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Abstract: In this paper, a new supervised classi�cationmethod dedicated to binary predictors is proposed. Its
originality is to combine a model-based classi�cation rule with similarity measures thanks to the introduc-
tion of new family of exponential kernels. Some links are established between existing similarity measures
when applied to binary predictors. A new family of measures is also introduced to unify some of the exist-
ing literature. The performance of the new classi�cation method is illustrated on two real datasets (verbal
autopsy data and handwritten digit data) using 76 similarity measures.
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1 Introduction
Supervised classi�cation aims to build a decision rule able to assign an observation x in an arbitrary space E
with unknown class membership to one of L known classes C1, . . . , CL. For building this classi�er, a learn-
ing dataset {(x1, y1), . . . , (xn , yn)} is used, where an observation is denoted by xi ∈ E and yi ∈ {1, . . . , L}
indicates the class belonging of xi, i = 1, . . . , n.

Model-based classi�cation assumes that the predictors {x1, . . . , xn} are independent realizations of a
random vector X on E and that the class conditional distribution of X is parametric. When E = Rp, among the
possible parametric distributions, the Gaussian is often preferred and, in this case, the marginal distribution
of X is therefore a mixture of Gaussians. Estimation of model parameters can be achieved with maximum
likelihood, see [29]. Some extensions dedicated to high-dimensional data include [6, 8, 9, 30, 31, 33, 34]. Al-
though model-based classi�cation is usually enjoyed for its multiple advantages, it is often limited to quan-
titative data. Numerous recent works focused on non Gaussian distributions such as the skew normal [43],
asymmetric Laplace [16], t-distributions [1, 15] or skew t-distributions [27, 28, 45].

Only few works exist to handle categorical data using multinomial [12] or Dirichlet [5] distributions for
instance. Recently, a new classi�cation method, referred to as ’parsimonious Gaussian process Discriminant
Analysis’ (pgpDA), has been proposed [7] to tackle the case of data of arbitrary nature. See for instance [14]
for an application to the classi�cation of hyperspectral data. The basic idea is to introduce a kernel function
in the Gaussian classi�cation rule.
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In this paper, we focus on the application of the pgpDA method to binary predictors. To this end, we
show how new kernels can be built basing on similarity or dissimilarity measures. In particular, 76 such
measures are considered. Some links are establishedbetween thesemeasureswhen they are applied to binary
predictors. A new family of measures is also introduced to unify the existing literature. As a result, we end up
with a new supervised classi�cation method dedicated to binary predictors combining similarity measures
andmixturemodels. Its performance is illustrated on two real datasets (verbal autopsy data and handwritten
digit data). It is shown that the proposed kernels can lead to good classi�cation results even in challenging
problems.

The paper is organized as follows. The principle of pgpDA applied to binary predictors is explained in
Section 2. A brief review on similarity and dissimilarity measures is proposed in Section 3 together with some
uni�cation e�orts. The construction of new kernels starting from similarity measures is presented in Sec-
tion 4. The method is illustrated on real data in Section 5 and some concluding remarks are provided in
Section 6. Proofs are postponed to the Appendix.

2 Classi�cation with binary predictors using a kernel function
Conventional classi�cation algorithms can be turned into kernel ones as far as the original method depends
on the data only in terms of dot products. The dot product is simply changed to a kernel evaluation, leading
to a transformation of linear algorithms to non-linear ones. Additionally, a nice property of kernel learning
algorithms is the possibility to deal with any kind of data. The only condition is to be able to de�ne a positive
de�nite function over pairs of elements to be classi�ed [23]. Here, we focus on binary predictors. Let us con-
sider a learning set {(x1, y1), . . . , (xn , yn)}where {x1, . . . , xn} are assumed to be independent realizations of
a randombinary vector X ∈ {0, 1}p. The class labels {y1, . . . , yn} are supposed to be realizations of a discrete
randomvariable Y ∈ {1, . . . , L}. They indicate thememberships of the learning data to the L classes denoted
by C1, . . . , CL, i.e. yi = kmeans that xi belongs to the kth cluster Ck for all i ∈ {1, . . . , n} and k ∈ {1, . . . , L}.

The principle of pgpDA is as follows. Let K be a symmetric non-negative bivariate function K : {0, 1}p ×
{0, 1}p → R+. In the following, K is referred to as a kernel function and additional conditionswill be assumed
on K. The basic idea is to measure the proximity between individuals with K, and that close individuals are
likely to belong to the same class. To this end, the kernel K computes inner products between pairs of data
in some non-linear space (often referred to as a feature space). For all k = 1, . . . , L, let us denote by nk the
cardinality of the class Ck, i.e. nk =

∑n
i=1 I{yi = k} where I{.} is the indicator function. We also introduce

rk the dimension of class Ck once mapped in a non-linear space with the kernel K. In practice, one has rk =
min(nk , p) for a linear kernel and rk = nk for the non-linear kernels considered in Section 4. See [7], Table 2
for further examples.

For all k = 1, . . . , L, the function ρk : {0, 1}p × {0, 1}p → R+ is obtained by centering the kernel K with
respect to the class Ck:

ρk(x, x′) = K(x, x′) −
1
nk

∑
xi∈Ck

(K(xi , x′) + K(x, xi)) +
1
n2k

∑
xi ,xj∈Ck

K(xi , xj). (1)

Besides, for all k = 1, . . . , L, let Mk be the nk × nk symmetric matrix de�ned by (Mk)i,j = ρk(xi , xj)/nk for
all (i, j) ∈ {1, . . . , nk}2. The sorted eigenvalues of Mk are denoted by λk1 ≥ · · · ≥ λknk while the associated
(normed) eigenvectors are denoted by βk1, . . . , βknk . In the following, βkji represents the ith coordinate of βkj,
for (i, j) ∈ {1, . . . , nk}2. The main assumption of the method is that the data of each class Ck live in a speci�c
subspace of dimension dk of the feature space (of dimension rk). The variance of the signal in the kth group
is modeled by λk1, . . . , λkdk and the variance of the noise is modeled by λ. This amounts to supposing that
the noise is homoscedastic and its variance is common to all the classes.
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The classi�cation rule introduced in [7], Proposition 2 a�ects x ∈ {0, 1}p to the class C` if and only if
` = argmink=1,...,L Dk(x) with

Dk(x) =
1
nk

dk∑
j=1

1
λkj

(
1
λkj
− 1
λ

)∑
xi∈Ck

βkjiρk(x, xi)

2

+ 1
λ ρk(x, x) +

dk∑
j=1

log(λkj) + (dmax − dk) log(λ) − 2 log(nk)

(2)

where dmax = max{d1, . . . , dL} and

λ =
L∑
k=1

nk(trace(Mk) −
dk∑
j=1

λkj)
/ L∑

k=1
nk(rk − dk) .

Let us highlight that only the eigenvectors associated with the dk largest eigenvalues of Mk have to be esti-
mated. This property is a consequence of the above assumption, it allows to circumvent theunstable inversion
of the matricesMk, k = 1, . . . , L which is usually necessary in kernelized versions of Gaussian mixture mod-
els, see for instance [13, 32, 35, 44, 46]. In practice, dk is estimated thanks to the scree-test of Cattell [11] which
looks for a break in the eigenvalues scree. The selected dimension is the one for which the subsequent eigen-
values di�erences are smaller than a threshold t. The threshold t can be provided by the user or selected by
cross-validation, see Section 5 for implementation details. The implementation of this method requires the
selection of a kernel function K which measures the similarity between two binary vectors. The following
invariance remark can be made:

Lemma 1. Let K be a symmetric non-negative bivariate function K : {0, 1}p ×{0, 1}p → R+. Then, for all η > 0
and µ ∈ R, the classi�cation rules associated with K and K̃ := ηK + µ through (2) are the same.

As a consequence, to de�ne a proper kernel method [23], it su�ces to �nd a shifted version of K which is a
positive de�nite function i.e.

∃ µ ∈ R s.t.
n∑
i=1

n∑
j=1

cicj[K(xi , xj) + µ] ≥ 0 for all n ∈ N, (ci , cj) ∈ R2, (xi , xj) ∈ {0, 1}p × {0, 1}p . (3)

The construction of kernel functions adapted to binary vectors and satisfying (3) is addressed in Section 4.
Let us highlight that pgpDA is not the only kernel-based classi�cation method. In Section 5, pgpDA is

compared to Support Vector Machine (SVM) classi�cation [20, 21, 36] and k-nearest neighbours (kNN) [22],
Chapter 13, on two real datasets. From the theoretical point of view, pgpDA o�ers a number of advantages
compared to SVM: It is naturally a multi-class method; as a model-based classi�er, it provides classi�cation
probabilities, and �nally its computation cost is lower than SVM [7].

3 Similarity and dissimilarity measures
Binary similarity and dissimilarity measures play a critical role in pattern analysis problems, classi�cation
or clustering. Since the performance of these methods relies on the choice of an appropriate measure, many
e�orts have been made to �nd the most meaningful similarity measures over a hundred years, see [2, 37] for
examples. The review article [37] lists 76 examples of such measures. Here, we focus on their application to
binary predictors. One of the earliest measures is Jaccard’s coe�cient [26]. It was proposed in 1901 and it is
still widely used in various �elds such as ecology and biology.

Let x, x′ be two vectors in {0, 1}p and introduce a =< x, x′ >, b =< 1 − x, x′ >, c =< x, 1 − x′ > and
d =< 1 − x, 1 − x′ >, where < ., . > is usual scalar product on Rp and 1 = (1, . . . , 1)T in Rp. The integer a is
often referred to as the intersection of x and x′, (b + c) is the di�erence and d is the complement intersection.
Note that one always has a + b + c + d = p.
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Here, we propose to unify most of the measures proposed in the literature by introducing the following
similarity measure :

S(x, x′) = αa − θ(b + c) + βd
α′a + θ′(b + c) + β′d (4)

where α ≥ 0, β ≥ 0, θ ≥ 0, (α′, β′) ∈ R2 and θ′ ≠ 0. The Symmetric Ratio Model [42] can be written as

STversky(x, x′) =
a

a + θ′(b + c)

and is thus a particular case of (4) where α = α′ = 1 and θ = β = β′ = 0. Similarly, Beaulieu’s similarity [3]
de�ned by

SBeaulieu(x, x′) =
−(b + c)

α′a + (b + c) + β′d

can be obtained from (4) with α = β = 0 and θ = θ′ = 1. We shall also consider the particular case

SSylla & Girard(x, x′) = αa + (1 − α)d, (5)

where θ = 0, β = 1 − α and α′ = β′ = θ′ = 1/p. This new measure can be interpreted as an extension of
Intersection [37] eq. (12) and Russell & Rao [37] eq. (14) measures which both correspond to the case α = 1.
The inclusion of negative matches d in similarity measures is discussed for instance in [17, 18, 40]. It may
reveal useful for instance when the classi�cation rule depends on the coding of the data, see also Lemma 2
below. The new measure SSylla & Girard can also be seen as an extension of Sokal & Michener [37] eq. (7) and
Innerproduct [37] eq. (13) measures which both correspond to the special case α = 1/2. Thus, the parameter
α in SSylla & Girard permits to balance the relative weights of positive and negative matches.
More generally, Table 1 displays 28 similarity measures from [37] which can be rewritten using our for-
malism (4). It appears that, on binary predictors, many similarity measures are equivalent. For instance,
Hamming similarity [37] eq. (15) is equivalent to measures [37] eq. (17)–(23). Finally, some measures of [37]
do not enter in our framework (4) but they can be shown to be equivalent: Forbesi measure [37] eq. (34)
is equivalent to Cosine [37] eq. (31) measure, Kulczynski-II [37] eq. (41), Driver & Kroeber [37] eq. (42) and
Johnson [37] eq. (43) measures are equivalent, Ochia1 measure [37] eq. (33) is equivalent to Otsuka mea-
sure [37] eq. (38), Hellinger measure [37] eq. (29) is equivalent to Chord measure [37] eq. (30) and Tarantula
measure [37] eq. (75) is equivalent to Ample measure [37] eq. (76).

4 Kernels for binary predictors
The goal of this section is to build kernels adapted to binary predictors starting from the similarity and dis-
similarity measures presented in Section 3. The kernels can then be plugged in the classi�cation rule (2) to
build new classi�cationmethods designed for binary predictors. In a �rst time, we consider the case of linear
and Radial Basis Function (RBF) kernels. We then show in a second time how the RBF kernel can be extended
to a wider class of exponential kernels.

Linear kernels.
Let x, x′ ∈ {0, 1}p. The linear kernel Klinear(x, x′) =< x, x′ >= a is the simplest kernel function. In the consid-
ered binary framework, Klinear counts the number of positive matches between x and x′. It is shown (see [7],
Proposition 3) that the associated classi�cation rule (2) is quadratic and can thus be interpreted as a particular
case of the HDDA (High Dimensional Discriminant Analysis) method [4]. Let us recall that the basic principle
of HDDA is to assume that the original data of each class live in a linear subspace of low dimension. The next
lemma shows that the classi�cation rule associated with a linear kernel is independent from the coding of
the data.
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Table 1: Similarity measures. Measures marked with * are obtained by taking the opposite of the associated dissimilarity mea-
sures. The last column refers to the equation number in [37].

Name α θ β α′ θ′ β′ equation in [37]
Jaccard 1 0 0 1 1 0 (1)
Tanimoto - - - - - - (65)
Dice 2 0 0 2 1 0 (2)
Czekanowski - - - - - - (3)
Nei & li - - - - - - (5)
3w-Jaccard 3 0 0 3 1 0 (4)
Sokal & Sneath-I 1 0 0 1 2 0 (6)
Sylla & Girard α 0 1 − α 1 1 1
Sokal & Michener 1 0 1 1 1 1 (7)
Innerproduct - - - - - - (13)
Sokal & Sneath-II 2 0 2 2 1 2 (8)
Gower & Legendre - - - - - - (11)
Roger & Tanimoto 1 0 1 1 2 1 (9)
Faith 1 0 0.5 1 1 1 (10)
Intersection 1 0 0 1 1 1 (12)
Russell & Rao - - - - - - (14)
Hamming* 0 1 0 1 1 1 (15)
Squared-Euclid* - - - - - - (17)
Canberra* - - - - - - (18)
Manhattan* - - - - - - (19)
Mean-Manhattan* - - - - - - (20)
Cityblock* - - - - - - (21)
Minkowski* - - - - - - (22)
Vari* - - - - - - (23)
Lance & Williams* 0 1 0 2 1 0 (27)
Bray & Curtis* - - - - - - (28)
Sokal & Sneath-III 1 0 1 0 -1 0 (56)
Kulczynski-I 1 0 0 0 -1 0 (64)
Hamann 1 1 1 1 1 1 (67)

Lemma 2. Let x, x′ ∈ {0, 1}p and introduce K̃linear(x, x′) =< 1 − x, 1 − x′ >= d (this kernel counts the number
of negative matches between x and x′). Then, the classi�cation rules (2) associated with Klinear and K̃linear are
equivalent.

Exponential kernels.
The best-known exponential kernel is RBF kernel:

KRBF(x, x′) = exp
(
−‖x − x

′‖2

2σ2

)
,

where σ is a positive parameter. In the binary framework, the RBF kernel can be built from the Hamming
similarity measure (see Table 1 or [37] eq. (15)):
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Lemma 3. Let x, x′ ∈ {0, 1}p. Then,

KRBF(x, x′) = exp
(
SHamming(x, x′)

2σ2

)
.

We thus propose to extend this construction principle to any similarity measure S by introducing:

K(x, x′) = exp
(
S(x, x′)
2σ2

)
. (6)

In practice, Smay be chosen to be (4), (5), or more generally in the set of 76 measures S described in [37]. The
next result is the analogous of Lemma 1 for similarity measures.

Lemma 4. Let S be a similarity measure S : {0, 1}p × {0, 1}p → R+. Then, for all η > 0 and µ ∈ R, the
classi�cation rules associated with S and S̃ := ηS + µ through (2) and (6) are the same.

The next result shows that any kernel de�ned from (4) and (6) veri�es condition (3).

Proposition 1. For all α ≥ 0, β ≥ 0, θ ≥ 0, (α′, β′) ∈ R2 and θ′ ≠ 0, the family of kernels

K(x, x′) = exp
(

1
2σ2

αa − θ(b + c) + βd
α′a + θ′(b + c) + β′d

)
de�nes a proper kernel classi�cation method.

5 Experiments
The performance of the proposedmethod is illustrated on two real datasets described in paragraph 5.1. Some
implementation details are provided in paragraph 5.2. Finally, the results are presented on paragraphs 5.3, 5.4
and 5.5.

5.1 Datasets

Verbal autopsy Data
The goal of verbal autopsy is to get some information from family about the circumstances of a death when
medical certi�cation is incomplete or absent [24]. In such a situation, verbal autopsy can be used as a routine
death registration.A list of p possible symptoms is established and the collecteddata X = (X1, . . . , Xp) consist
of the absence or presence (encoded as 0 or 1) of each symptom on the deceased person. The probable cause
of death is assigned by a physician and is encoded as a qualitative random variable Y. We refer to [39] for
a review of automatic methods for assigning causes of death Y from verbal autopsy data X. In particular,
classi�cation methods based on Bayes’ rule have been proposed, see [10] for instance.

Here,we focus ondatameasured on the deceasedpersons during the period from 1985 to 2010 in the three
IRD (Research Institute for Development) sites (Niakhar, Bandafassi and Mlomp) in Senegal. The dataset in-
cludes n = 2.500 individuals (deceased persons) distributed in L = 22 classes (causes of death) and charac-
terized by p = 100 variables (symptoms).

Binary handwritten digit data
Handwrittendigit and character recognitionarepopular real-world tasks for testing andbenchmarking classi-
�ers, with obvious application e.g. in postal services. Here, we focus on theUSPostal Service (USPS) database
of handwritten digits which consists of n = 9298 segmented 16 × 16 greyscale images [25]. The dataset is
available online at http://yann.lecun.com/exdb/mnist. The random vector X is the binarized image and
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is represented as a p-dimensional vector with p = 256. The class to predict Y is the digit so that L = 10. A
sample extracted from the dataset is depicted on Figure 1.

Figure 1: A sample from the binary handwritten digit data. Each pixel of a 16 × 16 image is either 0 (depicted in white) or 1
(depicted in black).

5.2 Experimental design

The implementation of the classi�cation method requires the selection of the hyper-parameter ω = (t, σ)
where t is the threshold (see Section 2) and σ is the kernel parameter see (6). To this end, a double cross-
validation technique is used. The dataset of size n is randomly split M = 50 times into a learning set Lm
of size τn and a test set Tm of size (1 − τ)n where τ ∈ (0, 1) is a proportion parameter and m = 1, . . . ,M.
On each learning set Lm, the optimal hyper-parameter ω̂m is selected by a 5-fold simple cross-validation,
m = 1, . . . ,M. The resulting optimal hyper-parameter ω̂ is computed as the empirical mode of the set
{ω̂1, . . . , ω̂M}. Finally, the mean Correct Classi�cation Rate (CCR) is computed on the learning sets Lm,
m = 1, . . . ,M and on the test sets Tm, m = 1, . . . ,M. Recall that the CCR is the percentage of well-classi�ed
observations i.e. the number of times that the predicted class coincides with the actual one divided by the
total number of observations.

5.3 Results obtained with Sylla & Girard kernel

We �rst investigate the use of Sylla & Girard similarity measure (5) when plugged into (6). The CCR are com-
puted for α ∈ {0, 0.1, . . . , 1} and for several proportions τ thanks to the double cross-validation procedure
described in the previous paragraph. It �rst appears on Figure 2 that the graphs are not symmetric with re-
spect to α = 0.5. This means that the coding of the observations does a�ect the classi�cation. This is di�erent
from the linear case, see Lemma 2. It is also apparent that the optimal value of α does depend on the dataset.
However, in both considered cases, α = 0.1 permits to outperform the RBF kernel associated with α = 0.5.
Thus, the selection of an optimal value of α is of interest. It can be easily done by introducing α as an addi-
tional hyper-parameter inω and thus selecting it by double cross-validation, see Paragraph 5.5 below. Finally,
let us highlight that a large panel of values of α give rise to high CCR on the test set. In particular, a CCR of
87% can be reached on the challenging example of verbal autopsy data when τ = 78% of the dataset is
used to train the classi�er. As a comparison, a classi�cation based on a multinomial mixture model under
conditional independence assumption yields a CCR of about 50% only [41].
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Figure 2: Correct Classi�cation Rate (CCR) obtained with Sylla & Girard kernel (5, 6) for α ∈ {0, 0.1, . . . , 1} and several propor-
tions τ. The results obtained with the RBF kernel (α = 0.5) are emphasized by a red circle. Left: CCR computed on the learning
set, Right: CCR computed on the test set. Top: results obtained on the verbal autopsy data, bottom: results obtained on the
handwritten digit data.

5.4 Results obtained with the 76 kernels from [37]

The goal of this paragraph is to compare the performance of the classi�cation methods obtained by com-
bining the 76 similarity and dissimilarity measures presented in [37] with the exponential kernel (6). For the
sake of completeness, the results obtained with Sylla & Girard kernel presented above are also included. The
classi�cation results are summarized in Table 2 when τ = 63% of the dataset is used to train the classi�er.
Only the results associated with the 18 best kernels (in terms of CCR computed on the test set) are reported. It
appears that these kernels achieve good classi�cation results on both datasetswith CCR ∈ [78.7%, 89.7%]. It
is also interesting to note that 8 kernels out of the 76 of [37] appear in the top 18 on both test datasets, namely:
Euclid, Hellinger, Dice, 3w-Jaccard, Orchia1, Gower & Legendre, Roger & Tanimoto and RBF. Let us also high-
light that Sylla & Girard kernel should also be included, leading to a list of 9 kernels with good results on both
datasets.

5.5 Comparison with other classi�cation methods

The proposed classi�cation method is compared to the Random Forest method (RandomForest package, ver-
sion 4.6-10 from R software), the kNN method (fitcknn function from the statistics and machine learning
toolbox of Matlab) and the SVMmethod (library libsvm, version 3.2 from Matlab). The “one-against-all” im-
plementation of the SVM classi�cation method is used. SVM and Random Forest methods were used with
their default parameters. In particular, in case of Random Forest method, the number of trees to grow is set
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Table 2: Correct Classi�cation Rate (CCR) on the verbal autopsy dataset (top) and on the handwritten digit dataset (bottom).
The results are sorted by decreasing values of the CCR computed on the test set. The train set includes τ = 63% individuals
from the initial dataset. The last column refers to the equation number in [37].

Kernel α σ threshold CCR CCR equation
t (learning set) (test set) in [37]

Euclid 4 0.60 88.0 83.8 (16)
Pearson 10 0.95 87.7 83.2 (51)
Hellinger 6 0.60 87.7 83.2 (29,30)
Dice 2 0.60 87.3 83.0 (2,3,5)
3w-Jaccard 2 0.75 87.2 82.9 (4)
Ochia1 2 0.60 87.2 82.8 (33,38)
Gower & Legendre 4 0.80 86.6 82.6 (8,11)
Roger & Tanimoto 2 0.65 85.9 82.4 (9)
Sylla & Girard 0.1 1.9 0.90 85.8 81.5
Sylla & Girard 0.3 2.2 0.85 85.5 81.5
Sylla & Girard = RBF 0.5 1.4 0.80 85.1 81.3 (15,17,. . . ,23)
Sylla & Girard 0.2 1.8 0.80 85.6 81.1
Godman & Kruskal 4 0.95 84.3 80.8 (69)
Sylla & Girard 0.4 2.5 0.80 84.7 80.6
Sokal & Sneath 5 4 0.95 84.7 80.5 (57)
Sylla & Girard 0.6 3.09 0.80 83.2 79.6
Sylla & Girard 0.7 3.34 0.95 83.0 79.5
Sokal & Sneath1 2 0.05 83.4 78.7 (6)
Kernel α σ threshold CCR CCR equation

t (learning set) (test set) in [37]
Hellinger 8 0.5 97.6 89.7 (29,30)
Euclid 8 0.5 97.5 89.7 (16)
Sylla & Girard 0.1 3.16 1 92.3 89.6
Sylla & Girard 0.6 6.19 0.5 97.5 89.5
Sylla & Girard 0.7 6.69 0.5 97.5 89.4
Dice 2 0.5 97.4 89.4 (2,3,5)
Ochia1 2 0.5 97.4 89.4 (33,38)
Sylla & Girard = RBF 0.5 5.65 0.5 97.5 89.4 (15,17,. . . ,23)
Roger & Tanimoto 2 0.4 97.3 89.4 (9)
Sylla & Girard 0.8 8 0.5 97.4 89.3
Sylla & Girard 1 8 8 92.3 89.3 (9)
3w-Jaccard 4 0.5 97.3 89.3 (4)
Sylla & Girard 0.9 7.15 0.5 97.3 89.2
Jaccard 4 0.4 97.2 89.2 (1)
Gower & Legendre 10 0.8 97.4 89.1 (8,11)
Sylla & Girard 0.4 6.3 0.5 97.2 89.1
Sylla & Girard 0.3 5.4 0.5 96.9 88.7
Sylla & Girard 0.2 4.4 0.45 97.9 86.8

to ntree=500 and the minimum size of terminal nodes is set to nodesize=1. Some additional experiments
reported in Table 5 and Table 6 showed that the obtained classi�cations were not very sensitive to these pa-
rameters: The CCR computed on the test set remains approximately constant when nodesize ∈ {1, . . . , 10}
and ntree ∈ {250, 500, 750, 1000}. The number k of neighbours in kNN method is selected using the dou-
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ble cross-validation procedure. Sylla & Girard kernel is plugged into pgpDA, kNN and SVM methods with
α ∈ {0.1, 0.2, . . . , 0.9}. The selection of α by double cross-validation has also been implemented, the result-
ing value is denoted by α* in the following.

Table 3: Correct Classi�cation Rate (CCR) on the verbal autopsy dataset (top) and on the handwritten digit dataset (bottom).
Sylla & Girard kernel is plugged into pgpDA, SVM and kNN methods for α ∈ {0.1, 0.2, . . . , 1}. The CCR associated with the
parameter α* selected by the double cross-validation procedure is emphasized. The train set includes τ = 63% individuals
from the initial dataset.

pgpDA SVM kNN
α CCR CCR CCR CCR CCR CCR

(learning set) (test set) (learning set) (test set) (learning set) (test set)
0.1 86.9 76.3 85.3 74.6 64.5 53.1
0.2 86.6 76.4 79.9 70.8 67.4 57.6
0.3 86.1 76.0 79.5 70.4 68.3 59.5
0.4 86.1 76.1 76.0 67.9 69.1 60.9
0.5 85.8 76.1 72.7 65.3 69.0 61.0
0.6 84.3 74.9 70.3 63.5 69.2 61.8
0.7 83.4 74.2 69.2 62.6 68.3 60.9
0.8 83.3 74.1 68.7 62.2 68.5 60.9
0.9 82.8 73.7 68.2 61.7 67.7 59.8
1 82.1 72.0 67.6 61.2 64.6 56.4

pgpDA SVM kNN
α CCR CCR CCR CCR CCR CCR

(learning set) (test set) (learning set) (test set) (learning set) (test set)
0.1 93.4 89.6 100.0 93.1 91.5 91.4
0.2 95.2 87.1 99.9 97.5 94.3 93.8
0.3 97.2 88.9 99.9 97.8 95.5 94.3
0.4 97.4 89.1 99.7 97.7 95.3 93.4
0.5 97.7 89.4 99.4 97.4 94.7 92.0
0.6 97.8 89.4 99.3 97.2 92.5 88.7
0.7 97.8 89.4 99.1 97.0 89.3 83.5
0.8 97.8 89.4 98.3 96.2 82.5 74.7
0.9 97.7 89.3 98.0 96.0 72.5 62.2
1 97.6 89.3 97.7 95.7 56.1 45.2

Table 4: Correct Classi�cation Rate (CCR) obtained with Random Forest (nodesize=1 and ntree=500). The training set includes
τ = 63% individuals from the initial dataset.

Random Forest
CCR CCR

(learning set) (test set)
Verbal autopsy 88.7 67.4
Handwritten digit 100.0 94.0
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Table 5: Correct Classi�cation Rate (CCR) obtained with Random Forest for several values of nodesize and ntree on the verbal
autopsy dataset. The CCR obtained with the default parameters nodesize=1 and ntree=500 are emphasized, and reported in
Table 4. The training set includes τ = 63% individuals from the initial dataset.

CCR (training set)
nodesize 1 2 3 4 5 6 7 8 9 10

ntree
250 88.8 87.9 86.9 85.5 83.9 82.7 81.4 79.9 78.1 76.6
500 88.7 88.0 86.9 85.6 84.4 82.9 81.6 79.9 78.3 76.7
750 88.8 88.2 87.0 85.7 84.4 82.9 81.5 79.6 78.1 76.6

1000 88.7 88.2 87.2 85.7 84.2 83.1 81.6 80.0 78.1 76.8
CCR (test set)

nodesize 1 2 3 4 5 6 7 8 9 10
ntree
250 67.3 67.1 67.0 67.6 67.0 67.1 66.8 66.3 66.1 65.9
500 67.4 67.8 67.3 67.0 67.4 66.9 66.7 66.4 65.9 65.7
750 67.5 67.6 67.4 67.1 67.2 66.9 66.7 66.5 65.8 65.8

1000 67.9 67.7 67.3 67.3 67.2 67.0 66.7 66.6 66.2 65.5

Table 6: Correct Classi�cation Rate (CCR) obtained with Random Forest for several values of nodesize and ntree on the hand-
written digit dataset. The CCR obtained with the default parameters nodesize=1 and ntree=500 are emphasized, and reported
in Table 4. The training set includes τ = 63% individuals from the initial dataset.

CCR (training set)
nodesize 1 2 3 4 5 6 7 8 9 10

ntree
250 100.0 100.0 100.0 99.9 99.9 99.8 99.6 99.4 99.2 98.9
500 100.0 100.0 100.0 100.0 99.9 99.8 99.7 99.5 99.2 99.0
750 100.0 100.0 100.0 100.0 99.9 99.8 99.7 99.5 99.3 99.0

1000 100.0 100.0 100.0 100.0 99.9 99.8 99.7 99.5 99.3 99.0
CCR (test set)

nodesize 1 2 3 4 5 6 7 8 9 10
ntree
250 93.9 93.8 93.8 93.6 93.5 93.5 93.2 93.1 93.1 93.0
500 94.0 94.0 93.7 93.8 93.7 93.5 93.3 93.3 93.1 93.2
750 93.9 94.0 93.8 93.8 93.7 93.5 93.5 93.3 93.3 93.1

1000 94.0 94.0 93.9 93.8 93.7 93.6 93.4 93.4 93.3 93.2

It appears in Table 3 and Table 4 that, on the verbal autopsy dataset, pgpDAmethod yields better results
than SVM, kNN and Random Forest methods on the test set. Since, on the learning set, the CCR obtained
with Random Forest is larger than the CCR associated with pgpDA, kNN and SVM methods for all values of
α, one can suspect that Random Forest over�ts this dataset. One can also observe that the CCR associated
with pgpDA slightly depends on α (CCR ∈ [72.0%, 76.4%]) whereas CCR associated with SVM and kNN are
very sensitive to α (CCR ∈ [61.2%, 74.6%] and CCR ∈ [53.1%, 61.8%] respectively). At the opposite, SVM,
kNNandRandomForest yield better results than pgpDAon the handwritten digit dataset. The CCR associated
with pgpDA is however satisfying, it is larger than 87.1%whatever the value of α is. Thismay due to the small
number of classes (L = 10 here, L = 22 in the previous situation) which makes the classi�cation problem not
so di�cult.
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The selection by double cross-validation of the parameter α in Sylla & Girard achieves good results for
all the considered classi�cation methods. The selected value remains stable accross the experiments: α* ∈
{0.3, 0.4}with pgpDA, α* ∈ {0.1, 0.2}with SVM and α* = 0.3 for kNN. It is a �rst step towards an automatic
choice of the similarity measure in the classi�cation framework. Finally, let us precise that the experiments
were conducted on a two processor computer (8 cores cadenced a 2.6 GHz). The computations on one learn-
ing set Lm from the handwritten digit dataset took respectively 35 minutes (pgpDA), 40 minutes (SVM), 48
minutes (kNN) and 11 minutes (Random Forest).

6 Conclusion
This work was motivated by two facts: First, numerous binary similarity measures have been used in various
scienti�c �elds. Second, model-based mixtures o�er a coherent response to the problem of classi�cation by
providing classi�cation probabilities and natural multi-class support. Basing on these remarks, our main
contribution is the proposal of a new classi�cation method combining mixture models and binary similarity
measures. The method provides good classi�cation performances on challenging data sets (high number
of variables and classes). We believe that this method can reveal useful in a wide variety of classi�cation
problems with binary predictors. As a by-product of this work, some new similarity measures are proposed
to unify the existing literature.

This work could be extended to the classi�cation of mixed quantitative and binary predictors. As sug-
gested in [7], to deal with such data, one can build a combined kernel by mixing a kernel based on a simi-
larity measure (as proposed here) for the binary predictors and a RBF kernel for the quantitative ones. The
combined kernel could be for instance the weighted sum or the product of the two kernels, see [19] for further
details on multiple kernel learning.

Appendix: Proofs
Proof of Lemma 1.
For all k = 1, . . . , L, let ρ̃k be the function de�ned similarly to (1) by

ρ̃k(x, x′) := K̃(x, x′) − 1
nk

∑
xi∈Ck

(K̃(xi , x′) + K̃(x, xi)) +
1
n2k

∑
xi ,xj∈Ck

K̃(xi , xj)

= ηK(x, x′) − 1
nk

∑
xi∈Ck

(ηK(xi , x′) + ηK(x, xi)) +
1
n2k

∑
xi ,xj∈Ck

ηK(xi , xj),

= ηρk(x, x′).

Thus, (M̃k)i,j := ρ̃k(xi , xj)/nk = η(Mk)i,j for all (i, j) ∈ {1, . . . , nk}2. Let the sorted eigenvalues of M̃k be
denoted by λ̃k1 ≥ · · · ≥ λ̃knk and the associated (normed) eigenvectors be denoted by β̃k1, . . . , β̃knk . Clearly,
λ̃kj = ηλkj and β̃kj = ±βkj for all (j, k) ∈ {1, . . . , nk}2. It follows that

λ̃ :=
L∑
k=1

nk(trace(M̃k) −
dk∑
j=1

λ̃kj)
/ L∑

k=1
nk(rk − dk) = ηλ
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and therefore

D̃k(x) := 1
nk

dk∑
j=1

1
λ̃kj

(
1
λ̃kj
− 1
λ̃

)∑
xi∈Ck

β̃kji ρ̃k(x, xi)

2

+ 1
λ̃
ρ̃k(x, x)

+
dk∑
j=1

log(λ̃kj) + (dmax − dk) log(λ̃) − 2 log(nk)

= Dk(x) + dmax log η.

Since dmax log η does not depend on k, the two classi�cation rules are equivalent. �

Proof of Lemma 2.
To simplify the notations, let K(x, x′) :=< x, x′ > and

K̃(x, x′) := < 1 − x, 1 − x′ >
= < 1, 1 > − < 1, x > − < 1, x′ > + < x, x′ >
= K(1, 1) − K(1, x) − K(1, x′) + K(x, x′).

For all k = 1, . . . , L, replacing in

ρ̃k(x, x′) := K̃(x, x′) −
1
nk

∑
xi∈Ck

(K̃(xi , x′) + K̃(x, xi)) +
1
n2k

∑
xi ,xj∈Ck

K̃(xi , xj),

yields ρ̃k(x, x′) = ρk(x, x′) in view of (1) and thus the two classi�cation rules are equivalent. �

Proof of Lemma 3.
For all x, x′ ∈ {0, 1}p, we have

‖x − x′‖2 =
p∑
i=1

x2i +
p∑
i=1

(x′i)2 − 2
p∑
i=1

xix′i

=
p∑
i=1

xi +
p∑
i=1

x′i − 2
p∑
i=1

xix′i

=
p∑
i=1

xi(1 − x′i) +
p∑
i=1

x′i(1 − xi)

= b + c,

and the conclusion follows. �

Proof of Lemma 4.
Let us remark that

K̃(x, x′) := exp
(
S̃(x, x′)
2σ2

)
= exp

(
ηS(x, x′) + µ

2σ2

)
= η′ exp

(
S(x, x′)
2σ′2

)
with η′ = exp(µ/(2σ2)) and σ′ = σ/√η. The conclusion follows from Lemma 1. �
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Proof of Proposition 1.
Let us introduce

S1(x, x′) := αa − θ(b + c) + βd,
S2(x, x′) := α′a + θ′(b + c) + β′d,

such that
K(x, x′) = exp

(
1
2σ2

S1(x, x′)
S2(x, x′)

)
.

– Let us �rst prove that S1 de�nes a proper kernel classi�cation method. Note that, if θ = 0, then
S1(x, x′) = αKlinear(x, x′) + βK̃linear(x, x′) and the conclusion follows. In the case where θ > 0, one can write

S1(x, x′) = αa − θ(p − a − d) + βd = θp(ua + vd − 1)

with u := (1 + α/θ)/p > 0 and v := (1 + β/θ)/p > 0. It is thus clear that S1 veri�es condition (3).
– The second step consists in showing that 1/S2 de�nes a proper kernel classi�cation method. Let us

focus on the case where 0 ≤ α′, β′ < θ′, the other cases being similar. Introduce u′ := (1 − α′/θ′)/p > 0 and
v′ := (1 − β′/θ′)/p > 0 such that

S2(x, x′) = α′a + θ′(p − a − d) + β′d = θ′p[1 − (u′a + v′d)]

with u′ ∈ [0, 1) and v′ ∈ [0, 1). Since 0 ≤ u′a + v′d < 1, the following expansion holds:

1
S2(x, x′)

= 1
θ′p

∞∑
i=0

(u′a + v′d)i .

For all N > 0, let

S3,N(x, x′) :=
1
θ′p

N∑
i=0

(u′a + v′d)i .

Since S3,N is obtained from sums and products of Klinear and K̃linear, it follows from [38], Proposition 3.22 (i)
and (iii) that S3,N de�nes a proper kernel classi�cation method for all N > 0. As a consequence, S3,N veri�es
condition (3) for all N > 0. Letting N →∞, one can conclude that 1/S2 de�nes a proper kernel classi�cation
method.

– Finally, in view of [38], Proposition 3.22 (ii), (iii) and Proposition 3.24 (ii), it follows that K de�nes a
proper kernel classi�cation method. �
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