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Abstract: In Bivariate Frequency Analysis (BFA) of hydrological events, the study and quanti�cation of the
dependence between several variables of interest is commonly carried out through Pearson’s correlation (r),
Kendall’s tau (τ) or Spearman’s rho (ρ). These measures provide an overall evaluation of the dependence.
However, in BFA, the focus is on the extreme events which occur on the tail of the distribution. Therefore,
thesemeasures are not appropriate to quantify thedependence in the tail distribution. To quantify such a risk,
in Extreme Value Analysis (EVA), a number of concepts and methods are available but are not appropriately
employed in hydrological BFA. In the present paper, we study the tail dependence measures with their non-
parametric estimations. In order to cover awide range of possible cases, an application dealingwith bivariate
�ood characteristics (peak �ow, �ood volume and event duration) is carried out on three gauging sites in
Canada. Results show that r, τ and ρ are inadequate to quantify the extreme risk and to re�ect the dependence
characteristics in the tail. In addition, the upper tail dependencemeasure, commonly employed in hydrology,
is shown not to be always appropriate especially when considered alone: it can lead to an overestimation or
underestimation of the risk. Therefore, for an e�ective risk assessment, it is recommended to consider more
than one tail dependence measure.
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1 Introduction
Given economic, social and scienti�c issues related to �oods, storms anddroughts, no serious debate on these
notions can be conductedwithout a re�ection on the extreme nature of these events [e.g. 13, 47]. They require
an accuratemodelling and an appropriate analysis. In order to evaluate hydrological risk, some studies advo-
cate univariate analysis based mainly on �ood peaks [e.g. 6]. Nevertheless, hydrological processes are char-
acterized by several variables. For instance, �oods aremainly describedwith three variables (peak �ow, �ood
volume and event duration) obtained from the hydrograph [e.g. 69, 74]. Thus, an e�ective risk assessment
cannot be conducted by studying each variable separately since this does not take into account the depen-
dence between variables and can lead to an overestimation or underestimation of the risk [e.g. 11, 18, 52, 59].
In such a situation, copulae are widely employed [e.g. 9, 28]. In hydrology, the quanti�cation of the degree of
dependence between the underlying variables with an indicator value in a scalar format is fundamental [63].
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During the last years, the study of the dependence of hydrometeorological variables has gained increas-
ing attention in hydrological risk assessment [see 11, and references therein]. In this framework, common
measures such as Pearson’s correlation r, Kendall’s τ and Spearman’s ρ have been largely employed by hy-
drologists. However, these indicators are not always appropriate for a proper understanding of dependencies
in Bivariate Frequency Analysis (BFA) of extreme events [see e.g. 22, for a study in �nancial markets] since
they cover the whole distribution without focusing on the tail of the distribution where extreme risks could
occur. In particular, the coe�cient r is based on the notions of linearity, normality andmeanwhich are not ap-
propriate when dealing with extreme events. The use of this indicator can lead to underestimation of the risk.
Moreover, the Pearson coe�cient may not even exist for heavy tailed distributions such as the Generalized
Extreme Value or the Generalized Pareto. For instance, in the case of the Cauchy distribution, a theoretical
value of Pearson’s correlation does not exist. Embrechts et al. [21] showed that the Gaussian model is inade-
quate to quantify the extreme risks and indicated that the covariance gives incomplete information of joint
extreme risks.

The non-parametric dependence measures, Spearman’s ρ and Kendall’s τ, do not assume linearity and
are not based on normality. The Spearman’s ρ can be seen as the Pearson’s correlation coe�cient between
the ranked variables [e.g. 61] and measures the average departure from independence [see, e.g. 63, Section
B.2.3]. The Kendall’s τ is also based on the ranks of the observations [40] and measures the excess of con-
cordance/discordance [see, e.g. 63, Section B.2.2]. These coe�cients do not attribute su�cient weight to the
extreme values. They are good overall indicators but are not appropriate when the focus is on the extremes
and the distribution tail.

To study the dependence in the BFA of extreme events, a “local dependence measure” is required since
the interest is in the distribution tails. In Extreme Value Analysis (EVA), a number of relevant concepts and
methods are developed to locally study the dependence in a joint distribution [e.g. 26, 27]. These concepts are
commonly used in actuarial sciences and �nance [e.g. 1, 7, 22, 50]. For instance, the upper tail dependence
parameter is introduced by Joe [37, p. 33]. However, to the best knowledge of the authors, there are no hydro-
logical investigations of such methods for hydrological BFA except the upper and/or lower tail dependence
parameter which is, for instance, brie�y presented in Salvadori et al. [63], Genest and Favre [29], Poulin et al.
[58], Serinaldi [68], Shiau et al. [70] and Lee et al. [46]. Nevertheless, this parameter is not always appropriate
and should be combined with other complementary measures.

The aim of the present paper is to introduce and study di�erent tail dependence measures for bivariate
random variables (X, Y) in hydrological BFA. The paper is organized as follows. In Section 2, we present the
recent and signi�cant tail dependence measures in EVA. In Section 3, we focus on the special case of Bi-
variate Extreme Value (BEV) distributions due to their importance in EVA. Non-parametric estimators of the
presented tail dependence measures are brie�y developed in Section 4. Section 5 is devoted to the applica-
tions and Section 6 presents the conclusions.

2 Tail dependence measures for bivariate distributions
Let (X1, Y2), . . . , (Xn , Yn) be independent random vectors in R2 with joint cumulative distribution function
(CDF) F(., .). We denote the marginal distributions of F(., .) as F1(.) and F2(.) respectively for X and Y and by
C(., .) the copula function associated to F(., .). A copula is a cumulative distribution function (CDF) whose
margins are uniformly distributed on [0, 1]. The joint distribution function can be written in the form [71]:

F(x, y) = C
(
F1(x), F2(y)

)
for x, y ∈ R. (1)

A copula function represents the dependence structure of a multivariate random vector. It contains com-
plete information about the joint distribution apart from its margins. In this sense, a copula describes the
association between X and Y in a form that is invariant with respect to strictly increasing marginal transfor-
mations [12]. The marginal distributions F1(.) and F2(.) are assumed to be continuous, which is the case for
hydrological series. Therefore the copula C(., .) is unique. The reader is referred to Nelsen [51] or Joe [37] for
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further details on the theory of copulae and to Salvadori et al. [63] for practical illustrations. In the remainder
of the Section, three tail dependence measures are presented. The �rst allows to group together the distri-
butions into two classes whereas the second provides a complementary information to that provided by the
�rst. The third links the �rst measure with the second and allows also to reinforce the �ndings given by the
�rst two.

2.1 Tail dependence measure χU

The �rst concepts were discussed as far back as Ge�roy [26, 27] and the following formal de�nition has been
given by Joe [37, p. 33]:

χU = lim
u→1

P(F1(X) > u|F2(Y) > u). (2)

The limit χU is called the upper tail dependence parameter (UTDP). It roughly corresponds to the probabil-
ity that one margin exceeds a large quantile threshold u under the condition that the other margin exceeds u
as well [24]. In other words, it is the probability that if one variable is extreme, then the other is also extreme.

The formulation in (2) is of interest for hydrological processes, since it is based on F1(X) and F2(Y) and
not directly on X and Y and therefore, the variables describing the hydrological event do not need to have
the same scale and to be of the same nature. The UTDP χU is de�ned as the limiting value of χ(u) as u → 1
where [12]

χ(u) = 2 − logP(F1(X) < u, F2(Y) < u)
logP(F1(X) < u) ≡ 2 − log C(u, u)

log u , 0 < u < 1. (3)

Note that in EVA, the statistical study of the tail or the extreme risk is always establishedunder asymptotic
considerations. In the remainder of the paper, the term “asymptotic” refers to u → 1. The function χ(u) can
be interpreted as a quantile-dependent measure of dependence [12]. Its upper and lower bounds are given
by:

2 −
log
(

max(2u − 1, 0)
)

log u ≤ χ(u) ≤ 1, 0 < u < 1. (4)

The left and right hand sides in (4) correspond respectively to perfect negative and perfect positive depen-
dence [3, p.344]. The function χ(u) provides an insight to the dependence structure at lower quantile levels.
The case C(u, u) = u2 corresponds to exact independence χ(u) ≡ 0. When χU ∈ (0, 1], then X and Y are
said to be asymptotically dependent, whereas when χU = 0, these variables are said to be asymptotically in-
dependent. In general, χ(u) is a non-trivial function of u and does not have explicit formula. As illustrated
in Figure 1a, Coles et al. [12] showed that for a pair of Gaussian variables with correlation coe�cient ρ, χ(u)
increases with ρ, but as u → 1 the e�ect of dependence diminishes and χ(u) → 0 for all ρ < 1. For an inter-
mediate value of u, χ(u) is reasonably linear with distinctly di�erent values for all ρ. For ρ > 0, χ(u) converges
very slowly and ultimately abruptly. An important �nding from this Figure is that the dependence in the cen-
ter is clearly not maintained in the extremes. It is possible to pass from high dependence to independence.
On the other hand, thismeans that it is possible to conclude erroneously that the extremes are asymptotically
dependent simply because the extreme independence is not easily detectable due to inadequate sample size.
This indicates that the bivariate extrememodels are not adapted in the case of asymptotic independence, see,
later, the remark after Eq. (13). Therefore, although these models clearly re�ect the behaviour of extremes in
the case of asymptotic dependence, in the case of asymptotic independence the result is very mixed.

In summary, in the extremes context, although χU is “better” than overall dependence measures r, ρ and
τ, it is not always su�cient to quantify the dependence appropriately in all situations. It could fail to dis-
criminate between the degrees of relative strength of dependence for asymptotically independent variables.
Thus, it is important to overcome this limitation by introducing another characterization or a complementary
dependence measure. Note that χU is the only measure employed in hydrological applications and it is only
considered in few studies [18, 32, 46].
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(a) Tail dependence function χ(u), u ∈ (0, 1) (b) Tail dependence function χ̄(u), u ∈ (0, 1)

Figure 1: Tail dependence functions for the Gaussian dependence model. The curves (bottom to top) correspond to correlation
coe�cient ρ = −0.95, −0.90, −0.85, . . . , 0.90, 0.95. In dotted line, the upper and lower bounds on χ(.) and χ̄(.).

Before introducing the complementary measure of χ(.) in the next section, it seems to be interesting to
focus, brie�y, on the auxiliary function qc(.) called the tail concentration function (TCF). It depends on the
diagonal section of a copula and is de�ned as follows [72]

qc(u) = P(F1(X) < u|F2(Y) < u).1{(0, 0.5]} + P(F1(X) > u|F2(Y) > u).1{(0.5, 1)} (5)

= C(u, u)
u 1{(0, 0.5]} + 1 − 2u + C(u, u)

1 − u 1{(0.5, 1)}, 0 < u < 1. (6)

The TCF can be seen as a tool to give a description of tail dependence at �nite scale. In addition, it can be
more suited to assess the risk of joint extremes than its limits given by χU and χL where χL = limu→0 P(F1(X) <
u|F2(Y) < u). Thus, when the convergence speed of the TCF to 1 is slow, this implies that the dependence in
the �nite upper tail can be signi�cantly stronger than in the limit [19]. The reader is referred to [19, see Fig. 3]
for the discussion related to the practical e�ect of considering the TCF.

2.2 Tail dependence measure χ̄U

The function χ(.) given in (3) as a tail dependencemeasure is useful in the casewhere the variables are asymp-
totically dependent. It is not appropriate for discriminating asymptotic independence for which data exhibit
positive or negative association, i.e. correlation, that only gradually disappears at more and more extreme
levels. A complementary measure of χ(.), denoted χ̄(.), has been introduced by Ledford and Tawn [43, 44]
and developed by Coles et al. [12]. The function χ̄(.) measures the strength of dependence within the class of
asymptotically independent distributions. In a similar way to the function χ(u) given in (3), χ̄(u) is de�ned as
follows

χ̄(u) = 2 logP(F1(X) > u)
logP(F1(X) > u, F2(Y) > u) − 1 ≡ 2 log(1 − u)

log C̄(u, u)
− 1, 0 < u < 1, (7)

where C̄(u, v) = 1 − u − v + C(u, v). The function χ̄(u) is also bounded from below and above as

2 log(1 − u)
log(max(1 − 2u, 0)) − 1 ≤ χ̄(u) ≤ 1, 0 < u < 1. (8)

χ̄(u) has the following properties [2, 3, 12]:
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• If an exact independence occurs beyond u, then χ̄(u) = 0;
• If there is a perfect dependence beyond u, then χ̄(u) = 1;
• If χ̄(u) ∈ (0, 1), then P

(
F1(X) > u|F2(Y) > u

)
> P

(
F2(Y) > u

)
and the extremes are positively associ-

ated; i.e. observations for which both F1(X) > u and F2(Y) > u for large threshold u are likely to occur
more frequently than under exact independence between X and Y;

• If χ̄(u) ∈ (−1, 0), then P
(
F1(X) > u|F2(Y) > u

)
< P

(
F2(Y) > u

)
and we say that the extremes are nega-

tively associated, i.e. observations for which both F1(X) > u and F2(Y) > u for a large threshold u are
likely to occur less frequently than under exact independence between X and Y;

• |χ̄(u)| increases with the tail dependence.

To focus on extremal characteristics, by analogy to χU , one de�nes χ̄U as the limiting value of χ̄(u) as
u → 1 for which −1 ≤ χ̄U ≤ 1. This limit has the following properties:

• χ̄U = 1 corresponds to the asymptotic dependence of extremes. The bivariate Gumbel-logistic extreme
value distribution is an example where this case occurs;

• χ̄U < 1 corresponds to the asymptotic independence of extremes and χ̄U provides a limiting measure
that increases with relative dependence strength within this class;

• χ̄U allows to better characterize a possible asymptotic independence and it provides a complementary
information to that provided by χU . For instance, as illustrated in Figure 1b, in the case of a Gaussian
pair, we have χ̄U = ρ and χ̄(u) is approximately linear for 0.5 < u < 1. Therefore, one concludes an
asymptotic independence, despite what might suggest a direct interpretation of χ(u) in Figure 1a [12].

In summary, the quantities χU and χ̄U allow to characterize the dependence of extremes as follows:

• χU ∈ [0, 1] with the set (0, 1] corresponds to asymptotic dependence;
• χ̄U ∈ [−1, 1] with the set [−1, 1) corresponds to asymptotic independence.

As a result, the pair (χU , χ̄U ) can be used as a summary of extreme dependence:

• If (χU > 0, χ̄U = 1), the variables are asymptotically dependent and χU determines a measure of strength
of dependence within the class of asymptotically dependent distributions;

• The case (χU = 0, χ̄U < 1) corresponds to asymptotic independence between variables and χ̄U measures
the strength of dependence within the class of asymptotically independent distributions.

2.3 Coe�cient of tail dependence η
In this subsection, we assume that a joint distribution of (X, Y) has unit Fréchet margins, i.e.

F1(x) = exp(−1/x), x > 0 and F2(y) = exp(−1/y), y > 0. (9)

This restrictive assumption is without loss of generality since, if necessary, F1(.) and F2(.) can be trans-
formed into unit Fréchet margins under suitable assumptions [see e.g. 43]. In order to analyse the asymp-
tomatic dependence structure between the Fréchet margins and to link χU with χ̄U , Ledford and Tawn [43, 44]
introduced the following model on the tail of the joint survival function of (X, Y):

P(X > z, Y > z) ∼ z−1/ηL(z), as z →∞, (10)

where L is a univariate slowly varying function at in�nity [5, Theorem 1.5.12], i.e. ,

L(λz)/L(z)→ 1 as z →∞ for all λ > 0. (11)

The rate of decay in (10) is primarily controlled by η. The coe�cient η describes the type of limiting
dependence between X and Y, and L is its relative strength given a particular value of η. By putting T =
min(X, Y), it follows that P(X > z, Y > z) = P(T > z) ∼ z−1/ηL(z) and η is identi�ed as the tail index of the
variable T. Hence, the usual univariate techniques can be used to evaluate η [35, 55]. One can show that

χ̄U = 2η − 1, (12)
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and the estimate of χ̄U can be obtained from that of η which is more developed and studied since it is
related to the tail index. As a consequence, we have [12, 34, 43, 45]:

• X and Y are asymptotically dependent if and only if η = 1 and L(z)→ c ∈ (0, 1] as z →∞. In this situa-
tion, we have (χU = c, χ̄U = 1). The constant c denotes the dependence degree where c = 1 corresponds
to the perfect dependence in tail;

• The case η → 0 and L(z) = 1 corresponds to perfect negative dependence (in tail);

In addition, within the class of asymptotically independent variables, i.e. 0 < η < 1, three types of inde-
pendence can be identi�ed:

• The case η = 1/2 corresponds to near independence between the extremes of X and Y. These extremes
are exactly independent when c = 1;

• If 1/2 < η < 1 and c > 0, or η = 1 and c = 0, then the marginal variables are said to be positively
associated;

• If 0 < η < 1/2, then the marginal variables are said to be negatively associated.

To summarize, the degree of dependence between large values of Fréchet margins is determined by η,
with increasing values of η corresponding to stonger association. For a given η, the relative dependence
strength is characterized by the slowly varying function L [3, p.346]. For instance, for the Gaussian depen-
dence model with correlation ρ < 1 illustrated in Figure 1, we have η = (1 + ρ)/2 and L(z) = cρ (log z)−ρ/(1+ρ)

where cρ = (1+ρ)3/2(1−ρ)−1/2(4π)−ρ/(1+ρ) [34]. In that case, positive association, negative association and ex-
act independence arise respectively as ρ > 0, ρ < 0 and ρ = 0. The perfect positive and negative associations
are reached as ρ → 1 and ρ → −1 respectively.

Figure 2 summarizes in a diagram the presented tail dependence measures by highlighting the concepts
of the asymptotic independence/dependence. Figure 2 gives also additional information which is developed
in the following Section. In Figure 2, the circle denotes the starting point, with several possible paths that
can be followed. This Figure will be described later, at the end of Section 3.

3 Particular case of the BEV distributions
The BEV distributions are a particular case of bivariate distributions. They are characterized by some speci�c
dependence functions which can be expressed through the previous tail dependence measures. In this Sec-
tion, we brie�y present the relevant measures of the tail dependence for these distributions since they play a
prominent role in the studies of bivariate extreme events. In order to carry out a meaningful study about tail
dependence in the BFA, we assume that F(., .) belongs to the domain of attraction of a BEV distribution G,
i.e. there exist standardizing sequences an , cn > 0 and bn , dn ∈ R such that for all x and y [25, 60]

lim
n→∞

P
[

max(X1, . . . , Xn) − bn
an

≤ x, max(Y1, . . . , Yn) − dn
cn

≤ y
]

= G(x, y). (13)

It is shown in the literature that all BEV distributions are asymptotically dependent, otherwise, in the
case of an asymptotic independence, the only possible situation is the exact independence [e.g. 2, 12]. For
the latter, χ̄U = 1 and χU > 0, and in practice the dependency is the stronger as the UTDP χU is close to 1.
Besides, the tail dependence function χ(.) is constant. Figure 3 illustrates the behaviour of the tail dependence
functions χ(.) and χ̄(.) for the bivariate Gumbel-logistic distribution with dependence parameter 0 < θ ≤
1 which is a BEV distribution. Notice that, for the bivariate Gumbel-logistic distribution, the parameter θ
measures the strength of the dependence and the limiting cases θ = 1 and θ = 0 correspond respectively to
independence and perfect dependence. Figure 3a shows that χ(.) is positive, constant and close to 1 when θ
is close to 0. In Figure 3b, for large values of θ, χ̄(.) converges slowly to 1 as u → 1.

An estimation of χ(.) signi�cantly non-constant re�ects an inadequacy of the BEV distribution to the
data. This situation arises when (X, Y) are asymptotically independent and n, the block size maxima, is not
large enough to meet the condition in (13) [12]. In hydrological BFA, since the peak �ows are extracted as
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Bivariate tests of extreme-value dependence (a)
and (b) or g.o.f. test (c) for bivariate extreme-value
copulae presented in end-subsection 3.1.

BEV distributions and Domain of Attractions:
χU = 2 − 2A(1/2) = 2 − `(1, 1) = ∧(1, 1).

X and Y are asymptotically dependent of degree c.
Perfect positive dependence if η → 1 with L(z) = 1.

Perfect negative dependence.

η = 1 and L(z)→ c > 0.η → 0 with L(z) = 1.

The class of asymp-
totically depen-
dent variables

Consider model (10) and evaluate η.

Asymptotic dependence: χU ∈ (0, 1] and χ̄U = 1.

Evaluate the tail coe�cients χU and
χ̄U respectively via Eqs. (3) and (7).

Bivariate
data

(A)

(B′)

(B′′)

(C)

Asymptotic independence: χ̄U ∈ [−1, 1) and χU = 0.

The class of asymptotically
independent variables

Consider model (10) and evaluate η.

η ∈ (0, 1/2) and L(z)→ c > 0. η ∈ (1/2, 1) and L(z)→ c > 0 or η = 1 and c = 0. η = 1/2 and L(z)→ c > 0.

Negative association: observations forwhich X
and Y exceed a large threshold z occur less fre-
quently than under exact independence.

Positive association: observations for which X
and Y exceed a large threshold z occur more
frequently than under exact independence.

Extremes of X and Y are near independent.

There is exact independence when L(z) = 1.

Figure 2: Diagram of the study of the tail dependence in bivariate frequency analysis. The circle denotes the starting point. We
can follow the path (A), (B′), (B′′) or (C), however we recommend to follow the path (A).

block maxima, hydrologists tend to jointly model �ood characteristics with the component-wise maxima,
i.e. a BEV distribution, without always checking �rst if χ̄U = 1. The dependence structure of G(., .) in (13) is
characterized by quantities given in the following subsections.
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(a) Tail dependence function χ(u), u ∈ (0, 1) (b) Tail dependence function χ̄(u), u ∈ (0, 1)

Figure 3: Tail dependence functions for the Gumbel-logistic distribution. The curves (top to bottom) correspond to parameter of
dependence θ = 0.025, 0.050, 0.075, . . . , 0.950, 0.975. In dotted line, the upper and lower bounds on χ(.) and χ̄(.).

3.1 Pickands dependence function

The representation of dependence structure discovered by Pickands [56] turned out to be farmore convenient
than its predecessors [3, p. 270] such that:

G(x, y) = exp
[
−
(

1
x + 1

y

)
A
(

y
x + y

)]
, x, y > 0, (14)

where A : [0, 1] → [1/2, 1], known as Pickands dependence function, is a convex function such that A(0) =
A(1) = 1. The independence case corresponds to A(.) ≡ 1 whereas, A(w) = max(w, 1 − w) leads to the perfect
dependence. The copula of extreme value denoted byC(., .) is expressed asC(u, v) = exp

[
log(uv)A

(
log(v)

log(uv)

)]
and for u = v = z, it follows that

C(z, z) = z2A(1/2). (15)

De�nition (15) implies the following relationship between χU and A(.):

χU = 2 − 2A(1/2). (16)

Thus, estimating χU is a particular case of estimating A(.). The reader is referred to Salvadori and
De Michele [62] for practical applications of Pickands dependence function in hydrology. The Pickands
dependence function A(.) and the extreme value copula C(., .) allow to checkwhether a sample comes from a
BEV distribution G(., .) or at least if F(., .) belongs to the domain of attraction of a BEV distribution G. To this
end, three statistical tests can be used: (i) the bivariate test of extreme-value dependence based on Kendall’s
process [33] or (ii) the one based on the Pickands dependence function [41] and then, if H0 is accepted, (iii)
the goodness-of-�t tests for bivariate extreme-value copulae [30] .

3.2 Stable tail dependence function

A bivariate CDF F(., .) with continuous margins F1(.) and F2(.) is said to have a stable dependence function
(STDF) `(., .) if the following limit exists [36]:

lim
t→0

t−1P
(

1 − F1(X) ≤ tx or 1 − F2(Y) ≤ ty
)

= `(x, y), for x, y ≥ 0. (17)
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Referring to [17], F(., .) is equivalent to (13) if and only if (i) F1(.) and F2(.) are in the max-domains of
attractions of extreme value distributions G1(.) and G2(.) respectively, and (ii) F(., .) has a STDF `(., .) de�ned
by

`(x, y) = − logG
(
x−γ1 − 1
γ1

, y
−γ2 − 1
γ2

)
, (18)

where G(.) is a BEV distribution while γ1 and γ2 are real constants called themarginal extreme value indices.
The STDF `(., .) can be seen as a starting point to construct non-parametric models or BEV distributions. For
instance, one can cite the Gumbel-logistic model for which

`(x, y; θ) =
(
x1/θ + y1/θ

)θ
, x, y ≥ 0 and 0 < θ ≤ 1. (19)

The STDF `(., .) and the Pickands dependence function A(.) are related by A(t) = `(1 − t, t) for t ∈
[0, 1] [see 3, p.267]. It follows that χU and `(., .) are related as

χU = 2 − `(1, 1) = 2 − 2`(1/2, 1/2) > 0. (20)

Recall that for BEV distributions χ̄U = 1.

3.3 Tail copula function

The tail copula is a function that describes the dependence structure in the tail of a joint CDF F(., .). Similar
to (17), for all non-negative x and y, the quantity

Λ(x, y) = lim
t→0

t−1P
(

1 − F1(X) ≤ tx and 1 − F2(Y) ≤ ty
)
, (21)

is called the tail copula function (TCF) of (X, Y), provided the limit exists. The relationship between Λ(., .) and
`(., .) is given by

Λ(x, y) = x + y − `(x, y), for all x, y ≥ 0. (22)

The quantity Λ(1, 1) is the UTDP χU of (X, Y) [e.g. 20]. Schmidt and Stadtmuller [65] proposed Λ(., .) as a
starting point to construct a multivariate distribution of extreme values. In addition, the TCF function is con-
sidered as an intuitive and straightforward generalization of the tail dependence function χ(.) via a function
describing the dependence structure in the tail of a distribution [65]. To summarize, in these particular cases,
χU is expressed explicitly with Λ(., .), `(., .) and A(.) as follows:

χU = Λ(1, 1) = 2 − `(1, 1) = 2 − 2A(1/2) > 0. (23)

These relations are useful for estimating χU since the established properties of the functions Λ(., .), `(., .)
and A(.) are well developed.

Figure 2 summarizes in a diagram all presented tail dependence measures, χU , χ̄U , η, Λ(., .), `(., .) and
A(.), by highlighting the concepts of the asymptotic independence and asymptotic dependence. In Figure 2,
from the starting point circle, there are several possible paths ((A), (B′), (B′′) and (C)) which can be followed.
The choice of which path to take depends on the available information and the goal. However we recommend
to follow the path (A). It can be seen as a procedure starting from data to obtain the tail behaviour via the
presented measures. The path (A) describes as follows:

(i) From the bivariate data {(Xi , Yi), i = 1, . . . , n}with joint distribution function F(., .), evaluate the tail
coe�cients χU and χ̄U respectively given by (3) and (7). If (χU > 0, χ̄U = 1), we are within the class of
asymptotically dependent distributions; otherwise if (χU = 0, χ̄U < 1), we are within the class of asymp-
totically independent distributions.

(ii) Consider model (10) and evaluate η:
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(1) Within the class of asymptotically independent distributions, depending on the values of η, four cases
are possible: negative association, positive association, near independence or exact independence.

(2) Within the class of asymptotically dependent distributions, according to η, three types of dependence
are possible: perfect negative dependence, perfect positive dependence and asymptotic dependence.

(iii) Except for the exact independence, all BEV distributions are asymptotically dependent.

4 Non-parametric estimation of tail dependence
Depending on the level of available information about the distribution of the data, there exist several ap-
proaches to estimate the tail dependence functions and coe�cients. First, the bivariate distribution F(., .)
could be either known [22] or belongs to a class of distributions [64, 65]. Second, the tail dependence can
be estimated by using a speci�c copula [49, 53] or a class of copulae [39]. Finally, non-parametric estimation
methods can be employed when no speci�c form is known or constrained on the copula or on the marginal
distributions. In the present section, we focus on non-parametric methods. The tail dependence estimates
are obtained from the empirical copula or based on the transformation of original data to Fréchet variables
because F(., .) or C(., .) are generally unknown [57].

4.1 Estimators of tail dependence parameter χU

As shown implicitly in Section 2, the tail dependence parameter χU can be estimated by using the copula, the
Pickands dependence function, the STDF or the TCF. In the following, one shows how an estimator of χU is
obtained by using the latter functions.

4.1.1 Estimation via the empirical copula

An estimator of χ(.) is obtained via the empirical copula. [38] introduced the following estimator

χ̂SEC
(
n − k
n

)
= 2 −

[
1 − Ĉn

(
n − k
n , n − kn

)]/[
1 − n − kn

]
, 0 < k < n, (24)

where k denotes a threshold, that is a sample fraction, to be chosen and Ĉn(., .) is the empirical copula de�ned
by [14, 31]

Ĉn(u, v) = 1
n

n∑
i=1

1{RXi /(n+1)≤u, RYi /(n+1)≤v}, u, v ∈ [0, 1], (25)

where1{.} is the indicator function,while RXi and RYi , respectively, stand for the ranks of Xi among Xi , . . . , Xn
and Yi among Yi , . . . , Yn. Coles et al. [12] introduced, on the basis of (3), the following estimator of the tail
dependence function

χ̂LOG
(
m − k
m

)
= 2 −

[
log
(
Ĉm
(
m − k
m , m − km

))/
log
(
m − k
m

)]
, 0 < k < m ≤ n, (26)

where Ĉm(., .) is an empirical copula computed from m block maxima X*lj and Y*lj, j = 1, . . . ,m, and where
each block contains l = n/m elements of the original data. The estimators χ̂SEC

U and χ̂LOG
U are deduced respec-

tively from χ̂SEC(.) and χ̂LOG(.) by noting that u = (n − k)/n is close to 1 when k is small.
The coe�cient χU can also be estimated by the least-square method such that [15, 23]:

χ̂FD
U = χ̂FD

U ,k = arg min
λ∈[0,1]

k∑
i=1

(
Ĉn
(
n − i
n , n − in

)
−
(
n − i
n

)2−λ)2

, 0 < k < n, (27)
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where arg minλ∈[0,1] h(λ) gives an argument at which h(.) is minimized over the domain [0, 1]. Dobric and
Schmid [15] showed that k ≈ √n canbe anappropriate choice to built the estimators χ̂SEC

U , χ̂LOG
U and χ̂FD

U . Frahm
et al. [24] suggested to deduce χ̂SEC

U and χ̂LOG
U by choosing a threshold k based on the property of tail copula

homogeneity as stated in Schmidt and Stadtmuller [65, Theorem 1]. This approach consists in identifying
a plateau, which is induced by the homogeneity, on the graphs (k, χ̂•(.)). Nevertheless, the plateau-�nding
algorithm developed in Frahm et al. [24] requires a prior de�nition of some parameters.

4.1.2 Estimation via Pickands dependence function A(.)

As mentioned in subsection 3.1, estimating χU can be obtained by estimating A(.) via (16). Since the margins
F1(.) and F2(.) are rarely known in practice, a natural way to proceed is then to estimate them empirically
by F̂1,n(.) and F̂2,n(.). This leads to estimating the copula C(., .) on the basis of the transformed observa-
tions {(F̂1,n(Xi), F̂2,n(Yi)), i = 1, . . . , n}. However, it is more convenient to consider scaled variables de�ned
by Genest and Segers [31]:

Ûi = Ûi,n = 1
n + 1

n∑
j=1

1{Xj≤Xi} and V̂i = V̂i,n = 1
n + 1

n∑
j=1

1{Yj≤Yi}, (28)

The scaled pairs {(Ûi , V̂i), i = 1, . . . , n} are called the pseudo-observations from copula C(., .). They
allow to avoid dealing with points at the boundary of the unit square. Genest and Segers [31] proposed
the two following estimators of A(.) which are the rank-based versions of the estimators given respectively
by Pickands [56] and Capéraà et al. [8]:

ÂP
n,r(t) = 1

/{
1
n

n∑
i=1

ξ̂i(t)
}

and ÂCFG
n,r (t) = exp

(
−cE −

1
n

n∑
i=1

log ξ̂i(t)
)
, (29)

where cE ≈ 0.57721 is the Euler’s constant while, for i ∈ {1, . . . , n}, the function ξ̂ (.) is de�ned as ξ̂i(0) =
− log Ûi, ξ̂i(1) = − log V̂i and for all t ∈ (0, 1) ξ̂i(t) = min

{
− log Ûi

1−t , − log V̂i
t

}
. The estimators in (29) lead to

χ̂P
U ,r = 2 − 2ÂP

n,r(1/2) and χ̂CFG
U ,r = 2 − 2ÂCFG

n,r (1/2). Another estimator of the UTDP, motivated by Capéraà et al.
[8] and studied by Frahm et al. [24], is given by

χ̂F
U = 2 − 2 exp

(
1
n

n∑
i=1

log
{(

log 1
F1(Xi)

log 1
F2(Yi)

)1/2/
log 1

max(F1(Xi).F2(Yi))2

})
. (30)

The latter estimator relies on the hypothesis that the underlying empirical copula can be approximated
by an extreme value copula. As the margins are unknown, in practice one can replace F1(Xi) and F2(Yi) by
the scaled variables Ûi and V̂i. Note that, in some situations, the Pickands and the CFG estimators can be
altered to meet the endpoint constraints A(0) = A(1) = 0. Therefore, for all t ∈ [0, 1], Segers [67] suggested
endpoint-correction versions of the Pickands and CFG estimators. Genest and Segers [31] showed that the
endpoint correction to estimators (29) has no impact on their limiting distributions. In addition, they showed
that that the CFG estimator is generally preferable to the Pickands one when the endpoint corrections are
applied to both of them.

4.1.3 Estimation via stable tail dependence function `(., .)

A natural non-parametric estimator of the STDF `(., .) based on {(Xi , Yi), i = 1, . . . , n} is obtained by re-
placing in (17) t by k/n with k ∈ {1, . . . , n} and P, F1 and F2 by their empirical counterparts [36]. Then, the
empirical STDF is de�ned by:
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ˆ̀H
n (x, y) = 1

k

n∑
i=1

1{Xi≥Xn−kx+1,n or Yi≥Yn−ky+1,n}, 0 ≤ x, y ≤ n/k, (31)

where X1,n ≤ . . . ≤ Xn,n and Y1,n ≤ . . . ≤ Yn,n are respectively the order statistics of X1, . . . , Xn and Y1, . . . , Yn.
The distribution of ˆ̀H

n (., .) is independent of the continuous margins [17]. Einmahl et al. [20] proposed the
following estimator that usually performs slightly better than ˆ̀H

n (., .) for �nite samples:

ˆ̀EKS
n (x, y) = 1

k

n∑
i=1

1{RXi >n−kx+1/2 or RYi >n−ky+1/2}, (32)

where RXi and RYi as in (25). De�nitions (31) and (32) lead to estimators of the UTDP given by χ̂H
U = 2−2ˆ̀H

n (1, 1)
and χ̂EKS

U = 2 − 2ˆ̀EKS
n (1, 1) respectively.

4.2 Estimators of tail dependence parameter χ̄U

Estimator of χ̄U can be obtained on the basis of the copula or the tail coe�cient η. The function χ̄(.) can be
estimated by substituting in (7) the empirical estimate of survival copula function ˆ̄Cn(., .) given by ˆ̄Cn(u, v) =
1 − u − v + Ĉn(u, v) for all u, v ∈ [0, 1] where Ĉn(u, v) is given in (25). Thus, a non-parametric estimator of χ̄(.)
is given by [12]

ˆ̄χCOLES
(
n − k
n

)
=
[

2 log
(

1 − n − kn

)/
log ˆ̄Cn

(
n − k
n , n − kn

)]
− 1, 0 < k < n. (33)

On the other hand, according to (12) an estimation of η leads to an estimation of χ̄U . Since η is identi�ed as
the tail index of the univariate variable T = min(X, Y), one can estimate η with the estimator called Zipf [42,
66]

ηZ
k =

1
k
∑k

j=1 log k+1
j log Tn−j+1,n −

(
1
k
∑k

j=1 log k+1
j

)(
1
k
∑k

j=1 log Tn−j+1,n
)

1
k
∑k

j=1

(
log k+1

j

)2
−
(

1
k
∑k

j=1 log k+1
j

)2 , 1 ≤ k < n − 1. (34)

where T1,n ≤ . . . ≤ Tn,n denote the order statistics of the random variables Ti. It can also be estimated with
the Hill [35] estimator given by:

ηH
k = 1

k

k∑
j=1

log Tn−j+1,n − log Tn−k,n , 1 ≤ k < n − 1. (35)

The two latter estimating procedures require the knowledge of themargins F1(.) and F2(.) since themodel
of Ledford and Tawn [43, 44] assumes that (X, Y) has unit Fréchet margins. However, when the margins are
not identical or not Fréchet distributed, the original variables canbe transformed to standard Fréchetmargins
de�ned by Xnew = −1/ log F̂1(Xoriginal) and Ynew = −1/ log F̂2(Yoriginal) [43]. However, these transformations
could induce an uncertainty in the estimates of η [3, p.351]. Therefore, Peng [54] and Draisma et al. [16] re-
spectively proposed non-parametric alternatives (36) and (37) based directly on the empirical distributions of
the original observations given respectively by:

η̂P
k = log(2)

/
log
[
Sn(2k)/Sn(k)

]
, (36)

η̂D
k =

k∑
j=1

Sn(j)
/kSn(k) −

k∑
j=1

Sn(j)

 , (37)

where Sn(k) = ∑n
i=1 1{Xi>Xn−k+1,n , Yi>Yn−k+1,n} with k = 0, . . . , n − 1. For the choice of the threshold k, the reader

is referred to Lekina et al. [48] and references therein.
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5 Application to floods
In this Section, the presented estimators of the tail dependence are applied to a particular hydrological event,
namely �oods. Flood events are mainly described by three characteristics that are �ood peak (Q), �ood vol-
ume (V) and �ood duration (D).

5.1 Data description
The data used in this case study consists in daily natural stream�owmeasurements from three stations in the
province of Quebec (Canada). The reference numbers of the selected basins are 050301, 080101 and 050119
and the gauging stations are respectively denotedby ST050301, ST080101 and ST050119.Maximumannual �ood
events are described by their �ood peaks, durations and volumes as extracted from the daily stream�ow
data.The three variables correspond to the same �ood event each year. In particular, it corresponds to the
spring �ood event which is the important �ood event in Quebec and is caused mainly by snow melting [4].
Gauging station ST050301 is located on the Batiscan River and the corresponding data are available from 1932
to1990withmissing values in1989-1983, 1979-1976and1972. Station ST080101 is locatedon theHarricana
River 3.4 km downstream from the Route 111 bridge in Amos. Corresponding data are available from 1934
to 2002 with missing values in 1998 and 1999. The third gauging station ST050119 is located on the Matawin
River 4.0 km downstream from the pont-route 131 in Saint-Michel-des-Saints. Data are available from 1932-
2001 with missing values in 1940, 1941, 1943 and 1972. In Table 1, gauging station coordinates and record
lengths are summarized.

Table 1: Station description.

Station Localisation Latitude Longitude Observation years
050301 Batiscan River 46◦35′8′′ −72◦24′17′′ 1932 − 1990
080101 Harricana River 48◦35′52′′ −78◦6′33′′ 1934 − 2002
050119 Matawin River 46◦41′10′′ −73◦54′49′′ 1932 − 2001

The hydrological literature has highlighted issues concerning the correlation between the three charac-
teristics of �ood events. Due to space limitations, the focus will be made on the study of (Q, V) whereas brief
results will be provided concerning (V , D) and (Q, D). The couple (Q, V) is generally highly correlated and
represents the most studied in the literature [see e.g. 11, 69, 74, 75]. The tail dependence behaviours of the
couples (Q, V), (D, V) and (V , D) are studied according to the proposed approach summarized in Figure 2.
This step is performed before any modelling of the joint distributions. While in Chebana and Ouarda [10] the
bivariate descriptives statistics based on the depth function are investigated, the present study focuses solely
on the study of the tail dependance. Before presenting the results, it should be noted that the hydrological
analysis is generally a�ected by the record length especially whenwe deal with extremes. Despite this limita-
tion, asymptotic results are usually employed in the hydrological frequency analysis and in the multivariate
setting in particular. This issue could have similar e�ect on the tail dependence measures. However, it is
expected that in the future data will be more available and hence this issue would have less and less impact.

5.2 Tail dependence measures

Since the distributions of the series (Q, V), (Q, D) and (V , D) are unknown, the tail dependence function χ(.)
and its complementary function χ̄(.) are directly evaluated via the empirical copula. This allows to assess the
strength of tail dependence.
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The estimators χ̂SEC(.) (with m = n), χ̂LOG(.) and χ̂FD
U , de�ned respectively in (24), (26) and (27), are eval-

uated. First, χ̂SEC
U and χ̂LOG

U are deduced respectively from the functions χ̂SEC(.) and χ̂LOG(.) by noting that u is
close to 1 for small k. Second, the UTDP estimators χ̂SEC

U , χ̂LOG
U and χ̂FD

U are obtained by �xing k = √n.
The coe�cient χ̄U is deduced from the function χ̄(.) which is estimated via the empirical survival copula

as well as via the coe�cient of tail dependence η. Hence, one uses respectively the estimator ˆ̄χCOLES de�ned
in (33) and the estimator ˆ̄χ•

U ,k = 2η̂•k − 1 where η̂•k is de�ned in (34), (35) or (37). The symbol • denotes one
of the indices Z, H or D. Since the margins are unknown, the estimators η̂Z

k and η̂H
k , given in (34) and (35)

respectively, are computed by �rst transforming the margins to standard Fréchet margins. The threshold k is
chosen in the simultaneous stability range of the estimators ˆ̄χH

U ,k, ˆ̄χZ
U ,k and ˆ̄χD

U ,k and the corresponding estima-
tor is denoted ˆ̄χ*U . This technique is commonly used for the estimation of the tail index or extreme quantile
in EVA [e.g. 48]. The overall estimated dependence coe�cients of Pearson’s, Kendall’s and Spearman’s are
denoted respectively by r̂n, τ̂n and ρ̂n are evaluated for comparison purposes.

Tail dependence for the series (Q, V)

In the remainder of the Section, the analysis is presented �rst according to gauging stations and then ac-
cording to the measures of dependence. Figures 4 and 5 illustrate the di�erent estimators of tail dependence
functions χ(.) and χ̄(.) respectively.

Generally, Figure 4 shows that the estimators of χ(.) are not too close to 1 when u is large enough. There-
fore the tail dependence is not strong in the three considered stations. Since the degree of dependence is
not strong, this suggests to restrict the analysis to the univariate case only. However, as it will be seen in the
obtained results by an in-depth analysis in the remainder of this section, proceeding in this manner may be
inappropriate or misleading.

For ST050301, (Figure 4a), all estimators of χ(u) are considerably larger than 0 for u < 0.9. When u is
close to 1, i.e. u > 0.9, the estimators χ̂LOG(u), χ̂SEC(u) and the estimated UTDP χ̂DF

U converge to 0 abruptly
with respect to u or k and the di�erence between these estimators and χ̂DF

U is large. It would have been pos-
sible to conclude erroneously that the couple (Q, V) is asymptotically dependent in station ST050301. Similar
results are obtained by [12] for other data. In addition, for u = 1 − k/n ≈ 0.854, the UTDP estimators are
χ̂LOG

U = 0.309, χ̂SEC
U = 0.395 and χ̂DF

U = 0.170. Figure 5a indicates that all estimators of χ̄U are signi�cantly
di�erent from 1. For instance, they are almost stable around the interval [0.233, 0.458] for u ∈ (0.40, 0.57)
whereas ˆ̄χCOLES

U = 0.399 for u = 1−k/n ≈ 0.854. Indeed, according to the properties of the coe�cient χ̄U given
in subsection 2.2 and summarized in Figure 2, the peak �ow and the �ood volume of ST050301 can not be de-
scribed by BEVdistributions since there is no asymptotic dependence. As indicated by the paths (A) or (B′′) in
Figure 2, we recall that in ST050301, an analysis based only on the estimators of χU does not guarantee that the
couple (Q, V) is asymptotically independent. Figure 5a indicates that: (i) ˆ̄χ*U ≈ 0.456 and ˆ̄χCOLES

U = 0.399, (ii)
χ̂DF ∈ [0, 0.170), χ̂LOG ∈ [0, 0.309) and χ̂SEC ∈ [0, 0.395) for 0.854 < u < 1. This leads to conclude that the
extremes are positively associated, i.e. in ST050301 the observations for which both F1(Q) > u and F2(V) > u
for large thresholds u occur more frequently than under exact independence between Q and V.

For ST080101, (Figure 4b), for u ∈ [0.7, 1) all estimators of χ(.) are considerably larger than 0. More pre-
cisely, for 1 − k/n ≈ 0.878 ≤ u < 1, we have χ̂LOG ∈ (0, 0.624], χ̂SEC ∈ (0, 0.656] and χ̂DF ∈ (0, 0.522].
Accordingly, with respect to path (A) in Figure 2, the couple (Q, V) seems to be asymptotically dependent. On
the other hand, Figure 5b indicates that the estimators ˆ̄χH

U ,k and ˆ̄χZ
U ,k have a regular behavior and are almost

stable for large thresholds. This indicates more accurate evaluation of χ̄. In other respects, the tail depen-
dence estimators ˆ̄χCOLES and ˆ̄χ•

U ,k are non-negative for 0 < u < 1 and 1 < k < n respectively. More precisely,
ˆ̄χCOLES

U = 0.620 for u ≈ 0.878 whereas the estimators ˆ̄χ•
U ,k are located in the range [0.327, 1]. In particular,

ˆ̄χD
U ,k �uctuates slightly around u ≈ 1 and the estimators ˆ̄χH

U ,k and ˆ̄χZ
U ,k are almost stable and approximately

equal to 1. This suggests that ˆ̄χ*U ≈ 1 and one can then conclude that the couple (Q, V) is asymptotically de-
pendent, see path (B′) in Figure 2. In addition χ̂U ∈ [0.502, 0.656] denotes the strength of this dependence,
i.e. this dependence is slightly high.
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(a) Station 050301

(b) Station 080101

(c) Station 050119

Figure 4: Estimators of the tail dependence function χ(.) of the pair (Q, V). The vertical axis corresponds to χ̂(u) with χ̂LOG(- - - -)
and χ̂SEC(—), χ̂DF

U ,k(-×-×-) and χ̂
F
U ( -·-·-), while the horizontal axis corresponds to thresholds u = 1/n, 2/n, 3/n, . . . , 1 − 1/n

and k = n − 1, n − 2, . . . , 1. In horizontal dotted line, the upper and lower bounds on χ(.). In vertical dotted line, the chosen
threshold.

For ST050119, Figure 4c suggests thatQ andV are asymptotically dependent since the estimators of χ(.) are
inside (0, 1) with χ̂SEC

U = 0.400, χ̂LOG
U = 0.330, χ̂DF

U = 0.265 and χ̂F
U = 0.407 for u ≈ 0.877. Nevertheless, Fig-

ure 5c invalidates clearly these �nding since ˆ̄χ•
U ,k are located in the range [0.345, 1]. On the other hand, from

ˆ̄χCOLES
U and ˆ̄χD

U ,k, one deduces that ˆ̄χ*U = 0.345 ≠ 1. In fact, according Figure 2, for the couple (Q, V), Figures 5c
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(a) Station 050301

(b) Station 080101

(c) Station 050119

Figure 5: Estimators of the tail dependence function χ̄(.) of the pair (Q, V). The vertical axis corresponds to ˆ̄χ(u) with
ˆ̄χCOLES(- - - -), ˆ̄χD

U ,k(—), ˆ̄χH
U ,k(-+-+-) and

ˆ̄χZ
U ,k(-◦-◦-), while the horizontal axis corresponds to threshold u = k/n with

k = 1, . . . , n − 1. In horizontal dotted line, the upper and lower bounds on χ̄(.).

and 4c do not allow to conclude since the tail dependence estimators do not satisfy (ˆ̄χU ∈ [−1, 1), χ̂U = 0) or
(ˆ̄χU = 1, χ̂U ∈ (0, 1]).

The estimated overall dependence coe�cients, the estimated tail dependence parameters and the esti-
mated tail dependence functions for u ∈ (1 − k/n, 1) are summarized in Table 2. Table 2 shows that, in all
three stations, the overall coe�cients lead to conclude that there are signi�cant correlations which are not
very high.
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Table 2: Couple (Q, V). Estimated tail dependence measures χ̂SEC, χ̂LOG, χ̂DF
U , ˆ̄χCOLES for u ∈ [1 −

√
n/n, 1) and χ̂F

U , ˆ̄χ*U and η̂.
Estimated overall correlation coe�cients r̂n, τ̂n and ρ̂n.

Station χ̂SEC χ̂LOG χ̂DF
U

ˆ̄χCOLES χ̂F
U

ˆ̄χ*U η̂ r̂n τ̂n ρ̂n
050301 [0, 0.395] [0, 0.309] [0, 0.170] [−1, 0.399] 0.471 0.30 0.65 0.455 0.418 0.547
080101 (0, 0.656] (0, 0.624] (0, 0.522] (−1, 0.620] 0.503 1.00 1.00 0.660 0.403 0.562
050119 [0, 0.400] [0, 0.330] [0, 0.265] (0, 0.354] 0.407 0.345 0.673 0.521 0.360 0.511

Nevertheless, as concludedpreviously on thebasis of tail dependencemeasures, in ST050301 the extremes
are asymptotically independent. Thus, one observes that an analysis solely based on the overall dependence
coe�cients does not give enough information to re�ect the nature of the relationship between extremes of
the couple (Q, V) in ST050301, ST080101 and ST050119.

As previously mentioned (see Section 3), all BEV distributions are asymptotically dependent. Since it
was concluded that the couple (Q, V) in ST080101 is asymptotically dependent, one of the BEV distributions
could be a candidate for the sample of (Q, V), for instance, an extreme value copula or the Gumbel-Hougaard
family. The bivariate tests presented in subsection 3.1 are used to check this. Results are provided in Table 3.
The Gumbel-Hougaard copula family is commonly used for hydrological FA [e.g. 32]. Notice that for a given
degree of dependence, the most popular extreme value copulae are strikingly similar [e.g. 30]. The tests
require estimating the Pickands dependence function A(.).

Table 3: Couple (Q, V). Estimators based on the Pickands dependence function χ̂P and χ̂CFG. The p-values of the bivariate tests
of extreme-value dependence based on (i) Kendall’s process (pv.jac, pv.fsa, pv.asy), (ii) the Pickands dependence function
(pv.ky), (iii) of the p-values goodness-of-�t test for extreme-value copulae (pv.mpl, pv.iτ, pv.iρ).

Station χ̂P χ̂CFG pv.jac pv.fsa pv.asy pv.ky pv.mpl pv.iτ pv.iρ
050301 [0.570, 0.610] [0.471, 0.516] 0.010 0.004 0.001 0.011 0.006 0.039 0.127
080101 [0.468, 0.503] [0.503, 0.538] 0.863 0.850 0.834 0.372 0.277 0.309 0.356
050119 [0.387, 0.426] [0.419, 0.456] 0.526 0.498 0.467 0.294 0.898 0.826 0.811

For the Ghoudi et al. [33] bivariate test, the approximative p-values obtained by jackknife, the �nite sam-
ple plug-in and the asymptotic plug-in are noted pv.jac, pv.fsa and pv.asy respectively. For the Kojadinovic
and Yan [41] bivariate test, the p-value is denoted by pv.ky. For the Genest et al. [30] goodness-of-�t tests,
pv.mpl, pv.itau and pv.irho are the approximative p-values obtained respectively by using parametric boot-
strap combined with the maximum pseudo-likelihood, the method of the inversion of Kendall’s tau and the
method of the inversion of Spearman’s rho. In Figure 6, we present for t ∈ [0, 1] the rank-based estimators
ÂP
n,r(t) and ÂCFG

n,r (t) de�ned in (29), and the corresponding corrected endpoint estimators noted ÂP
n,c(t) and

ÂCFG
n,c (t) [67]. The estimated UTDP χ̂P

U and χ̂CFG
U which are related, via (16), to the dependence function A(.)

and the obtained p-values of all bivariate statistical tests of extreme value dependence are summarized in
Table 3. Notice that an analysis based on Pickands dependence function or the UTDP estimators lead to the
same �ndings.

The analysis on tail dependence function χ(.) and its complementary function χ̄(.) allow to conclude that
the couple (Q, V) is asymptotically independent for ST050301. To consolidate this �nding, the function A(.)
is estimated and the p-values of the bivariate tests used previously are computed. Figure 6a suggests that
in ST050301 the couple (Q, V) is asymptotically dependent since via (16) we have χ̂P

U ∈ [0.570, 0.610] and
χ̂CFG

U ∈ [0.471, 0.516] which are lower than 1. Nevertheless, as shown in the previous analysis based on tail
dependence function χ(.) and its complementary function χ̄(.), this represents only a graphical indication.
In fact, the bivariate statistical tests in Table 3 con�rm that we can not model the couple (Q, V) by a BEV
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(a) Station 050301 (b) Station 080101

(c) Station 050119

Figure 6: Estimators of the Pickands dependence function A(t) for t ∈ [0, 1]: corrected endpoint estimators ÂP
n,c(t) (-·-·-),

ÂCFG
n,c (t) (—) and rank-based estimators ÂP

n,r(t) (- - - -) and ÂCFG
n,r (t) (. . . ).

distribution and especially by the Gumbel-Hougaard family copula since pv.jac, pv.fsa, pv.asy, pv.ky, pv.mpl
and pv.itau are lower than 0.05.

Figure 6b indicates that in ST080101, Q and V are asymptotically dependent since via the relationship (16)
we have χ̂P

U ∈ [0.468, 0.503] and χ̂CFG
U ∈ [0.503, 0.538] which are lower than 1. The p-values of all bivariate

tests of extreme value dependence summarized in Table 3 are higher than 0.05 which con�rms a good �t
with the BEV distributions. Then, for ST080101, the dependence of (Q, V) can be modelled with the Gumbel-
Hougaard family copula. In addition, from χ̂P

U and χ̂CFG
U , one deduces that the degree of dependence between

Q and V is within the interval [0.468, 0.503]. Notice that even though this degree of dependence is slightly
lower than the previous values, i.e. χ̂U ∈ [0.502, 0.656], where no assumption on the model was made, the
same conclusion is obtained: i.e. there is asymptotic dependence.

In Figure 6c, the indication graph suggests an asymptotic dependence between Q and V in ST050119
since χ̂P

U ∈ [0.387, 0.426] and χ̂CFG
U ∈ [0.419, 0.456] are lower than 1. Moreover the bivariate statistical tests
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in Table 3 con�rm this graphical indication since the obtained p-values are higher than 0.05. However, this
�nding is not compatiblewith this result ˆ̄χ*U = 0.345 ≠ 1 whichmeans that there is asymptotic independence.
This could be explained on the basis of construction of the tests used. Indeed, the tests used are based only
on the function A(.) and not on the tail-dependence measure χ̄(.). In addition, the p-value is a measure of
the evidence against the null hypothesis: the smaller the p-value, the stronger the evidence against the null
hypothesis. A large p-value is not strong evidence in favour of null hypothesis. A large p-value can occur for
two reasons: (i) null hypothesis is true or (ii) null hypothesis is false but the test has low power. The p-value
is not the probability that the null hypothesis is true [see 73, p.157].

Table 4: Estimated tail dependence parameters χ̂SEC
U , χ̂LOG

U , χ̂DF
U for u = 1 −

√
n/n, ˆ̄χCOLES for u ∈ [1 −

√
n/n, 1) and ˆ̄χ*U . Estimated

overall correlation coe�cients r̂n, τ̂n and ρ̂n.

Station Couple χ̂SEC
U χ̂LOG

U χ̂DF
U

ˆ̄χ*U ˆ̄χCOLES r̂n τ̂n ρ̂n
050301 (Q, D) −0.041 −0.150 0 0 −1 −0.256 −0.112 −0.164

(V , D) 0.249 0.130 0.255 0.5 (−1, 0.250) 0.507 0.301 0.460
080101 (Q, D) −0.045 −0.094 0 −0.13 −1 −0.389 −0.239 −0.334

(V , D) 0.045 −0.094 0 0 −1 0.364 0.335 0.468
050119 (Q, D) 0.092 0 0 0.050 [−1, 0) 0.361 0.259 0.373

(V , D) 0.400 0.330 0.182 0.220 [−1, 0.355) −0.450 −0.302 −0.445

Tail dependence for the series (Q, D) and (V , D)

In Figures 7 and 8, we respectively present the estimators of tail dependence functions χ(.) and χ̄(.) for the
pairs (Q, D) and (V , D) for each station. The estimated tail dependence parameters deduced from Figures 7
and 8 and the estimated overall correlation coe�cients are summarized in Table 4.

Figures 7a, b, Figures 8a, b and Table 4 show that Q and D are asymptotically independent in both
ST050301 and ST080101. More precisely, in ST050301 we observe near independence since χ̂ ≈ 0 and ˆ̄χ*U ≈ 0
whereas ˆ̄χCOLES ≈ 0 for 0 < u < 0.854 and ˆ̄χCOLES = −1 for 0.854 ≤ u < 1.

Figures 7c and 8c indicate that Q and D are asymptotically independent in ST050119 since χ̂ ≈ 0. Based on
the estimators ˆ̄χD

U ,k and ˆ̄χCOLES, one can deduce that the association between Q and D is negative. Otherwise,
one can deduce a positive association when the analysis is only based on the estimators ˆ̄χH

U ,k and ˆ̄χZ
U ,k.

Nevertheless followingFigure 2, an analysis of Figures 7d and8ddoesnot allow to conclude for an asymp-
totic independence between V and D in ST050301 since the estimators of χ(.) are clearly inside (0, 1) (see also
Table 4).

In addition, the estimators of χ̄(.) are non-negativewith ˆ̄χ*U ≈ 0.5 and ˆ̄χCOLES is in the range (0.220, 0.250)
for 0.854 ≤ u < 1. Figures 7e, 8e and Table 4 suggest that V and D are asymptotically dependent in ST080101.
Figures 7f and 8f do not allow to conclude for an asymptotic dependence between V and D in ST050119 since
the estimators of χ(.) converge to values around 0.340 for u ≤ 1− k/n ≈ 0.877 whereas, the estimators of χ̄(.)
are clearly unstable and signi�cantly di�erent from 1 with ˆ̄χCOLES ≈ 0.355 and ˆ̄χD

U ,k ≈ 0.220 for u ≈ 0.877.
When u > 0.877, the estimators of χ(.) converge abruptly to 0.

In addition, as the UTDP estimators are in the range (0.182, 0.400) for u ≈ 0.877 (see Table 4), one
might conclude at best for an asymptotic independence with positive association since the estimators of χ̄(.)
are non-negative for u ∈ (0.2, 0.95).

In Table 4, the obtained estimated overall coe�cients (r̂n , τ̂n , ρ̂n) lead simply to conclude that a signif-
icant overall correlation exists in all cases. This shows once again that the hydrological analyses based on
overall coe�cients are inadequate to quantify the extreme risks that occur at the tail of the distribution.More-
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(a) Station 050301: (Q, D) (b) Station 050301: (V , D)

(c) Station 080101: (Q, D) (d) Station 080101: (V , D)

(e) Station 050119: (Q, D) (f) Station 050119: (V , D)

Figure 7: Estimators of the tail dependence function χ(.) of the pairs (Q, D) and (V , D). The vertical axis corresponds
to χ̂(u) with χ̂LOG(- - - -) and χ̂SEC(—), χ̂DF

U ,k(-×-×-) and χ̂
F
U (-·-·-), while the horizontal axis corresponds to thresholds

u = 1/n, 2/n, 3/n, . . . , 1 − 1/n and k = n − 1, n − 2, . . . , 1. In horizontal dotted line, the upper and lower bounds on χ(.).
In vertical dotted line, the chosen threshold.

over, this case study shows that the measure χ(.) alone is not always su�cient to exhibit the relationship
between the extremes. Notice that the overall coe�cients for the couple (Q, D) in ST050119 are negative. This
could indicate that the couple (Q, D) is in fact negatively associated which is not in accordance with the last
�nding based on tail dependence measures where the sign of the association was not clear.
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(a) Station 050301: (Q, D) (b) Station 050301: (V , D)

(c) Station 080101: (Q, D) (d) Station 080101: (V , D)

(e) Station 050119: (Q, D) (f) Station 050119: (V , D)

Figure 8: Estimators of the tail dependence function χ̄(.) of the pairs (Q, D) and (V , D). The vertical axis corresponds to ˆ̄χ(u)
with ˆ̄χCOLES(- - - -), ˆ̄χD

U ,k(—), ˆ̄χH
U ,k(-+-+-) and

ˆ̄χZ
U ,k(-◦-◦-), while the horizontal axis corresponds to threshold u = k/n with k =

1, . . . , n − 1. In horizontal dotted line, the upper and lower bounds on χ̄(.).

The summarized results in Table 5 show that the couple (Q, V) is asymptotically independent and pos-
itively associated in the Bastican River (ST050301). In ST050301, similar to the Gaussian dependence model
studied by Coles et al. [12], one can not conclude using only χU . On the other hand, the overall coe�cient
values indicate that (Q,V) are relatively highly correlated. However, the conclusion on the tail is not the
same where it is shown that the couple (Q,V) for this station is asymptotically independent. In the Harri-
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Table 5: Summary of all the results. The case * means that either (χ̄U ∈ [−1, 1), χU = 0) or (χ̄U = 1, χU ∈ (0, 1]) is not ful�lled.

Station Couple Overall correlation (sign) Tail dependence
050301 (Q, V) relatively high (+) asymptotic independence & positive association

(Q, D) very low (-) near independence
(V , D) moderate (+) no conclusion *

080101 (Q, V) high (+) asymptotic dependence
(Q, D) low (-) asymptotic independence & negative association
(V , D) low (+) asymptotic dependence

050119 (Q, V) relatively high (+) no conclusion *
(Q, D) moderate (-) asymptotic independence & negative association
(V , D) low (+) asymptotic independence & positive association

cana River (ST080101), (Q, V) are asymptotically dependent and can be �tted with a BEV distribution such as
the Gumbel-Hougaard copula family. In the Mattawin River (ST050119) one can not conclude on the tail de-
pendence whereas the overall coe�cients indicate that (Q, V) are relatively highly correlated. In the Batiscan
River, the couple (Q, D) is near independent. In the Harricana River, the couple (D, V) is asymptotically inde-
pendent whereas in the Mattawin River it is asymptotically dependent with negative association. The couple
(V , D) is shown to be asymptotically dependent in the Harricana River. In the Bastican River, it is di�cult
to conclude since the estimated UTDP’s are approximately in the range [0.130, 0.255] whereas, its comple-
mentary coe�cients are approximately in [0.220, 0.500]. In the Mattawin River, it seems that V and D are
asymptotically independent with positive association.

6 Conclusions
In the present paper, a number of dependencemeasures,which aremore adapted to the treatment of bivariate
extreme events in the hydrological BFA framework, are introduced. These measures focus on the tail of bi-
variate distributions. The statistical properties of thesemeasures are reviewedandassociatednon-parametric
estimations are provided.

The overall coe�cients Kendall’s τ, Spearman’s ρ and Pearson’s r do not give enough information to re-
�ect the nature of the relationship between extremes. They do not allow to study the concomitant occurrence
of extreme values since they do not attribute, for instance, su�cient weight to the extreme values. They are
more adapted to the center body of the distribution. Furthermore, the tail dependencemeasure χU , employed
solely in some hydrological studies, does not allow to conclude in all cases. For instance, it is not appropriate
for discriminating variables that are asymptotically independent. Hence, it is recommended to consider the
complementarymeasure χ̄U . This one quanti�es the strength of dependencewithin the class of asymptotically
independent variables in bivariate extremes.

An application of the presented tail dependencemeasures is carried out on three gauging stations located
in the province of Quebec (Canada). The application deals with �ood peak (Q), volume (V) and duration (D).
According to the proposed approach, it can be concluded that the couple (Q, D) is near independent in the
Batiscan River whereas in the Harricana River, it is asymptotically independent.
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List of symbols or abbreviations
A(.) Pickands dependence function
C(., .) Copula function associated to F(., .)
F(., .) Cumulative distribution function
F1(.) and F2(.) Marginal distributions of F(., .)
G(., .) Bivariate extreme value distribution
L(.) Univariate slowly varying function at in�nity
Λ(., .) Tail copula function (TCF)
C̄(., .) Survival copula function associated to C(., .), i.e. C̄(u, v) = 1 − u − v + C(u, v) ∀ u, v ∈ [0, 1]
χ̄(.) Tail dependence function :: complementary measure of χ(.)
χ̄U Complementary tail dependence parameter of χU

χ(.) Tail dependence function :: quantile-dependent measure of dependence
χU Upper tail dependence parameter (UTDP)
`(., .) Stable tail dependence function (STDF)
η Coe�cient of tail dependence
C(., .) Copula of extreme value
BEV Bivariate Extreme Value
BFA Bivariate Frequency Analysis
EVA Extreme Value Analysis
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