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Abstract: In this paper, we present a method to obtain upper and lower bounds on integrals with respect to

copulas by solving the corresponding assignment problems (AP’s). In their 2014 paper, Hofer and Iacó pro-

posed this approach for two dimensions and stated the generalization to arbitrary dimensons as an open

problem. We will clarify the connection between copulas and AP’s and thus �nd an extension to the multi-

dimensional case. Furthermore, we provide convergence statements and, as applications, we consider three

dimensional dependence measures as well as an example from �nance.
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1 Introduction
Amultidimensional distribution functionwith uniformmarginals is called a copula. In contrast to the simpli-

�ed approach of quantifying risk and dependence by single numbers like Spearman’s ρ or Kendall’s τ, mod-

eling with copulas makes it possible to describe and encapsulate the entire dependence structure between

random variables. On the other hand, an obvious downside of copulas is that, unlike simple concordance

measures, they are often hard to treat analytically, especially in dimensions higher than two. Hence, instead

of modeling the actual dependence structure, it is naturally interesting to ask for a “worst case” respectively

a “best case” behaviour. In this paper, we propose a �exible method to approximate those extremal cases.

Assume that we are given a d-dimensional random vector (X
1
, . . . , Xd) and a function f : Rd → R that

describes the quantity associated with (X
1
, . . . , Xd) which we wish to optimize. We further assume that the

marginal distributions of X
1
, . . . , Xd are known and the dependence structure (i.e. the common distribution

function) is completely unknown. This assumption is called dependence uncertainty and it is widely used in

applications,mainly because compared to �nding the dependence structure, information about themarginal

laws can be relatively easily obtained.

By Sklar’s Theorem it is always possible to reduce this maximization respectively minimization to a simi-

lar problem involving uniformly distributed random variables X
1
, . . . , Xd [14]. Therefore, we are justi�ed in

restricting our focus to �nding copulas C
min

and C
max

such that∫
[0,1]

d

f (x
1
, . . . , xd)dCmin

≤

∫
[0,1]

d

f (x
1
, . . . , xd)dC (1)

and ∫
[0,1]

d

f (x
1
, . . . , xd)dC ≤

∫
[0,1]

d

f (x
1
, . . . , xd)dCmax

(2)

for all d-dimensional copulas C.
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Equations (1) and (2) are special cases of theMonge-Kantorovich problem. This problem is very well stud-

ied in the case d = 2, however, due to its complexity, most analytic approaches to the Monge-Kantorovich

problem in higher dimensions are restricted to particular situations. For example, one of Rüschendorf’smany

contributions to this �eld considered the case where f is a ∆-monotone function [18].

A more �exible, numerical take on this optimization problem that had a signi�cant impact in recent years

is the rearrangement algorithm, introduced by Puccetti and Rüschendorf [15]. This algorithm is impressively

e�cient in approximating the desired bounds even in high dimensions and thus su�ces for most real world

applications. The price for this is that it only works when f is a supermodular function and that convergence

is not guaranteed. However, the cases where the algorithm does not converge are quite pathological and can

be circumvented in practice. For a detailed description of how the rearrangement algorithm can be used to

tackle optimization problems and also examples of non-convergence, see [16].

In two dimensions, Hofer and Iacó [7] combined the spirit of optimization theory with rigorous structural

considerations and developed an algorithm that converges to the minimal respectively maximal values of

equations (1) and (2) for any continuous function f . Their method connects optimality with a particular class

of copulas, the Shu�es ofMin. We state their main results in Theorem 2.2 in section 2.

2 Mathematical Foundations
As stated previously, a d-copula is a d-dimensional distribution function on [0, 1]

d
with uniform marginals.

Every d-copula C de�nes a measure µC on ([0, 1]

d
,B([0, 1]d)) which is d-fold stochastic, i.e., it ful�lls

µC([0, 1] × [0, 1] × · · · × [0, 1]︸ ︷︷ ︸
i−1 times

×A × [0, 1] × [0, 1] × · · · × [0, 1]︸ ︷︷ ︸
d−i times

) = λ(A), (3)

for all i = 1, . . . , d and any Borel set A ⊂ [0, 1]. Conversely, every d-fold stochastic measure on

([0, 1]

d
,B([0, 1]d)) de�nes a copula. We write Cd for the set of all d-copulas.

We already mentioned that there is a class of copulas, which is closely related to assignment problems,

the Shu�es ofMin (or Shu�es ofM). As the name suggests, these are obtained by a suitable rearrangement of

the probabilitymass of the upper Fréchet-Hoe�ding bound, orMin copula,M(x
1
, . . . , xd) := min(x

1
, . . . , xd).

In two dimensions, C is a Shu�e of Min parametrized by n ∈ N, a permutation π on {1, . . . , n} and a func-

tion ω : {1, . . . , n} → {−1, 1} if C distributes the mass

1

n uniformly spread along the diagonal respectively

antidiagonal of [

i−1
n ,

i
n ] × [

π(i)−1
n ,

π(i)
n ] whenever ω(i) = 1 respectively ω(i) = −1. The original, two dimensional

de�nition is slightly more general and goes back to [12]. In higher dimensions, there are several versions of

Shu�es of Min (see e.g. [5] for a discussion). A basic property of these Shu�es is that they are dense in the

set of all copulas with respect to weak convergence. For more details and a survey of di�erent metrics also

see [5].

A concept which has proven very useful when solving two dimensional Monge-Kantorovich problems is

that of c-cyclical monotonicity. It is a famous result in optimal transport theory that, under mild assumptions

on c, a probability measure µ is optimal for the two dimensional Monge-Kantorovich problem if and only if it

is concentrated on a c-cyclically monotone set. This optimality result follows from a dual formulation of the

problem, for which we refer to the book of Villani [20].

Finding a similar statement for dimensions higher than two has been an open problem for many years.

Griessler and Beiglböck ([1] and [6]) recently generalized c-cyclical monotonicity to arbitrary dimensions:

De�nition 2.1 ([1] and [6]). Let X
1
, . . . , Xd be Polish spaces and de�ne E := X

1
× · · · × Xd. Let c : E → R be

Borel measurable. A set Γ ⊂ E is called c-cyclically monotone if it ful�lls one of the following conditions:
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(i) For any N and any points (x(1)
1

, . . . , x(1)d ), . . . , (x(N)
1

, . . . , x(N)d ) ∈ Γ and permutations σ
2
, . . . , σd :

{1, . . . , N} → {1, . . . , N}, one has
N∑
i=1

c(x(i)
1

, . . . , x(i)d ) ≤
N∑
i=1

c(x(i)
1

, x(σ2(i))
2

, . . . , x(σd(i))d ).

(ii) Any �nite measure α concentrated on �nitely many points in Γ is a (with respect to c) cost-minimizing
transport plan between its marginals; i.e. if α′ has the same marginals as α, then∫

cdα ≤
∫
cdα′.

They were also able to show that for any measurable cost function c, a measure µ which is optimal for the

multidimensional Monge-Kantorovich problem is always concentrated on some c-cyclically monotone set.

Griessler [6] recently showed the converse statement under more assumptions on c: If the cost function c
is continuous and bounded by a sum of integrable functions, any measure which is concentrated on a c-
cyclically monotone set is an optimal solution to the multidimensional Monge-Kantorovich problem.

Next we give a short overview of assignment problems. The mathematical formulation of a Linear Sum

Assignment Problem is the following:

min

x∈Rn×n

n∑
i=1

n∑
j=1

aijxij (4)

subject to

n∑
j=1

xij = 1 ∀i ∈ {1, . . . , n}, (5)

n∑
i=1

xij = 1 ∀j ∈ {1, . . . , n}, (6)

xij ∈ {0, 1}. (7)

The matrix (aij) is also called the objective function and the set of all x ∈ Rn×n which ful�ll all the constraints

is called the feasible region.
It is not hard to see that a Linear Sum Assignment Problem can equivalently be written in the form

min

π∈Sn

n∑
i=1

aiπ(i),

where Sn denotes the set of all permutations of {1, . . . , n}. Although the feasible region of this problem is

actually n2-dimensional, with n being the number of objects, we will refer to this version of the assignment

problem as the “two dimensional assignment problem (2-AP)” since one can interpret this as matching two

di�erent kinds of objects. The assignment problem is, at least for the two dimensional case, verywell-studied.

We are now ready to state themain result from [7] that connects Shu�es ofMin and assignment problems

to integrals with respect to copulas.

Theorem 2.2. Let f be a continuous function on [0, 1]2 and let the partition In for any n be given as

Inij :=
[
i − 1
n ,

i
n

)
×

[
j − 1
n ,

j
n

)
for i, j = 1, . . . , n.

Then de�ne
fmaxn (x

1
, x

2
) = aij := max

(x
1
,x

2
)∈Inij

f (x, y) ∀(x
1
, x

2
) ∈ Inij .

Now a copula Cmaxn which ful�lls∫
[0,1]

2

fmaxn (x
1
, x

2
)dCmaxn = max

C∈C2

∫
[0,1]

2

fmaxn (x
1
, x

2
)dC(x

1
, x

2
) (8)
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is given as a shu�e of Min with parameters (n, π*, 1) where π* is the permutation which solves the assignment
problem

max

π∈Sn

n∑
i=1

aiπ(i).

Moreover, the maximal value of (8) is given as

max

C∈C2

∫
[0,1]

2

fmaxn (x
1
, x

2
)dC(x

1
, x

2
) =

1

n

n∑
i=1

aiπ*(i)

and it holds
lim

n→∞
max

C∈C2

∫
[0,1]

2

fmaxn (x
1
, x

2
)dC(x

1
, x

2
) = max

C∈C2

∫
[0,1]

2

f (x
1
, x

2
)dC(x

1
, x

2
).

Furthermore, Iacó, Thonhauser and Tichy [8] showed that the sequence of maximizers Cmaxn converges, at

least along some subsequence, to a maximizer C
max

of the problem

max

C∈C2

∫
[0,1]

2

f (x
1
, x

2
)dC(x

1
, x

2
).

3 Main Results
As we will see, some structural analogies are destroyed in the d-dimensional case, which is why a direct

application of the method from [7] is not possible. For our main result, an extension of Theorem 2.2 to arbi-

trary dimensions along with a similar convergence result as in [8], we start by introducing the concept of a

multidimensional assignment problem.

De�ne the index sets I := {1, . . . , n}d and Ikm := {(i
1
, . . . , id) ∈ I : ik = m}. The (axial) d-dimensional

assignment problem (d-AP) on n items with objective function (ai) is given as follows:

min

x∈Rnd

∑
i∈I

aixi (9)

subject to ∑
i∈Ikm

xi = 1, ∀m ∈ {1, . . . , n}, ∀k ∈ {1, . . . , d}, (10)

xi ∈ {0, 1}. (11)

Again, “d-dimensional” is meant with respect to the number of di�erent object types. The feasible region in

this case would actually be nd-dimensional.

Theorem 3.1. Let n be a positive integer and f : [0, 1]d → R be constant on the cubes Ini with

Ini :=
[
i
1
− 1

n ,

i
1

n

)
× · · · ×

[
id − 1
n ,

id
n

)
,

for i = (i
1
, . . . , id) ∈ I. So f (x) = ai for all x ∈ Ini .

Then a copula C
min

which ful�lls ∫
[0,1]

d

f (x) dC
min

= min

C∈Cd

∫
[0,1]

d

f (x) dC(x), (12)
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distributes uniformly on each square of type Ini the probability mass equal to x*i /n, where (x*i )i∈I is an optimal
solution to the relaxed d-AP with respect to the objective function (ai)i∈I. By this construction, C

min
is a

so-called checkerboard copula ([4], [13]).

Here “relaxed” means that we are considering the continuous relaxation of the axial d-AP, i.e., we replace

the integer constraint (11) by xi ≥ 0 for all i. Even though a seemingly subtle di�erence, this change yields an

entirely di�erent problem from the perspective of optimization theory.

Theorem 3.1 holds for any dimension d and indeed for the case d = 2 we get precisely the method pro-

posed in [7]. This follows fromBirkho�’s theorem,which states that the twodimensional assignment problem

is identical to its continuous relaxation. However, Birkho�’s theoremdoes not hold for any dimension greater

than two, which is why it is not possible to restrict the solution space to Shu�es ofMin in higher dimensions.

As a result, the optimizing copula that comes from the assignment problem will, in general, not be given as

a Shu�e ofMin. We refer to [3] for further details about assignment problems.

That means, for dimensions greater than two, the maximizer we �nd via this procedure will not have the

nicely parametrized form that made Shu�es of Min so appealing. On the other hand, working with the re-

laxed assignment problem instead of the integer problem brings great advantages concerning computability.

While the classical integer assignment problems areNP hard, their continuous relaxations lie in P. Here the

computational complexity is with respect to the number of objects that should be assigned, or in the context

of copulas, the coarseness of the partition of [0, 1]

d
.

Proof of Theorem 3.1. By de�nition, the value of (12) is given as∫
[0,1]

d

f (x)dC(x) =
∑
i∈I

aiµC(Ini ).

Notice that the value of (12) does not depend on how the copula C distributes mass inside of each cube Ini ,
but only on how much mass is placed on each Ini . Hence, we can write xi := µC

min

(Ini ), with i ∈ I and are left

with the following optimization problem:

min

∑
i∈I

aixi .

However, we still must encode constraints that ensure that the mass distribution xi actually yields a copula.

We recall that there is a one to one correspondence between d-copulas and d-fold stochastic measures, so it

su�ces to ensure that the measure µC
min

is d-fold stochastic. Since we already noted that the value of (12) is

independent of the distribution inside the cubes Ii, we can assume that µC
min

distributes the mass inside of

each cube Ii uniformly. The d-fold stochastic measures which distribute the mass xi uniformly inside of the

cube Ii for each i ∈ I are given by the equations∑
i∈Ikm

xi =
1

n , ∀m ∈ {1, . . . , n}, ∀k ∈ {1, . . . , d}. (13)

This can be seen as follows: It is elementary that each d-fold stochastic measure satis�es the conditions (13).

So let C ful�ll (13) and let 0 ≤ a < b ≤ 1. Now look for 1 ≤ i
−
≤ i+ ≤ n such that a ∈ [ i−−1n ,

i
−

n ] and b ∈ [
i+−1
n ,

i+
n ].

Without loss of generality let us consider the �rst coordinate, it holds

µC([a, b] × [0, 1] × · · · × [0, 1]) = µC
([
a, i−n

]
× [0, 1] × · · · × [0, 1]

)
+

i+−1∑
i
1
=i
−
+1

µC
([
i
1
− 1

n ,

i
1

n

]
× [0, 1] × · · · × [0, 1]

)

+ µC
([
i+ − 1
n , b

]
× [0, 1] × · · · × [0, 1]

)

=

i
−

n − a +

 i+−1∑
i
1
=i
−
+1

∑
j∈I1i

1

xj

 + b − i
+

− 1

n

= b − a = λ([a, b]).
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By standard arguments of measure theory, we can extend this result from intervals to arbitrary measurable

sets A.
Hence themeasure C

min
is d-fold stochastic if and only if the constraints (13) are ful�lled. But those are exactly

the constraints (10) from the d-AP with the right hand side

1

n instead of 1. Since scaling the right hand side

of a linear optimization problem results in a similar scaling of the optimal solution, the optimal probability

mass distribution (xi) is given as (xi) = 1

n (x
*

i ) with (x*i ) being the optimal solution to the general d-AP with

objective function (ai).

With the necessary adjustments, Theorem 3.1 is equally valid for a maximization instead of a minimization.

Also in the multidimensional case, it is possible to approximate integrals over continuous functions by

a sequence of integrals over functions that are piecewise constant.

Theorem 3.2. Let f be continuous on [0, 1]d and bounded by a sum of integrable functions and let the sets Ini
for i ∈ I be given as before. Then, set

fmax
n (x) := max

y∈Ini
f (y) ∀x ∈ Ini ,

fmin
n (x) := min

y∈Ini
f (y) ∀x ∈ Ini .

Now denote by Cmax
n and Cmin

n copulas which ful�ll∫
[0,1]

d

fmax
n (x) dCmax

n (x) = min

C∈Cd

∫
[0,1]

d

fmax
n (x) dC(x) (14)

and ∫
[0,1]

d

fmin
n (x) dCmin

n (x) = min

C∈Cd

∫
[0,1]

d

fmin
n (x) dC(x).

Then

lim

n→∞

∫
[0,1]

d

fmin
n (x)dCmin

n (x) = lim

n→∞

∫
[0,1]

d

fmax
n (x)dCmax

n (x) = inf

C∈Cd

∫
[0,1]

d

f (x)dC(x).

Furthermore, the sequences of minimizers Cmax
n and Cmin

n converge, at least along some subsequence, to a min-
imizer C

min
of the problem

min

C∈Cd

∫
[0,1]

d

f (x)dC(x).

Proof. We show directly that

lim

n→∞

∫
[0,1]

d

fmin
n (x)dCmin

n (x) = lim

n→∞

∫
[0,1]

d

fmax
n (x)dCmax

n (x).

Let ε > 0. Since f is continuous, we may choose n large enough such that

|fmin
n (x) − fmax

n (x)| < ε ∀x ∈ [0, 1]d .

Furthermore, fmin
n is piecewise constant, so we have∫

[0,1]
d

fmin
n (x)dCmin

n (x) =
∑
i∈I

aiµCmin
n
(Ii),
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with ai := minx∈Ini f (x). Hence∫
[0,1]

d

fmax
n (x) dCmax

n (x) <
∫

[0,1]
d

fmin
n (x) + ε dCmin

n (x) =
∑
i∈I

µCmin
n
(Ii)(ai + ε).

So we have ∣∣∣∣∣∣∣
∫

[0,1]
d

fmax
n (x) dCmax

n (x) −
∫

[0,1]
d

fmin
n (x) dCmin

n (x)

∣∣∣∣∣∣∣
<

∣∣∣∣∣∣
∑
i∈I

ε µCmin
n
(Ii)

∣∣∣∣∣∣ = ε.
For the proof that the sequence of optimizers converges to an optimizer for the continuous function, we start

like in [8] by using Theorem 5.21 from [9] to deduce that Cmax
n converges weakly along some subsequence to

a copula C
min

.

Now according to Theorem 2.4 from [1], any measure which is an optimal solution to a transportation

problem is necessarily concentrated on a c-cyclical monotone set. So since Cmax
n is optimal for the transporta-

tion problem (14) it must be concentrated on a c-cyclical monotone set. Hence, for any N ∈ N, the N-fold
product measure Cmax,⊗N

n is concentrated on the set Sn(N) of points (x(1)
1

, . . . , x(1)d ), . . . , (x(N)
1

, . . . , x(N)d ) for

which for any permutations σ
2
, . . . , σd

N∑
i=1

fmax
n (x(i)

1

, . . . , x(i)d ) ≤
N∑
i=1

fmax
n (x(i)

1

, xσ2(i)
2

, . . . , xσd(i)d ).

Now �x ε > 0. Since f is continuous, we can choose n large enough such that Cmax,⊗N
n is concentrated on the

set Sε(N) of points with

N∑
i=1

f (x(i)
1

, . . . , x(i)d ) ≤
N∑
i=1

f (x(i)
1

, xσ2(i)
2

, . . . , xσd(i)d ) + ε.

Since f is continuous, the set Sε(N) is closed. Therefore the limiting measure C⊗N
min

is concentrated on Sε(N)
for all ε > 0. Now let ε → 0 and we have that C⊗N

min

is concentrated on a set of points with

N∑
i=1

f (x(i)
1

, . . . , x(i)d ) ≤
N∑
i=1

f (x(i)
1

, xσ2(i)
2

, . . . , xσd(i)d ),

whichmeans that C
min

is concentrated on a c-cyclically monotone set. Since f is continuous and bounded by

a sum of integrable functions, we can apply Theorem 1.2 from [6] to deduce that C
min

is optimal. The proof

for the sequence Cmin
n is identical.

In [7], the authors also give a convergence rate under the assumption of Lipschitz continuity. For complete-

ness, we want to mention that this holds in very much the same way for the multidimensional setting.

Corollary 3.3. Let the assumptions of Theorem 3.2 hold and, in addition, assume that f is Lipschitz continuous
on [0, 1]d with Lipschitz constant L > 0. Then∣∣∣∣∣∣∣

∫
[0,1]

d

fmax
n (x)dCmax

n (x) −
∫

[0,1]
d

fmin
n (x)dCmin

n (x)

∣∣∣∣∣∣∣ ≤ L
√
d
n .

Proof. by the Lipschitz continuity of f and the construction of fminn and fmaxn , we have that

|fminn (x) − fmaxn (x)| ≤ L
√
d
n .

Hence the proof follows by replacing ε with L
√
d
n in the proof of Theorem 3.2.
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Remark 3.4. The method presented generalizes the approach from [7] and furthermore facilitates the compu-
tation since the relaxed assignment problem is much easier to solve than the integer one. However, the solution
vector is still nd-dimensional. In practice this method can be applied on a standard laptop for nd ≤ 107 and
since good approximations are already possible for n ≈ 25, dimensions up to d = 5 can certainly be handled. So
for most practical applications, the rearrangement algorithm by Puccetti and Rüschendorf [16] will, whenever
applicable, still be the method of choice. The merit of our approach lies in the generality of the statement. It is
not limited to supermodular functions but requiresmerely continuity and a notion of boundedness. Both of these
assumptions might possibly be relaxed as research in the �eld of optimal transport progresses.

Remark 3.5. Considering only Shu�es of Min asminimizers respectivelymaximizers in equations (1) and (2) as
Hofer and Iacó did in [7] is in some sense also the notion behind the rearrangement algorithm. In [17], Puccetti
andWang consider rearrangements, show how they are linked to copulas and illustrate that Shu�es of Min can
be seen as a construction of particular rearrangements. As the authors of [17] mention, the fact that Shu�es
of Min are dense in the set of copulas could then be used to approximate solutions to copula optimization
problems arbitrarily well with Shu�es of Min. This would be a direct extension of themethod from [7] to general
dimensions, however, due to the complexity of the integer assignment problem, this approach is of very limited
practical relevance. The rearrangement algorithm, on the other hand, cuts the solution space down to oppositely

ordered rearrangements, resulting in the restriction to supermodular functions but also in an enormous increase
of e�ciency. For more details, we refer to [16].

Remark 3.6. Following the spirit of Bignozzi, Puccetti and Rüschendorf [2] or Lux and Papapantoleon [10], one
might also consider including partial information about the distribution by simply adding suitable constraints
to the linear program.

4 Applications

4.1 Dependence Measures

Anatural application for this technique is the approximation of upper and lower bounds ondependencemea-

sures. In the bivariate case, there are well-known and widely used measures such as Spearman’s ρ, Kendall’s
τ, Blomqvists β and Gini’s γ. See e.g. [11] for de�nitions.

We now focus on a multidimensional version of Spearman’s ρ. De�ne

ρ(C) := d + 1
2
d
− (d + 1)

2d ∫
[0,1]

d

Π(u)dC(u) − 1

 . (15)

Here, Π denotes the independence copula, i.e. Π(x
1
, . . . , xd) = Πdi=1xi. It is well-known that ρ(C) is maximal

when C = Md, i.e. C is the Min-copula. It is also well-known that plugging in the lower Fréchet-Hoe�ding

bound (usually denoted byWd) yields a lower bound on ρ(C):

ρ(Wd) =
2

d
− (d + 1)!

d!(2d − (d + 1))
≤ ρ(C) ≤ ρ(Md), C ∈ Cd , d ≥ 2.

However, since Wd is not a copula for d ≥ 2, it is not a priori clear whether this lower bound is attained or

not. Indeed, this has been stated as an open problem in [19]. In 2011, Wang andWang [21] found an analytical

solution to this long unresolved question. They give a formula to explicitly compute

Λd := min

C∈Cd

∫
[0,1]

d

Π(u) dC(u)

for any d ∈ N. Since the formula yields Λ
3
= 5.4803 × 10

−2

, it is straightforward that ρ(W
3
) = −

2

3

is not

attained. We now want to give an alternative, numerical proof for this result. We chose this example because

the fact that we know the exact analytical value will help us to validate the convergence of our method.
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We use Theorem 3.2 to compute strict upper and lower bounds for Λ
3
. In this case the monotonicity of Π

facilitates �nding the maximum respectively minimum functions in the algorithm as we simply have to eval-

uate Π at the vertices of the grid cubes that maximize respectivelyminimize the arguments. An approximated

value is also obtained by evaluating Π in the center of each grid cube. Of course, this has to be adapted for

other cost functions. Table 1 illustrates the results obtained using the method proposed in this paper with a

grid of n ∈ {30, 40, 50, 60} sections in each dimension¹ as well as the range the rearrangement algorithm

(which uses the same discretization method as our algorithm) computes for a grid of 10

5

sections in each

dimension [16].

Table 1: Approximation results for Λ
3
. The values for n = 30, . . . , 60 were calculated by the method proposed in this paper,

whereas the values for n = 10

5 were calculated using the rearrangement algorithm [16].

n lower bd. approx. value upper bd.
30 0.044414 0.054971 0.066341

40 0.046906 0.054897 0.063349

50 0.048433 0.054863 0.061587

60 0.049466 0.054844 0.060427

10

5 (RA) 0.054800 - 0.054807

analytic value - 0.054803 -

Note that the range here is not a con�dence interval but actually consists of deterministic upper and

lower bounds on the true value. Already the lower bound for n = 30 su�ces to prove that ρ(C) > −2
3

= ρ(W
3
)

for all copulas C. As can be seen, the rearrangement algorithm yields a more precise approximation for the

same problem and that in considerably less time, even for higher dimensions d (more details can be found

in [16]). However, since the lower bound computed by the rearrangement algorithm does not always have to

be satis�ed, we see the merit of our method in providing rigorous numerics for the fact that the lower bound

−

2

3

for ρ(C) is not best-possible.
An interesting extension to the minimization of Λd is considering non-uniform marginal distributions.

While the result of Wang and Wang [21] is restricted to identical marginal distributions having an increasing

density, Sklar’s Theoremallowsus to treat anymarginal lawsby inserting thequantile functions of thedesired

distributions. Table 2 contains the approximated value as well as upper and lower bounds of

Θ(µ
1
, µ

2
, µ

3
) = min

µ∈M(µ
1
,µ

2
,µ

3
)

∫
[0,1]

3

Π(x)dµ(x)

for di�erent choices of µ
1
, µ

2
, µ

3
. Here M(µ

1
, . . . , µd) denotes the set of probability measures on [0, 1]

d

which have marginal distributions µ
1
, . . . , µd. Distributions with unbounded support require some minor

adjustments, however themethod is still applicable. Again, the rearrangement algorithmas proposed by Puc-

cetti and Rüschendorf [16] will producemore accurate results in shorter calculation time and is thus probably

the preferable choice in applications.

1 This result was obtained using the “lpSolve” package for the open source program R. This package is built on the free Mixed In-

teger Linear Program solver lp_solve, which utilizes the revised simplex method and the Branch-and-boundmethod. No presolve

routines or any other kind of advanced techniques were used.
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Table 2: Approximation results for inhomogenous marginals, obtained for a discretization of n = 60 sections in each dimen-
sion.

µ
1

µ
2

µ
3

lower bd. approx. value upper bd.
Par(2, 0.2) U([0, 1]) U([0, 1]) 0.043123 0.046767 0.054226

U([0, 1]) U([0, 1]) Beta(2, 5) 0.030489 0.033876 0.037232

exp(1) U([0, 1]) Beta(2, 5) 0.044647 0.051213 0.058365

4.2 First-to-default Swaps

In the examples so far, we alwaysminimized the expectation of the product of random variables. The product

function is supermodular in the following sense.

De�nition 4.1. A function f : Rd → R is called supermodular, if it ful�lls

f (x ∧ y) + f (x ∨ y) ≥ f (x) + f (y) ∀x, y ∈ Rd .

Here, x ∧ y resp. x ∨ y means the componentwise minimum resp. maximum of x and y.

Since the rearrangement algorithmcanonly be applied to approximate the expectation of supermodular func-

tions, it is interesting to look at an example involving a non-supermodular function. We want to consider so

called First-to-default Swaps. They can be thought of as an insurance contract for portfolios of risky assets.

The protection seller (PS) compensates the losses if one of the assets in the portfolio of the protection buyer

(PB) defaults. In turn, the PB pays �xed premiums at �xed points in time (e.g. quarterly or annually) until the

�rst default occurs or the maturity of the contract is reached. There are no payments for any event after the

�rst default or after maturity. We consider a portfolio consisting of three risky assets and use the following

assumptions and notations.

The default times τ
1
, τ

2
, and τ

3
of the assets follow an exponential distribution with parameters λ

1
, λ

2

and λ
3
respectively. The notionals of all three assets are 1 and the recovery rates R

1
, R

2
and R

3
describe the

amount of money that can be liquidized if the corresponding asset defaults. So the total loss for a default of

asset i is (1 − Ri). The times of premium payments are denoted by 0 = t
0
< t

1
< · · · < tk = T with T denoting

the time of maturity. Note in particular that the �rst payment is due at time t
0
= 0. Finally, we assume there

is a constant, risk free interest rate r ≥ 0. Now the premiums p are given as

p =
∫

[0,1)
3

e−rmin(F−1
1

(x
1
),F−1

2

(x
2
),F−1

3

(x
3
))∑k

i=0 e−rti1{ti<min(F−1
1

(x
1
),F−1

2

(x
2
),F−1

3

(x
3
))}
·

(
1{F−1

1

(x
1
)≤min(F−1

2

(x
2
),F−1

3

(x
3
),T)}(1 − R1)

+ 1{F−1
2

(x
2
)≤min(F−1

1

(x
1
),F−1

3

(x
3
),T)}(1 − R2) + 1{F−1

3

(x
3
)≤min(F−1

1

(x
1
),F−1

2

(x
2
),T)}(1 − R3)

)
dC(x),

with C denoting the copula of the distribution function of (τ
1
, τ

2
, τ

3
) and F−1i being the quantile function

corresponding to the distribution of τi. Since our assumptions and the valuation method we want to use are

basically the same, we refer to [7] for the precise deduction of the premium heights. We calculate bounds for

the minimal as well as for the maximal premium for three payment times t
0
= 0, t

1
= 1 and t

2
= T = 2. The

results are listed in Table 3.

Remark 4.2. Note that the integrand in the last example is not continuous. Our method is not restricted to
continuous functions but can be applied as long as the integrand f can, with respect to the L1 norm, be ap-
proximated by a (subsequence of a) sequence of functions (fn)n that are constant on the cubes Ini with i ∈ I (as
de�ned in Theorem 3.1). Hence, by a simple denseness argument, the algorithm actually works for any function f
in L1([0, 1]d), which is whywe still have valid bounds in our last example. However, the speed of convergence can
be very slow for functions with many discontinuities. For example, it can happen that for n

1
< n

2
, the bounds for

a discretization of n
2
sections are worse than those for a discretization with n

1
sections. Also the convergence

of the sequence of optimizers is not guaranteed if we choose an integrand f which is not continuous.
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Table 3: Upper and lower bounds for the minimal and the maximal premium. The interest rate was set to r = 0.05.

λ
1
=

1

3

, R
1
= 0.5, λ

2
=

1

2

, R
2
= 0.7, λ

3
=

2

5

, R
3
= 0.6

n range min. premium range max. premium
30 0.14093 − 0.16104 0.37090 − 0.40287

40 0.14566 − 0.16072 0.37693 − 0.40086

50 0.14572 − 0.15775 0.37777 − 0.39690

70 0.14777 − 0.15424 0.37889 − 0.39102
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