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Abstract: For theMarkov property of amultivariate process, a necessary and su�cient condition on themulti-

dimensional copula of the �nite-dimensional distributions is given. This establishes that theMarkov property

is solely a property of the copula, i.e., of the dependence structure. This extends results by Darsow et al. [11]

from dimension one to the multivariate case. In addition to the one-dimensional case also the spatial copula

between the di�erent dimensions has to be taken into account. Examples are also given.
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1 Introduction
We study theMarkov property ofmulti-dimensional stochastic processes in terms of the correspondingmulti-

dimensional copulas. Let X = (Xt)t∈T with T ⊆ R+

be a n-dimensional stochastic process with coordinates

Xi = (Xit)t∈T , i = 1, . . . , n, de�ned on some �ltered probability space (Ω,F, F = (Ft)t∈T , P). We study prop-

erties of the copulas between random variables Xit , X
j
s , i, j = 1, . . . , n, that guarantee the Markov property of

the process X. For the Chapman-Kolmogorov equation to hold true, we give a necessary and su�cient con-

dition on the involved copulas. Based on that we provide a necessary and su�cient condition for X to be a

Markov process. For the process X to be Markov, the one-dimensional distributions of its coordinates Xit do
notmatter. TheMarkov property is a pure “dependence” property that can be formulated exclusively in terms

of copulas. As a consequence, starting with a Markov process X, a multitude of other Markov processes can

be constructed by just modifying the marginal distributions.

So far copula based approaches to Markov processes mainly focus on one-dimensional processes; we

refer to the grounding paper by Darsow et al. [11], but also to [13], [1], [7], [8], and [2]. Our paper generalizes

results derived by Darsow et al. [11], for the one-dimensional case to the general multivariate setting. Here we

have to take into account that the n-dimensionalmarginal distribution ofXt admits a spatial copula, whereas

in the one-dimensional case marginal distributions can be simply transformed into a uniform distribution.

Understanding the interplay between the multivariate spatial copulas over time is the main challenge that is

met by an appropriate generalization of the *-operator from [11].

Recent results on estimation and modeling based on multivariate time series with focus on copulas can

be found e.g. in [17], [18], [20], [19], and [3]. The latter one considers vine copulas, which are related to pair

copulas, as e.g. in [12], and [6]. Thework in [3] considers also the question, when does a vine copula speci�ca-

tion related to a time series give rise to a Markov process. Vine copulas are speci�ed by conditional bivariate

copulas. However their results do not carry over to a continuous time setting in a straightforward way.

In [13] the main result from [11] is extended in discrete time to processes with the k-period Markov prop-

erty; here the last k time points are a su�cient statistics for the distribution of the following time point. In
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addition it is assumed that the time series is stationary, i.e., all k-time points have the same k-dimensional

copula.

The transition function of a Markov chain can be written in terms of the copula of the joint distribution

of two consecutive time points, a fact that is used in [1] for maximum likelihood estimation.

The concept of copula had recently a revival in particular motivated by its application quantitative risk

management and mathematical �nance, see e.g., [15]. [9], [10] and [4] investigate the dependence structure

of stochastic processes with copula-like methods in the context of applications in mathematical �nance.

The paper [5] considers a multivariate process with given in�nitesimal characteristics, whose one-

dimensional components coincide in law with some given one-dimensional processes. For a di�usion

this requires a relation between the diagonal and the o�-diagonal entries of the (instantaneous) covari-

ance/di�usion matrix. That di�ers basically from our approach, which relies solely on the speci�cation and

analysis of copulas of �nite-dimensional distributions.

The paper is organized as follows. In Section 2 we de�ne a product operator between copulas and study

properties of this operator that are essential for formulating our results. Multivariate Markov processes and

their copulas are studied in Section 3. Finally, in Section 4 as an example we propose a family of Fréchet type

copulas that lead to a class of Markov processes and calculate their associated in�nitesimal generators.

2 Notation and auxiliary results
Let X = (X1, . . . , Xk),Y = (Y1, . . . , Y l) be k and l-dimensional random variables and denote by FXi , FY i the
marginal distribution function of Xi and Y i, respectively. A copula C of a random vector (X1, . . . , Xk) is a

distribution function C on [0, 1]

k
such that the joint distribution FX of the vector X = (X1, . . . , Xk) satis�es

FX(x1, ., xk) = C(FX
1

(x
1
), ., FXk (xk)).

We refer to [16], [14] for exhaustive presentations of the concept of copulas.

The copula of the vector (X1, . . . , Xk , Y1, . . . , Y l) is denoted by C(x1, . . . , xk , y1, . . . , yl). We follow [11]

and assume a coordinate-wise linear interpolation for those points where the copula is not uniquely de�ned.

To lighten notation we frequently use the following short hand notation,

x = x1, . . . , xk

dx = dx1 . . . dxk

FX(x) = FX1 (x
1

), . . . , FXk (x
k
)

X < x = X1 < x1, . . . , Xk < xk ,

and accordingly for y, dy, FY(y),Y < y, etc. Observe the di�erence in the notations FX and FX.
The copula of the vector Y is denoted by CY(y). We de�ne the derivative of the copula C with respect

to another copula A, in particular A = CY. Recall that, for every �xed vector x the function C(x, .) is the

distribution function of a measure on [0, 1]

l
.

De�nition 1. Assume that, for x ∈ [0, 1]

k the distribution C(x, .) is absolutely continuous with respect to the
measure generatedby somecopula A on [0, 1]l.Wedenote by C

,A(x, y) (a version of) theRadon-Nikodymderiva-
tive,

C(x, dy) = C
,A(x, y)A(dy).

The subscript “, A” indicates that we take the derivative with respect to the second set of arguments (y). Accord-
ingly, we de�ne the derivative CB,(x, y) of C with respect to a k-dimensional copula B by

C(dx, y) = CB,(x, y)B(dx),
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provided that for given y the measure generated by C(., y) is absolutely continuous with respect to the measure
generated by B. C

,A(x, y) and CB,(x, y) are called derivative of the copula C(x, .) resp. C(., y)with respect to the
copula A resp. B.

The derivatives C
,CY and CCX , are clearly well-de�ned for all x and all y.

The derivative C
,A(x, y) is increasing in x, more precisely, for v ≥ u we have

C
,A(v, y) − C,A(u, y) ≥ 0, (1)

for A-almost all y.

Lemma 1. We have the following expressions for conditional distributions

P
(
X < x

∣∣Y) (ω) = C
,CY
(
FX(x), FY(Y(ω))

)
, P − a.s. (2)

P
(
Y < y

∣∣X) (ω) = CCX ,
(
FX(X(ω)), FY(y)

)
, P − a.s. (3)

Proof. To prove (2), we have to show that for every a = (a1, . . . , al)

P(X < x,Y < a) =
∫

{ω:Y(ω)<a}

C
,CY
(
FX(x), FY(Y(ω))

)
P(dω).

The right hand side can be rewritten as∫
{ω:Y(ω)<a}

C
,CY
(
FX(x), FY(Y(ω))

)
P(dω) =

∫
y<a

C
,CY
(
FX(x), FY(y)

)
dFY(y)

=

a1∫
−∞

. . .
al∫

−∞

C
,CY
(
FX(x), FY(y)

)
CY
(
FY1 (dy

1

), . . . , FY l (dy
l
)

)
.

By applying the change of variables rule to each integral we arrive at

FY1 (a
1

)∫
0

. . .

FYl (a
l
)∫

0

C
,CY
(
FX(x), FY i

(
F−1Y i (z

i
)

)
, i = 1, . . . , l

)
CY
(
dz1, . . . , dzl

)
, (4)

where F−1Y i (z) = inf{t ≥ 0 : FY i (t) > z} is the right-inverse of FY i . If the marginal distributions FY i are continu-

ous, then we have FY i
(
F−1Y i (z

i
)

)
= zi and we can continue by writing

C(FX(x),FY(y)) = (5)

FY1 (a
1

)∫
0

. . .

FYl (a
l
)∫

0

C
,CY
(
FX(x), z1, . . . , zl

)
CY
(
dz1, . . . , dzl

)
,

which�nishes the proof in this case. For the general case, if yi is a point of discontinuity of FY i , with FY i (yi−) =
ui , FY i (yi+) = vi , then the copulas C and CY are not uniquely determined in the interval (ui , vi) for the i-th
coordinate of Y. Moreover, FY i

(
F−1Y i (z

i
)

)
= vi for all zi ∈ (ui , vi). Then (4) still reduces to C(FX(x), FY(y)), if

C
,CY
(
FX(x), . . . , vi , . . .

)
=

C(FX(x), . . . , vi , . . . ) − C(FX(x), . . . , ui , . . . )
CY(. . . , vi , . . . ) − CY(. . . , ui , . . . )

,

which holds because of our assumption that copulas will be coordinate-wise linearly interpolated for all in-

tervals where they are not unique.

The proof of (3) is analogously. �



162 | Ludger Overbeck and Wolfgang M. Schmidt

Remark 1. If the copula C(x, y) has a density c, i.e.,

C(x, y) =
x∫

0

y∫
0

c(u, v)dudv,

then C
,CY coincides with the familiar conditional density,

C
,CY (x, z) =

∫ x
0 c(u, z)du∫ 1
0 c(u, z)du

.

De�nition 2 (The
C(.)
* product operator). Let A be a (k +m)-dimensional copula, B be a (m + l)-dimensional

copula and C be a m-dimensional copula such that the derivatives A
,C and BC, are well-de�ned. The operator

C(.)
* is de�ned by

(A
C(z)
* B)(x, y) =

z∫
0

A
,C(x, r) · BC,(r, y) C(dr), (6)

provided that the integral exists for all x, y, z. To shorten notation, we denote (A
C
* B)(x, y) = (A

C(1)
* B)(x, y).

In case k = l = m = 1 the operator

C
* reduces to the * operator that was introduced by Darsow et al. [11]: for

two-dimensional copulas A(x, y), B(x, y),

(A * B)(x, y) =
1∫

0

A
,z(x, z) · Bz,(z, y) dz, (7)

with A
,z(x, z) the derivative of A with respect to the second argument, and accordingly for Bz,(z, y). The key

for extending the results of [11] to the multivariate case is the notion of the derivative of a copula with respect

to another copula in De�nition 1, which is the basis for the de�nition of the

C
* operator.

In our applications of the

C(.)
* product operator in relation toMarkovprocesses,weencounter the following

situation in which the

C(.)
* product is always well-de�ned.

Lemma 2. Consider random vectorsX, Z,Ywith dimensions k,m, l, respectively, and let A (resp. B) denote the
copula between X, Z (resp. Z,Y),

P(X < x, Z < z) = A
(
FX(x), FZ(z)

)
,

P(Z < z,Y < y) = B
(
FZ(z), FY(y)

)
.

For C denoting the copula of Z, the operator

(A
C(z)
* B)(x, y) =

z∫
0

A
,C(x, r) · BC,(r, y) C(dr), (8)

is well-de�ned.

Proof. For every x and every Borel set Z ∈ B([0, 1]

m
) we have∫

Z

A
,C(x, r)C(dr) =

∫
Z

A(x, dr) ≤
∫
Z

A(1, dr) =
∫
Z

C(dr).

This implies A
,C(x, r) ≤ 1 for C-almost all r. Accordingly, BC,(r, y) ≤ 1 for C-almost all r. Thus the integrand

in (8) is bounded C-almost surely and the assertion follows. �

The following Lemma illustrates the role played by the

C(.)
* operator.
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Lemma 3. Consider random vectorsX, Z,Ywith dimensions k,m, l, respectively, and let A (resp. B) denote the
copula between X, Z (resp. Z,Y),

P(X < x, Z < z) = A
(
FX(x), FZ(z)

)
,

P(Z < z,Y < y) = B
(
FZ(z), FY(y)

)
.

Let C denote the copula of Z. Then X,Y are conditionally independent given Z if and only if

P(X < x,Y < y, Z < z) =
(
A
C(FZ(z))
* B

)
(FX(x), FY(y)). (9)

Proof. X,Y are conditionally independent given Z if and only if

P(X < x,Y < y, Z < z)

=

∫
{ω:Z(ω)<z}

P(X < x|σ(Z))(ω)P(Y < y|σ(Z))(ω)P(dω).

By using Lemma (1) the assertion follows. �

Proposition 1. (A
C(z)
* B)(x, y) is a (k + m + l)-dimensional copula. In particular, (A

C
* B)(x, y) is a (k + l)-

dimensional copula.

Proof. By Lemma (1), A
,C and BC, are Markov kernels, i.e. for every z, A

,C(., z) de�nes a probability measure

on [0, 1]

k
and A

,C(X, z) is measurable in z for every X ∈ B([0, 1]

k
), and correspondingly for BC,. Then the

product A
,C(., z) BC,(z, .) generates a (product) probability measure on [0, 1]

k+l
that is again measurable in

z. Finally, integrating w.r.t. z¹,∫
Z

A
,C(X, z) · BC,(z, Y) C(dz), X ∈ B([0, 1]

k
), Y ∈ B([0, 1]

l
),Z ∈ B([0, 1]

m
)

generates a probability measure on [0, 1]

k+m+l
whose distribution function is just (A

C(z)
* B)(x, y). Since the

marginals of this distribution are uniform, the assertion follows. �

The following lemma will be crucial for our copula analysis for Markov processes.

Lemma 4. Let A, B, C, D, E be copulas with dimensions (k + m), (m + l),m, k, l, respectively. Assume the
C(.)
*

product and the derivatives w.r.t. D (resp. E) below are all well-de�ned. Then

(A
C(z)
* B)D,(x, y) =

z∫
0

BC,(r, y) · AD,(x, dr)

(A
C(z)
* B)

,E(x, y) =

z∫
0

A
,C(x, r) · B,E(dr, y).

Proof. By de�nition of the derivative as Radon-Nikodym density,

(A
C(z)
* B)(x, y) =

x∫
0

(A
C(z)
* B)D,(v, y)D(dv).

1 Observe that the integral is well-de�ned by de�nition of the

C(.)
* operator.
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On the other hand, by applying Fubini’s theorem,

(A
C(z)
* B)(x, y) =

z∫
0

A
,C(x, r) · BC,(r, y)C(dr)

=

z∫
0

BC,(r, y) · A(x, dr)

=

x∫
0

z∫
0

BC,(r, y) · AD,(v, dr)D(dv),

and the �rst assertion follows. The second statement is proved analogously. �

Proposition 2. The operator
C(.)
* is associative, that is, for copulas A, B, C, D, E with dimension (k + m), (m +

l), (l + i),m, l respectively, it holds (
A
D(.)
* B

)
E(.)
* C = A

D(.)
*

(
B
E(.)
* C

)
.

Proof. By repeated application of Lemma 4 and Fubini’s theorem,((
A
D(z)
* B

)
E(r)
* C

)
(x, y) =

r∫
0

(
A
D(z)
* B

)
,E
(x, v)CE,(v, y)E(dv)

=

r∫
0

z∫
0

A
,D(x, ξ )B,E(dξ , v)CE,(v, y)E(dv)

=

z∫
0

A
,D(x, ξ )

(
B
E(r)
* C

)
(dξ , y)

=

z∫
0

A
,D(x, ξ )

(
B
E(r)
* C

)
D,
(ξ , y)D(dξ )

=

(
A
D(z)
*

(
B
E(r)
* C

))
(x, y).

�

3 Multivariate Markov processes and copulas
LetX = (Xt)t∈T be a n-dimensional stochastic process with coordinates Xi = (Xit)t∈T , i = 1, . . . , n, de�ned on

some �ltered probability space (Ω,F, F = (Ft)t∈T , P). In this section we investigate properties of the copulas

associated with X in case X is a Markov process.

We denote by Cst the (n + n)-dimensional copula between Xs ,Xt , s < t,

P(X1s ≤ x1, . . . , Xns ≤ xn , X1t ≤ y1, . . . , Xnt ≤ yn) = Cst
(
FX1s (x1), . . . , FXns (xn), FX1t (y1), . . . , FXnt (yn)

)
.

We write Ct for the copula of the vector Xt. Observe that in the following all time points s, t, . . . are elements

of the set T.

For x ∈ Rn and Borel sets Y ∈ B(Rn) we denote

P(s, x; t, Y) = P(Xt ∈ Y|Xs = x)
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and call P transition probability function of X. As usual we take a regular version of the conditional proba-

bility P(Xt ∈ Y|Xs = x). Observe that X is not assumed to be a Markov process.

Theorem 1. The transition probability function P of X satis�es the Chapman-Kolmogorov equation,

P(s, x; t, Y) =
∫
Rn

P(u, z; t, Y)P(s, x; u, dz), s < u < t, Y ∈ B(Rn),

if and only if

Cst = Csu
Cu
* Cut for all s < u < t. (10)

Proof. Suppose that (10) holds true. It su�ces to verify the Chapman-Kolmogorov equation for Borel sets

Y = (−∞, y). For s < u < t, by using Lemma 1, we obtain∫
Rn

P(u, z; t, (−∞, y))P(s, x; u, dz) =
∫
Rn

CutCu ,
(
FXu (z), FXt (y)

)
CsuCs ,

(
FXs (x), FXu (dz)

)
=

∫
[0,1]

n

CutCu ,
(
v, FXt (y)

)
CsuCs ,

(
FXs (x), dv

)
.

By applying Lemma 4 and (10) we conclude,∫
Rn

P(u, z; t, (−∞, y))P(s, x; u, dz) = (Csu
Cu
* Cut)Cs ,

(
FXs (x), FXt (y)

)
= CstCs ,

(
FXs (x), FXt (y)

)
= P(s, x; t, (−∞, y)).

Conversely, if the Chapman-Kolmogorov equation holds true, we get from the above calculation that

(Csu
Cu
* Cut)Cs ,

(
FXs (x), FXt (y)

)
= CstCs ,

(
FXs (x), FXt (y)

)
.

This implies (10), where we make use of our assumption that all copulas are coordinate-wise linearly inter-

polated for points where the copula is not uniquely de�ned. �

De�nition 3. A family of 2n-dimensional copulas Cst , s, t ∈ T, s < t, is called a Markov family if Csu(1, ·) =
Cut(·, 1) for all s < u < t and (10) holds true.

Remark 2. If the copulas Cst(x, y) admit densities cst,

Cst(x, y) =
x∫

0

y∫
0

cst(u, v)dudv

then by applying Remark 1 condition (10) translates to

cst(u, v) =
∫

[0,1]
n

csu(u, z)cut(z, v)∫
[0,1]

n cut(z, r)dr
dz.

As is well-known, ful�lment the Chapman-Kolomogorov equation is su�cient but not necessary for X to be

a Markov process. The Markov property,

P
(
Xtp < y|σ(Xt1 , . . . ,Xtp−1 )

)
= P

(
Xtp < y|σ(Xtp−1 )

)
, (11)

for all t
1
< · · · < tp−1 < tp , y ∈ Rn, requires further properties of the copulas related with X, which we

formulate now. Recall that the

C(.)
* operator is associative, that is, for repeated application of the operator the

order of application does not matter.
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Theorem 2. The n-dimensional process X is a Markov process if and only if for all t
1
< t

2
< · · · < tp the copula

Ct1 ,...,tp of (Xt
1

, . . . ,Xtp ) satis�es

Ct1 ,...,tp = Ct1 ,t2
Ct2 (.)
* Ct2 ,t3

Ct3 (.)
* . . .

Ctp−1 (.)
* Ctp−1 ,tp . (12)

Proof. First, by combining Proposition 1 and Proposition 2 the right hand side of (12) de�nes a copula.

For the case p = 3, the Markov property (11) is equivalent to the conditional independence of Xt
1

,Xt
3

given

Xt
2

. By Lemma 3 this is equivalent to (12), proving the assertion for p = 3. For the general case we proceed by

induction. Let X be a Markov process. The Markov property (11) implies

Ct1 ,...,tp
(
FXt

1

(x
1
), . . . , FXtp (xp)

)
= P

(
Xt

1

< x
1
, . . . ,Xtp < xp

)
=

xp−1∫
0

Ct1 ,...,tp−1
(
FXt

1

(x
1
), . . . , FXtp−2 (xp−2), FXtp−1 (dzp−1)

)
P
(
Xtp < xp|Xtp−1 = zp−1

)
=

Ct1 ,...,tp−1 Ctp−1 (FXtp−1 (xp−1))* Ctp−1 ,tp
(FXt

1

(x
1
), . . . , FXtp−2 (xp−2), FXtp (xp)

)
.

By induction this yields (12), where we take into account that all copulas are coordinate-wise linearly inter-

polated for points where the copula is not uniquely de�ned. Now assume that (12) holds true. Then for any q
with t

1
< tq < tp

Ct1 ,...,tp = Ct1 ,t2 ,...,tq
Ctq (.)
* Ctq ,...,tp .

By Lemma 3 this implies that (Xt
1

, . . . ,Xtq−1 ) and (Xtq+1 , . . . ,Xtp ) are conditionally independent given Xtq .
This proves the assertion. �

Remark 3. For the bivariate case, n = 2, discrete time and, most importantly, if the copulas Cs,t(x, ·) and
Cs,t(·, y) are absolutely continuous for all x and y, the result of Theorem 2 reduces to Theorem 5.1 in [10]. How-
ever, for our construction of a Markov family of copulas in Section 4 it is crucial to depart from the restriction of
absolute continuity, which in turn requires a more general de�nition of the product operator. Theorem 5.1 in [10]
is formulated in terms of a product operator that has been introduced in [13] and which is based on derivatives
of copulas. For the proof of Theorem 5.1, [10] refers to [13], whose proof uses conditional distributions which are
basically conditioned copulas. The proof carries over to our situation as soon as conditioned copulas are iden-
ti�ed as derivative of a copula with respect to a copula (see De�nition 1 and Lemma 1) and the product operator
is generalized according to our De�nition 2.

Remark 4. It is straightforward to extend our copula analysis to higher order Markov processes, following the
lines in [13]. For a Markov process of order k ≥ 1 equation (12) has to be replaced by the following condition. For
t
1
< t

2
< · · · < tp, p ≥ k + 1, the copula Ct1 ,...,tp of (Xt

1

, . . . ,Xtp ) satis�es

Ct1 ,...,tp = Ct1 ,...,tk+1
Ct2,...,tk+1 (.)

* Ct2 ,...,tk+2
Ct3,...,tk+2 (.)

* . . .
Ctp−k ,...,tp−1 (.)

* Ctp−k ,...,tp .

Remark 5. Given a Markov family Cst , s, t ∈ T, s < t, we can de�ne �nite dimensional copulas Ct1 ,...,tp by (12)

and combine thesewith anarbitrarily speci�ed �owFt(x) = (FX1t (x1), . . . , FXnt (xn)) ofmarginal one-dimensional
distributions FXit to obtain �nite dimensional distributions

P(Xt
1

< x
1
, . . . ,Xtp < xp) = C

t
1
,...,tp

(Ft
1

(x
1
), . . . , Ftp (xp)).

By applying Kolomogorov’s construction theorem for stochastic processes there exists a Markov process X with
the given copulas and marginal distributions.



Multivariate Markov Families of Copulas | 167

Starting with a known Markov process with associated Markov family Cst one can construct new Markov
processes X by means of the same Markov family but with a modi�ed �ow of univariate marginal distributions.
Observe, that in general, it is not possible to modify the �ow of joint distributions P(X1t < x

1
, . . . , Xnt < xn)

because they involve the “spatial” copulas Ct.
To give an example, consider a 2-dimensional Wiener process with instantaneous correlation ρ. The asso-

ciated Markov family of copulas is just the Gaussian copula

Cst(x, y) = N
4

(
N

(−1)

(x
1
), N

(−1)

(x
2
), N

(−1)

(y
1
), N

(−1)

(y
2
); Σ
)
,

where N

(−1) is the inverse of the standard normal distribution and N
4
is the distribution function of a 4-

dimensional standard normal distribution with correlation matrix

Σ =


1 ρ

√ s
t ρ

√ s
t

ρ 1 ρ
√ s

t
√ s

t√ s
t ρ

√ s
t 1 ρ

ρ
√ s

t
√ s

t ρ 1

 .

By construction the family Cst is aMarkov family that can be used to construct a 2-dimensional Markov process,
which is non-Gaussian but admits the dependence structure of a multivariate Wiener process.

It would be interesting to study other elliptic copulas or Frank and Clayton copulas for the temporal depen-
dence of a processes and give conditions for theMarkov property. However, this seems still a challenge. Themain
reason is that most continuous time Markov process are a kind of jump di�usions whose discrete time distribu-
tions look mainly like normal or poisson distributions. [5] considers di�usion type processes or jump-di�usions
and give conditions on the di�usion coe�cients and the jump-measure to ensure the Markov property. However,
to �nd continuous time Markov processes with a temporary dependence based on elliptic distributions, like the
t-distribution is still a challenge.

4 A Fréchet–type copula family that satis�es the
Chapman-Kolmogorov equation

Weprovide a recipe for constructing awide sample class ofMarkov families Cst , s, t ∈ T, s < t. Given aMarkov

family Cst , s, t ∈ T, s < t, one can construct a corresponding Markov process X as outlined in Remark 5. We

construct Markov families by convex combination of “extreme” copulas. This construction can be seen as a

generalization of the copula family in [11], Example 4.5, to the multivariate case.

Let C be a given n-dimensional copula, which will serve as “stationary spatial” copula, i.e., the copula

of the random vector Xt is Ct = C, for all t ∈ T. Recall that the marginal distributions of Xit are still arbitrary

because they do not enter condition (10) for the Chapman-Kolomogorov equation to hold true. We de�ne the

following “extreme” copula M and the product copula

M(x, y) = C(min(x, y))
P(x, y) = C(x)C(y),

where theminimum is understood coordinate-wise. To see thatM is indeed a copula, letX be a n-dimensional

random vector with distribution function C. Then

M(x, y) = P(X < x,X < y), x, y ∈ [0, 1]n ,

which shows that M is a distribution function on [0, 1]

2n
. That M has uniform margins is obvious. This also

shows that M is a kind of total dependence copula. Further P is a kind of independence copula, it is the

multivariate distribution of (X,Y) with X and Y independent and distributed according to C. Clearly P has

uniform margins.

The following properties are crucial for our construction of a Markov family of copulas below.
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Lemma 5. Let K(x, y) be a 2n-dimensional copula with K(x, 1) = C(x), K(1, y) = C(y). Then

K
C
* P = P

C
* K = P (13)

K
C
*M = M

C
* K = K. (14)

Proof. We show that P acts as a null element with respect to the

C
* product. We have P

,C(x, y) = C(x) and
PC,(x, y) = C(y). This yields

K
C
* P(x, y) =

1∫
0

K
,C(x, z)PC,(z, y)C(dz)

= C(y)
1∫

0

K
,C(x, z)C(dz) = C(y)K(x, 1) = C(y)C(x)

= P(x, y).

The same arguments apply for the null property with the left hand side

C
*multiplication by P. This proves (13).

The copulaM is the identity with respect to the

C
* operator. To verify this, the derivatives ofM with respect to

C are obviously M
,C(x, z) = 1{z≤x} and MC,(z, y) = 1{z≤y}. This implies as requested

K
C
*M(x, y) =

1∫
0

K
,C(x, z)MC,(z, y)C(dz)

=

1∫
0

K
,C(x, z)1{z≤y}C(dz)

= K(x, y).

Again, the left side identity property is shown analogously.

�
The third building block for our convex combinations of copulas will be an appropriately chosen multi-

variate copula replacement for the lower Fréchet-Hoe�ding bound, which is W(x, y) = max(x + y − 1, 0) for
dimension two. As is well-known, for higher dimension the lower Fréchet-Hoe�ding bound is in general not

a copula. We proceed as follows. Let X be a n-dimensional uniform random vector whose distribution func-

tion is our copula C above. Suppose there exists a bijective mapping T : [0, 1]

n → [0, 1]

n
with the following

properties

P
(
T(X) < x

)
= C(x) (15)

T2(x) = x (16)

C
(
{x : T(x) ≠ x}

)
> 0. (17)

An example is the mapping T(x) = 1 − x in case the copula C is symmetric,

C(x) = ˆC(1 − x),

with
ˆC the survival copula associated with C.

Now de�ne the 2n-dimensional copulaW by

W(x, y) = P(X < x, T(X) < y), x, y ∈ [0, 1]n . (18)

Lemma 6. We have
W

C
*W = M.
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Proof. Since

W(x, y) = P
(
X < x, T(X) < y

)
=

x∫
0

P
(
T(X) < y|X = z

)
C(dz)

=

x∫
0

1{T(z)<y}C(dz)

we have

WC,(z, y) = 1{T(z)<y}.

Similarly

W
,C(x, z) = 1{T(z)<x}.

Finally,

W
C
*W(x, y) =

1∫
0

1{T(z)<x}1{T(z)<y}C(dz)

= P(X < min(x, y))
= M(x, y).

�
We attempt to construct a Markov family Cst , s, t ∈ T, s < t, by convex combination of the copulas P,M,W,

Cst = α(s, t)W + (1 − α(s, t) − β(s, t))P + β(s, t)M, (19)

with α(s, t), β(s, t) ≥ 0, α(s, t) + β(s, t) ≤ 1.
As in [11], Example 4.5, we obtain the following result.

Proposition 3. The copula family Cst , s, t ∈ T, s < t, is a Markov family if and only if

α(s, t) = β(s, u)α(u, t) + α(s, u)β(u, t) (20)

β(s, t) = α(s, u)α(u, t) + β(s, u)β(u, t). (21)

Proof. First Cu = C by construction. Then for s < u < t, using Lemmas 5 and 6 we have

Csu
Cu
* Cut =

(
α(s, u)W + (1 − α(s, u) − β(s, u))P + β(s, u)M

)
Cu
*

(
α(u, t)W + (1 − α(u, t) − β(u, t))P + β(u, t)M

)
= α(s, u)α(u, t)M + α(s, u)(1 − α(u, t) − β(u, t))P + α(s, u)β(u, t)W

+ (1 − α(s, u) − β(s, u))α(u, t)P
+ (1 − α(s, u) − β(s, u))(1 − α(u, t) − β(u, t))P
+ (1 − α(s, u) − β(s, u))β(u, t)P + β(s, u)α(u, t)W
+ β(s, u)(1 − α(u, t) − β(u, t))P + β(s, u)β(u, t)M.

Then Csu
Cu
* Cut = Cst holds true if and only if (20), (21) are satis�ed. �

There are various solutions to the system (20), (21). We refer to [11] for examples.

An example of a homogeneous Markov family is obtained by setting

α(s, t) = a(t − s), with a(h) = e−2h(1 − e−h)
2

(22)

β(s, t) = b(t − s), with b(h) = e−2h(1 + e−h)
2

, (23)
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for s < t, h > 0.
Next we calculate the in�nitesimal generator associated with this example.

Let X be the Markov process with the Markov family Cst , s, t ∈ T, s < t, constructed by (19) with condi-

tions (20), (21). For simplicity assume that X has uniformmarginal distributions, FXit (x) = x. Let g : [0, 1]
n →

R be a bounded Borel measurable function. Recall the following derivatives of the building blocks of Cst,

WC,(x, y) = 1{T(x)<y}, PC,(x, y) = C(y), MC,(x, y) = 1{x<y}.

Then ∫
[0,1]

n

g(y)P(Xt ∈ dy|Xs = x) = α(s, t)g(T(x)) + (1 − α(s, t) − β(s, t))
∫

[0,1]
n

g(y)C(dy) + β(s, t)g(x).

The behaviour of the process X can be interpreted as the following jump-process. From Xs = x at time s to
time t the process either stays at x with probability β(s, t), or it jumps from x to T(x) with probability α(s, t),
or, with probability (1 − α(s, t) − β(s, t)) it jumps to a new position y with distribution C(dy) independently
from the current position x.

In case of the homogeneous Markov family of copulas (22), (23) it is straightforward to determine the

in�nitesimal generator of X. For h = (t − s) > 0,∫
[0,1]

n g(y)P (Xt ∈ dy|Xs = x) − g(x)
h =

e−2h(1 − eh)
2h

(
g(T(x)) − g(x)

)
+

1 − e−2h
h

 ∫
[0,1]

n

g(y)C(dy) − g(x)


+

e−2h(1 + eh)
2h

(
g(x) − g(x)

)
.

As h tends to 0 we get the in�nitesimal generatorA as the limit

Ag(x) = k
1
g(x) + k

2
g(T(x)) + k

3

∫
[0,1]

n

g(y)C(dy)

with constants k
1
, k

2
, k

3
.
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