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Abstract: The approximation of a high level quantile or of the expectation over a high quantile (Value at Risk
(VaR) or Tail Value at Risk (TVaR) in riskmanagement) is crucial for the insurance industry.We propose a new
method to estimate high level quantiles of sums of risks. It is based on the estimation of the ratio between
the VaR (or TVaR) of the sum and the VaR (or TVaR) of the maximum of the risks. We show that using the
distribution of the maximum to approximate the VaR is much better than using the marginal. Our method
seems to work well in high dimension (100 and higher) and gives good results when approximating the VaR
or TVaR in high levels on strongly dependent risks where at least one of the risks is heavy tailed.
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1 Introduction
Because of regulatory rules (such as Solvency 2 in Europe) or for internal risk management purposes, the
estimation of high level quantiles of a sum of risks is of major interest both in �nance and insurance industry.
Consider an insurance company that has a portfolio of d ≥ 2 (possibly) dependent risks which is represented
as a random vector X = (X1, . . . , Xd) with cumulative distribution function (c.d.f.) F(x1, . . . , xd). We assume
that all the risks are almost surely positive but we do not assume that they are identically distributed. Let S
denote the aggregated risk

S = X1 + · · · + Xd .

We are interested here in the computation of the Value-at-Risk (VaR) and the Tail Value-at-Risk (TVaR) of the
sum,

VaR p(S) = F↼

S (p) and TVaR p(S) =
1

1 − p

1∫
p

VaR u(S) du,

for con�dence levels p ∈ (0, 1) near 1, where FS is the c.d.f. of S and F↼ is its generalized inverse. Prob-
lems like this arise for insurance companies, for example, which are required to maintain a minimum capital
requirement which is typically calculated as the VaR for the distribution of the sum at some high level of
probability. Even when the distribution function F is known, good estimations for VaR p(S) are not trivial
since they require a precise calculation of FS, which is given by the following integral

FS(x) =
∫

{x1+···+xd≤x}

dF(x1, . . . , xd).
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This integral is more di�cult to approximate when d is large and it is usually more e�cient to apply Monte
Carlo methods to estimate it (for a comprehensive introduction to Monte Carlo methods see [25]). Neverthe-
less, when p is near 1, the number of replications required to give precise estimations is also large, so new
methods are always well received. Classical Extreme Value Theory (EVT) allows one to get some estimation
of the VaR ([15, 26]), but EVT based methods requires an estimation of the EVT parameters, which is known
to be not an easy task. Recently, in [8, 9, 17], some approximations on the VaR are obtained for some speci�c
models; see also [18] where theoretical results on the asymptotic behavior of the ratio

VaR p(S)
d∑
i=1

VaR p(Xi)

are given. Results for the tail distribution of the sum of dependent subexponential risks are obtained in [19]
and also in [20] when risks are non-identically distributed and not necessarily positive. In [5], an algorithm
to compute the distribution function of S is proposed and in [12], bounds are obtained. Nevertheless, these
results may be used to estimate VaR p(S) for small dimensions (d < 4) and give ranges in dimension 4 or 5.

We present amethodwhich seems to be quite accurate even for a large number of summands, in the order
of several hundreds for instance (see Sections 6.2 and 6.3 for simulations in dimension 10 and dimension
150). Our method will be compared to the EVT driven ones as well as to the Monte Carlo method, especially
for very high level quantiles and in dimension greater than 4.

Let us denote by M the maximum risk in the portfolio of the company, M = max{X1, . . . , Xd}. The c.d.f.
of M, denoted FM, is given by

FM(x) = F(x, . . . , x).

FM is directly determined by the c.d.f.F of the portfolio, so that numerical integration orMonte Carlomethods
are not necessary. This also means that VaR p(M) can be easily calculated for any given level of con�dence p,
at most a simple numerical inversion is needed.

In this paper we give some conditions on X under which the Value-at-Risk and the Tail Value-at-Risk of
the sum and maximum are asymptotically equivalent in the sense that there exists some ∆ ≥ 1 such that

VaR 1−p(S) ∼ VaR 1−∆−1p (M) and TVaR 1−p(S) ∼ TVaR 1−∆−1p (M) ,

when p → 0 and where a(t) ∼ b(t) when t → l, for l ∈ [−∞,∞] means throughout this paper that
limt→l

a(t)
b(t) = 1. This result is interesting because it allows to estimate the VaR (or TVaR ) of the sum by using

the VaR (or TVaR ) of the maximum, which is easier to calculate, and the estimation of ∆.

For random vectors with common marginals (Fréchet, Gumbel, Weibull) and an Archimedean copula
dependence structure [3] and [2] get an asymptotic approximation of the tail of S. These results are general-
ized in [4] to other dependence structures. In [6], the same results are obtained in the multivariate regularly
varying framework. Examples in which the limiting constant ∆ can be computed explicitly are also given in
[16]. Finally, we would like to mention [22] which is related to our work, in an independent framework and
for Pareto marginals.

In this paper, we consider the more general framework with non commonmarginals (and regularly vary-
ing tails). We emphasize that our method applies when there are dependences between risks as well as the
presence of heavy tailedmarginal distributions (see Section 4 for more details). This may be a typical context
for risk management applications in insurance and �nance. Moreover, the proposed method is tractable,
even in high dimension (dimension 150 tested).
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The paper is organized as follows. In Section 2, we recall the de�nition of regularly varying function and
then present conditions under which the VaR and TVaR of the sum and the maximum are asymptotically
equivalent. In Section 3, we give classes of random vectors satisfying our hypothesis. Section 4 is devoted to
a methodology for the estimation of ∆. In Section 5, we give explicit expressions of the VaR on some speci�c
models (introduced in [23, 27] and also considered in [13] where the expression of the VaR is derived). In
Section 6, we compare our method with classical ones on several models. Conclusions are given in Section 7.

2 Asymptotic results on the VaR and the TVaR of the sum and the
maximum

In this section, we will �rst recall the de�nition of regularly varying functions.

De�nition 1. Let f be a positive measurable function on R+. We say that f is regularly varying at in�nity of
index ρ ∈ R if

lim
t→∞

f (xt)
f (t) = xρ ,

for any x > 0. Similarly, we say that f : R+ → R+ is regularly varying at 0 if we replace t → ∞ by t → 0.
Regularly variation of f at a > 0 is de�ned as regularly variation at in�nity for the function f (a−1/t) (see [15],
page 565). If ρ = 0 then f is said to be slowly varying.

Examples of regularly varying distributions are Pareto, Cauchy, Burr and stable with exponent α < 2.

De�nition 2. A random variable X with distribution function F is said to have a regularly varying upper tail
if its survival function F is regularly varying at in�nity.

Let δ be the real valued function de�ned by δ(t) = FS(t)/FM(t). Throughout this paper we will consider the
condition

∆ = lim
t→∞

FS(t)
FM(t)

exists. (2.1)

The following result is somewhat a folklore theorem, it links the Value-at-Risk of the sum and the maxi-
mum in case where the survival function of the maximum, FM, is regularly varying. The result still holds for
the TVaR . Recall that we do not assume that the marginal distributions are either identically distributed or
independent.

Proposition 2.1. Let X = (X1, . . . , Xd) be a vector of positive randomvariables (r.v.s). Suppose that assumption
(2.1) holds and that FM is regularly varying with index −ρ. Then,

(i) 1 ≤ ∆ ≤ dρ;
(ii) VaR 1−p(S) ∼ VaR 1−∆−1p(M) as p tends to 0;
(iii) if TVaR p(M) exists for all p, then

TVaR 1−p(S) ∼ TVaR 1−∆−1p(M)

as p tends to 0.

Proof. Since FM is regularly varying, (ii) follows from properties of regularly varying functions and (iii) fol-
lows from Karamata’s Theorem.

Remark that as we always assume that marginal risks are almost surely positive we have

{max{X1, . . . , Xd} > t} ⊂ {X1 + · · · + Xd > t} ⊂ {max{X1, . . . , Xd} > t/d}

In particular
FM(t) ≤ FS(t) ≤ FM(t/d) (2.2)
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and thus δ(t) ≤ FM(t/d)/FM(t). So that if FM is regularly varyingwith index −ρ then ∆ ≤ dρ and (i) follows.

Classes of random vectors that satisfy the assumptions of Proposition 2.1 will be given in Section 3 while in
Section 4 we will provide a method to estimate ∆.

3 Random vectors where the limit ∆ exists
In this section we explore several situations in which the limit ∆ exists and Proposition 2.1 applies.

3.1 Multivariate regular framework

Alink et al. ([3], [2] and [4]) studied the asymptotic behavior of the tail of the sum when the marginals of the
vectorX = (X1, . . . , Xd) are identically distributed as one of the three extreme value families: Gumbel, Fréchet
or Weibull and when the dependence within the vector is given by an Archimedean copula. Then Barbe et al.
([6]) generalized these results under the framework of the multivariate regular variation distributions. Their
main contribution is the explicit calculation of the limit

lim
t→∞

FS(t)
F1(t)

,

where F1 is the common distribution function of the marginal risks X1, . . . , Xd.

This kind of results suggest that we may approximate the VaR (and TVaR) of the sum simply by the VaR
(and TVaR) of X1. This point will be detailed in Section 6.4 where it will be shown empirically that maximum
based estimation gives indeed better results than F1 based one.

Let us recall the de�nition of multivariate regularly varying random vectors.

De�nition 3 (Multivariate Regular Variation). A random vectorX is said to be multivariate regularly varying
of index −β, β > 0 if there exists a �nite measure µ‖ ‖ (which depends on the chosen norm ‖ ‖) on Γd ={

x
‖x‖ : x ∈ Rd \ {0}

}
and a function b : (0,∞)→ (0,∞), such that for all x > 0 and all A ⊂ Γd,

lim
t→∞

t Pr
(
‖X‖ > xb(t), X

‖X‖ ∈ A
)
=
µ‖ ‖(A)
xβ

.

Using the L1 norm, ‖X‖1 = |X1|+· · ·+ |Xd|, the L∞ norm, ‖X‖∞ = max{[X1|, . . . , |Xd|} and b(t) = F↼
1 (1−1/t),

one �nds

∆ = lim
t→∞

FS(t)
FM(t)

=
|µ‖·‖1 |
|µ‖·‖∞ |

, (3.1)

where |µ| is the total mass of the measure µ. So that, when X is multivariate regularly varying Proposition 2.1
applies.

We are also interested in random vectors whose coordinates are not identically distributed. Results for
identically distributed marginals will not lead to results for arbitrary marginals. This is the purpose of the
next section where di�erent kinds of dependence structure are also considered.

3.2 Examples where condition (2.1) holds.

In this section we show that condition (2.1) holds for three classes of multivariate distributions, namely those
for which
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- a regularly varying marginal clearly dominates the other marginals,
- the dependence structure is the survival of a regularly varying Archimedean and the marginals are regu-
larly varying,

- the dependence structure is regularly varying Archimedean and the marginals are regularly varying.

We now state our result when one marginal is regularly varying and dominates the others.

Proposition 3.1. Let X be a random vector in Rd+ with marginal distributions Fi , 1 ≤ i ≤ d. If F1 is regularly
varying and

lim
t→∞

F j(t)/F1(t) = 0

for any 2 ≤ j ≤ d, then (2.1) holds with ∆ = 1.

Proof. The proof splits into two parts, one showing that FM ∼ F1 at in�nity, one showing that FS ∼ F1 at
in�nity. The result follows in combining these two asymptotic equivalences.

(i) If X1 exceeds t, so is M, and if M exceeds t, at least one of the Xi does. Therefore, we have

F1(t) ≤ FM(t) ≤
∑
1≤i≤d

F i(t).

This ensures that under the assumptions of Proposition 3.1, FM ∼ F1 at in�nity.

(ii) Since the inequality X1 ≥ t implies S ≥ t, we have

F1(t) ≤ FS(t). (3.2)

Furthermore, for any positive ϵ, decomposing the event {S > t} according to whether max2≤i≤d Xi ≤ tϵ or not,
we have

P{S > t} ≤ P{X1 > t(1 − dϵ)} + P
{
max
2≤i≤d

Xi > tϵ
}
.

Applying Bonferroni’s inequality, we obtain

FS(t) ≤ F1(t(1 − dϵ)) +
∑
2≤i≤d

F i(tϵ).

Since F1 is regularly varying of index ρ say, and dominates the other F i, we obtain that

lim sup
t→∞

FS(t)/F1(t) ≤ (1 − dϵ)ρ .

Since ϵ is arbitrary, we have
lim sup
t→∞

FS(t)/F1(t) ≤ 1

Combined with (3.2), this yields that FS ∼ F1 at in�nity.

We now consider a dependence structure between the components of the random vector given by an
Archimedean copula or the survival copula of an Archimedean copula, and give a su�cient condition for
condition (2.1) to hold. We �rst recall the de�nitions of Archimedean copulas and survival copulas.

De�nition 4. (Archimedean Copulas) A generator is a function ψ from [0, 1] to [0,∞] such that

(i) ψ is decreasing with ψ(1) = 0,
(ii) the �rst d derivatives of ψ← exists,
(iii) for any k = 0, 1, . . . , d and any t positive, (−1)k d

k

dtk ψ
←(t) ≥ 0,



146 | A. Cuberos, E. Masiello, and V. Maume-Deschamps

where ψ← denotes the pseudo-inverse of ψ de�ned by

ψ←(s) =
{
ψ−1(s) if 0 ≤ s ≤ ψ(0)
0 if ψ(0) ≤ s ≤ +∞ .

The Archimedean copula C with generator ψ is the distribution function on [0, 1]d de�ned by

C(u1, . . . , ud) = ψ←(ψ(u1) + . . . ψ(ud)).

De�nition 5. (Survival copula) Given a copula C, we de�ne:

C*(u1, . . . , ud) = P(U1 > 1 − u1, . . . , Ud > 1 − ud)

with (U1, . . . , Ud) having C as distribution function. C* is a copula known as the survival copula of C.

We can now extend the result of Alink et al. [2,3,4] and Barbe et al. [6], to a situation where the marginal
distributions are not identical.

Proposition 3.2. Let X = (X1, . . . , Xd) be a random vector with nonnegative components and marginal distri-
butions Fi, 1 ≤ i ≤ d. Suppose that for some regularly varying functions h there exists some ai, not all 0, such
that

lim
t→∞

F i(t)/h(t) = ai , 1 ≤ i ≤ d. (3.3)

Let the dependence structure of X be given by one of the following:

(i) a survival copula of an Archimedean copula with generator ψ which is regularly varying at 0with negative
index,

(ii) an Archimedean copula with generator ψ which is regularly varying at 1 with negative index.

Then X is multivariate regularly varying, and condition (2.1) holds.

Note that since a regularly varying function is ultimately positive, the ai are nonnegative. If ai is positive,
then (3.3) implies that F i is regularly varying with the same index of regular variation as h. In particular, if
one marginal tail is regularly varying and dominates the others, then h could be the corresponding survival
function.

Proof. (i) First we assume that the dependence of X is the survival copula of an Archimedean copula with
generator ψ which is regularly varying at 0 with negative index.
Using Bonferroni’s identity and agreeing that a sum over an empty set is 0, we have, for any x1, . . . , xd posi-
tive,

P(∪1≤i≤d{Xi ≥ txi}) =
∑

I⊂{1,2,...,d}

(−1)1+]IP{Xi > txi : i ∈ I}. (3.4)

If I is such that ai = 0 for some i in I, we de�ne

I0 = {i ∈ I : ai = 0}.

We then have

P{Xi > txi : i ∈ I} ≤ P{Xi > txi : i ∈ I0}
≤
∑
i∈I0

P{Xi > txi}

= o(h(t)) (3.5)

as t tends to in�nity.
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If I is such that all ai, i ∈ I, are positive, we have

P{Xi > txi : i ∈ I} = ψ←
(∑
i∈I

ψ
(
h(t)F i(txi)h(t)

))
. (3.6)

Since h is regularly varying with index −ρ say, we have

lim
t→∞

F i(txi)
h(t) = lim

t→∞
F i(txi)
h(txi)

h(txi)
h(t) = aix

−ρ
i . (3.7)

Since ψ is regularly varying at 0 with index −θ say, the uniform convergence theorem (Theorem 1.2.1 in [10])
and (3.7) ensure that

ψ
(
h(t)F i(txi)h(t)

)
∼ ψ ◦ h(t)(aix

−ρ
i )−θ

as t tends to in�nity. Sinceψ← is regularly varyingwith index −1/θ, we then have, using (3.6) and the uniform
convergence theorem,

P{Xi > txi : i ∈ I} ∼ h(t)
(∑
i∈I

(aix
−ρ
i )−θ

)−1/θ
(3.8)

as t tends to in�nity.
Note that if we take the limit of the right hand side of (3.8) as one of the ai tends to 0, we obtain 0. Therefore,
as long as we agree that 1/0 = ∞ and 1/∞ = 0, we may capture (3.5) in (3.8). Then, considering (3.4), and
using that at least one of the ai does not vanish, we obtain

P(∪1≤i≤d{Xi ≥ txi}) ∼ h(t)
∑

I⊂{1,2,...,d}

(−1)1+]I
(∑
i∈I

(aix
−ρ
i )−θ

)−1/θ
as t tends to in�nity.
It then follows from Theorem 6.1 in [24] that the distribution of X is multivariate regularly varying. Condition
(2.1) then follows from (3.1).
(ii) We now assume that the dependence of X is an Archimedean copula with generator ψ which is regularly
varying at 1 with negative index.
By de�nition, for any x1, . . . , xd positive,

P(∪1≤i≤d{Xi ≥ txi}) = 1 − ψ←
( d∑
i=1

ψ
(
Fi(txi)

))
.

Since ψ is regularly varying at 1 with index −θ say, and h is regularly varying with index −ρ say, then 1 −ψ←

is regularly varying at 0 with index θ−1 and ψ ◦ h is regularly varying at in�nity with index −ρθ. Then, by
using the same arguments as above we can conclude that

P(∪1≤i≤d{Xi ≥ txi}) ∼ h(t)
( d∑

i=1
(aix

−ρ
i )θ

)−1/θ
as t tends to in�nity and X is multivariate regularly varying.

Notice that Proposition 3.2 implies that a random vector X with regularly varying marginals, for example
Pareto distributedmarginals not necessarily with same scale or shape parameters, and dependence structure
given by one of the copulas listed below, satis�es the assumption of Proposition 2.1. Possible dependence
structures are:

- independence (recall that the independent copula is anArchimedean copulawith generatorψ(t) = − ln(t),
and thus regularly varying at 1 with index −1),

- Gumbel copula with parameter θ ≥ 1 (which is an Archimedean copula with generator ψ(t) = − ln(t)θ and
thus regularly varying at 1 with index −θ),

- survival copula of a Clayton copulawith parameter θ > 0 (which is anArchimedean copulawith generator
ψ(t) = (t−θ − 1)/θ and thus regularly varying at 0 with index −θ).
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4 Approximation of the limit ∆
In this section, we assume that the limit ∆ exists and we show how to estimate it using samples of X. We will
use this estimation to approximate VaR 1−p(S), for di�erent values of p close to 0 using Proposition 2.1.

Recall that δ is the real valued function de�ned by δ(t) = FS(t)/FM(t) and continue to denote by ∆ its
limit at in�nity if it exists.

If a sample of X is available, the function δ can be estimated using the empirical cumulative distribution
function (e.c.d.f.) of S and M. As we assume that FM can be easily calculated by the c.d.f. F of the portfolio,
at least two versions of the empirical delta should interest us:

δ̂(t) = 1 − F̂S(t)
1 − FM(t)

and δ̃(t) = 1 − F̂S(t)
1 − F̂M(t)

where F̂S and F̂M are the e.c.d.f.s of S and M respectively, based on the sample of X. The �rst version δ̂ may
be more tractable statistically, while the second δ̃ has the nice property that δ̃ ≥ 1. In order to obtain some
insight on the convergence of δ to its limit ∆, we plot, in Figure 1, functions δ̂ and δ̃ for four di�erent models
which are multivariate regularly varying.

Figure 1: Four plots of δ̂ (solid) and δ̃ (dashed) for di�erent models, based on samples with size 104. Vertical lines are dis-
played at the empirical VaR of the sum at con�dence levels 95%, 99%, 99.5%, 99.9%. Each model is a sum of 10 Pareto distri-
butions with di�erent tail indexes and di�erent dependence structures. From top-left to bottom-right, we �nd: 1) independent
Pareto distributions with tail index one; 2) the tail index is still one but dependence is given by a Gumbel copula of parame-
ter 1.5; 3) independent Pareto distributions: �ve with tail index one and the other �ve with tail index 3; 4) the same as 3) but
dependence is given by a Gumbel copula of parameter 1.5.

In the �rst model (sum of 10 independent Pareto distributions with tail index 1) we notice that the limit
δ(t) seems to be 1 but the convergence is not fast enough to consider using this limit to approximate VaR p(S)
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even for higher con�dence levels p. For the secondmodel (sum of 10 Pareto distributionswith tail index 1 and
dependence structure given by a Gumbel copula of parameter 1.5) the convergence is a lot faster, δ(t) seems
to be close to its limit for t greater than the VaR at the 95% con�dence level. The two models in the lower
side (sum of 10 Pareto distributions: �ve with tail index 1 and �ve with tail index 3 both in the independent
and Gumbel copula dependent case) behave the same as the ones in the upper side.
The models on the right side of Figure 1 correspond to cases where our method will be applicable: the limit ∆
is reached by δ̂(t) for t near the VaR 0.95. These models exhibit a strong dependence combined with at least
one of the marginal risks with a very heavy tail. Even if this is a limitation of our method we should remark
that this kind of models are also those where Monte Carlo methods are less e�cient to approximate the VaR
or the TVaR , so that it may be interesting to have an alternative method of approximation.

On a possible estimator of ∆

Let (S1, . . . , Sn) be an i.i.d. sample of S. According to Donsker’s Theorem, the empirical process
√
n(F̂S(t) − FS(t))

converges in distribution to a Gaussian process with zero mean and covariance given by

FS(t1) − FS(t1)FS(t2)

for t1 ≤ t2. Thus, given any sequence 0 < t1 < · · · < tk, the vector
√
n
(
δ̂(t1) − δ(t1), . . . , δ̂(tk) − δ(tk)

)
converges in law to a centred Gaussian vector with covariances given by

FS(ti) − FS(ti)FS(tj)
(1 − FM(ti))(1 − FM(tj))

=
δ(tj)

1 − FM(ti)
− δ(ti)δ(tj)

for any i ≤ j. As a consequence
√
n
(
1
k

k∑
i=1

δ̂(ti) −
1
k

k∑
i=1

δ(ti)
)

converges to a normal distribution with zero mean and variance

1
k2

∑
1≤i≤j≤k

{ δ(tj)
1 − FM(ti)

− δ(ti)δ(tj)
}
. (4.1)

If we assume that the values ti are large enough, the approximation δ(ti) ≈ ∆ holds for each i = 1, . . . , k
and the variance (4.1) can be approximated by

∆
k2

k∑
i=1

{
i

1 − FM(ti)

}
− ∆

2(k + 1)
2k .

In practice we should plot points
(
S(i), δ̂(S(i))

)
where S(1) < · · · < S(n) is the ordered sample of S and then

choose a threshold in such a way that the approximation δ(S(n−i)) ≈ ∆ holds for any 0 ≤ i ≤ k. The choice
of the threshold is a recurrent and di�cult problem in EVT, for which few theoretical results exist and are
generally hardly applicable in practice. We propose then to estimate ∆ by

∆̂ = 1
k

k∑
i=1

δ̂(S(n−i)). (4.2)

As an example, the behavior of δ̂(x) for the Pareto-Clayton model, which will be described in Section
5, may be seen on Figure 2. The estimation ∆̂ is represented by the solid line while dashed lines are for the
estimated 95% con�dence interval. See also Figure 3 for the shape of the δ function and the limit ∆.
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Figure 2: Shape of the δ̂ function of the Pareto-Clayton model with parameters α = 1, β = 1 and d = 10 based on samples
of size 104. Vertical lines are displayed at the empirical VaR of the sum at con�dence levels 95%, 99%, 99.5%, 99.9%. The
estimation ∆̂ with its estimated 95% con�dence interval is represented by the horizontal lines.

5 Some Explicit Calculations
In this section we will consider a simpli�ed model in order to obtain explicit formulas for FS and FM and to
better understand the scope and the limitations of our ∆ estimation. The model is described by the following
compound process: let Λ be a positive random variable and let X = (X1, . . . , Xd) be a random vector such
that

Pr(X1 > x1, . . . , Xd > xd |Λ = λ) =
d∏
i=1
e−λxi , (5.1)

for each x1, . . . , xd ≥ 0.
That means that conditionally on the value of Λ the marginals of X are independent and exponentially

distributed. In general, the �nal distribution of X does not have independent marginals and they are not
exponential either. Actually the dependence structure of X and its marginal distributions will depend on the
distribution of Λ.

Some particular Λ distributions de�ne some well-known models in which the explicit calculation of FS
and FM is possible. For examplewhen Λ is Gammadistributed, then themarginals ofX are of Pareto typewith
dependence given by a survival Clayton copula. When Λ is Levy distributed the marginals will be Weibull
distributed with a Gumbel survival copula. These models have been studied in [23, 27] and used in [1] where
explicit formulas for ruin probabilities have been derived. In [11, 21], explicit results for theminimum of some
risk indicators are obtained for this kind of models. We also would like to mention that the computation of
the VaR for this model is given in [13].

Let us consider the case where Λ is Gamma(α, β) distributed with density

fΛ(x) =
βα
Γ(α) x

α−1e−βx .

In this case, the Xi’s are Pareto(α, β) distributed with tail given by

F i(x) =
(
1 + xβ

)−α
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and the dependence structure is described by a survival Clayton copula with parameter 1/α. Through this
paper we will refer to this model as a Pareto-Clayton vector with parameters (α, β). This model is a particular
Multivariate Pareto of type II with location parameters µi = 0 and scale parameters σi = β for i = 1, . . . , d
(see [27]). As already noticed in Section 3.2, this model satis�es the hypothesis of Proposition 3.2 so that the
limit ∆ exists.

In the Pareto-Clayton model, the exact distribution function of S =
∑d

i=1 Xi can be calculated. Condi-
tionally on Λ = λ, the sum S is Gamma distributed with parameters (1/λ, d), distribution also known as the
Erlang distribution. Then, as here we are assuming that Λ is Gamma(α, β) distributed, the total distribution
of S is the result of compounding two Gamma distributions, more precisely

S ∼ Gamma(1/Λ, d) where Λ ∼ Gamma(α, β).

It is well known that the result of this compound distribution is the so-called Beta prime distribution (see
[14]). The c.d.f. of S can be expressed in terms of Fβ, the c.d.f. of the Beta(dβ, α) distribution, as

FS(x) = Fβ
( x
1 + x

)
.

Naturally, the inverse of FS can also be expressed in function of the inverse of the Beta distribution

F↼

S (p) =
F↼

β (p)
1 − F↼

β (p)
.

In this example, the δ function is explicitly calculated (see Figure 3). Moreover, computer algebra soft-
wares allow us to calculate explicitly the limit ∆ for speci�ed parameters.

Figure 3: Shape of the δ function of the Pareto-Clayton model, with parameters α = 1, β = 1 and d = 10. Vertical lines are
displayed at the VaR of the sum at con�dence levels 95%, 99%, 99.5%, 99.9%. The limit ∆ ≈ 3.4142 is represented by the
horizontal line.

In order to see how fast the function δ converges to its limit ∆, we plot the function p 7→ δ(VaR p(S)) for
di�erent values of the parameter α and di�erent dimensions d (see Figure 4). We remark that δ(x) is already
very close to ∆ when x = VaR 0.95(S), for α ≤ 2.5. The lower the value α, the �atter the tail of δ and thus the
limit ∆ is attained rapidly. Remark that the lower the levels of α, the heavier the tails of the Pareto marginals.
Finally, this plot con�rms the intuition that for heaviermarginals the tail of the sum is better approximated by
the tail of the maximum. A similar phenomenon in the i.i.d. case has been noted in [7] when approximating
FS by F1.
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Figure 4: Four plots of the p 7→ δ(VaR p(S)) function of the Pareto-Clayton model for dimensions d = 2, 6, 10 and 14 (from
top-left to bottom-right) are represented. For each dimension, the curves with α = 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 are plotted
and they can be seen from bottom to top on each chart.

6 Some numerical examples
In this section we show how the ideas presented in the above section can help to estimate in practice the VaR
and the TVaR of a sum at con�dence levels close to 1.
We compare the estimation done via the ∆-limit estimation (New in the tables below) as described in Section
4 with other common quantile estimation methods, with the same sample size:

1. The direct Monte Carlo quantile estimation (MC).
2. The quantile estimation fromaGPD�tted distributionwhere parameters are estimated usingmaximum

likelihood method (GPD 1).
3. The quantile estimation from a GPD �tted distribution where parameters are estimated using the mo-

ment method (GPD 2).
4. The high quantile estimate based on a method by Weissman [26] (Weiss.).

We �rst consider the Pareto-Clayton model presented in Section 5 (dimension 2 and 10), where exact values
for the Value-at-Risk are computable (see Section 6.1 and Section 6.2). Then, we test our method with a di�er-
ent model where exact values are not known.
In order to study the performance of our estimator and to compare it with the main competitors, we consider
the root-mean-squared error (RMSE) loss function. When n estimations have been performed, it is de�ned by

RMSE =

√√√√1
n

n∑
i=1

(
V̂aR p(Si) − VaR p(S)

)2
,

where V̂aR p(Si) represents the estimate of VaR p(S) for any of the di�erent methods presented above, on the
ith sample. In the casewhere the exact value is not known, in Section 6.3, we compare our results on a sample
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of size 105 with severalmethods (1-4 above) to aMonte Carlo quantile estimation based on a very large sample
of size 3 × 108. This last estimation is considered as the exact VaR value in the RMSE computation.

6.1 Pareto-Clayton model dimension 2

Here we consider the model presented in Section 5. We �rst consider d = 2 and α = 1 which corresponds to a
model with Pareto marginals with α = 1 and dependence given by a survival Clayton copula with parameter
θ = 1.

In Table 1, the exact VaR at di�erent con�dence levels (from 95% to 99.95%) is presented. In Table 2 and
Table 3, we present the RMSE criterion in percentage of the real value based on 1000 simulations at di�erent
con�dence levels. At each simulation a sample of size 104 in Table 2 and size 105 in Table 3 is used to estimate
the VaR. On each method (New, GPD 1, GPD 2 andWeiss) the threshold used on each estimation corresponds
to the empirical 95% quantile. Clearly, in term of RMSE, our method performs better than classical methods
at each con�dence level, even for very high levels. When increasing the size of the sample (105 instead of
104) classical methods improve but our method still produces the best results.

Table 1: Exact Value-at-Risk at di�erent con�dence levels on the Pareto-Clayton model in dimension d = 2 with α = 1.

VaR VaR VaR VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95% 99.99% 99.995% 99.999%
38.5 198.5 398.5 1998.5 3998.5 19998.5 39998.5 199998.5

Table 2: RMSE in percentage of the real value based on 1000 simulations. At each simulation a sample of size 104 is used to
estimate the VaR.

Method VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

New 1.9% 1.7% 1.7% 1.7% 1.7%
MC 4.4% 10.3% 14.1% 38.2% 76.2%
GPD 1 11.3% 8.5% 11.8% 23.8% 30.2%
GPD 2 4.4% 11.1% 15.1% 25.1% 29.9%
Weiss. 4.4% 11.2% 15.1% 25.0% 29.6%

Table 3: RMSE in percentage of the real value based on 1000 simulations. At each simulation a sample of size 105 is used to
estimate the VaR.

Method VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

New 0.7% 0.5% 0.6% 0.6% 0.6%
MC 1.4% 3.1% 4.4% 9.7% 14.4%
GPD 1 5.2% 2.6% 3.6% 7.2% 8.9%
GPD 2 1.4% 3.7% 4.7% 7.7% 9.1%
Weiss. 1.4% 3.9% 4.9% 7.7% 9.0%
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6.2 Pareto-Clayton model dimension 10

We consider again the Pareto-Clayton model but here d = 10 and α = 1 which corresponds to a model with
Paretomarginalswith α = 1 anddependence given by a survival Clayton copulawith parameter θ = 1. Results
are presented in Tables 4, 5 and 6. As above, on each method (New, GPD 1, GPD 2 and Weiss) the threshold
used on each estimation corresponds to the empirical 95% quantile. We mention that even in dimension 10,
the estimation remains e�cient for high level quantiles.

Table 4: Exact Value-at-Risk at di�erent con�dence levels on the Pareto-Clayton model in dimension d = 10 with α = 1.

VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

194.5 994.5 1994.5 9994.5 19994.5

Table 5: RMSE in percentage of the real value based on 1000 simulations. At each simulation a sample of size 104 is used to
estimate the VaR.

Method VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

New Method 8.4% 7.8% 7.7% 7.7% 7.7%
MC 4.5% 10.1% 14.5% 43.6% 85.5%
GPD 1 10.7% 8.5% 12.1% 25.0% 32.1%
GPD 2 4.5% 11.3% 15.6% 26.5% 31.8%
Weiss. 4.5% 11.4% 15.5% 26.1% 31.2%

Table 6: RMSE in percentage of the real value based on 1000 simulations. At each simulation a sample of size 105 is used to
estimate the VaR.

Method VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

New 2.6% 2.2% 2.2% 2.3% 2.3%
MC 1.4% 3.2% 4.6% 10.1% 14.8%
GPD 1 4.3% 2.7% 3.8% 7.4% 9.2%
GPD 2 1.4% 3.6% 4.8% 7.8% 9.2%
Weiss. 1.4% 4.1% 5.2% 7.9% 9.1%

We also remark that our method is more e�cient than classical ones from level 0.99.

6.3 A model with 150 di�erent Pareto marginals and Gumbel copula

We apply now ourmethod to amodel where the exact value of VaR p(S) is not known. Themodel is composed
of 150marginals Pareto(αi , βi) distributedwith parameters αi =

(
3 − i mod (3)

)
/2 and βi = 5−i mod (5) for

i = 1, . . . , 150, where i mod (j) denotes the reminder of i divided by j. The model is then composed of �fty
Paretomarginals of tail index0.5, �fty of tail index 1 and�ftywith tail index 1.5, anddi�erent scale parameters
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within 1, 2, . . . , 5. The dependence structure is given by a Gumbel copula of parameter 1.5. Recall that for
this model, by the comments that follow Proposition 3.2, the limit ∆ exists.

Table 7 presents the VaR estimation based on a classical Monte Carlo quantile estimation with a sample
of size 3 × 108. We assume this estimation is the “real VaR” in the computation of the RMSE presented in
Table 8. On each method (New, GPD 1, GPD 2 and Weiss) the threshold used on each estimation corresponds
to the empirical 99% quantile. It is notable that our method is very stable with respect to others and is more
e�cient to approximate the VaR p from p = 0.99.

Table 7: Estimated Value-at-Risk at di�erent con�dence levels for the model described in Section 6.3 estimated with a sample
of size 3 × 108.

VaR VaR VaR VaR
99% 99.5% 99.9% 99.95%

8.1981e06 3.2770e07 8.1545e08 3.2561e09

Table 8: RMSE in percentage of the estimated VaR presented in Table 7 based on 1000 simulations. At each simulation a sam-
ple of size 105 is used to estimate the VaR.

Method VaR VaR VaR VaR
99% 99.5% 99.9% 99.95%

New 5.0% 4.9% 5.0% 5.0%
MC 6.2% 9.2% 21.2% 30.9%
GPD 1 5.9% 7.7% 12.4% 16.3%
GPD 2 5.9% 7.9% 13.1% 15.4%
Weiss. 5.9% 7.9% 13.0% 15.3%

6.4 Comparison of the method usingmax(X) vs X1

The method of estimation of the Value-at-Risk of the sum proposed in this paper relies on the convergence
of the function δ(t) = FS(t)/FM(t). When the convergence is assured and it is fast enough, it has been shown
that the proposed method gives accurate and stable estimations of the VaR at high levels. In theory, similar
results could be obtained if the maximum M is replaced by X1 where X1 is assumed to have the heaviest
tail in the vector X. In this section we compare numerically the estimation of the VaR using, on one side,
δ(t) = FS(t)/FM(t) and, on the other side, δ′(t) = FS(t)/FX1 (t), i.e we compare the approximation of VaR 1−p(S)
by VaR 1−p/∆(M) and VaR 1−p/∆′ (X1) where ∆ and ∆′ are the approximated limits of δ(t) and δ′(t) respectively
estimated using (4.2).

We �rst consider the model (X1, . . . , X10) where X1 is Pareto distributed with α = 0.9 and X2, . . . , X10
are Pareto distributed with α = 1. The dependence structure is given by a Gumbel copula with parameter 2.
Empirical δ and δ′ functions are displayed in Figure 5.

The δ function becomes almost horizontal before theVaR of the sumat the 95%con�dence levelwhereas
δ′ does not seem to be close to the limit on the displayed range. Then, the estimation of theVaR using δ′ seems
to be not accurate. This is con�rmed by Table 9 where some VaR estimations are presented. From now on,
the threshold used for the ∆ and the ∆′ approximations using formula (4.2) corresponds to the 95% empirical
quantile and for each estimation a sample of size 105 is generated.

Even in the case where all the marginal risks are equal the use of the max seems to give better results.
We consider the model (X1, . . . , X10) where all the Xi’s are Pareto distributed with the same index α = 1.
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Figure 5: Shape of an empirical δ(x) (solid) and δ′(x) (dashed) functions based on 105 simulations. Vertical lines are displayed
at the empirical VaR of the sum at con�dence levels 95%, 99%, 99.5%, 99.9%.

Table 9: First line: Monte Carlo VaR estimation using 3 × 108 simulations. Second and third lines: mean and RMSE of 1000 VaR
estimations using themax and the ∆′ approximations. The RMSE is presented in % of the MC estimation.

VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

MC (3 × 108) 200 1058 2166 11201 22809
New method 203 1067 2188 11665 24083
usingmax(X) (2%) (2%) (2%) (5%) (6%)
New method 188 1126 2432 14549 31428
using X1 (6%) (7%) (12%) (30%) (38%)

The dependence structure is given by a Gumbel copula with parameter 2. Empirical δ and δ′ functions are
displayed in Figure 6.

As above the δ function seems to converge faster than δ′ but in this case the di�erence is not as important
as in Figure 5. In Table 10 some VaR estimations are presented. Again, estimations provided by using the
estimation of ∆ are of better quality than the ones provided by using the estimation of ∆′.

Mathematically speaking, some work remains to be done to understand why the approximation of FS by
FM is so much better than that by F1. This will be the object of further investigations.

7 Conclusion
In this paper, we give some conditions under which the tail distribution of the sum can be approximated by
using the tail of the maximum of a vector. We show how the VaR or the TVaR on high levels for the sum can
be approximated, by �rst estimating a limiting constant ∆. The models in which our results can be applied
include those where marginals are regularly varying and such that dependence is given by an Archimedean
copula or survival copula.We do not require themarginals to be identically distributed and themethodworks
for very high dimensions d (d = 150 for exemple). Our method gives a good approximation for the VaR and
the TVaR when the convergence of δ(x) to ∆ is fast enough. This generally happens when at least one of the
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Figure 6: Shape of an empirical δ(x) (solid) and δ′(x) (dashed) functions based in 105 simulations. Vertical lines are displayed
at the empirical VaR of the sum at con�dence levels 95%, 99%, 99.5%, 99.9%

Table 10: First line: Monte Carlo VaR estimation using 3×108 simulations. Second and third lines: mean and RMSE of 1000 VaR
estimations using themax and the ∆′ approximations. The RMSE is presented in % of the MC estimation.

VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

MC (3 × 108) 196 1003 1996 9977 19931
New method 202 1068 2189 11671 24097
usingmax(X) (4%) (7%) (10%) (17%) (21%)
New method 188 1126 2434 14556 31444
using X1 (5%) (13%) (22%) (46%) (58%)

marginal risks is strongly heavy tailed and when the dependence is strong. In particular, the method is not
suitable e.g. for the case of two independent Pareto distributions. We also remark that the models for which
our method applies correspond generally to those where Monte Carlo approximations are less e�cient and
there so is a real need for alternative methods.
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