
© 2015 R. Pourmousa et al., published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Depend. Model. 2015; 3:228–239

Research Article Open Access

R. Pourmousa*, M. Rezapour, and M. Mashinchi

A theory for non-linear prediction approach in
the presence of vague variables: with
application to BMI monitoring
DOI 10.1515/demo-2015-0016
Received June 22, 2015; accepted November 4, 2015

Abstract: In the statistical literature, truncated distributions can be used for modeling real data. Due to error
of measurement in truncated continuous data, choosing a crisp trimmed point caucuses a fault inference, so
using fuzzy sets to de�ne a threshold pointmay leads usmore e�cient resultswith respect to crisp thresholds.
Arellano-Valle et al. [2] de�ned a selection distribution for analysis of truncated data with crisp threshold. In
this paper, we de�ne fuzzy multivariate selection distribution that is an extension of the selection distribu-
tions using fuzzy threshold. A practical data set with a fuzzy threshold point is considered to investigate the
relationship between high blood pressure and BMI.
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1 Introduction
Statistical analysis, in traditional form, is based on crispness of data, randomvariables, hypotheses, decision
rules, parameters, and so on. But, information imprecision and uncertainty exist in real-world applications
that can be caused by human errors in collecting data or some unexpected situations. Therefore, the fuzzy set
theory naturally provides an appropriate tool inmodeling the imprecise concepts. Supposewe should present
a threshold that can be used in our decision. But, some vagueness in our data such as error of measurements
may be distort our modeling. Therefore, using a fuzzy threshold can improve our decision. This leads to the
idea of studying selection distribution under fuzzy events, which is an extension of conditional fuzzy prob-
ability introduced by Zadeh [19]. Pourmousa and Mashinchi [15] introduced a fuzzy method for producing
family of univariate and multivariate skew-elliptical distributions based on fuzzy conditional events. They,
also used the idea of fuzzy events for calculating tail conditional expectations for elliptical and skew-elliptical
distributions. In fact, they considered the random vector X given the fuzzy event in which X is greater than a
threshold.

In practical situation, demographic, behavioral, and physiological variables may be dependent if one of
them is very loworhigh. For example, alcohol drinking andhighbloodpressuremayhave signi�cant relation-
ship that was studied in [17]. Association between blood pressure and body mass index in lean populations
was discovered in [13]. Sodium intake among people with normal and high blood pressure was studied in
Ajani [1]. The e�ects of iron supplementation on serum copper and zinc levels in pregnant women with high-
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normal hemoglobin was investigated in [20]. Association between parity and breastfeeding with maternal
high blood pressure was discovered in [14].

Now suppose (X,Y) be a random vector and we are eager to predict X, given that the random vector
Y is greater (less) than a threshold, since a variable may be related with another one, if it be either less or
greater than a threshold. Selection distributions can be used to consider these kinds of relationship in the
classical statistics [2]. An important class of distributions in this case is selection elliptical distribution that
can be used when data has elliptical distribution. Because of the vagueness in determination of crisp thresh-
old, using fuzzy threshold motivates us to introduce fuzzy selection distribution as an extension of selection
distribution.

The organization of this paper is as follows. In Section 2, we introduced multivariate selection distribu-
tion and then we present selection elliptical distribution considered in [2]. Uni�ed skew-elliptical distribu-
tion function is considered as a special case of selection elliptical distributions. Membership function and
probability of fuzzy events are also introduced in this section. In Section 3, using distribution of a random
vector given a fuzzy event, we introduce fuzzy selection elliptical distribution. Uni�ed multivariate fuzzy
skew-elliptical distribution is also considered as a special case. In Section 4, we consider the non-linear re-
gression given a fuzzy event. Lastly, a practical example on the relation between high blood pressure and
Body Mass Index (BMI) is given, which applied the result reported in this paper.

2 Preliminaries
In this section, we brie�y review the class ofmultivariate selection distributions introduced by Arellano-Valle
et al. [2]. This class can be used for considering a random variable given another one belongs to a known set.
For example, we can use it for considering a random variable given another onewhich is either less or greater
a thresholds. Also, we give a brief introduction on the probability measure of fuzzy events introduced by L.
A. Zadeh [18, 19].

2.1 Multivariate selection distributions

Let X ∈ Rm and Y ∈ Rn be two random vectors and C be a measurable subset of Rm. Then, Arellano-Valle
et al. [2] de�ned a selection distribution as the conditional distribution of Y, given X ∈ C. Speci�cally, a n-
dimensional random vector U is said to have a multivariate selection distribution, denoted by U ∼ SLCTn,m,
with parameters depending on the characteristics of X, Y and C, if

U d= Y | (X ∈ C) . (1)

These authors also showed that if the selection probability density function of U exists, then it is given by

fU(u) = fY(u)
Pr(X ∈ C|Y = u)
Pr(X ∈ C) , u ∈ Rn . (2)

One of the important cases of selection distributions is when X and Y are jointly elliptical distributed as(
X
Y

)
∼ ECm+n

(
µ =

(
µX
µY

)
, Σ =

(
ΣXX ΣTYX

ΣYY

)
, h(m+n)

)
, (3)

where µX ∈ Rm , µY ∈ Rn , ΣYY ∈ Rn×n , ΣXX ∈ Rm×m, ΣYX∈Rn×m and h(m+n) is the density generator func-
tion. In this case, U d= Y | (X ∈ C) is said to have a multivariate selection elliptical distribution, denoted by
Uθ∼ SLCT − ECn,m (θ), where θ = (µY, µX, ΣYY, ΣXX, ΣYX,C).

In the special casewhen C= {x ∈Rm | x > 0}, then the probability density function (pdf) in (5) reduces to
the pdf of the uni�ed multivariate skew-elliptical distribution presented in [2], denoted by Uθ ∼ SUEn,m (θ),
θ = (µY, µX, ΣYY, ΣXX, ΣYX) .
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One of the important cases of selection elliptical distributions is the multivariate selection normal distri-
bution, denoted by Uθ∼ SLCT − Nn,m (θ), when X and Y are jointly normal distributed as(

X
Y

)
∼ Nm+n

((
µX
µY

)
,
(
ΣXX ΣTYX

ΣYY

))
, (4)

The pdf of Uθ can be derived as (see [3] for further details)

ϕSLCT−Nn,m (u;θ) =
ϕn (u;µY, ΣYY)Φm

(
C; µX + ΣTYXΣ−1YY (u−µY) , ΣXX.Y

)
Φm (C; µX, ΣXX)

, u ∈Rn , (5)

where ΣXX.Y = ΣXX−ΣTYXΣ−1YYΣYX, ϕn
(
·; µY, ΣYY

)
denotes the pdf ofNn (µY, ΣYY) andΦm (C; µX, ΣXX) denotes

Pr (X ∈C) , where X∼ Nm (µX, ΣXX). In the special case when C= {x ∈Rm | x > 0}, then the pdf in (5) reduces

to the pdf of the uni�edmultivariate skew-normal distribution presented in [3], denoted byUθ ∼ SUNn,m (θ),
θ = (µY, µX, ΣYY, ΣXX, ΣYX), given by

ϕSUNn,m (u;θ) =
ϕn
(
u; µY, ΣYY

)
Φm

(
µX + ΣTYXΣ−1YY

(
u − µY

)
; ΣXX.Y

)
Φm (µX; ΣXX)

, u ∈Rn . (6)

Its moment generating function (mgf) is

MSUNn,m (t; θ) =
exp

(
µTYt + 1

2 t
TΣYYt

)
Φm

(
µX + ΣTYXt; ΣXX

)
Φm (µX; ΣXX)

, t ∈ Rn , (7)

where Φm (·; ΣXX.Y) and Φm (·; ΣXX) denote the cumulative distribution functions (cdf) of Nm (0, ΣXX.Y) and
Nm (0; ΣXX), respectively.

2.2 Concepts on fuzzy sets

The concept of fuzzy set was initiated by Zadeh [18] in 1965. Let Ω be a sample space of a random experiment
andA a fuzzy subset ofΩ. If for all x ∈ Ω, there is a number µA (x)∈ [0, 1] assigned to represent themember-
ship of x toA, then µA is called themembership function ofA. A good overview of the various interpretations
of membership functions in fuzzy set theory can be found in Dubois and Prade [10].

Let (Ω,F, P) be a probability space and X ∈ Rn be a random vector in Ω. A fuzzy event is a fuzzy setA in
Ω whose membership function, µA : Ω −→ [0, 1], is Borel measurable function and probability of the fuzzy
event is de�ned by

Pr (A) =
ˆ

Ω

µA(x)dP(x). (8)

Based on the formula for the probability of a fuzzy set in Eq. (8), Zadeh [19] de�ned the conditional dis-
tribution of X given the fuzzy eventA, as

fX|A(x) =
µA(x)dP(x)´

x∈Ω
µA(x)dP(x)

, x ∈ Ω . (9)

3 Fuzzy selection distributions
Our purpose in this paper is to de�ne a parallel notion to the class of multivariate selection distributions,
based on fuzzy conditional events. This can be used in many practical applications. For example, consider
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the relationship between BMI and blood pressure. In the literature, researcher has been considered the rela-
tion between either low or high BMI and blood pressure [11]. Because of the vagueness implied by the exact
determination of these thresholds, considering these events as a crisp phenomenon lead some misleading
inferences. We introduce fuzzy selection distributions as an extension of selection distributions to consider
an event given another fuzzy event. Let (X,Y) be a random vector and C ameasurable fuzzy set σ(Y), then we
want to consider the distribution of X given Y ∈ C which is named multivariate fuzzy selection distribution
(FSLC) throughout this paper.

De�nition 3.1. (Multivariate Fuzzy Selection Distribution). Let X ∈ Rm and Y ∈ Rn be two random vectors
and C be a fuzzy subset of Rm with the membership function µC. Then, the random vector V is said to have
a multivariate fuzzy selection distribution, denoted by V ∼ FSLCTn,m, with parameters depending on the
characteristics of X, Y and C, if V d= Y | (X ∈ C).

In the following result, we obtain pdf of the fuzzy selection random vectorV. Note that this is an extension of
their corresponding result due to the selection distributions in [3], i.e. when µC(x) be an indicator function,
the pdf of the selection distributions follows.

Theorem 3.2. Let X ∈ Rm and Y ∈ Rn be two random vectors with joint pdf fX,Y with respect to probability
measure (pm) ν and marginals fX with respect to pm ν1 and fY with respect to pm ν2. The pdf ofV d= Y | (X ∈ C)
is

fFSLCTn,m (y) =
1

Pr (X ∈ C) fY (y) E (µC (X) |Y = y ) , y ∈ Rn (10)

where Pr(X ∈ C) = E(µC(X)) =
´

x∈Rm
fX (x) µC (x) dx and

E
(
µC(X) |Y = y

)
=
ˆ

x∈Rm

fX|Y=y (x) µC (x) dν1(x) ,

is the conditional expectation of the random vector µC(X) given (Y = y), and µC(·) de�ned in De�nition (3.1).

Proof. Suppose that FFSLCTn,m and FY are cdfs of V and Y, respectively. Then, we have

FFSLCTn,m (y) = Pr (Y ≤ y |X ∈ C ) = Pr (Y ≤ y,X ∈ C)
Pr (X ∈ C) = FY (y)

Pr (X ∈ C |Y ≤ y )
Pr (X ∈ C) .

But, we know that for A ∈ Rn, we have P(X ∈ A|Y ≤ y) =
´
A fX|(Y≤y) (x) dν1(x) with

fX|(Y≤y) (x) = fX (x)
FY|X (y |x )
FY (y)

, x ∈ Rm , (11)

where FY|X is cdf of Y given X = x . By using Eq. (8) and Theorem 16.11 in [9], we obtain

Pr(X ∈ C|Y ≤ y) =
ˆ

x∈Rm

fX|(Y≤y) (x) µC (x) dν1(x) .

Therefore, we have
FFSLCTn,m (y) =

FY (y)
Pr (X ∈ C)

ˆ

x∈Rm

fX|(Y≤y) (x) µC (x) dν1(x) , (12)

By taking into consideration (11) in (12) and di�erentiating with respect to y, the proof is completed.

Remark 3.3. Note that the pdf of the fuzzy selection random vector V given in (9) and (10) reduces to (2)
when µC(x) be an indicator function.
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Consider the special case in which X and Y have joint elliptical distribution as in Eq. (3). Then, the random
vectorV d= (Y | X ∈ C) is said to have a multivariate fuzzy selection elliptical distribution which is denoted by
V ∼ FSLCT − ECn,m (θ), where θ = (µY, µX, ΣYY, ΣXX, ΣYX,C). When C= {x ∈ Rm | x % 0}, where "%" states
"almost equal bigger", then the pdf of V reduces to the pdf of the uni�ed multivariate fuzzy skew-elliptical
distribution which is denoted by V∼ FSUEn,m (θ) where θ = (µY, µX, ΣYY, ΣXX, ΣYX) .

If X and Y have joint normal distribution as in Eq.(4), then V d= (Y | X ∈ C) is said to have a multivariate
fuzzy selection normal distributionwhich is denoted byV ∼ FSLCT−Nn,m (θ). By Theorem 3.2, we can derive
the pdf of V as

ϕFSLCT−Nn,m (y;θ) =
1

Pr (X ∈ C)ϕn
(
y; µY, ΣYY

) ˆ
x∈Rm

ϕm
(
x; µX + Σ

T
YXΣ−1YY (y−µY) , ΣXX.Y

)
µC (x) dx, (13)

where ΣXX.Y = ΣXX − ΣTYXΣ−1YYΣYX and Pr (X ∈ C) = E(µC (X)) with X ∼ Nm(µX, ΣXX) . Now, consider a special
case in which m = n = 1 and it will be used in the next section. For this purpose, let(

X
Y

)
∼ N2

((
µX
µY

)
,
(
σ2X σX.Y

σ2Y

))
, (14)

therefore, the pdf (13) reduces to

ϕFSLCT−N (y; θ) =
1

Pr (X ∈ C)ϕ
(
y; µY , σ2Y

) ˆ
x∈R

ϕ
(
x; αy + β, σ2X.Y

)
µC (x) dx, (15)

where σ2X.Y = σ2X
(
1 − ρ2

)
, ρ = σX.Y

σXσY , α = ρ
σX
σY ,, β = µX − αµY , and Pr (X ∈ C) = E(µC (X)) with X ∼ N(µX , σ2X) .

Note that if the membership function is an indicator function as follow

µC (x) =
{

0, x < 0;
1, x ≥ 0. (16)

then, we have the so-called extended skew-normal pdf given by

ϕFSLCT−N (y; θ) =
1

Φ( µσX )
ϕ
(
y − µY
σYY

)
Φ
(
αy + β
σX.Y

)
, (17)

where ϕ and Φ are pdf and cdf of standard normal distribution, respectively. Now, if µX = µY = 0 and σX =
σY = 1, (17) reduces to the well-known skew-normal pdf given by

ϕFSLCT−N (y; θ) = 2ϕ (y)Φ (λy) ; λ = ρ√
1 − ρ2

.

4 Prediction via fuzzy selection distributions
In practical situation, we want to know the mean value of a random variable given another variable belongs
to a certain set. For example, the mean value of blood pressure for people with low or high BMI are desirable,
if we use fuzzy events we may obtain a better conclusion for determination of threshold which cause a more
reliable prediction of dependent variables. In this section,we obtain themathematical expectation of random
variable Va d= Y | (X ∈ Ca) where the random vector (X, Y)T has joint distribution function (14) and fuzzy
event Ca= {x ∈ R |x < a } with the following membership function:

µCa (x) =


0, x < a − 1;
x − a + 1, a − 1 ≤ x < a;
1, x ≥ a.

(18)
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By (15) the density function of the random variable Va equals

ϕFSLCT−N (y; θ) = ϕ
(
y; µY , σ2Y

) E (µCa (X)|Y = y
)

E
(
µCa (X)

) , (19)

where X|Y = y ∼ N(µX·Y , σ2X·Y ) and X ∼ N(µX , σ2X) . Using the following equality
ˆ ξ2

ξ1
(x + λ)ϕ

(
x; µ, σ2

)
dx = (µ + λ)

(
Φ
(
ξ2 − µ
σ

)
− Φ

(
ξ1 − µ
σ

))
− σ
(
ϕ
(
ξ2 − µ
σ

)
− ϕ

(
ξ1 − µ
σ

))
,

for each λ, µ ∈ R, σ ∈ R+, and ξ1 < ξ2 ∈ R in (19), the density function of the random variable Va reduces to

ϕFSLCT−N (y; θ) =
ϕ
(
y−µY
σY

)
σY Pr (X ∈ Ca)

(
σX.Y

(
ϕ
(a − 1 − αy − β

σX.Y

)
− ϕ
(a − αy − β

σX.Y

))

+ (αy + β + 1 − a)
(
Φ
(a − αy − β

σX.Y

)
− Φ

(a − 1 − αy − β
σX.Y

))
+ Φ

(αy + β − a
σX.Y

))
, (20)

where α, β, and σX.Y are presented in (15) and

Pr (X ∈ Ca) = (µX − a + 1)
(
Φ(a − µXσX

) − Φ(a − 1 − µXσX
)
)
− σX

(
ϕ(a − µXσX

) − ϕ(a − 1 − µXσX
)
)
+ Φ(µX − aσX

) . (21)

The last term is obtained by the equalities (8) and (20). The following lemma that may be obtain with a
straightforward calculation can be used to compute the mathematical expectation of the random variable
Va with pdf (20).

Lemma 4.1. For any A, C ∈ R+ and B, D ∈ R we have
ˆ +∞

−∞
ϕ (Ax − B)Φ (Cx − D) dx = 1

AΦ
(
BC − AD√
A2 + C2

)
,

ˆ +∞

−∞
xϕ (Ax − B)ϕ (Cx − D) dx = AB + CD(

A2 + C2
) 3

2
ϕ
(
BC − AD√
A2 + C2

)
,

ˆ +∞

−∞
xϕ (Ax − B)Φ (Cx − D) dx = B

A2Φ
(
BC − AD√
A2 + C2

)
+ C
A2
√
A2 + C2

ϕ
(
BC − AD√
A2 + C2

)
,

ˆ +∞

−∞
x2ϕ (Ax − B)Φ (Cx − D) dx = 1 + B2

A3 Φ
(
BC − AD√
A2 + C2

)
+
C
(
2A2B + BC2 + ACD

)
A3
(
A2 + C2

) 3
2

ϕ
(
BC − AD√
A2 + C2

)
.

In the following theorem, we present a compact form for mathematical expectation of Va with pdf (19) that is

E(Va) =
E
(
Y
(
µCa (X)|Y = y

))
E
(
µCa (X)

) , (22)

where X|Y = y and X distributed as in (19) and Y ∼ N(µY , σ2Y ). We will use this compact form in further
applications.

Theorem 4.2. The mathematical expectation of the fuzzy selection random variable Va with pdf (19) is

E(Va) = 1
Pr (X ∈ Ca)

(
σX.Y

(
γ1(a − 1) − γ1(a)

)
+ α
(
γ2(a − 1) − γ2(a)

)
+
(
β + 1 − a

)(
γ3(a − 1) − γ3(a)

)
+ µY − γ3(a)

)
, (23)
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where Pr (X ∈ Ca) is given in (21) and

γ1(a) =
σ3X.Y
σ3X

(
µY −

σXY (β − a)
σ2X.Y

)
ϕ
(
a − µX
σX

)
,

γ2(a) =
(
µ2Y + σ2Y

)
Φ
(
−a − µXσX

)
− 2α
σX.Y

(
µY −

σY
2σ2X.Y

α(β − a − αµY )
)
ϕ
(
a − µX
σX

)
,

γ3(a) = µYΦ
(
−a − µXσX

)
− ρσY ϕ

(
a − µX
σX

)
.

Proof. We can obtain the desirable expectation as E(Va) =
´
x∈R yϕFSLCT−N(y)dy, where ϕFSLCT−N(y) is com-

puted in (20). Therefore, we have

E(Va) = 1
Pr (X ∈ Ca)

[ˆ +∞

−∞

y
σY
ϕ
(
y − µY
σY

)(
σX.Y

(
ϕ
(
a − 1 − αy − β

σX.Y

)
− ϕ

(
a − αy − β
σX.Y

)))
dy

+ (αy + β − a + 1)
ˆ +∞

−∞

y
σY
ϕ
(
y − µY
σY

)(
Φ
(
a − αy − β
σX.Y

)
− Φ

(
a − 1 − αy − β

σX.Y

))
dy

+
ˆ +∞

−∞

y
σY
ϕ
(
y − µY
σY

)
Φ
(
αy + β − a
σX.Y

)
dy
]
. (24)

By Lemma 4.1, we can rewrite (24) as

σX.Y
σYPr (X ∈ Ca)

( 1
σY

µY
σY −

α
σX.Y

a−1−β
σX.Y(

( 1
σY )2 + (

α
σX.Y )2

) 3
2
ϕ
(
−

µY
σY

α
σX.Y −

1
σY

a−1−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

)

−
1
σY

µY
σY −

α
σX.Y

a−β
σX.Y(

( 1
σY )2 + (

α
σX.Y )2

) 3
2
ϕ
(
−

µY
σY

α
σX.Y −

1
σY

a−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

))

+ α
σYPr (X ∈ Ca)

(
1 + ( µYσY )

2

( 1
σY )3

Φ
(− µYσY α

σX.Y −
1
σY

a−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

)

+
− α
σX.Y

(
2( 1

σY )
2 µY
σY +

µY
σY (

α
σX.Y )

2 + 1
σY

α
σX.Y

a−β
σX.Y

)
( 1
σY )3

(
( 1
σY )2 + (

α
σX.Y )2

) 3
2

ϕ
( µY

σY
α
σX.Y −

1
σY

a−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

)

−
1 + ( µYσY )

2

( 1
σY )3

Φ
(− µYσY α

σX.Y −
1
σY

a−1−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

)

−
− α
σX.Y

(
2( 1

σY )
2 µY
σY +

µY
σY (

α
σX.Y )

2 + 1
σY

α
σX.Y

a−1−β
σX.Y

)
( 1
σY )3

(
( 1
σY )2 + (

α
σX.Y )2

) 3
2

ϕ
( µY
σY

α
σX.Y −

1
σY

a−1−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

))

+ β − a + 1
σYPr (X ∈ Ca)

( µY
σY

( 1
σY )2

Φ
(− µYσY α

σX.Y −
1
σY

a−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

)
+

− α
σX.Y

( 1
σY )2

√
( 1
σY )2 + (

α
σX.Y )2

ϕ
(− µYσY α

σX.Y −
1
σY

a−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

)

−
µY
σY

( 1
σY )2

Φ
(− µYσY α

σX.Y −
1
σY

a−1−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

)
−

− α
σX.Y

( 1
σY )2

√
( 1
σY )2 + (

α
σX.Y )2

ϕ
(− µYσY α

σX.Y −
1
σY

a−1−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

))

+ 1
σYPr (X ∈ Ca)

( µY
σY

( 1
σY )2

Φ
( µY

σY
α
σX.Y +

1
σY

a−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

)
+

α
σX.Y

( 1
σY )2

√
( 1
σY )2 + (

α
σX.Y )2

ϕ
( µY

σY
α
σX.Y +

1
σY

a−β
σX.Y√

( 1
σY )2 + (

α
σX.Y )2

))
.
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By (15) and ( 1
σY )

2 + ( α
σX.Y )

2 = σ2X
σ2Yσ

2
X.Y

, we have

µY
σY

α
σX.Y +

1
σY

σ2Yα(β−a)
σ2X.Y√

( 1
σY )2 + (

α
σX.Y )2

= (αµY + a − β)
σX

= a − µXσX
. (25)

Similarly, we have

1
σY

1
σY

µY
σY −

α
σX.Y

a−β
σX.Y(

( 1
σY )2 + (

α
σX.Y )2

) 3
2
= σ

3
X.Y
σ3X

(
µY −

σXY
σ2X.Y

(β − a)
)
, (26)

− α
σX.Y

(
2( 1

σY )
2 µY
σY +

µY
σY (

α
σX.Y )

2 + 1
σY

α
σX.Y

a−β
σX.Y

)
σY ( 1

σY )3
(
( 1
σY )2 + (

α
σX.Y )2

) 3
2

= − 2α
σX.Y

(
µY −

σY
2σ2X.Y

α(β − a − αµY )
)
, (27)

and
α
σX.Y

σY ( 1
σY )2

√
( 1
σY )2 + (

α
σX.Y )2

= ρσY . (28)

Therefore, by (25), (26), (27), and (28), the expectation of the random variable Va reduces to (23) and this
completes the proof of the theorem.

4.1 Non-linear regression based on fuzzy selection distribution

In the simple regression model we assume that the response variable is a normal random variable, therefore
the best linear prediction of mean value of response variable is its conditional expectation given dependent
variable equal to a certain value. Now, consider the case in which (X,Y) be two random vector and we want
to predict average value of Y, given the random vector X equal to a certain value. For example, we want to
predict mean yields of soybean plants (gms per plant) given the indicated levels of ozone over the growing
season equal to certain value. Because of error in ozone measurement, it seems better to consider the given
event as a fuzzy event. Here, instead of considering the given event as crisp event, we want to consider the
fuzzy event in which independent variable is approximately equal to a certain value. Therefore, we should
consider the mathematical expectation of dependent variable given the independent variable belong to a
fuzzy set. In the classical statistical modeling, when two random vectors (X,Y) have jointly multivariate nor-
mal distributions then the conditional distribution function ofY givenX belong to a Borelmeasurable set C is
called selection normal distribution. In this subsection, we consider the non-linear regression based on fuzzy
selection distribution. Suppose that the random vector (X, Y) has pdf (14). We can compute the non-linear re-
gression based on fuzzy selection distribution by E(Y|X ≈ t). In fact, we should compute E(Y|X ∈ Ct), when
Ct= {x ∈ R |x ≈ t }, where t ∈ R is a �xed value and its membership function be

µCt (x) =


1 + x − t, t − 1 ≤ x < t;
1 + t − x, t ≤ x < t + 1;
0, otherwise.

(29)

Therefore, the pdf of Vt = Y|(X ∈ Ct) equals

ϕFSLCT−N (y) = ϕ
(
y; µY , σ2Y

) E (µCt (X)|Y = y
)

E
(
µCt (X)

) , (30)
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where X|Y = y and X distributed as in (19). Using (20), we can show that the pdf Vt can be reduces to

2ϕ
(
y−µY
σY

)
σYE

(
µCt (X)

)((αy + β − t)(Φ( t − αy − βσX.Y

)
− Φ

(
t − 1 − αy − β

σX.Y

))
−σX.Y

(
ϕ
(
t − αy − β
σX.Y

)
− ϕ

(
t − 1 − αy − β

σX.Y

))
(31)

where α, β, and σX.Y are presented in (15) and

E
(
µCt (X)

)
= 2(µX − t)

(
Φ
(
t − µX
σX

)
− Φ

(
t − 1 − µX

σX

))
− 2σX

(
ϕ
(
t − µX
σX

)
− ϕ

(
t − 1 − µX

σX

))
. (32)

Now, we present a result that obtain a compact form for the mathematical expectation of Vt that can be
computed as in (22). Thismathematical expectation is in fact a non-linear regression based on fuzzy selection
distribution.

Theorem 4.3. Suppose that the random vector (X, Y)T has distribution function (15) and consider the mem-
bership function (29), then the mathematical expectation of Vt

d= (Y | X ∈ Ct) equals

E(Vt) =
2

E
(
µCt (X)

)(α(γ2(t) − γ2(t − 1)) + (β − t)(γ3(t) − γ3(t − 1)) − σX.Y(γ1(t) − γ1(t − 1))) ,

where γ1, γ2, and γ3 are introduced in Theorem 4.2 and E
(
µCt (X)

)
is presented in (32).

Proof. We can obtain the desirable expectation as E(Vt) =
´
x∈R yϕFSLCT−N(y)dy, where ϕFSLCT−N(y) is com-

puted in (31). Therefore, we have

E(Vt) =
ˆ ∞

−∞
y

ϕ
(
y−µY
σY

)
σYE

(
µCt (X)

)(2(αy + β − t)(Φ( t − αy − βσX.Y

)
− Φ

(
t − 1 − αy − β

σX.Y

))
−2σX.Y

(
ϕ
(
t − αy − β
σX.Y

)
− ϕ

(
t − 1 − αy − β

σX.Y

))
.

By Lemma 4.1 we can obtain the results with an argument similar to that one in the proof of Theorem 4.2.

5 Application
BMI is a measure for human body shape based on an individual’s weight and height which is de�ned as
the individual’s body mass divided by the square of their height. The formulae universally used in medicine
produce a unit of measure of kg/m2.

For considering the relationship between high blood pressure andBMI, 596 peoplewhomet the inclusion
criteria of the study were collected in 2012. All subjects (aged 20-64 years) were of Iranian origin and from a
central province of the country. They had no organic disease (i.e., liver or kidney disease or diabetesmellitus).
Other inclusion criteria were absence of pregnancy or lactation, and no presence of convulsions or its history.
Weight, height and blood pressureweremeasured using standardmethods and analyzed for the study stages.
Weight was measured while the subjects were wearing light clothing and no shoes. High blood pressure is a
chronic medical condition in which the blood pressure in the arteries is elevated. This requires the heart to
work harder than normal to circulate blood through the blood vessels. Blood pressure is summarized by two
measurements, systolic and diastolic, which depend on whether the heart muscle is contracting (systole) or
relaxed between beats (diastole) and equate to a maximum and minimum pressure, respectively.

In this study, we want to consider the relation between high systolic blood pressure and BMI. Normal
blood pressure at rest is within the range of 100-140 mmHg systolic (top reading) and 60-90 mmHg diastolic
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(bottom reading). High blood pressure is said to be present if it is persistently at or above 140/90mmHg. Here,
we describe 140 mmHg as a fuzzy threshold for indicating the high systolic blood pressure and we want to
investigate the relationship between high systolic blood pressure and BMI. The scatter plot of BMI versus
systolic blood pressure is shown in Figure 1. In this plot, we distinguish the normal blood pressure from high
blood pressure, which shown dependency between BMI and blood pressure are di�erent before and after the
threshold.Weuse Energy package in Rwhich provides amultivariate extension to the Shapiro-Wilks test. This
normality test proves the sample data has a bivariate normal distribution (P-Value> 0.05) with the following
mean vector and variance covariance matrix.

µ̂ =
(

12.26318
26.57912

)
, Σ̂ =

(
4.516108 3.242904
3.242904 6.498118

)
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Figure 1: The scatter plot of BMI versus systolic blood pressure, which shows dependency between BMI and blood pressure are
di�er before and after the threshold.

By (23), we can represent the nonlinear prediction of BMI when the blood pressure is approximately
greater than a as

1
Pr(X ∈ Ca)

(
2.89775

(
γ1(a − 1) − γ1(a)

)
+ 0.4990528

(
γ2(a − 1) − γ2(a)

)
−
(
0.001204 + a

)(
γ3(a − 1) − γ3(a)

)
+ 26.57912 − γ3(a)

)
,

where

Pr(X ∈ Ca) = (13.26318 − a)
(
Φ(0.4706a − 5.77) − Φ(0.4706a − 6.24)

)
−2.125114

(
ϕ(0.4706a − 5.77) − ϕ(0.4706a − 6.24)

)
+ Φ(5.77 − 0.4706a) ,

γ1(a) = (0.575197a + 13.662) · ϕ(0.4706a − 5.77) ,
γ2(a) = 712.94774 · Φ(0.4706a − 5.77) − (17.29703 + 0.1287065a) · ϕ(0.4706a − 5.77) ,
γ3(a) = 26.57912 · Φ(0.4706a − 5.77) − 1.52599 · ϕ(0.4706a − 5.77) .
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Table 1: Comparison results for ordinary with non-linear regression.

Model R2 MSE P-value
Ordinary regression 0.2075 21.487 0.0145
Non-linear regression 0.3621 18.658 0.0015

5.1 Comparison of the proposed non-linear regression with the ordinary regression

In this subsection, we comparison the proposed non-linear regression based on fuzzy selection distribution
with the ordinary regression. For this purpose we use the following algorithm to simulate two variables for
regression model when the independent variable is a vague variable.
Algorithm

• Generate bivariate random vector (X, Y).
• Replace X with the random variable Z ∼ U(X − 1, X + 1), where U is uniform distribution function.

By the above algorithm, we simulate two variables when the joint distribution of (X, Y) is normal distri-

bution with mean (1, 2) and variance-covariance matrix
(

1 0.75
0.75 1

)
and replace X with Z according

to the second step of the Algorithm. Then, we �t an ordinary regression and non-linear regression based on
fuzzy selection distribution to this data and the results is shown in Table 1. As we can see the non-linear
regression model based on fuzzy selection distribution is more e�cient than the ordinary regression.

6 Conclusion
Fuzzy selection distributions provides a generalization of the selection distributions that can be obtained by
the fuzzy logic. In this paper, we have proposed a fuzzy mechanism to produce a fuzzy selection distribution.
Theses results can be used for �nding a better relationship between two random vectors. For example in
epidemiology it is a usefulmethod to consider relation between behavioral and physiological variables, when
we want to investigate them in fuzzy environment. We can also fuzzy selection distribution to extend the
classicalmeasures of relationship between two vectors where one of thembelong to a certain rang, especially
in quality control, mathematical insurance, and economics.
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