to C. Then (z*(Cn) — ¢z*(C) for every a € (0, 1)
and (" (Cn) — ¢7(C).

The remarks after Theorem 1 apply to this theorem analogously.

The concept presented in this section can be carried over to monotonicity of higher order. For this purpose
the copula domain [0, 1]? is split into more than two subdomains. The corresponding coefficient of piecewise
monotonicity of higher order can then be established as a weighted sum of the appropriately defined coeffi-
cients for the subdomains.

4 Estimating the coefficient of piecewise monotonicity

4.1 Estimator

Let (X1, Y1), ..., (Xn, Yn) be a sample of independent random vectors with distribution function H and cop-
ula C. F and G are the marginal distribution functions of X; and Y;, respectively. Suppose that F and G are
continuous with densities f and g, respectively. In Section 4, we deal with properties of estimators for as-
sociation measures ¢; (C) and ¢*~(C). Similarly, one can treat estimators for the other coefficients. First, we
introduce estimators for the distribution functions F, G< and Gg:
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Fn(x)

n
%Zl{Xisx},
i=1

1 n
Gna() = > 1{Yi<y,FalX)<a},
i-1

n

_ 1
Gn,a(y) n_anZI{—Yisy,Fn(Xi)>a}.
i=1
The coefficient ¢;~(C) can be estimated by
at— 1 n
ln (@ = 1- 3 > (W(EFn(X) - Gna(YD)1 {Fa(Xy) < a}

i=1
+(L; (Fn(X)) - @) = Gn,a(-Y))1 {Fn(X;) > a}) .

Let I C (0, 1) be a given closed interval. For defining an estimator of ¢*7(C), it is reasonable to consider a
maximization ona grid In = {4 € I,j € {0, ..., n}}:

&y =max{, (a) = Cylan)
acly

with a suitable an. Applying this approach to the modified data (X;, -Y1), ..., (Xn, -Yn), we arrive at the
coefficients ¢ :(a) and ¢ :. These coefficients can support the detection of non-monotonic convex or concave
functions in data points. If ¢, , respectively ¢, , is rather small, then we cannot expect that the Y values can
be approximated well by a non-monotonic concave function of the X values, respectively a non-monotonic
convex function of the X values.

The following theorem gives a convergence rate of the estimator ¢;;~ to the true underlying coefficient

¢ (0.

Theorem 3. Assume that Assumption A, is satisfied.

a) Then
Z: =¢"(0)+0 (\/ lnnn> a.s.

b) If a ~ ¢z~ (C) has a unique maximizer ag on I, then an — ag a.s.

The a.s. convergence rate O (n‘l/ 2yIn n) of the estimator {,, is only slightly worse than the usual a.s.

rate O (n’l/ ZM) of estimators for dependence coefficients. The reason for this difference can be seen
in the maximization w.r.t. a.

Define @ := F(a). Let us now introduce the conditional distribution function ~(y,x) =
P{Yi<y|X;=x},9(x)=E (¥(1 = G<a(Y1)) - ¥(Ga(-Y1)) | X1 = x), and assumptions which will be needed
in the next Theorem 4:

Assumption A;: Suppose that for any sequence n, — 0,
lim sup  sup [y(y,x)-~(y,a)|=0. O

N—=2° x:q-nusx<a+n, yeR
Assumption As: Assume that

| (1) = ' (x2)|
sup ot

— < +oo forsome o € (0,1]. O
x1,X2€[0,1] |X1 - XZ‘

The following theorem provides the asymptotic normality result for the coefficient ¢;~(C) with fixed pa-
rameter a.
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Theorem 4. Let a < I be fixed. Suppose that Assumptions A, to As are satisfied. Assume that f and <) are
continuous at a, and f(a) > 0. Then

Vi (& (@ - ¢7(0)) <5 N, o)
where -5 denotes convergence in distribution, o> = 4 Var (X, Yl)ﬂfz,

(D(é, X)
- [ Va0~ Gaal) (& (1 20 - F)
(—o0,alxR
“M(x <y, £+ Guay) + LA (€ < @) - a)(y, @) dH(x,y)
+ / ' (Foal) = Galy) (25 (1(E %) - FOO) + Gal-y)
[@,00)xR
1y s> @) - 5 AE<a)-a) (1-(, @) dH(x,y)
—p(@) (1 (€ < @) - a) + P(Fea(€) - Gea())1 (€ < @)
+(Fsa(€) = Ga(-x))1 (€ > a) - {(a).

The structure of the variance is rather complicated, and it is not easy to establish a reasonable estimator of
it. The conditional expectations are problematic in this respect.

4.2 Applications

In connection with this paper, an R script was prepared and used for the computations. In this section we
report on the results for one example dataset and the results of simulations.

Example: We consider the dataset "engine" of [1]. Variable X contains the values of the fuel/air ratio whereas
variable Y gives the nitrogen oxides output of the engine. The dataset comprises n = 80 data points.

The unit two-dimensional interval [0, 1]? is split in two parts at a* = 0.52, the maximizer of ;_(a). In the
left subarea and in the right subarea, we measure the distance of the data points to the dashed line separately.
The estimated coefficient gives information as to how far the data points are from the ideal situation in which
they would lie on the dashed line.

The following table provides the values of the coefficients.

at—

Cn
Spearman (S) 0.9497953
Spearman’s footrule () 0.7975014
Huber x = 0.5 (H) 0.9464483
power p = 1.5 (P) 0.9011831

For all coefficients, the maximum is achieved at the same point 67“ on the u-axis. We can see that the data
points are rather close to a piecewise monotonic function of order 2 which is initially increasing. In the con-
text of regression analysis, it makes sense to look for a suitable piecewise monotonic regression function
describing the trend of the data.
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Figure 1: empirical copula of the dataset "engine". The dashed line shows the ideal line for perfect piecewise monotonicity.

Simulations: Let us consider the copula

Clu,v) = { aﬁ‘l(g,v) forus<a L
av+u-a)-(1-a)C(2,1-v) foru>a

where C; and C, are Clayton copulas with parameter 6. We put a = 0.6. This copula C can simulated by the
following algorithm

1) Generate random value W ~ U[0,1] from uniform distribution, and random vectors (U;, V1) ~
C1, (U, V3) ~ Cs.

NQlfW<a,thenV =V, U=U;-a.

3IEW>a,thenV=1-V,,U=a+Ui(1-a).

We generated 50000 samples of different sizes (n = 100, 200) for (U, V). For each sample, the estimator
¢ ;7 is computed (S=Spearman, F=Spearman’s footrule, H=Huber function, P=power function with p = 1.5).
On the other hand, the exact theoretical value of the coefficients is calculated for comparisons. Some simu-
lation results are summarized in the following table:
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0 n coeff. average bias standard deviation
0.5 100 F 0.19685 0.01004 0.06211
200 F 0.19236 0.00556 0.04453
100 S 0.31053 0.01559 0.09054
200 S 0.30461 0.00966 0.06492
100 P 0.25816 0.01161 0.07826
200 P 0.25340 0.00685 0.05612
100 H 0.29350 0.01418 0.08818
200 H 0.28806 0.00874 0.06321
2 100 F 0.48146 -0.00382 0.05322
200 F 0.48330 -0.00198 0.03776
100 S 0.68268 0.00045 0.05991
200 S 0.68398 0.00175 0.04240
100 P 0.59908 -0.00230 0.05854
200 P 0.60106 -0.00033 0.04145
100 H 0.66540 0.00014 0.06162
200 H 0.66687 0.00160 0.04359
20 100 F 0.89297 -0.0126 0.01664
200 F 0.89843 -0.00717 0.01034
100 S 0.98251 -0.00455 0.00592
200 S 0.98498 -0.00209 0.00333
100 P 0.95776 -0.00843 0.00995
200 P 0.96205 -0.00414 0.00596
100 H 0.98135 -0.00486 0.00631
200 H 0.98398 -0.00223 0.00355

From this table, we see that the bias is negligibly small in comparison to the standard deviation. In few
cases, the bias increases from n = 100 to n = 200, but it keeps significantly smaller than the standard
deviation. Furthermore, the standard deviation decreases as n increases. Consequently, the mean square error
decreases as n increases.

5 Proofs

5.1 Auxiliary statements

In this section, we prove continuity properties of the ¢-coefficient and later, a convergence property of the
maximum of the coefficient.

Lemma 5. Under the Assumption A, the function a ~+ (3~ (C) is Lipschitz continuous.
Proof. LetI = [a, a]. We obtain

sup |G (0) -G (0)] =97 (43(4) + Bi() + D,(4))

a,a’ €l:aza’<a+A
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where
L@ - sup / (b u- & C@,v) - 6(hu - LC(a, )| dCu, V),
a,a’ €l:aza’<a+A
[0,a]x[0,1]
Bn(4) = sup / |v (e u-1+v-Cd,v))
a,a’ €l:aza’<a+A
(a’,1]x[0,1]
-y (- 1+v-Cla,v)|dC(u,v),
Dy(4) = sup ((Gu-5C@,v)+¢ (Zzu-1+v-Ca,v))
a,a’ €l:aza’<a+A
(a,a’]x[0,1]
dC(u,v)

Observe that C is Lipschitz continuous on [0, 1]* with Lipschitz constant 1. Hence, by the Lipschitz continuity
of ¢,

An(d) < Ko sup (a_zAu +| L Cd,v)- LC(a, v)D dC(u, v)
a,a’ €l:asa’<a+A
[0,a]x[0,1]
< Ko (ZQ_ZA +g_1A) ,
Bh(A) < ko sup / ((1 —d) A u-1+v| + | 7 Cld’, v) - 25 Cla, v)|) dC(u, v)
a,a’ €l:asa’<a+A
(a’,1]x[0,1]
< ko (2(1 —a)2A+(1- a)‘lA) , and
Dh(A) < ko sup (C(d’,1) - Cla, 1)) < koA
a,a’ €l:aza’za+A
for any A > 0 with a suitable constant g > 0. This proves the lemma. O

From Proposition 2.3 of [2] or from Theorem 7.33 of [8], one obtains immediately the following statement:

Proposition 6. Let {¢n} be a sequence of continuous functions on a compact set D C R. Assume that for every
sequence {xn} withxn, — X € D,

hm gﬁn(Xn) = QD()_()

n—oo

holds with a continuous function . Then

lim max pn(x) = max ¢(x).
n—oo xeD X€eD

Lemma 7. Suppose that Assumption A is satisfied and {Cn} is a sequence of copulas tending pointwise to C.
Let pn(a) = ¢2~(Cn), and p(a) = ¢;~(C) for a € 1. Then

a) nli_>m en(a) = la)forany a € I and
b) lim max pn(a) = maxe(a).
n—oo gel ael

Proof. Here we show that the assumptions of Proposition 6 are satisfied such that the claim of Lemma 7 fol-
lows from this proposition. In view of Lemma 5, ¢, and ¢ are continuous. Let a be any real number belonging
to I, and {an} be any sequence of real numbers with an — a. We have

nli_{{}o (C:zr,:(cn) - C;(C)) = 171_1 nli_)fgo (bn +dn-en—fn - 8&n), 9)
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where

by = / (w(hu- 1@, v) - (G u= & Calan, ) dCalu, v,
[0,a]x[0,1]

o= [ (o1 ca ) - o (- 1 v Galan )
(a,1]x[0,1]

dCn(u,v),

en = / w(u - 1¢(a, v)d (Calu, v) - Clu, )
[0,a]x[0,1]

fo = / (£ -1+v-Cla, ) d (Calw, v) - Cu, )
(a,1]x[0,1]

- / (¢ u= & Calan, v) (1 < @n) - 1(u < @)
[0,1]?

+ (ﬁ(u -1+v-Cnlan, v))) (1(u > an) - 1(u > a))) dCn(u,v)

Since C is continuous and Cy is increasing for every n, the convergence of Cy to C is uniform. Using this
uniform convergence and Lipschitz continuity of v, we obtain

IN

lim |bn| const- lim [2-2+ L / |C(a, v) - Cn(an, v)|dCn(u, v)
n—oo n—oo n n

[0,a]x[0,1]

IN

const - lim <2 2 +a—1n|a—an|+ sup |C(a,v)—Cn(a,v)|>

a  a,
n—reo § velo,1]

= 0.

Analogously, one shows that
hm dn = O.

n—roo

By the Portmanteau Theorem (cf. [13], p. 6),

lim e, =0and lim f, =0.
n—oo n—oo

Moreover, we can derive

lgn| <2 sup ¢(t) |Cn(an, 1) - Cnla,1)| =2 sup (t) |an-al,
te[-1,1] te[-1,1]

which implies limp—,.. gn = 0. Consequently, the limit in (9) is equal to zero and the assumptions of Proposi-

tion 6 are proved. O

The next lemma provides convergence rates of the joint empirical distribution function Hy, of the marginal
empirical distribution function F, of X and conditional empirical distribution functions Gy, and Gn,q of Y
which are defined in Section 4.1.

Lemma 8. We have

a)
sup |Hn(x,y) -H(x,y)| = 0 (1/ lnlnn> a.s.,
X, yER n
b)
sup |Fn(x) - FOO)| < rq Inlnn a.s
xeR n
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for n = no(w) with a constant x1 > 3v/2,

? 1 u Inlnn
—su 1 FnXj)sat -1{F(X;)<a}| =0 a.s.,
500 D2 (LR < ) - 1) <) ( )
d)
Inlnn
sup |Gna(y) - G«a(y)] = O a.s. and
yeR,acl n
Inlnn
sup |Gna(y)-Ga(y)) = O a.s
yeR,acl n

Proof. Claim a) follows immediately from the law of iterated logarithm for the empirical process (cf. [13], p.
268, for example). Furthermore, the law of iterated logarithm implies

. n 1
hinj:ip migg |Fn(x) - F(x)| < fﬁ

Claim b) is a consequence of this inequality. Let | x| be the largest integer less than or equal to x. Further

%Slgj)z |1 {Fn(X;) < a} - 1{F(X;) < a}|

= sup-— Z 1{Fn(X;) < a, F(X;) > a} + 1{Fa(X;) > a, F(X;) < a})
acr N

= sup- Z ( {F’l(a) < X; < Fp*(lan| /n)} +1{F,*(lan| /n) < X; < F'l(a)})

ael 1

sup |Lan] /n - Fa(F (a))
acl

_ 0( lnlnn> s
n

which is assertion c). Next we prove part d). In view of a) and c¢), we can derive

IN

< sup

Fa(F Y(a)) - F(F 1(a)){ +0(n™)

n

> 1 {Yi 2y Xy < Fillan) 0} nHCFT Lan) ), )
=1

IN

1
sup  |Gn,a(y) - G<a(y)| sup —
yeR,ael y€ER,acl AN

+ sup a"l‘(H(Fgl(LanJ /n),y)—H(F_l(a),)/))‘
yEeR,ael

0(1) - sup |Hn(x,y) - H(x,y)| +supa ‘F(F Y(lan| /n)) - a‘
x,yeR

0 <W> *sup a’l ‘F(F;l(Lan | /) = Fa(Fy'(lan| /n))\ +0(n™)
ac
_ O( lnlnn) @S
n

The corresponding assertion about Gy,q is proved analogously. O

IN

IN

5.2 Proof of convergence rate of the estimated coefficient

Throughout the remainder of Section 5, we assume that Assumption A, is fulfilled. We start with the proof of
strong convergence rate of the coefficient of piecewise monotonicity. Now we prove a lemma which is used in
the subsequent proof:
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Lemma 9. We have

sup |An(a) - EAn(a)‘
ael

]

(@)

/N
|5
=

N———

Q

=

QU

sup |An(a) - EAn(a)|
a€el

1]

(@}
/N
:"3

S
N———
8
©»

where
An@) = 7GR - GealY)1{F(X) < a},
i=1
@ = 37wl (FXD - @) - Ga(-Yi)1 {F(X) > @)

i=1

Proof. We divide I into n closed intervals J1, ..., Jn C I of length % such that U?=1 Jn = I, a; is the centre of
the interval J;. Observe that

IN

sup |An(a) - EAn(a)| max sup |An(a) - EAn(a)|
acl

k=1,..., nacj;
< ax |An(ay) - EAn(ay)| + sup |An(a) - An(a)]

=1,...,n a,a’ €l:aza’<a+n1!

+ sup |EAn(a) - EAn(a)]| . (10)

a,a’ €l:aza’<a+n!
LetZ, ..., Znbeindependent random variables with |Z;| < M a.s., M > Ois a constant. Bernstein’s inequality
(see [7], p.193) says that

n 62
P Z;—-EZ)| > <2exp| - (11)
{IZ_;( ! 2 } p< 22?1Varz,-+gMe>

foralle > 0. Let Z; = 29(3F(X;) - G<a(Y))1{F(X;) < a}, Mo = supe(_1.1) [¢(t)]. Then M = Mon™* and

n n
ZVarZ,- <n? ZE?/)(%F(X,-) - Gga(Yi))z < n"lMcz, foreverya e I.
i-1 i=1

-1/2

Let \n = VInnn™"/~. By Bernstein’s inequality (11), we obtain

> P {|An(a)) - EAn(a))| > eXn}

k=1
242
A
< 2nexp|-—; 254" -
n~tMg+ 3Mon~tein

nexp [ - lnn
h M3 + $MoevInnn-1/2

kyetlnn
1+¢

IN

IP’{ max ]An(ak) - EAn(ak)} > s/\n}
k=1,...,n

A

N

N

< 2nexp (—

foralle > 0 and n = ng, where x, > 0 is an appropriate constant. Hence,

.....

.....
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Therefore max |An(ay) - EAn(ay)| = O (ﬁ) a.s. (12)
=1,..., n

Next we analyse the two remaining terms in (10) concerning the convergence rate. Note that

IN

sup sup |Gza(y) - G<ar (y))| sup 1-Z
a,a’ €l:aza’<a+n"1 yeR a,a’ €l:asa’<a+n1!

on™ Y + sup (%

a,a’ €l:aza’<a+n!

+ 47 SUp ‘H(F’l(a’), y) - HF Y(a), y)‘)
yeR

IN

F(F (@) - FF (@)
= o). (13)

By the Lipschitz property of ¢, Lemma 8b) and (13), we obtain

IN

SUPg a' cl:a<a’<a+n! |An(a) - An(a/)|

0 (%) ( sup > (FX) |2 - 2] +]Ga(Y) - Gar (Y)])

a,a’€l:asa’sa+n™ {77

+ sup Z|1{F(X,-)sa}—1{F(X,-)sa’}|)

a,a’€l:asa’sa+n™ {77

IN

O™ +0(W-  sup  (FalF (@) - FalF (@)

a,a’ €l:aza’<a+n!

IN

onYH+001)- (2 sup [Fn(x) - F(x)| + sup |a—a’|>
xeR

a,a’ €l:aza’<a+n!
Inlnn
(0] ( a.s
n

sup ‘EAn(a) - ]EAn(a/)|

a,a’ €l:a<a’<a+n!

0(1) - sup (|t-%

a,a’ €l:a<a’<a+n-! a
+E[1{F(X1) < a} -1{F(X}) < d'}|)
on™YH+001)
sup (E|H(F (@), Y1) - HF (@), Y2)| + P{a < F(X) < a'})

a,a’ €l:aza’<a+n1!

on™YH+0(1) sup la-d'|=0m™).

a,a’ €l:aza’<a+n1!

On the other hand,

IN

EF(X1) + E |G<a(Y1) - G<o (Y1)

IN

IN

Consequently, the first assertion of the lemma is a consequence of (10) and (12). The second assertion can be
proved analogously. O

Proof of Theorem 3. a) Observe that

)s (14)

st _ 1 1 - _
sup C; (@)-¢a (C)‘ < —=(Sn+Tn)+ =sup (|An(a) - IEAn(a)| + |An(a) -EAn(a)
acl ny Y qer
where A, and Ay, as in Lemma 9,

Sn

a

SuII) <Z ’w(%Fn(Xi) = Gn,a(Yy)) - w(%F(Xi) - Gsa(Yi))|
€\

#5710y (Fa(X)) - @) = Gna(-Y2) — (15 (FX) - a) - Ga(—Yl-))y> ,

i=1

te[-1,1] a

Tn = 2 sup |w(b) SléII)Z |1 {Fn(X;) < a} - 1{F(X;) < a}|.
i-1
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Further, in view of Lemma 8, we can deduce

Sn < On)- sup ((% +152) sup |Fn(x) - F(x)| +sup |Gn.a(y) = Gza(y)| + sup |Gn,a(y) - Ga(y)\)
= 0 (m) a.s. (15)
using the Lipschitz continuity of ). Lemma 8c) implies
Th=0 (m) a.s. 16)

Combining (14) to (16) and using Lemma 9, we obtain

& (@) —CZ’(C)( =0 (wlnn") a.s. 17)

Let & and a, be maximizer of a ~» ¢ (C) on I, and of E:(.) on Iy, respectively. Then we have

sup
acl

G (0)=2¢q,(0) =2 & (an)-0 < lnn) a.s

n

There is a an € In such that |dn - a| < % Since a ~» ¢37(C) is Lipschitz continuous in view of Lemma 5 and

(17) holds, it follows that

at- Aty - Inn - Inn
En (an) 28y @n) 2 ¢ ((:)-o< n) > (0)-0 (,/n> a.s.
Combining these inequalities, we obtain
=0 ( lnn) a.s.
n
This identity proves part a) of Theorem 3.

b) There exist subsequences {am, } and {ay, } of {an} almost surely such that

G (C) -y (an)

ao :=liminfa, = lim am, < ao :=limsupan = lim ay, a.s.
n—eo n—eo n—oo n—eo

By part a),
lim G, (am,) = lim Cyy, (am,) = GG, (C) aus.
By (17),
lim ¢;., (€)= lim G, (€)= &, (C) as.
which implies ¢3,(C) = CgO‘(C) = (4> (C) by virtue of Lemma 5. Therefore ag = do = ao holds a.s. since ay is
the unique maximizer, and the the claim b) is proved. O

5.3 Proof of asymptotic normality of the estimated coefficient

Before giving the proof of Theorem 4, we introduce some definitions and provide three useful auxiliary state-
ments:

. 1 &
Gnaly) = =_-> 1{Yi<y,F(X)<a},
i=1
=~ 11 n
Gna(y) : = = > 1{-Yi<y,FX)>a}.
i=1

Define @ := F (a), y(y, x) := P{Y; <y | X1 = x}. From Corollary 21.5 in the book [13] by van der Vaart, we
can derive the following Proposition:
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Proposition 10. Assume that f(a) > 0. Then

Fal @ = 5 (Fa(@) - @) + 05,

Lemma 11. Suppose that Assumption A, is fulfilled. Assume that f is continuous at a and f(a) > 0. Then

@) 5D |GraY) - Gra) + — (Fal@ - (¥, @)| = 0p(n”12), and
YER
B) Sup | Grn.ay) - Gna¥) - 1+ (Fn(@) - @) (1-~(-y, @) | = 0pn /).
yeR

Proof. a) Denote the empirical distribution function of (X, Y) by Hy. Let § > 0 such that f is bounded from
below on [F~(a - ), F'(a + 8)]. Therefore, we can derive

|F'(p) - F ()|
sup ———— <

p:|p-a|<d |p-a| B q:\q—a\sém < K3 (18)

with a suitable constant x5 > 0. Obviously,

Fu(Fp'(lan] /n)) - a‘ =|lan]/n-a|<n!

/Inlnn 1
< K1 n +n
< K3 (nﬂ/ lnlnnn + n_l) =: n (19)

for n = ng(w). Applying Lemma 8b), we obtain

|F(E ! (lan) /) - a

for n > ng(w). By (18),

Fy'(lan] n)-a

for n = ng(w). We have

n

Gnay) = Gnaly) = a71n (1 {Yi <y, X; < Fy'(lan] /n)} -1{Y;<y,X; < a})
i=1
= 2 (Hu(F(an) fn),y) - Ha(@, )
= % (H(F;l(LanJ /n),y) - H(a,y) +An(y, F3'(lan] /n))) , 20)

where An(y, x) := Hn(x,y) — Hn(a, y) - H(x, y) + H(a, y). Since the empirical process /n (Hn(.) - H(.)) con-
verges weakly to a Gaussian process, this process is asymptotically equicontinuous which in turn leads to

An(y, Frl(lan] /)| = op(n™'/?) Q1)

sup
yER

by virtue of (19). Note that F;'(|an| /n) - Fz(a) = op(n~/?) in view of Lemma 21.7 in [13]. Consequently, by
Proposition 10 and Assumption A,, we have
F.X(lan|/n)
HE an) o) -H@y) = [ P{rizy|X-xf0de
a

= (Fa'(lan] /n) - @) (+(y, @)f(a) + 0p(1))

= ~(Fa(@) - a) (v(y, @) + 0p(1)) + 0p(n""/?)

= ~(Fal@) - a0y, @ + 0p(n”'/?)
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uniformly in y € R. In view of (20) and (21), we obtain the first assertion of the lemma.
b) Further

n

. _1an g (1 {—Y,' <y, X; > F.l(lan] /n)} -1{-Y;<y,X;> a})

L (A o an )10

i=

Gn,a(}’) - E;n,a(}’)

~Ha(F5'(Lan] [n), -y) + Ha(@, -))
1 - ~
- (” ’Eanj - (1- Fa(@)

1-a
~H(F; (lan] /n), -y) + H@, -y) + An(~y, Fa}(lan| /n))) , 22)

where H(x, y) = P{Y; <y, X; > x}, Hy is the corresponding empirical counter-part, and An(y, x) := Hn(a, y) -
H(a,y) - Hn(x,y) + H(x, —y). Similarly to the first part, one shows that

sup [4n(-y, Fy'(lan) /n)| = 0z(n™*"%) @3)
yeR

Taking into account Assumption .A,, we can deduce

Qg

H(F, (lan] /n),-y) - H(@, -y) P{Y; <~y | X1 =x}f00)dx
F1(lan]/n)

(@ - Fy'(lan] [n)) (v(-y, @)f (@) + 0p(1))
= (Fa(@ - a)y(-y, @) + op(n™/?)

uniformly in y € R. Combing this identity with (22), (23) and Proposition 10, it follows that

Gra) - Gnay) = 1= (Fal@ - @) (1-(-y, @) + 0p(n /%)

uniformly in y € R. This identity proves the second claim.

Lemma12. Let ¥ : R — R be a bounded function. Define 7(x) := E(¥(Y1) | X1 = x), and
1 n
W= 21: P(Y) (1{Fa(X)) ca} -1{F(X;) <a}).
i
If ¥ and f are continuous at a with f(a) > 0, then

Wi = ~(Fa(@) - a)¥(a) + op(n"/?).

Proof. Letna(x) = E (¥(Y1)1{X; <x}) and An = Wy = nn(Fr(lan] /n)) + nn(a). Note that
Wy = ’1121 Y(Y;) (1 {{1 <Xj< F;l(LanJ /n)} -1 {F;l(LanJ /n) < X; < (‘1}) .

Using (19), we deduce

Vn|An| s sup  Rn(b),
be[-0,0n]

where

1 n
Rn(b) = ﬁ ;Zni(b),
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Zm'(b) = (W(Yl)(l {C-I <Xi s&+b}—1{c’1+b <Xi S(_I})
-E¥(Y)1{a<X;<a+b}+E¥(Y)1{a+b<X;<a}).
First we decompose the interval [-dn,6n] into N = 4n closed intervals Ipi,...,Inn : 12"1 I, =

[-dn, O], Uz bne1 Ini = [0, 6x] with by, b; as the smallest/largest element of I, and b;—b; < 1o, forl=1,..., N.
Then

1 n
Zu)| = max sup |—= Y Zp(b)
be[ 6n 6nl fz " I=l...Nb€Il \/ﬁz n
- Zni(by)| + Zyi(D) = Zyi(b
© AN fz nilb) *f,“;a@ngp! wi(h) = Zui(by)
1
< = N"Z.(b
= Il;ria)fv \/ﬁg m( I)

1
Pt = Zni 2 n s 24
+§1€1£] ()\gﬁ('ﬁ; 1| +2vnQ 1) (24)

where Qy := P{a+b; <Xi<a+b;} and Zy; := 1{a+b;<X;<a+b;} - Qu. Notice that |Zy(b)| <
supcg |¥(6)] and

IN

sup Var (Z,(b)) sup¥2(t) sup (P{a-b<Xi<a+b)})

S | terR b€[0,5,]
< sup (b sup  f(x) én.
teR x€la—6n,a+6,)

Applying Bernstein’s inequality (11), we obtain

oo oo N n
> P {znia’,‘v sz(bl) > a} s ZZP{ > Znilb))| > aﬁ}
n=1 n=1 I=1 i=1
oo 2
< O(l)Zn-exp e )
=1 K4 ( Inlnn +e)
for e > 0 with constant x4 > 0, and hence
max Z.i(by)| =0(1) a.s. (25)
\fz ni\¥]
Analogously, one obtains
1 s
lg}&)}(\] Tn 2 Znitl] = 0(1) a.s.

Notice that

max Q,; < max P{a+b; <X, <a+b
=y I=1..N { ! 1}

on sup f(t) = o(n"l/z).
N xela-6n,a+6y)

IN

Taking (24) and (25) into account, we can conclude
An = op(n~V?).
Moreover,
F,'(lan]/n)
F0OIF () dx + op(n1%)

Whn
(Fal(lan] /n) - @)5(@)f(a) + op(n~/?)

since 4 is continuous at a. An application of Proposition 10 completes the proof. O
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Suppose that Assumption As is satisfied and a € I is fixed. We have the following decomposition of the term
6;_(a) - ¢z~ (C) whose asymptotic normality has to be shown:

At— _ --1

Cn (a) - C(er (C)=-(An+Bn1 —-Bny - Bp3 +Dn) ¢, (26)

where ((a) = Ev(F<a(X;) - G<a(Y)1 {F(X;) < a} + Ep(F>a(X;) - Ga(-Y)) 1 {F(X;) > a},

n

An = T3 (BFaalX) - Gea Y1 {FX) € @} + 0(Foa(X) - Gal-Y)1 {F(X) > a} - {(a),
i=1
15 (0 (Fea(X) - Geal Y1)
i=1
(% (Fa(Xy) - F(X;)) - Gna(Y) + Gsa(Yi)) 1{F(X)) < a} +¢'(F>a(X;) - Ga(-Y}))
(e (Fu(X9 - FXD) = Gna(-Y9) + Ga(-¥)) 1 {F(X) > a} ),
Bl = 05 ) 3 (4 (a6~ FOX0) = Gna¥) + Gual0)) " 1 {FX) < a)

i-1
(£ (Fa(X) - FX)) - Gnya(-Y)) + Ga(-Yp)) " 1 {F(X;) > a}) ,

By - rllzljw’(Fsa(xn—Gsa(Y,-))(Gn,a(yi)—én,a(yi))1{F(Xi)sa},

Bus = =3 0/(FoalX) - Gal-¥D) (Gual-¥D) - Gna-¥)) 1{F (X > a}
i=1

Do = 3 (VEFalX) - GnalVD) - 6ty (Fa(X)) - ) - Gnal-Y1)

i=1
(1{Fn(X)) <a} -1{F(X;) < a})

(o is introduced in Assumption A3). Further by Lemma 8,

(1+a)/2
Bui| = 0 <(1“1“") ) - op(n”1/2). @)

n

The next lemma deals with an asymptotic representation of Dy.

Lemma 13. Let 9(x) = E (¢¥(1 - Ga(Y1)) = 9(Ga(-Y1)) | X1 = x). Assume that f and v are continuous at a =
FY(a) and f(a) > 0. Then
D = -(a) (Fa(@) - a) + op(n™/?).
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Proof. The term Dy, is decomposed into three parts: Dy = Dy + Dypy + Dy3,

Du = > (W(EFalX) - Gnal¥) - (g (FalXD) - @) - Gna(-Y7)
i=1

~p(2F(X;) - G<a(Yy) + (525 (F(X;) - a) - Ga(-Y))))
(1{Fa(X) <a} -1{F(X;) < a}),

Dio = =3 [W(EFD - GealY) - (1 = Geal¥y)

Uk (P~ @)~ Gl YD)~ blBal 1)
(1{Fa(X)) <a} -1{F(X;) < a}),
LS (01 - Gual¥) - -Gl 1)
121(1 {FaX;)<a} -1{F(X;) <a}).
In view of Lemma 8, we obtain

Dual < 0(1): sup (|Fa() = FO| +[Gna(¥) = Gea)] +[Gnay) = Gal))
xX,ye
.rll;|1{Fn(X,-)sa}—1{F(Xi)sa}‘

= O(lnlnnn) a.s. (28)

Forw: @ < X; < Fyl(lan| /n) or Fpl(lan| /n) < X; < a,

max [FX) ~a| = |F(F:'(lan] /m) - F@) = (f(@) + 0p(1)

= |Fn(@-a|(1+0p(1)) = op(n"Y?VInlnn),

Fyl(a) - a’

where we used Proposition 10 and Lemma 8a). In view of Lemmas 8b) and by Lipschitz continuity of 1, we
have

[Dna

IN

%Z (AP - 1| + | 25 (FX) - @)]) |1 {Fa(X)) < a} - 1{F(X)) < a}}|
i=1

0 <r11> i |F(X;) - a| (1 {c‘z <X;< F;l(@)} + 1{F;1(La7:J) <X;< a})

i=1

IN

op(n?vInln n)z |1 {Fn(X}) < a} - 1{F(X;) < a}|
i=1
op(n"'/?). (29)

Let ¥(y) := /(1 - G<a(y)) - ¥(~Ga(-y)). Applying Lemma 12, we have
Dy3 = ~9(@)(Fn(@) - a) + 0p(n"V/?). (30)

The lemma is a consequence of (28), (29) and (30). O

Proof of Theorem 4. Let @ = F~*(a). Using Lemma 11, we obtain

Bp, = —n—la S "W (EFX) - Gea(Y))(Fn(@) - a)y(Y;, @)1 {F(X;) < a} + op(n*/?)
i=1
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and
1 & )
B = n(1-a) ;W(ﬁ (F(Xy) - a) = Ga(=Y;))(Fn(a) - a)
c(1-4(Y;, @) 1{FX) >a}  +op(n ).

Using (26), (27) and Lemma 13, we can rewrite \/n (Zj ;7(a) - ({;‘(C)) as a U-statistic plus remaining term:

Vi (& (@)= G(0) = ~vrAnd ™ + 05(1),

_ 1 n n
An = 5 ) ¥Xi Y, X, X)),

i=1 j=1
- Y H 1) T
- n(n—l) is LisAjs 1j n P ’
i=1 j=i+1

where ljl(xl,y19 X2, YZ) = lII(le Y1, X2, }’2) + llU(XZ, Y2, X1, J/1),

Y(x1,y1,X2,¥2) = ¥(Fealx1) - Gea(y1))1 (F(x1) < a)

+(Fsa(x1) = Ga(-y1))1 (F(x1) > a) - {(a)
+1)'(Fea(x1) = Gea(y1))1 (F(x1) < a)

(2 (1(x2 sx1) = F(x1)) = 11 (y2 < y1, F(x2) < a) + G<a(y1))
+)'(Fsa(x1) - Ga(-y1))1 (F(x1) > a)

(2 (1 (x2 < x1) = F(x1)) = 1231 (-¥2 < -y1, F(x2) > a) + Ga(-y1))
+ 29 (Fea(x1) = G<a(y1)) (1 (x2 < @) - @) (y1, @)1 (F(x1) < a)
— 7 (Fsa(x1) = Ga(-y1)) (1 (x2 < @) - a) (1 = ~(y1, @) 1 (F(x1) > a)
-P(@)(1(x; <a)-a).

Further,
E (W(Xl» Y1, x2, )’2)) = / ¢ (F<a(x) = G<a(y)) (% (1 (x2=x)- F(X))
(—o0,alxR
-1 (y2 <y, F(x3) < a) + Gea(y) + £ (1 (x2 < @) - a)y(y, @)) dH(x,y)
v [ ) - Gaty)
[@,00)xIR
(2 (102 <x)-F(x)) - 251 (-y2 < -y, F(x2) > a) + Ga(-y)
—i (M(x2 < @) - a) (1-~(y, a))) dH(x,y) - (@) (1 (x; < a) - a),
and

E (Y(x1,y1,X1,Y1)) = 9(Fealx1) - Gaaly1)1 (F(x1) < a)
+(Fsa(x1) = Ga(-y1))1 (F(x1) > a) - {(a).

Now we apply the central limit theorem for U-statistics (see Theorem 5.5.1A in [11]) to obtain the theorem. [

Acknowledgement: The author is grateful to the anonymous reviewers for their many valuable comments
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