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1 Introduction

Consider a mixture S = IX+ (1 − I)Y where I is a Bernoulli distributed random variable with parameter q and

where the components X and Y are independent of I. In this paper, we aim at �nding an explicit expression

for the quantiles of S as a function of the quantiles of the variables X and Y. Here, the quantile at level p
(0 < p < 1) of a given distribution F is de�ned¹ as

F−1(p) = inf

{
x ∈ R | F(x) > p

}
. (1)

By convention, inf{∅} = ∞ and inf{R} = −∞, so that the quantile is properly de�ned by (1) for all p ∈ [0, 1].
In a risk management context, one often considers X (distributed with FX) as a loss variable in which case

F−1X (p) can be broadly interpreted as themaximum loss (“Value-at-Risk”) one can observewith p−con�dence.

Expressing F−1S (·) in terms of F−1X (·) and F−1Y (·) can sometimes be relatively straightforward. For example,

when FX and FY are strictly increasing with unbounded support²,

F−1S (p) = F−1X (α
*
) = F−1Y (β

*
), (2)

in which 0 < α
*
< 1 and 0 < β

*
< 1 are uniquely de�ned and satisfy qα

*
+ (1 − q)β

*
= p. However, formula (2)

does not cover the general case. We need a more general version of it, which requires a careful examination

of all possible cases for the distributions FX and FY (Theorem 1). This result is of some probabilistic interest,
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1 Note that the de�nition of quantile is not unique. Here, we consider the lower quantile, which is the prevalent way to de�ne

quantiles in a risk management context; See e.g., Section 4.4 and De�nition A.20 in [7] as well as the works of [1] and [11].

2 Note that under similar conditions on the distribution functions the two-dimensional case can be extended to n dimensions in

a straightforward way; it is actually su�cient that the distributions of the components involved in the mixture are invertible and

have a common support. Another notable case dealing with distributions that have a disjoint support was treated in [5]. In this

paper we focus further on providing a general formula for the quantile of a mixture in the two-dimensional case.
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as it makes it possible to reduce the dimensionality of the problem of assessing a quantile of amixture. It also

has a clear application in risk management that we further explain as follows:

In the risk assessment of high dimensional portfolios X := (X1, X2, . . . , Xd) the variable of interest is

typically the portfolio sum

∑d
i=1 Xi and the risk measure used in the industry is a quantile. From Sklar’s

theorem, the evaluation of quantiles of

∑d
i=1 Xi is at most a numerical issue once the marginal distributions

of the variables Xi as well as their dependence (copula) is completely speci�ed. Unfortunately, estimating

copulas is a di�cult task and the assessment of X is thus prone to model misspeci�cation. [4] assume that

candidate models are consistent with the following distributional properties of X:

(i) the marginal distribution FXi of Xi are known.

(ii) the distribution of X | {X ∈ F} is known for some F ⊂ Rd .
(iii) the probability pF := P(X ∈ F) is known.

In other words, the joint distribution of X is only fully speci�ed on the subarea F ofRd and the quantiles

of

∑d
i=1 Xi cannot be computed (unless pF = 1). It is then of interest to �nd among all possible distribu-

tional models for X the one that yields the highest (resp. lowest) possible outcome for the desired quantile

of

∑d
i=1 Xi . The maximum and minimum possible values can be obtained using a mixture representation.

Speci�cally, consider the indicator variable I corresponding to the event “X ∈ F”

I := 1X∈F , (3)

It is then clear that for any choice of joint distribution forX that is consistent with properties (i), (ii) and (iii),
there exists amultivariate vector (Z

1
, Z

2
, ...Zd) that we can take independent of I, such that the portfolio sum

can be represented as a mixture

d∑
i=1

Xi =d I
d∑
i=1

Xi + (1 − I)
d∑
i=1

Zi , (4)

where “=d” denotes equality in distribution. Here, for i = 1, 2, ..., d,

FZi (z) = FXi|X∈U(z), (5)

where U =Rd\F. From the properties (i), (ii) and (iii) it follows that the marginal distributions FZi of Zi are
known, but the copula of (Z

1
, Z

2
, ...Zd) remains unspeci�ed. In the given context, we thus e�ectively aim at

�nding copulas that yield maximum andminimum value for quantiles of a mixture like in (4). In this regard,

an explicit formula for the quantile of amixture is useful, as it avoids that one has to resort to lengthy (nested)

simulations; see Section 3 and the discussion that follows Proposition 2 in particular.

The explicit computation of the quantile of a mixture is presented in Section 2. Its application to model

risk assessment is developed in Section 3.

2 Quantile of a mixture

We formulate the following result for the quantile of a mixture.

Theorem 1 (Quantile of a mixture). Consider a sum S = IX+ (1−I)Y ,where I is a Bernoulli distributed random
variable with parameter q and where the components X and Y are independent of I and have cdf FX and FY ,
respectively. De�ne α

*
∈ [0, 1] by

α
*
:= inf

{
α ∈ (0, 1) | ∃β ∈ (0, 1)

{ qα + (1 − q)β = p
F−1X (α) > F−1Y (β)

}
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and let β
*
=

p−qα
*

1−q ∈ [0, 1]. Then, for p ∈ (0, 1) ,

sp := F−1S (p) = max

{
F−1X (α

*
), F−1Y (β

*
)

}
. (6)

This maximum can be computed explicitly by distinguishing along the four following cases for FX(·) and for
FY (·) :

Case (1) FX is continuous at sp and for all z < sp, FX(z) < FX(sp)
Case (2) FX is continuous at sp and there exists z < sp such that FX(z) = FX(sp)
Case (3) FX is discontinuous at sp and for all z < sp, FX(z) < FX(s−p)
Case (4) FX is discontinuous at sp and there exists z < sp such that FX(z) = FX(s−p)
Case (a) FY is continuous at sp and for all z < sp, FY (z) < FY (sp)
Case (b) FY is continuous at sp and there exists z < sp such that FY (z) = FY (sp)
Case (c) FY is discontinuous at sp and for all z < sp, FY (z) < FY (s−p)
Case (d) FY is discontinuous at sp and there exists z < sp such that FY (z) = FY (s−p)

We have summarized the computations of sp in Table 1 for the sixteen possible combinations.

Table 1: Summary of all cases for the quantiles of a mixture where sp = F−1S (p). In all cases, α
*
is de�ned by (7) and β

*
=

p−qα
*

1−q 6 FY (sp), α* =
p−(1−q)β

*

q > FX(sp).

| (a) (b) (c) (d)

(1)

α
*
= FX(sp)

β
*
= FY (sp)

sp = F−1X (α
*
)

sp = F−1Y (β
*
)

α
*
= FX(sp)

β
*
= FY (sp)

sp = F−1X (α
*
)

sp > F−1Y (β
*
)

α
*
= FX(sp)

sp = F−1X (α
*
)

sp = F−1Y (β
*
)

α
*
= FX(sp)

if FS(s−p) < p,
sp = F−1X (α

*
)

sp = F−1Y (β
*
)

if FS(s−p) = p,
sp = F−1X (α

*
)

sp > F−1Y (β
*
)

(2)

α
*
= FX(sp)

β
*
= FY (sp)

sp = F−1Y (β
*
)

sp > F−1X (α
*
)

Impossible
α
*
= FX(sp)

sp = F−1Y (β
*
)

sp > F−1X (α
*
)

α
*
= FX(sp)

sp = F−1Y (β
*
)

sp > F−1X (α
*
)

(3)
β
*
= FY (sp)

sp = F−1X (α
*
)

sp = F−1Y (β
*
)

β
*
= FY (sp)

sp = F−1X (α
*
)

sp > F−1Y (β
*
)

sp = F−1X (α
*
)

sp = F−1Y (β
*
)

if FS(s−p) < p,
sp = F−1X (α

*
)

sp = F−1Y (β
*
)

if FS(s−p) = p,
sp = F−1X (α

*
)

sp > F−1Y (β
*
)

(4)

β
*
= FY (sp)

if FS(s−p) < p,
sp = F−1Y (β

*
)

sp = F−1X (α
*
)

if FS(s−p) = p,
sp = F−1Y (β

*
)

sp > F−1X (α
*
)

β
*
= FY (sp)

sp = F−1X (α
*
)

sp > F−1Y (β
*
)

if FS(s−p) < p,
sp = F−1X (α

*
)

sp = F−1Y (β
*
)

if FS(s−p) = p,
sp = F−1Y (β

*
)

sp > F−1X (α
*
)

Impossible
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Proof. Since X and Y are independent of I we �nd for the distribution of S = IX+ (1 − I)Y ,

FS(x) = qFX(x) + (1 − q)FY (x) x ∈ R.

Let p ∈ (0, 1) and denote F−1S (p) by sp,

sp = inf

{
x ∈ R | qFX(x) + (1 − q)FY (x) > p

}
.

In what follows, when considering α, β ∈ (0, 1) we always assume that they satisfy qα + (1 − q)β = p. Note

that we de�ne α
*
as

α
*
:= inf

{
α ∈ (0, 1) | ∃β ∈ (0, 1) / qα + (1 − q)β = p and F−1X (α) > F−1Y (β)

}
(7)

and β
*
=

p−qα
*

1−q . The proof consists in verifying that sp can always be expressed as

sp = max

{
F−1X (α

*
), F−1Y (β

*
)

}
. (8)

From Table 1, it is clear that (8) is proved. Let us now make the calculations case by case to prove Table 1.

Case 1: FX is continuous at sp and for all z < sp, FX(z) < FX(sp)

In this case we always have that sp = F−1X (FX(sp)). Hence, we only need to show that α
*
= FX(sp) (i.e. β* =

p−qFX(sp)
1−q ) and that sp = F−1X (α

*
) > F−1Y (β

*
) as in this case (8) will obviously hold.

Since F−1S (p) = sp then FS(s−p) = qFX(s−p) + (1 − q)FY (s−p) 6 p 6 FS(sp) = qFX(sp) + (1 − q)FY (sp). Thus, by
continuity of FX, qFX(sp) + (1 − q)FY (s−p) 6 p 6 qFX(sp) + (1 − q)FY (sp). Thus,

FY (s−p) 6
p − qFX(sp)

1 − q 6 FY (sp) (9)

(1a): FY is continuous at sp and for all z < sp, FY (z) < FY (sp). Then, sp = F−1Y (FY (sp)). It is also clear that

for α < FX(sp) and thus β > FY (sp), one has that F−1X (α) < F−1Y (β). Hence, as per de�nition of α
*
, one has

α
*
= FX(sp), β* = FY (sp) and sp = F−1X (α

*
) = F−1Y (β

*
).

(1b): FY is continuous at sp and there exists z < sp , FY (z) = FY (sp) (thus, FY is constant on the interval

(z, sp)). Then, F−1Y (FY (sp)) < sp = F−1X (FX(sp). However, for α < FX(sp) and thus β > FY (sp), one has that

F−1X (α) < F−1Y (β). Hence, as per de�nition of α
*
, α
*
= FX(sp), β* = FY (sp) and sp = F−1X (α

*
) > F−1Y (β

*
). Thus,

sp = F−1X (α
*
) > F−1Y (β

*
).

(1c): FY has a discontinuity at sp and for all z < sp, FY (z) < FY (s−p). From (9), in this case, F−1Y
(
p−qFX(sp)

1−q

)
=

sp. For α < FX(sp) and thus β >

p−qFX(sp)
1−q , F−1X (α) < F−1Y (β). Hence, as per de�nition of α

*
, α

*
= FX(sp),

β
*
=

p−qFX(sp)
1−q and sp = F−1X (α

*
) = F−1Y (β

*
).

(1d): FY has a discontinuity at sp and there exists z < sp, FY (z) = FY (s−p) so that FY is constant on some

interval (r, sp) with r < sp. From (9),

F−1Y
(
p − qFX(sp)

1 − q

)
6 sp .

If

p−qFX(sp)
1−q > FY (s−p) (or equivalently, FS(s−p) < p), then F−1Y

(
p−qFX(sp)

1−q

)
= F−1X (FX(sp) = sp . Clearly, for α <

FX(sp) and thus β > p−qFX(sp)
1−q , onehas that F−1X (α) < F−1Y (β). Hence, as per de�nitionof α

*
, onehas α

*
= FX(sp),

β
*
=

p−qFX(sp)
1−q and sp = F−1X (α

*
) = F−1Y (β

*
). If

p−qFX(sp)
1−q = FY (s−p) (or equivalently, FS(s−p) = p), then this implies

that F−1Y
(
p−qFX(sp)

1−q

)
< sp . When α < FX(sp) thus β >

p−qFX(sp)
1−q one has that F−1X (α) < F−1Y (β) 6 sp . Hence, as

per de�nition of α
*
, one has α

*
= FX(sp), β* =

p−qFX(sp)
1−q and sp = F−1X (α

*
) > F−1Y (β

*
).

Case 2: FX is continuous at sp and there is a z < sp , FX(z) = FX(sp) (FX(·) is constant on (z, sp))

(2a): this case can be obtained from (1b) by changing the role of X and Y.
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(2b): FY is continuous at sp and there exists z < sp, FY (z) = FY (sp). Thus FY is constant on some interval

(r, sp) with r < sp. Hence, F−1S (p) 6 min(z, z) < sp which contradicts the de�nition of sp = F−1S (p). The case

(2b) is impossible.

(2c): FY is discontinuous at sp and for all z < sp, FY (z) < FY (s−p). From (9), in this case, F−1Y
(
p−qFX(sp)

1−q

)
= sp >

F−1X (FX(sp). However, for all α > FX(sp) and thus β <

p−qFX(sp)
1−q it holds that F−1X (α) > F−1Y (β). Hence, as per

de�nition of α
*
, α
*
= FX(sp), β* =

p−qFX(sp)
1−q and sp = F−1Y (β

*
) > F−1X (α

*
).

(2d): FY is discontinuous at sp and there exists z < sp, FY (z) = FY (s−p). From (9), F−1Y
(
p−qFX(sp)

1−q

)
6 sp . If

p−qFX(sp)
1−q > FY (s−p) (or equivalently, FS(s−p) < p), then F−1Y

(
p−qFX(sp)

1−q

)
= sp > F−1X (FX(sp). For α > FX(sp) and

thus β < p−qFX(sp)
1−q one has that F−1X (α) > F−1Y (β). Hence, as per de�nition of α

*
, α
*
= FX(sp), β* =

p−qFX(sp)
1−q and

F−1X (α
*
) < F−1Y (β

*
) = sp . The case that

p−qFX(sp)
1−q = FY (s−p) is excluded as it implies that F−1S (p) < sp should hold

(similar to the case (2b)) which is a contradiction with the de�nition of sp.

Case 3: FX has a discontinuity at sp and for all z < sp, FX(z) < FX(s−p)
In this case, sp = F−1X (FX(sp). This situation is merely identical to previous cases.

(3a): it is the same as (1c) by changing the role of X and Y.

(3b): it is the same as (2d) by changing the role of X and Y.

(3c): Observe that F−1X (α) = sp for all FX(s−p) 6 α 6 FX(sp) and also that F−1Y (β) = sp for all FY (s−p) 6 β 6
FY (sp).

We also know that FS(s−p) 6 p 6 FS(sp) hence there exists FX(s−p) 6 α
1
6 FX(sp) and FY (s−p) 6 β

1
6

FY (sp) so that qα
1
+ (1 − q)β

1
= p and F−1X (α

1
) = F−1Y (β

1
) = sp . Therefore, F−1X (α

*
) = F−1Y (β

*
) = sp .

(3d): Observe that F−1X (α) = sp for all FX(s−p) 6 α 6 FX(sp) and also that F−1Y (β) = sp for all FY (s−p) < β 6
FY (sp).

We also know that FS(s−p) 6 p 6 FS(sp) and there are two possibilities:

In the case when FS(s−p) < p, then there exists α
1
∈ (FX(s−p), FX(sp)) and β1 ∈ (FY (s−p), FY (sp)) so that

qα
1
+ (1 − q)β

1
= p and F−1X (α

1
) = F−1Y (β

1
) = sp . Therefore, F−1X (α

*
) = F−1Y (β

*
) = sp .

In the casewhen FS(s−p) = p, then qFX(s−p)+(1−q)FY (s−p) = p and one has that F−1X (FX(s−p)) > F−1Y (FY (s−p)*),
while for α < FX(s−p) and β > FY (s−p) one has that F−1X (α) < F−1Y (β). Hence, α

*
= FX(s−p), FY (s−p) = β

*
and

sp = F−1X (α
*
) > F−1Y (β

*
).

Case 4: FX has a discontinuity at sp and there exists z < sp, FX(z) = FX(s−p)
By changing the role of X and Y we have that the case (4a) corresponds to (1d), the case (4b) corresponds to

(2d) and the case (4c) corresponds to (3d). Finally the case of (4d) is treated as follows. In the case (4d), both

FX and FY are discontinuous at sp, and there exists z
1
and z

2
such that FX(z1) = FX(sp) and FY (z2) = FY (sp) so

that FX is constant on (z1, sp) and FY is constant on (z
2
, sp). Then F−1S (p) 6 min(z

1
, z

2
) < sp which contradicts

the de�nition of sp = F−1S (p). This case is thus impossible. �

It is clear that inmany cases F−1X (α
*
) = F−1Y (β

*
). For example, by inspection of Table 1we�nd it is su�cient

for FX and FY to be strictly increasing with unbounded support (Case (1a)).

3 Application: Bounds on Quantiles of Portfolios

Let X := (X
1
, X

2
, ..., Xd) be some random vector of interest having �nite mean and de�ned on an atomless

probability space. In what follows we interpret X as a portfolio of risks that a �nancial institution is exposed

to. Its distribution is not fully known but complies with properties (i), (ii) and (iii) for a given F ⊂ R. Hence,
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S :=
∑d

i=1 Xi can be represented as a mixture of the type (4) and its risk assessment is intimately connected

with the analysis of extreme dependence among Zi in (4).

A special role in this analysis is played by the comonotonic dependence, i.e, when all Zi are increasing

in each other. For this particular dependence we denote Zi by Zci . Formally, we write

Zci = F
−1

Zi (U), i = 1, 2, ..., d, (10)

for some uniformly distributed random variable U that we take independent of I.

To assess the risk of S, it is standard to compute F−1S (p) for some 0 < p < 1 that is typically close to 1

(e.g., p = 0.995 as in Solvency III and Basel II regulation). In this context, a quantile is typically called a VaR.

Precisely, we denote, by VaRp(S) the VaR of S at level p,

VaRp (S) = F−1S (p).

In the further analysis of VaR bounds on S, two other measures of risk are useful. TVaRp(S) denotes the Tail

Value-at-Risk (TVaR) at level p, i.e.,

TVaRp(S) =
1

1 − p

1∫
p

VaRu(S)du, p ∈ (0, 1) .

Observe that p → TVaRp is continuous. We de�ne TVaR
1
(S) = limp↗1

TVaRp(S). TVaRp is a weighted average

of all upper VaRs from probability level p onwards. Similarly, we can de�ne the left Tail Value-at-Risk (LTVaR)

at level p as the average of theVaRs below p, i.e. LTVaRp(S) = 1

p
∫ p
0

VaRu(S)du and LTVaR
0
(S) = LTVaRp↘0

(S).
In what follows the best-possible lower bound for the VaR of the aggregate risk S is denoted by ϱ−F and the

upper bound is denoted by ϱ+F , where F ⊂ R is the subset on which the joint distribution of X is known. In

general, it is di�cult to obtain explicit expressions for ϱ−F and ϱ+F .

In their Proposition 4.1, [4] provide the following VaR bounds on

∑d
i=1 Xi (and thus bounds on ϱ−F and

ϱ+F) :

Proposition 2 (VaR Bounds for

∑d
i=1 Xi). Let X be a random vector that satis�es properties (i), (ii) and (iii),

and let I, (Zc
1
, Zc

2
, ..., Zcd) and U be de�ned as in (3) and (10). De�ne the variables Li and Hi as

Li = LTVaRU
(
Zci
)
and Hi = TVaRU

(
Zci
)
.

Furthermore, de�ne

mp := VaRp

(
I

d∑
i=1

Xi + (1 − I)
d∑
i=1

Li

)
, Mp := VaRp

(
I

d∑
i=1

Xi + (1 − I)
d∑
i=1

Hi

)
.

The best-possible bounds ϱ−F and ϱ+F for the VaR of the aggregate risk satisfy

ϱ−F > mp and ϱ+F 6 Mp . (11)

At �rst, the role of the variablesHi and Limay seemodd.However, note that the variables Zi that appear in the

general mixture (4) can also be expressed as Zi = VaRUi (Zi) for some uniformly distributed random variable

Ui . Clearly, the VaR of

∑d
i=1 VaRUi (Zi) is bounded by its TVaR. Furthermore, TVaR is maximized in the case

of a comonotonic dependence and VaR and TVaR are additive, we thus obtain that the VaR of

∑d
i=1 VaRUi (Zi)

is bounded by the VaR of the comonotonic sum

∑d
i=1 Hi . When there is full uncertainty, i.e., when U = Rd ,

then I = 0, and we recover the VaR bounds of the portfolio, as provided in Theorem 2.1 of the [2].

In general the bounds mp and Mp are not known in analytic form and their numerical evaluation is not

straightforward to do. Speci�cally, while it is easy to simulate possible realizations for (Zc
1
, Zc

2
, ..., Zcd) the

realizations for (L
1
, L

2
, ..., Ld) and (H

1
, H

2
, ..., Hd) do not follow immediately, which leads to nested simu-

lations when computing mp andMp . Indeed, the simulation of a single realization for Li (or for Hi) requires,
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for each simulated value u of the uniformly distributed variable U, a large number of draws from the variable

Zi in order to estimate LTVaR and TVaR at the level U = u. In this respect, the formula for the quantile of a

mixture is convenient, as it allows to develop an alternative formulation of the VaR bounds. This alternative

formulation makes use of an auxiliary variable T,

T := F−1∑
i Xi|(X1 ,X2 ,...,Xd)∈F(U) (12)

for the same uniform random variable U used in the de�nition of Zci in (10). Hence, T is a random variable

independent of I with distribution F∑
i Xi|(X1 ,X2 ,...,Xd)∈F(x). We formulate the following proposition.

Proposition 3 (Alternative formulation of the VaR Bounds). Let (X
1
, X

2
, ..., Xd) be a random vector that sat-

is�es properties (i), (ii) and (iii), and let I, (Zc
1
, Zc

2
, ..., Zcd) and T be de�ned as in (3), (10) and (12). Recall that

pF = P(I = 1). De�ne

α
*
:= inf

{
α ∈ (α

1
, α

2
) | VaRα(T) > TVaR p−pFα

1−pF

( d∑
i=1

Zci

)}
,

where α
1
= max

{
0,

p+pF−1
pF

}
and α

2
= min

{
1,

p
pF

}
.Then, for p ∈ (0, 1) ,

Mp = max

{
VaRα

*

(T), TVaRβ
*

( d∑
i=1

Zci

)}
, (13)

where β
*
=

p−pFα*
1−pF . Speci�cally,

Mp =


TVaR p−pFα

*

1−pF

(∑d
i=1 Z

c
i

)
if p+pF−1pF < α

*
<

p
pF

VaRα
*

(T) if α
*
=

p
pF

max

{
VaRα

*

(T), TVaR p−pFα
*

1−pF

(∑d
i=1 Z

c
i

)}
if α

*
=

p+pF−1
pF .

(14)

The expression for the lower bound mp is obtained by replacing, in the above statements,“TVaR” with “LTVaR”.

Proof. The proof follows as a direct application of Theorem 1. Consider X = T with distribution FX, and
Y =

∑d
i=1 TVaRU(Zi) (=

∑d
i=1 TVaRU(Z

c
i )) with distribution FY . From Theorem 1,

Mp = max

{
VaRα

*

(T), TVaRβ
*

(Y)
}
. (15)

It is clear that the cdf FY of Y is continuous and strictly increasing on its support. First, let 0 < FY (Mp) < 1.

By inspection of the table displayed in Theorem 1, we are in the situation of the cases (1a), (2a), (3a) and (4a).

We observe that β
*
= FY (Mp) and

Mp = VaRβ
*

(Y) = VaRβ
*

(
TVaRU

( d∑
i=1

Zci

))
= TVaRβ

*

(∑
i
Zci

)
.

Thus, for all 0 < β
*
< 1, or, equivalently,

p+pF−1
pF < α

*
<

p
pF , it holds thatMp = TVaRβ

*

(∑
i Z

c
i
)
. Second, when

FY (Mp) = 0, we are always in the cases (1b), (3b) and (4b) so that Mp = VaRα
*

(T) with β
*
= 0 and α

*
=

p
pF .

(this is also clear from the fact that in this case VaR
0 (
Y) = −∞). When FY (Mp) = 1, we are either in the cases

(1b), (3b) and (4b) or in the cases (1a), (2a), (3a) and (4a). In the �rst situation, it follows from inspection of

the table again thatMp = VaRα
*

(T) with α
*
=

p+pF−1
pF and note that VaRα

*

(T) > VaR
1
(Y)(= TVaR

1

(∑
i Z

c
i
)
). In

the second situation, β
*
= 1 andMp = TVaR

1

(∑
i Z

c
i
)
> VaRα

*

(T). The proof of the expression formp follows

by applying Theorem 1 again, where we now take Y as Y =

∑d
i=1 LTVaRU(Z

c
i ). �

Proposition 3may lookmore complicated than Proposition 2; however, it is now easier to useMonte Carlo

simulations for estimating VaR bounds because nested simulations can be avoided.
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Remark 4 (Best-possible bounds). In �nite dimensions, the inequalities in (11) are typically strict so that

the bounds mp and Mp are not best-possible in general. Indeed, it not straightforward to �nd a vector

(Z
1
, Z

2
, ..., Zd) with given marginal distributions as in (5) such that for a given 0 < p < 1, I

∑d
i=1Xi + (1 −

I)
∑d

i=1Zi and I
∑d

i=1Xi +(1−I)
∑d

i=1Hi have the same same p-quantile. This situationwould be obtainedwhen

the vector (Z
1
, Z

2
, ..., Zd) is such that its sum

∑d
i=1 Zi has a �at quantile function on the appropriate interval

(β
*
, 1). The literature refers to this situation as “joint mixability” (for a homogeneous portfolio this concept

is known as “complete mixability”), a concept that can essentially be traced back to a paper of [8] and has

been extensively studied in a series of papers including [15], and [13, 14]. In these papers it is shown, among

other results, that in several theoretical cases of interest one can construct a dependence among the risks

that lead to mixability.

Remark 5 (High dimensions). A large class of distributions exhibits asymptotic mixability implying that in

high-dimensional problems the bounds mp and Mp that are stated in Proposition 2 and Proposition 3 are

expected to be approximately best-possible; see e.g., [14] and [12].

Remark 6 (Rearrangement Algorithm). [4] show that the Rearrangement Algorithm (RA) of [6] can be condi-

tionally applied to obtain approximations of the best-possible VaR bounds. There is numerical evidence that

these approximations typically yield results that do not di�er a lot from the bounds we investigate here; see

[2] and [3] for illustrations.

The following example illustrates Proposition 3 with a multivariate Student’s t distribution as a benchmark

model.

3.1 Example (Multivariate Student’s t distribution)

We consider a random vector X with standard Student’s t distributed marginals that follows a multivariate

standard Student’s t distribution on a trusted area F; see also [4]. Speci�cally, the density of X on F is given

by

fX (x) =
Γ
(
(d + ν) /2

)
(νπ)d/2 Γ

(
ν/2
)√
|R|

(
1 +

xTR−1x
ν

)
−(d+ν)/2

.

Here, ν is the number of degrees of freedom and |R| is the determinant of the correlation matrix R satisfying

Ri,j = ρ (−1/(d − 1) < ρ < 1) for all pairs (Xi , Xj) with i ≠ j (homogeneous portfolio); see also [9]. When ν > 2 ,

the covariance matrix Σ exists and is given by Σ = ν
ν−2R. As for the subset F we take the ellipsoid

F = CpF ,ρ,v,d :=
{
x ∈ Rd | xΣ−1xt 6 c(pF)

}
, (16)

where c(pF) is the appropriate cuto� value³ corresponding to P(X ∈ F) = pF . We further consider a portfolio

of d = 20 risks and consider a multivariate Student’s t distribution with ν = 10 degrees of freedom. The VaR

bounds reported in Table 2 were obtained within a few minutes, using 3,000,000 Monte Carlo simulations.⁴

We make the following observations. First, model risk is clearly present even when the dependence is

“mostly” known (i.e., pF is large). Furthermore, the precise degree of model error depends highly on the

level of the probability p that is used to assess VaRp. Let us consider the benchmark model with ρ = 0

(the risks are uncorrelated and standard Student’s t distributed) and pF = 1 (no uncertainty). We �nd that

VaR
95%

(∑
20

i=1 Xi
)
= 8.1 and, similarly, VaR

99.5%

(∑
20

i=1 Xi
)
= 14.2, VaR

99.95%

(∑
20

i=1 Xi
)
= 20.7. However,

if pF = 98%, then pU = 2%, and the benchmarkmodelmight overestimate the 95%−VaRby (8.1-7.9)/7.9=2.5%

3 To determine c(pF), one can use the fact that the scaled squared Mahalanobis distance

1

dXR
−1Xt follows a F−distribution with

parameters d and ν (i.e., 1

dXR
−1Xt ∼ F(d, ν)).

4 When no information on the dependence is available (pF = 0%), the upper and lower bounds stated in Proposition 2 reduce

to A =

∑d
i=1 TVaRp (Xi) and B =

∑d
i=1 LTVaRp (Xi) (see [2]) and can be computed exactly ([10]).



180 | Carole Bernard and Steven Vandu�el

Table 2: VaR
95%

, VaR
99.5%

and VaR
99.95%

of
∑

20

i=1 Xi are reported in the absence of uncertainty (i.e., U = ∅). VaR bounds are
then are reported as pairs (mp ,Mp) for various probability levels pF and correlation coe�cients ρ. All digits reported in the
table are signi�cant in that the standard deviation of each number estimated in the table is smaller than 0.01.

U = ∅ U = Rd

F = CpF,ρ,ν,d pF = 100% pF = 98% pF = 80% pF = 20% pF = 0%

ρ = 0 8.1 ( 7.9 , 9.0 ) ( 6.6 , 40.3 ) ( 2.2 , 48.1 ) ( -2.5 , 48.2 )
p=95% ρ = 0.1 13.8 ( 13.4 , 15.1 ) ( 11.3 , 40.4 ) ( 3.6 , 48.1 ) ( -2.5 , 48.2 )

ρ = 0.5 26.3 ( 25.4 , 27.8 ) ( 21.4 , 40.8 ) ( 7.0 , 48.0 ) ( -2.6 , 48.2 )
ρ = 0 14.2 ( 13.4 , 56.6 ) ( 11.0 , 75.2 ) ( 6.2 , 75.7 ) ( -0.4 , 75.7 )

p=99.5% ρ = 0.1 24.2 ( 22.8 , 56.5 ) ( 18.7 , 75.1 ) ( 10.5 , 75.7 ) ( -0.4 , 75.7 )
ρ = 0.5 45.9 ( 43.4 , 58.5 ) ( 35.7 , 75.0 ) ( 19.9 , 75.5 ) ( -0.4 , 75.7 )
ρ = 0 20.7 ( 18.2 , 103.3 ) ( 14.2 , 106 ) ( 8.6 , 106 ) ( -0.1 , 106 )

p=99.95% ρ = 0.1 34.8 ( 30.7 , 102.4 ) ( 24.2 , 106 ) ( 14.5 , 106 ) ( -0.1 , 106 )
ρ = 0.5 66.1 ( 58.4 , 103.0 ) ( 46.2 , 106 ) ( 27.7 , 106 ) ( -0.1 , 106 )

or underestimate it by (9-8.1)/9 =10%. However, when using the 99.5%−VaR, the degree of underestimation

may rise to (56.6-14.2)/56.6=75%, whereas the degree of overestimation is equal only to (14.2-13.4)/13.4=6.0%.

Hence, the risk of underestimation is sharply increasing in the probability level that is used to assess VaR.

Finally, note that when very high probability levels are used in VaR calculations (p = 99.95%; see the last

three rows in Table 2), the constrained upper bounds are very close to the unconstrained upper bound, even

when there is almost no uncertainty on the dependence (pF = 98%). The bounds computed by [6] are thus

nearly the best possible bounds, even though it seems that the multivariate model is known at a very high

con�dence level as F nearly contains allRd. This implies that any e�ort to �t a multivariate model accurately

will not reduce the model risk on the assessment of Value-at-Risk at very high con�dence levels.

4 Final remarks

In this paper, we provide an explicit expression for the quantile of a mixture of two random variables and

provide an application to �nding VaR bounds of risky portfolios when only partial dependence information

is available. We leave it to future research to extend the results to the general n−dimensional case.
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