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Abstract: This paper studies the increasing convex ordering of the optimal discounted capital allocations
for stochastic arrangement increasing risks with stochastic arrangement decreasing occurrence times. The
application to optimal allocation of policy limits is presented as an illustration as well.
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1 Introduction
In the literature of actuarial science, the capital allocation has attracted great attention from researchers, and
related work could be found in [5], [17], [8], [21], [6], and references therein. Recently, [22] proposed a general
loss function in the study of capital allocation for independent or comonotonic risks.

Consider an insurer exposed to multiple random risks X = (X1, · · · , Xn), which may come from not only
policy holders in one or more types of insurances, but also the investment of premium. Let T = (T1, · · · , Tn)
be the corresponding occurrence times of the corresponding risks. The aggregate discounted loss is then

n∑
i=1

e−δTiXi ,

where δ > 0 is the discount rate. Assume that the insurer wishes to allocate a total amount of capital ~ to the
risks X. Denote A~ all admissible allocation vectors d = (d1, · · · , dn) such that∑n

i=1 di = ~ and di ≥ 0, for
all i = 1, · · · , n. Motivated by [22], one reasonable criterion of reducing the loss is to set the capital di to Xi as
close as possible in terms of some appropriate distance measure, i = 1, · · · , n. Thus, the insurer attains the
total discounted loss

n∑
i=1

e−δTiϕ(Xi − di),

where ϕ is some loss function. In general, the insurer attempts to allocate the capital amount d to risks X
so that the above total discounted loss is minimized. Such an optimization problem can be summarized as
follows:  min

d∈A~
E
[
u
( n∑
i=1
e−δTiϕ(Xi − di)

)]
,

where u(x) is increasing and convex, and X is independent of T.
(1)

As a direct consequence of the theory presented in this paper, we will get the ordering of the optimal capital
allocations of (1).

It should be remarked that [22] investigated the case of δ = 0 for mutually independent or comonotonic
risks. Because the assumption of independence among risks is hardly realistic and the comonotonicity among
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risks corresponds to the extreme case, it is of interest to introducemore general dependence structure to con-
cerned risks and thus make the model more �exible in practice. Recently, for multiple risks [2] took the �rst
to introduce the stochastic arrangement increasing (SAI) (see De�nition 2.3) property, which, as a general-
ization of the arrangement increasing function, is rather convenient in risk management due to integrating
monotonicity with dependence. Subsequently, [3] and [23] addressed more detailed properties of SAI along
with some applications to insurance and economics. In this study, we once again put focus on SAI risks with
stochastic arrangement decreasing (SAD) occurrence times.

From the viewpoint of the risk-averse investors, this study considers the total discounted loss for SAI
risks with SAD occurrence times. We mainly investigate how the capital allocation strategy impact capital
allocation in the sense of the increasing convex order. The remaining of this paper rolls out as follows: Section
2 reviews some basic concepts and recalls several facts, which are useful in formulating our main theoretical
results. In Section 3wepresent two technical lemmas to be utilized in developing ourmain theoretical results.
Section 4 develops the increasing convex order on the total discounted loss. To illustrate the present results,
we also address one application to optimal allocations of coverage limits in Section 5. The proofs of the two
technical lemmas are deterred to the appendix.

Throughout this note, the terms increasing and decreasing stand for non-decreasing and non-increasing,
respectively, and all expectations are implicitly assumed to be �nite whenever they appear.

2 Preliminaries
For ease of reference, we review some important notions including concerned stochastic orders, AI (AD) func-
tion, SAI (SAD) and comonotonicity.

Let X and Y be two random variables with probability density (or mass) functions f and g, and survival
functions F̄ and Ḡ respectively.

De�nition 2.1. A random variable X is said to be smaller than the other one Y in the

(i) usual stochastic order, denoted by X ≤st Y, if F̄(t) ≤ Ḡ(t) for all t or, equivalently, if E[h(X)] ≤ E[h(Y)] for
all increasing functions h;

(ii) likelihood ratio order, denoted by X ≤lr Y, if g(t)/f (t) is increasing in t for which the ratio is well de�ned;
(iii) increasing convex order, denoted by X ≤icx Y, if E[h(X)] ≤ E[h(Y)] for all increasing convex functions h

for which the expectations exist.

The following chain of implications is well-known,

X ≤lr Y =⇒ X ≤st Y =⇒ X ≤icx Y .

For more on stochastic orders, we refer readers to [16], [19], and [9].

In [7], a bivariate function g(x, y) is said to be arrangement increasing (AI) if g(x, y) ≥ g(y, x) for x ≤ y. Af-
terward, this notion was generalized to its multivariate version by [1]. Denote (π(1), · · · , π(n)) a permutation
of {1, · · · , n} and π(x) = (xπ(1), · · · , xπ(n)). For any 1 ≤ i ≠ j ≤ n, let

πij(1, · · · , n) = (πij(1), · · · , πij(n))

with πij(i) = j, πij(j) = i and πij(k) = k, k ̸∈ {i, j}. A real-valued function g(x) de�ned on Rn is said to be
arrangement increasing (AI) or arrangement decreasing (AD) if

(xi − xj)
[
g(x) − g(πij(x))

]
≤ (≥)0,

for any pair (i, j) such that 1 ≤ i < j ≤ n. Subsequently, [20] related the bivariate AI function to the joint
likelihood ratio order between two dependent random variables.
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De�nition 2.2. For a random vector (X, Y) on R2, X is said to be smaller than Y in the sense of the joint
likelihood ratio order, denoted by X ≤lr:j Y, if E[g(X, Y)] ≥ E[g(Y , X)] for any AI function g(x, y).

Recently, [2, 3] introduced the following characterization for the monotonicity of mutually dependent
random variables, extending the joint likelihood ratio order to multiple random variables.

De�nition 2.3. A random vector X = (X1, · · · , Xn) is said to be stochastic arrangement increasing (SAI) if
E[g(X)] ≥ E[g(πij(X))] for any AI function g and all pair (i, j) such that 1 ≤ i < j ≤ n.

As a dual, X is said to be stochastic arrangement decreasing (SAD) if (Xn , · · · , X1) is SAI. According to [7]
and [15], each of the following conditions is su�cient to the SAI property of (X1, · · · , Xn):
• they are independent and identically distributed;
• they are independent and X1 ≤lr · · · ≤lr Xn;
• they are of exchangeable joint distribution;
• they are comonotonic and X1 ≤st · · · ≤st Xn.
In [18], random variables X1, · · · , Xn are said to be AI (AD) if their joint density f (x) is AI (AD). Actually,
the SAI property of an absolutely continuous random vector can be characterized by the AI joint probability
density.

Also let us recall the following two useful facts related to the above notions. One is a characterization
�rst pointed out in [20] and further remarked in [2].

Lemma 2.4. An absolutely continuous random vector is SAI (SAD) if and only if the corresponding probabil-
ity density function is AI (AD).

The other can be proved in a similar manner to Proposition 3.3(iii) of [2].

Lemma 2.5. If (X1, · · · , Xn) is SAD and h is decreasing, then (h(X1), · · · , h(Xn)) is SAI.

For more on SAI and various its weak versions, we refer readers to [2, 3], [12], [24], and [10].

3 Two technical lemmas
Before proceeding to the theoretical results, let us �rst build the following two technical lemmas,which facili-
tate the proofs of themain results in the sequel. For the sake of smoothness,we defer their proofs toAppendix.

For real vectors w = (w1, w2), a = (a1, a2) on R2 and real functions ϕ, g on R, let π(a) = (a2, a1) and
denote

η(x1, x2; a,w) = w1ϕ(x1 − a1) + w2ϕ(x2 − a2),
∆g(x1, x2; a,w) = g(η(x1, x2; π(a),w)) − g(η(x1, x2; a,w)).

Lemma 3.1. If g(x) and ϕ(x) are both increasing and convex, then,

(i) ∆g(x1, x2; a,w) ≥ 0, and
(ii) ∆g(x1, x2; a,w) + ∆g(x2, x1; a,w) ≥ 0,

for x2 ≥ x1, a2 ≥ a1 and w2 ≥ w1 ≥ 0.
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For real vectors w = (w1, w2), a = (a1, a2), a random vector (X1, X2) on R2 and real functions ϕ, g on R,
denote

ζ (w1, w2; a) = E
[
g
(
w1ϕ(X1 − a1) + w2ϕ(X2 − a2)

)]
,

∆ζ (w1, w2; a) = ζ (w1, w2; π(a)) − ζ (w1, w2; a).

Lemma 3.2. If ϕ(x), g(x) are increasing and convex, and (X1, X2) is absolutely continuous and SAI, then,

(i) ∆ζ (w1, w2; a) ≥ 0, and
(ii) ∆ζ (w1, w2; a) + ∆ζ (w2, w1; a) ≥ 0,

for a2 ≥ a1 and w2 ≥ w1 ≥ 0.

4 Main results
Now, we are ready to present the main results as well as one application to the optimal capital allocations to
SAI risks.

Denote d(1) ≤ d(2) ≤ · · · ≤ d(n) the increasing arrangement of (d1, · · · , dn).

Theorem 4.1. If (X1, · · · , Xn) and (W1, · · · ,Wn) are both SAI and independent with each other, then, for
any (d1, · · · , dn) ∈ Rn and increasing and convex function ϕ,

n∑
i=1

Wiϕ
(
Xi − di

)
≥icx

n∑
i=1

Wiϕ
(
Xi − d(i)

)
.

Proof. We only prove the case of n = 2 and d1 ≤ d2. The proof for the case of n > 2 is quite similar and hence
omitted here for briefness.

Let us use the notations in Lemmas 3.1 and 3.2. Denote h(w1, w2) the probability density of (W1,W2).
Assume that g(x) is increasing and convex. Since (W1,W2) is SAI, based upon Lemmas 2.4 and 3.2, we have

E
[
g
(
W1ϕ(X1 − d2) + W2ϕ(X2 − d1)

)]
− E
[
g
(
W1ϕ(X1 − d1) + W2ϕ(X2 − d2)

)]
= E

[
∆ζ (W1,W2; d1, d2)

]
=

∫∫
w1≤w2

∆ζ (w1, w2; d1, d2)h(w1, w2)dw1dw2 +
∫∫
w2≤w1

∆ζ (w1, w2; d1, d2)h(w1, w2)dw1dw2

=
∫∫
w1≤w2

[
∆ζ (w1, w2; d1, d2)h(w1, w2) + ∆ζ (w2, w1; d1, d2)h(w2, w1)

]
dw1dw2

≥
∫∫
w1≤w2

[
∆ζ (w1, w2; d1, d2) + ∆ζ (w2, w1; d1, d2)

]
h(w2, w1)dw1dw2

≥ 0.

As a consequence, it holds that

E
[
g
(
W1ϕ(X1 − d2) + W2ϕ(X2 − d1)

)]
≥ E
[
g
(
W1ϕ(X1 − d1) + W2ϕ(X2 − d2)

)]
,

and the desired increasing convex order follows immediately from the arbitrariness of the increasing and
convex g.

According to Lemma 2.5, (e−δT1 , · · · , e−δTn ) is SAI whenever (T1, · · · , Tn) is SAD. As an immediate con-
sequence of Theorem 4.1, we come up with the following proposition.
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Proposition 4.2. Suppose (X1, · · · , Xn) is SAI, (T1, · · · , Tn) is SAD and they are independent with each
other. If ϕ(x) is increasing and convex, then the optimal solution d* of (1) satis�es d*i ≤ d*j for any (i, j) such
that 1 ≤ i < j ≤ n.

While [22] had a discussion on the case of the discount rate δ = 0 and convex loss function ϕ, we focus on
the case of δ > 0 and increasing and convex function ϕ in this study. So, one may naturally wonder whether
the increasing property or the convexity of the loss function ϕ can be dropped o� in Theorem 4.1. To an-
swer this question we address the necessary aspects of these two properties through the following numerical
examples on bivariate random risks (X1, X2).

For the sake of convenience, we denote

hϕ(d1, d2) = E
[
W1ϕ(X1 − d2) + W2ϕ(X2 − d1)

]
− E
[
W1ϕ(X1 − d1) + W2ϕ(X2 − d2)

]
. (2)

In the coming Examples 4.3, 4.4 and 4.5, we illustrate h(d1, d2) < 0 for some speci�c loss function ϕ’s, and
this refutes

W1ϕ(X1 − d2) + W2ϕ(X2 − d1) ≥icx W1ϕ(X1 − d1) + W2ϕ(X2 − d2), for d1 ≤ d2.

One referee points out that the decreasing and convex function ϕ(x) = −x reverses the increasing and
convex order in Theorem 4.1 and hence the increasing ϕ is obviously necessary in Proposition 4.2. The fol-
lowing numerical examples further sharply con�rm that the increasing property of the loss function ϕ can
not be dropped o�.

Example 4.3. Let independent random variables X1, X2 be of a common normal distribution N(0, 1) and
independent random variablesW1,W2 be of uniform distributionsU(0, 1) andU(0, 2), respectively. Assume
that X1, X2,W1,W2 are mutually independent. Trivially, (X1, X2) is SAI.

−1.0 −0.5 0.0 0.5 1.0

−0
.35

−0
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.25

−0
.20

d1
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d1

,d2
)
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d2 = 1.3

Figure 1: hϕ(d1 , d2) for �xed d2 for normal r.v.s

Since (W1,W2) has the probability density

f (w1, w2) = 0.5 × I(0 < w1 < 1)I(0 < w2 < 2)
≥ 0.5 × I(0 < w2 < 1)I(0 < w1 < 2) = f (w2, w1),

for all w1 ≤ w2, we conclude that (W1,W2) is SAI. Therefore, the conditions assumed for (X1, X2) and
(W1,W2) in Theorem 4.1 are all ful�lled.



150 | Xiaoqing Pan and Xiaohu Li

Consider nowaconvex functionϕ(x) = |x|yet decreasing in x ∈ (−∞, 0].Note that hϕ(d1, d2) = 0.5`(d1)−
0.5`(d2) with `(x) =

√
2/π exp{−x2/2} − x[1 − 2Φ(x)], where Φ(x) is the cumulative distribution function of

N(0, 1). As is seen in Figure 1, hϕ(d1, d2) < 0 holds for d2 = 1.5 and d2 = 1.3 whenever d1 ∈ [−1, 1]. This
refutesW1|X1 − d2| + W2|X2 − d1| ≥icx W1|X1 − d1| + W2|X2 − d2|, for d1 ≤ d2.

Next examplemainly concernswith random riskswith Pareto distribution,which is oftentimes employed
to model the claim amount in �re and auto mobile insurance and hence is of important interest in insurance
practice. Formore details about Pareto distribution and its applications in economics and insurance, we refer
readers to [14].

Example 4.4. Let X1, X2 be i.i.d random variables having Pareto probability density function f (x) =
3x−4I(x > 1). Assume that (W1,W2) is independent of (X1, X2) and Wi has uniform distribution U(0, i),
i = 1, 2, independently. As per the discussion in Example 4.3, (X1, X2) and (W1,W2) are both SAI.

Note that, for a convex loss function ϕ(x) = x2 yet decreasing for x ≤ 0,

hϕ(d1, d2) = 1
2 (d1 − d2)(d1 + d2 − 3).

For any (d1, d2) with d1 < d2 and d1 + d2 > 3, it veri�es hϕ(d1, d2) < 0 and hence invalidatesW1(X1 − d2)2 +
W2(X2 − d1)2 ≥icx W1(X1 − d1)2 + W2(X2 − d2)2, for d1 ≤ d2.

Further, Example 4.5 below remarks that the convexity assumed for the loss function ϕ is also necessary.

Example 4.5. Assume that X1 ∼ N(0, 1), X2 ∼ N(1, 1), W1 ∼ U(0, 1) and W2 ∼ U(0, 2) are mutually
independent. As per the above example, (W1,W2) is SAI. According to [3], (X1, X2) is also SAI.

It is plain that ϕ(x) = x3 is increasing but not convex. Let s(d) = 0.5d(3 − d)2. Then we have hϕ(d1, d2) =
s(d2) − s(d1). In light of s′(d) = 1.5(3 − d)(1 − d), we conclude that s(d) is decreasing for any 1 < d < 3. As
a result, it holds that hϕ(d1, d2) ≤ 0 for any 1 < d2 < 3, and this negates W1(X1 − d2)3 + W2(X2 − d1)3 ≥icx
W1(X1 − d1)3 + W2(X2 − d2)3, for d1 ≤ d2.

5 An application to allocation of coverage limits
The coverage limits are usually applied to insurance risks to avoid potential loss due to heavier right tails in
insurance industry. Sometimes, in order to attract customers the insurer grants a total amount of coverage
limit ` and the policyholder can allocate coverage limits l = (l1, · · · , ln) to risks X = (X1, · · · , Xn) covered
by a policy according to their own will. For example, [4] pointed out that the compensation package of some
big company includes the ‘Flexible Spending Account Programme’, which allows employees allocate pre-tax
income to speci�c expenses such as health care, medical cost and dependent care etc.

Let δ > 0 be the discount rate and T = (T1, · · · , Tn) be the vector of occurrence times of those risks.
DenoteA` all admissible allocation vectors such that∑n

i=1 li = ` and li ≥ 0 for all i = 1, · · · , n. Then, for any
l ∈ A`, the policyholder gets the total potential loss

n∑
i=1

e−δTi
(
Xi − (Xi ∧ li)

)
=

n∑
i=1

e−δTi (Xi − li)+,

where x ∧ l = min{x, l} and (x − l)+ = max{x − l, 0}. So, it is of interest for the policyholder to consider the
following optimization problem based on the utility theory, min

l∈A`

E
[
u
( n∑
i=1
e−δTi (Xi − li)+

)]
,

where u is increasing and convex, and X is independent of T.
(3)
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Denote l* = (l*1, · · · , l*n) the solution to the above problem. [13] was among the �rst to show in the context
of comonotonic X with mutually independent T that l*i ≤ l*j whenever Tj ≤lr Ti and Xi ≤st Xj, for any 1 ≤ i ≠
j ≤ n. Subsequently, in the context of the comonotonic severity X with T having some Archimedean copula,
[11] further proved that it is least favorable for the risk-averse policyholder to allocate a smaller coverage limit
to the loss with higher severity and frequency.

Note that (i) as per Lemma 2.5,
(
e−δT1 , · · · , e−δTn

)
is SAI whenever (T1, · · · , Tn) is SAD, and (ii) (x − d)+

is increasing and convex. As a direct consequence of Theorem 4.1, we reach Proposition 5.1, which is exactly
Theorem 6.5 of [2], (T1, · · · , Tn) is SAD if and only if (e−T1 , · · · , e−Tn ) is SAI.

Proposition 5.1. Suppose that (X1, · · · , Xn) is SAI, (T1, · · · , Tn) is SAD and they are independent with each
other. The solution l* of (3) satis�es l*i ≤ l*j for 1 ≤ i < j ≤ n.

According to Proposition 5.1, the optimal allocations always assign larger coverage limit to larger risk. Ev-
identally, Proposition 5.1 serves as a nice generalization of the ordering result due to [13].

In this study, we pay attention to the optimal allocations to SAI risks (X1, · · · , Xn) associated with
SAD occurrence times (T1, · · · , Tn), which is implicitly assumed through concerned SAI random variables
(W1, · · · ,Wn) in Theorem 4.1. At the end, we remark one insightful comment from the other referee: In
general, the allocation di should take into account both the risk Xi and corresponding occurrence time Ti,
i = 1, · · · , n. With no doubt the allocation problem in the general context is of both theoretical and practical
interest and hence deserves future research in this line.

Appendix

Proof of Lemma 3.1

(i) Since ϕ is increasing and convex, for any a1 ≤ a2 and x1 ≤ x2, it holds that
ϕ(x2 − a1) − ϕ(x2 − a2) ≥ ϕ(x1 − a1) − ϕ(x1 − a2) ≥ 0,

and hence, for any w2 ≥ w1 ≥ 0,
w1ϕ(x1 − a2) + w2ϕ(x2 − a1) ≥ w1ϕ(x1 − a1) + w2ϕ(x2 − a2).

That is, η(x1, x2; π(a),w) ≥ η(x1, x2; a,w). Taking the increasing g into accountwe reach ∆g(x1, x2; a,w) ≥ 0
for any x2 ≥ x1.

(ii) Due to the convexity of ϕ, it holds that
η(x1, x2; π(a),w) + η(x2, x1; π(a),w) − η(x1, x2; a,w) − η(x2, x1; a,w)

= (w2 − w1)[ϕ(x2 − a1) − ϕ(x2 − a2) + ϕ(x1 − a1) − ϕ(x1 − a2)] ≥ 0,
yielding

η(x1, x2; π(a),w) + η(x2, x1; π(a),w) ≥ η(x1, x2; a,w) + η(x2, x1; a,w). (4)
On the other hand, the increasing ϕ also implies

η(x1, x2; π(a),w) − η(x2, x1; a,w) = (w2 − w1)[ϕ(y − a1) − ϕ(x − a2)] ≥ 0.
According to (i), we have η(x1, x2; π(a),w) ≥ η(x1, x2; a,w), and this invokes

η(x1, x2; π(a),w) ≥ max{η(x1, x2; a,w), η1(x2, x1; a,w)}. (5)
In combination with (4) and (5), we conclude by the convexity of g that

∆g(x1, x2; a,w) + ∆g(x2, x1; a,w)
= g(η(x1, x2; π(a),w)) − g(η(x1, x2; a,w)) + g(η(x2, x1; π(a),w)) − g(η(x2, x1; a,w))
≥ 0, for x1 ≤ x2.

This completes the proof.
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Proof of Lemma 3.2

Denote f (x1, x2) the probability density of (X1, X2). Since (X1, X2) is SAI, it follows from Lemma 2.4 that
f (x1, x2) ≥ f (x2, x1) for x1 ≤ x2. Now, let us proceed with notations in Lemma 3.1.

(i) Owing to Lemma 3.1 we have

∆ζ (w1, w2; a1, a2)

=
∫∫
R2

∆g(x1, x2; a,w)f (x1, x2)dx1dx2

=
∫∫
x1≤x2

∆g(x1, x2; a,w)f (x1, x2)dx1dx2 +
∫∫
x2≤x1

∆g(x1, x2; a,w)f (x1, x2)dx1dx2

=
∫∫
x1≤x2

[
∆g(x1, x2; a,w)f (x1, x2) + ∆g(x2, x1; a,w)f (x2, x1)

]
dx1dx2

≥
∫∫
x1≤x2

[∆g(x1, x2; a,w) + ∆g(x2, x1; a,w)]f (x2, x1)dx1dx2

≥ 0, for all a1 ≤ a2 and w2 ≥ w1 ≥ 0.

(ii) Since ϕ is increasing and convex, for any a1 ≤ a2 and x1 ≤ x2, it holds that

ϕ(x2 − a1) − ϕ(x1 − a1) ≥ ϕ(x2 − a2) − ϕ(x1 − a2) ≥ 0, (6)

and hence, for any 0 ≤ w1 ≤ w2,

w1ϕ(x1 − a2) + w2ϕ(x2 − a1) ≥ w1ϕ(x2 − a2) + w2ϕ(x1 − a1).

That is,
η(x1, x2; π(a),w) ≥ η(x2, x1; π(a),w).

In combination with Lemma 3.1 (i) we have

η(x1, x2; π(a),w) ≥ η(x1, x2; a,w),

and this invokes
η(x1, x2; π(a),w) ≥ max{η(x1, x2; a,w), η1(x2, x1; π(a),w)}. (7)

Moreover, by (6) we have, for x1 ≤ x2,

η(x1, x2; π(a),w) + η(x2, x1; a,w) ≥ η(x1, x2; a,w) + η(x2, x1; π(a),w). (8)

In combination with (7) and (8) we further get

∆g(x1, x2; a,w) − ∆g(x2, x1; a,w)
= g(η(x1, x2; π(a),w)) − g(η(x1, x2; a,w)) − g(η(x2, x1; π(a),w)) + g(η(x2, x1; a,w))
≥ 0, for x1 ≤ x2. (9)

Therefore, it holds that

∆ζ (w1, w2; a1, a2) + ∆ζ (w2, w1; a1, a2)

=
∫∫
R2

[∆g(x1, x2; a,w) − ∆g(x2, x1; a,w)]f (x1, x2)dx1dx2

=
∫∫
x1≤x2

[∆g(x1, x2; a,w) − ∆g(x2, x1; a,w)][f (x1, x2) − f (x2, x1)]dx1dx2

≥ 0, for a2 ≥ a1 and w2 ≥ w1 ≥ 0,

where the last inequality stems from Lemma 2.4 and (9).
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