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Abstract: In this paper we present a forecasting method for time series using copula-based models for multi-
variate time series. We study how the performance of the predictions evolves when changing the strength of
the di�erent possible dependencies, as well as the structure of the dependence. We also look at the impact
of the marginal distributions. The impact of estimation errors on the performance of the predictions is also
considered. In all the experiments, we compare predictions from our multivariate method with predictions
from the univariate version which has been introduced in the literature recently. To simplify implementa-
tion, a test of independence between univariate Markovian time series is proposed. Finally, we illustrate the
methodology by a practical implementation with �nancial data.
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1 Introduction
For many years, copulas have been used for modeling dependence between random variables. See e.g. [16]
for a survey on copulas in �nance. The possibility to model the dependence structure independently from
marginal distributions allows for a better understanding of the dependence structure and a wide range of
joint distributions. More recently, copulas have been used to model the temporal dependence in time series,
�rst in the univariate case, as in [9] and [5], and then in a multivariate setting [23]. Once again, the �exibility
of copulas allows to model more complex dependence structures and thus to better capture the evolution of
the time series. In the recent work of [26], copulas were used to forecast the realized volatility associated with
a univariate �nancial time series and they showed that copula-based forecasts perform better than forecasts
based on heterogeneous autoregressive (HAR) model. The later method had been proven successful in [3],
[10] and [8].

In this paper, we extend the methodology of [26] by proposing a forecasting method using copula-based
models for multivariate time series, as in [23]. As one can guess, we show that forecasting multivariate time
series using copula-based models gives better results than forecasting a single time series, since more infor-
mation means more precision, in general. For example, let {(X1,t , X2,t); t ∈ N} be two dependent time series
with both series showing temporal dependence. Suppose one wants to forecast X1,T+1 based on the informa-
tion available at period T. We show that forecasting the joint values of (X1,T+1, X2,T+1) using the observed
values (X1,T , X2,T) gives signi�cantly better predictions of X1,T+1 in general than predictions on X1,T+1 based
only on the single value of X1,T , which of course has to be expected. Since {X1,t} and {X2,t} are dependent
and temporally dependent, the knowledge of (X1,T , X2,T) gives more information in general than the knowl-
edge of X1,T alone.
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We also study the impact of the strength of the di�erent dependencies, the structure of the dependencies
as well as the impact of marginal distributions of the vector (X1,t−1, X2,t−1, X1,t , X2,t) on the performance of
the predictions.

Although our numerical experiments focus on the bivariate case, our presentation can be readily ex-
tended to an arbitrary number of dimensions. Actually, the results of [23], which provide basis for the esti-
mation methods, are stated for an arbitrary number of time series and most of the theoretical background is
going to be presented here in multivariate case. Moreover, the results of our numerical experiments should
naturally extend to the arbitrary dimensions.

The rest of the paper is structured as follows. In Section 2 we give some basic results about copulas and
apply the results to model time series. In Section 2.3, we de�ne our forecasting methods and its implemen-
tation is discussed in Section 2.4, where a new test of independence between copula-based Markovian time
series is given. Section 3 contains the results of the numerical experiments as well as the analysis of the re-
sults. Finally, an example of implementation with real data is given in Section 4. The last section contains
some concluding remarks.

2 Modeling time series with copulas

2.1 Copulas

We begin by giving some de�nitions and basic results about copulas. More details can be found in [21] and
[22].

De�nition 2.1. (Copula)
A d-dimensional copula is a distribution function with domain [0, 1]d and uniform margins.

Equivalently, the function C : [0, 1]d → [0, 1] is a d-dimensional copula if and only if there exists random
variables U1, . . . , Ud such that P(Uj ≤ u) = uj for j ∈ {1, . . . , d} and C(u) = P(U1 ≤ u1, . . . , Ud ≤ ud) for all
u = (u1, . . . , ud) ∈ [0, 1]d. The existence of a copula function for any joint distribution is given by the Sklar’s
theorem.

Theorem 2.1. (Sklar’s theorem)
Let X1, . . . , Xd be d random variables with joint distribution function H and margins F1, . . . , Fd. Then,

there exists a d-dimensional copula C such that for all (x1, . . . , xd) ∈ R̄d,

H(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}, (1)

where R̄ = R
⋃
{−∞,∞}.

We note that the copula function in (1) is uniquely de�ned on the set Range(F1) × . . . × Range(Fd). Hence, if
Range(Fj) = [0, 1] for j ∈ {1, . . . , d} the copula is unique.

We de�ne the left continuous inverse of a distribution function F as

F−1(u) = inf
{
x; F(x) ≥ u

}
, for all u ∈ (0, 1).

Using this inverse and Sklar’s theorem, we have a way to de�ne the copula function in terms of the quasi-
inverses and the joint distribution.

Assuming that the density fj of Fj exists for each j ∈ {1, . . . , d}, then the density c of C exists if and only
if the density h of H also exists. In this case, di�erentiating one obtains

h(x1, . . . , xd) = c{F1(x1), . . . , Fd(xd)}
d∏
j=1
fj(xj).



Forecasting time series with multivariate copulas | 61

Furthermore, for all (u1, . . . , ud) = (0, 1)d,

c(u1, . . . , ud) =
h
{
F−1

1 (u1), . . . , F−1
d (ud)

}∏d
j=1 fj

{
F−1
j (ui)

} . (2)

Following the example of conditional distributions it is also possible to de�ne conditional copulas. Let (X,Y)
be a (d1 + d2)-dimensional random vector with joint distribution H, where X has marginal distributions
F1, . . . , Fd1 and Y has marginal distributions G1, . . . , Gd2 . Setting F(X) = (F1(X1), . . . , Fd1 (Xd1 )), G(Y) =
(G1(Y1), . . . , Gd2 (Yd2 )) and de�ning the random vector (U,V) = (F(X),G(Y)), we can de�ne the copula CUV
of the vector (X,Y) as the joint distribution function of (U,V). Assuming that the density functions exist and
applying (2), one obtains that the conditional copula CU|V, i.e., the conditional distribution of U given V, is

given by CU|V(u;v) =
∂v1 ···∂vd2

CUV(u,v)
cV(v) , with density cU|V(u;v) = cUV(u,v)

cV(v) , where cV is the density of the copula
CV(v) = CUV(1, . . . , 1, v) of Y or V.

Having de�ned conditional copulas, one can now look at copula-based models for multivariate time se-
ries.

2.2 Modeling time series

In order to get a prediction method, we �rst need to present how to use copulas for modeling time series. The
ideas presented here were developed in [27] and [23], extending the results of [9] to the multivariate case.

Let X = {Xt; t ∈ N} be a d-dimensional time series and assume that X is Markovian and stationary. We
note Fj themarginal distribution of Xj,t for j ∈ {1, . . . , d} andH the joint distribution of (Xt−1,Xt) andassume
that all distributions are continuous. From the stationarity assumption, it follows that all distribution func-
tions F1, . . . , Fd and H are time-independent. Using Sklar’s theorem, there is a unique copula C associated
to (Xt−1,Xt) and unique copula Q associated to Xt−1, viz.

Q(u) = C(1d , u) = C(u, 1d) for all u ∈ [0, 1]d ,

where 1d is the d-dimensional unit vector. Set Ut = F(Xt), for t ≥ 1.
The next step is to deduce the conditional copula of Xt given Xt−1, which is C(u;v) = CUt|Ut−1 (u;v) =

∂v1 ···∂vd C(u,v)
q(v) , with density cUt|Ut−1 (u;v) = c(u,v)

q(v) , where q is the density of Q.
Combining the knowledge of themarginal distributions and the conditional copula above, we can get the

conditional distribution of Xt given Xt−1. This is what we use to de�ne our predictions.

2.3 Forecasting method

To expose our forecasting method, we �rst make the assumption that the joint distribution as well as the
marginal distributions of the time series are known. However, in practice, these distributions are unknown
and estimations must be done. This will be covered next. The use of a copula-based model for time series
allows for a more �exible model of the dependence structure.

Let X = {Xt; t = 0, 1, .., T} be a d-dimensional time series. Our aim is to forecast XT+1 based on the
information available at time T. Suppose that for all t ≥ 0, Fj is the marginal distribution of Xj,t for j ∈
{1, . . . , d}, and the 2d-dimensional vector (Xt−1,Xt) as joint distribution H and copula C. Using the results
of the previous section, we can de�ne the conditional copula C of Xt given Xt−1, namely CUt|Ut−1 (u;v).

Now suppose we observed XT = y at time T. The prediction of XT+1 goes as follows:

1. Set v = F(y).
2. Simulate n realizations of the conditional copula, U(i) ∼ C(·;v), i ∈ {1, . . . , n}.
3. For each i ∈ {1, . . . , n}, set X(i)

T+1 = F−1
(
U(i)
)
.
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4. De�ne

X̂T+1 = 1
n

n∑
i=1

X(i)
T+1. (3)

We use X̂1,T+1 as a predictor for X1,T+1.
4′ One can also de�ne a prediction interval of level 1 − α ∈ (0, 1) for X1,T+1 by taking the estimated

quantiles of order α/2 and 1 − α/2 amongst {X(i)
1,T+1; i ∈ {1, . . . , n}}. We denote by L̂B

α
T+1 and ÛB

α
T+1

the lower and upper values for the prediction interval.

As mentioned previously, we are going to compare our predictions performance with the univariate ver-
sion presented in [26], when (X1,t) is a Markov process. In this case, let D be the copula associated with
(X1,t−1, X1,t) for t ∈ N, i.e., D is the copula of (U1,t−1, U1,t).

Suppose we observe the value X1,T = y1; The predictor presented in [26] is de�ned by

X̄1,T+1 = n−1
n∑
i=1

F−1
1

(
Z(i)
)
, (4)

where Z(i) are realizations of D(·; v1) with v1 = F1(y1) and D is the conditional copula associated with X1,t
given X1,t−1. As before, we can de�ne the prediction interval using the estimated α/2 and 1 − α/2 quantiles
from the values F−1

1

(
Z(i)
)
, i ∈ {1, . . . , n}. We note the upper and lower bound of predictions interval at time

T + 1 by UBαT+1 and LBαT+1.

2.4 Implementation in practice

There are several interesting problems for practical implementations. First, there is the choice of the copula
andmarginal distributions. Then, there is also the problem of choosing the simplest model, i.e. a model with
as few explanatory variables as possible. These problems are discussed next, together with a new test of
independence between univariate copula-based Markovian time time series.

2.4.1 Choosing the marginal distributions and the copula family

When the marginal distributions F are not known, they can be estimated by the empirical marginal distribu-
tions FT,j, j ∈ {1, . . . , d}, where

FT,j(x) = 1
T + 1

T∑
t=1

I(Xj,t ≤ x), x ∈ R. (5)

The validity of the estimationwas discussed in [23]; see also [24]. Basically all is needed is alpha-mixing. This
hypothesis is met for all models considered here.

Remark 1. One could also use parametric estimates for the margins. This would possibly lead to narrower
prediction intervals.

Next comes the choice of the copula family. Again, this was discussed in [23], and it was suggested to use
non-parametrical estimation for marginal distributions, as given by (5), together with parametric estimation
for joint copula models. Goodness-of-�t tests are also provided in [23] to help choose the right copula family.
Note that in a forecasting context, one could also choose copulas by their prediction power, using e.g., [11].

Given a copula-basedmodel, one can also askwhat is the best set of predictive variables. This is discussed
next.
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2.4.2 The selection problem

Consider the simple case of a bivariate model with variables X1 and X2. How can one choose between the
univariate model, i.e., predicting X1 using only its past values, and the bivariate model, i.e., using the past
values of (X1, X2) to predict X1?

In the case of ARMA(p,q) time series, [7] proposed to use the AIC criterion to choose the correct order of
p and q and then verify the adequacy of the model using a test of goodness-of-�t. In their setting, the models
are imbedded. This is not necessarily the case in our setting. For example, the bivariate series (X1, X2) can
be a Markov process, without X1 being Markovian. In this case, to predict X1, one needs the past values of
X1 and X2, not only the past values of X1. Therefore, in order to have to choose between two models, one
assumes that X1 (Model 1) and (X1, X2) (Model 2) are both Markov processes.

Remark 2. If both X1 and X2 are Markov processes, one should �rst test for independence between the two
series, as proposed in Section 2.4.3. If the null hypothesis of independence is not rejected, then choose model 1.
Otherwise, for any u1, v1 ∈ (0, 1), there exists a copula C12,u1 ,v1 so that

P(U2 ≤ u2, V2 ≤ v2|U1 = u1, V1 = v1) = C12,u1 ,v1

{
E1(u1, u2), E2(v1, v2)

}
, (6)

where E1(u1, u2) = P(U2 ≤ u2|U1 = u1) and E2(v1, v2) = P(V2 ≤ v2|V1 = v1) are the associated Rosenblatt
transforms.

Under the simplifying assumption that the copula C12,u1 ,v1 is independent of u1, v1, (6) yields

P(U2 ≤ u2, V2 ≤ v2|U1 = u1, V1 = v1) = C12
{
E1(u1, u2), E2(v1, v2)

}
.

Therefore, one obtains a model similar to the ones used for vine copulas, under the simplifying assumption.
Recall that vine models are graphical structures with building blocks given by bivariate copulas. For example,
for a three dimensional model, one could write the joint copula density as a product of the form

c(u, v, w) = c23|1
{
F2|1(v|u), F3|1(w|u)|u

}
c12(u, v)c13(u, w),

where C12, C13 and C23|1(v, w|u) are copulas, F2|1(v|u) = ∂uC12(u, v), F3|1(w|u) = ∂uC13(u, w), c12(u, v) =
∂vF2|1(v|u), and c13(u, w) = ∂wF3|1(w|u). In this context, the simplifying assumption means that the copula
C23|1 does not depend on u. For more details on the vast topic of vine copula models, see, e.g., [1] and [19].

However, applying our methodology to this model leads to the same predictions as in model 1! For, to gen-
erate (U2, V2) given (U1, V1) = (u1, v1), one �rst generate (W1,W2) ∼ C12, and solve W1 = E1(u1, U2),
W2 = E1(v1, V2). Hence the prediction of U2 does not depend on V1 and it is the same prediction as in Model 1.

As said before, in order to be able to use a selection criteria similar to the AIC, the class of copulas families
would have to be more limited, Model 1 being imbedded in Model 2. One such way could be to consider ap-
propriately chosen vine copula models (di�erent from the model presented in Remark 2). From a modeling
point of view, there are some preliminary results in this direction; see, e.g., [25], [14], and [6]. This way, the
models could be embedded and the AIC criterion could be applied.

If the models are not embedded, then one could base the choice of the prediction power, using a given
accuracy measure, as in [11].

2.4.3 A new test of independence between univariate Markovian time series

Suppose that the univariate series X1, . . . , Xd are Markovian, with associated bivariate copula families Cj,αj ,
j ∈ {1, . . . , d}. One way of selecting the simple model based only on X1, instead of a model based on
(X1, X2, . . . , Xd) would be to test independence between the series. Such tests exist for GARCH type mod-
els, see e.g., [12]. However these tests cannot be applied in the present context since there are no innovations.

One way to circumvent this problem is to compute the Rosenblatt transforms used for the goodness-of-�t
tests. To this end, set

eT,j,t = ∂u1Cj,α̂T,j
(
ÛT,j,t−1, ÛT,j,t

)
, j ∈ {1, . . . , d},
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where α̂T,j is a convergent estimate of αj, and ÛT,j,t = FT,j
(
Xj,t
)
, t ∈ {1, . . . , T}, using (5). If the margins

and the parameters were known exactly, then εj,t = ∂u1Cj,αj
(
Uj,t−1, Uj,t−1

)
, Uj,t = Fj

(
Xj,t
)
, would be i.i.d.

uniform random variables. Since the margins and the parameters are not known, the pseudo-observations
eT,j,t will be used instead and the test of independence is based on the empirical processes

KT,A(u1, . . . , ud) = 1√
T

T∑
t=2

∏
j∈A

{
I
(
eT,j,t ≤ uj

)
− uj

}
,

where A belongs to the set Ad of all subsets of {1, . . . , d} containing at least two elements. The test of in-
dependence is based on the following result whose proof is given in Appendix C. Before stating the result,
de�ne

K̃T(u1, . . . , ud) =
√
T

1
T

T∑
t=2

d∏
j=1

I
(
εj,t ≤ uj

)
−

d∏
j=1
uj

 , u1, . . . , ud ∈ [0, 1].

Then it is well-known, e.g., [17], that under the null hypothesis of independence, as T →∞, K̃T converges in
law (in the Skorohod sense) to a centered Gaussian process E, denoted K̃T  E.

Theorem 2.2. Suppose that the copulas Cj,αj (uj , vj) are continuously di�erentiable with respect to vj , αj and
that they are twice continuously di�erentiable with respect to uj, j ∈ {1, . . . , d}.

Suppose also that the processX is alpha-mixing, stationary and that the estimators
√
T
(
α̂T,j − αj

)
, together

with K̃T , converge jointly in law, as T → ∞, to random vectors Aj, j ∈ {1, . . . , d}, and E. Then under the null
hypothesis of independence between the series X1, . . . , Xd, the sequence of empirical processesKT,A, A ∈ Ad,
converge jointly in law as T → ∞ to independent continuous Gaussian processes KA, with mean zero and
covariance function

ΓA(u, v) =
∏
j∈A

{
min(uj , vj) − ujvj

}
, u, v ∈ [0, 1]d .

These processes appear in [17]. The statistics based on the empirical processes KT,A are basically the same.
They also have the same limiting distribution. To perform the test of independence, we propose to use the
test based on the Fisher transform, as suggested in [17].

More precisely, for any A ∈ Ad, set

TA,n = 1
n

T∑
i=1

T∑
k=1

∏
j∈A

{
2T + 1

6T +
Rij(Rij − 1)
2T(T + 1) +

Rkj(Rkj − 1)
2T(T + 1) −

max(Rij , Rkj)
T + 1

}
,

where, for a given j ∈ {1, . . . , d}, Rij is the rank of eT,j,i amongst eT,j,1, . . . , eT,j,T . Then, if F|A|,n denote
the distribution function of TA,n under the null hypothesis of independence (which only depends on the
cardinality |A| of A), the P−values 1 − F|A|,n(TA,n) are approximately uniform on [0, 1]. The proposed test
statistic is

Wn = −2
∑

A⊂Ad , |A|>1

log
{

1 − F|A|,n(TA,n)
}
.

Note that this test is implemented in the R package copula under the name indepTest.

3 Analysis of the performance
Here we compare the performance of our forecasting method versus the method proposed by [26]. The anal-
ysis is restricted to bivariate time series, but the results can easily be extrapolated to higher dimensions. For
these experiments we suppose that the copula and the marginal distributions are known so that the predic-
tions are not a�ected by estimation error. Wewill see in Section 3.5 the e�ect of parameters mis-speci�cation.

Theoretically, our proposed methodology should give better results because we are using the additional
information provided by a second series, provided the dependence is strong enough. Consequently, the gain
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in performance should be a�ected by the strength of the dependencies between and within time series, i.e.,
the overall dependence associated with the vector (X1,t−1, X2,t−1, X1,t , X2,t).

To understand how these factors come into play, we consider two copulas: The Student copula and the
Clayton copula. The choice of the Student copula is motivated by the fact that it seems to �t data well in prac-
tice and also that we have a lot of �exibility in specifying the correlation matrix for the Student distribution,
which in return de�nes the strength of the dependencies in the related copula. Actually, there is a bijection
between the correlationmatrix and the Kendall’s taumatrix. If R = [Ri,j] for i, j ∈ {1, . . . , d} are the elements
of the correlationmatrix, the Kendall’s taumatrix for the Student copula is then given by τi,j = 2

π arcsin(Ri,j),
[15].

In order to test a di�erent dependence structure we also use data simulated from the Clayton copula.
See Appendix A for details about simulating multivariate copula-based time series using these two copula
families.

We also want to examine the impact of the marginal distributions on the performance. To make things
simpler, we chose the same margins for both series. We can expect that the predictions of a random variable
with large variance should be less precise than when the variance is small. To try to eliminate the margins
e�ect, we propose a new measure of performance.

3.1 Performance measures

For most of the numerical experiments, we use prediction intervals with α = 0.05. To measure the perfor-
mance of the predictions, we compute the mean length of the prediction intervals, as well as the proportion
of observed values outside the prediction intervals. Let UBαt and LBαt be the upper bound and lower bound
of the prediction interval with con�dence level 1 − α, for t ∈ {1, . . . , N}. We de�ne the mean length as

MLαN = 1
N

N∑
t=1

(
UBαt − LBαt

)
.

We will use M̂L
α
N for the mean length of prediction intervals based on the bivariate series and MLαN if pre-

dictions are based on the univariate series. Note that the smaller the mean length of prediction intervals, the
better the precision. Also, the proportion of observed values outside the prediction intervals should be close
to 0.05. For the numerical experiments, we chose N = 10000 so that using the normal approximation for
the binomial distribution one can �nd that a 95% con�dence interval for the proportion of observed values
outside the prediction intervals is approximately 0.05 ± 0.0042.

Remark 3. Instead of prediction intervals, one can choose to make pointwise predictions using (3) and (4).
In this case, a natural performance measure for the predictions is the mean squared error. We also used this
performance measure for the numerical experiments described in Sections 3.2.1 - 3.2.3 and we found out that
the results were the same as for the mean length of prediction intervals. Consequently, we did not include these
results in the paper since they did not bring additional information.

In Section 3.3, we look at the e�ect of di�erentmarginal distributions on the quality of predictions.We expect
that the mean length of prediction intervals should be larger for distribution with bigger variance. To elim-
inate the margins e�ect, we use pointwise predictions de�ned at (3) and (4) and we propose the following
performance measure called the mean squared rank error (MSRE). Let X̃t be pointwise predictions of Xt for
t ∈ {1, . . . , N}. Then, MSRE is de�ned by

MSRE = N−1
N∑
t=1

{
F1(X1,t) − F1(X̃1,t)

}2
,

where F1 is themarginal distribution of X1,t for all t ∈ {1, . . . , N}. As before, wewill use M̂SRE if predictions
are based on the bivariate series and MSRE for the univariate case.
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3.2 Impact of the dependencies strength

As mentioned previously, the structure and the strength of the dependencies of the vector

Xt = (X1,t−1, X2,t−1, X1,t , X2,t)

should have an impact on the performance of our predictor. In order to understand what is this impact, we
�rst simulateXt with a Student copula and study the impact for a set of possible correlations.We choose ν = 8
for the degrees of freedom and �x the initial values (X1,0, X2,0) = (0, 0). In order to isolate the e�ect of the
correlation, we take the margins as Student with ν = 8 degrees of freedom as well, so the distribution of Xt
is a multivariate Student distribution. For these experiments, we take N = 10, 000 and we generate a sample
of n = 1000 to compute prediction intervals with α = 0.05.

Remark 4. Recall that ourmethodology applies to stationary series. In all the following numerical experiments,
when we have to generate stationary series, we always discard the �rst 100 values of the series, so we can
consider that the series is stationary. To be precise, for a series of length N, we actually generate N + 100 values
and discard the �rst 100 values.

In all the following numerical experiments, we compare M̂L
α
N and MLαN and we see that M̂L

α
N is always less

than or equal to MLαN . This observation shows that predictions based on bivariate series outperform predic-
tions based on univariate series since prediction intervals are narrower. However, this comparison is valid
only if the proportion of observed values outside the prediction intervals is close to 0.05. As one will see these
proportions are most of the time within the 95% con�dence interval [0.0458, 0.0542].

3.2.1 First numerical experiment

The �rst simulation study the impact of the dependence between both series. We simulate the series using
correlation matrices

Rρ =


1 ρ 0.25 0.25
ρ 1 0.25 0.25

0.25 0.25 1 ρ
0.25 0.25 ρ 1


with

ρ ∈ {−0.4, −0.3, −0.2, −0.1, −0.05, −0.01, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} .

Here, τ = 2
π arcsin(ρ) is the Kendall’s tau between X1,t and X2,t.

As seen in Figure 1, themean length M̂L
α
N of the prediction intervals increaseswhen the correlation ρ (and

Kendall’s tau) increases. To explain this result, consider the extreme case where the Kendall’s tau between
X1,t and X2,t is one. Then, the two series are identical and hence our predictor has no additional information
coming from the second series. This also explain why the di�erence betweenmean length of prediction inter-
vals gets closer to zero when τ = 2

π arcsin(ρ) is high. Again, as ρ increases, the predictor M̂L
α
N tends to MLαN ,

since the information from the second series becomes irrelevant.

3.2.2 Second numerical experiment

For the second simulation, we study the impact of the serial dependence, i.e., the dependence between X1,t
and X1,t−1 through τ = 2

π arcsin(ρ), Kendall’s tau between X1,t and X1,t−1. We simulate the series using cor-
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Figure 1: Impact of the dependence between X1,t and X2,t, as measured by the average length of the prediction intervals in
panel (a). The plain line gives the value of MLαN and the dashed gives the value of M̂L

α
N . Panel (b) gives the proportion of ob-

served values outside of prediction intervals. The circles give the results for prediction intervals based on univariate series
while plus signs are for prediction intervals based on bivariate series, and the horizontal lines give the 95% con�dence inter-
val. For both panels, the x-axis gives the Kendall’s tau between X1,t and X2,t.

relation matrices

Rρ =


1 0.25 ρ 0.25

0.25 1 0.25 0.25
ρ 0.25 1 0.25

0.25 0.25 0.25 1


with

ρ ∈ {−0.7, −0.6, −0.5, −0.4, −0.3, −0.2, −0.1, −0.05, −0.01,
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} .

Remark 5. We remark that the range of ρ is not the same than before. The reason is that we have to keep the
correlation matrices positive semi-de�nite.

As expected theoretically, Figure 2 shows that the predictions are better when the dependence is strong. How-
ever, it is interesting to note that, for this dependence structure, M̂L

α
N bene�ts more from the negative depen-

dence thanMLαN . Finally, when the correlation is close to one, the information given by the �rst lag dictates al-
most completely the succeeding value and the information givenby the second series thenbecomesmarginal.
This is why the di�erence in prediction error is close to zero when the correlation is close to one.
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Figure 2: Impact of the dependence between X1,t and X1,t−1, as measured by the average length of the prediction intervals in
panel (a). The plain line gives the value of MLαN and the dashed gives the value of M̂L

α
N . Panel (b) gives the proportion of ob-

served values outside of prediction intervals. The circles give the results for prediction intervals based on univariate series
while plus signs are for prediction intervals based on bivariate series, and the horizontal lines give the 95% con�dence inter-
val. For both panels, the x-axis gives the Kendall’tau between X1,t and X1,t−1.

3.2.3 Third numerical experiment

The last simulation is about the impact of the strengthof thedependencebetweenX1,t andX2,t−1.We simulate
the series using correlation matrices

Rρ =


1 0.25 0.25 0.25

0.25 1 ρ 0.25
0.25 ρ 1 0.25
0.25 0.25 0.25 1


with

ρ ∈ {−0.4, −0.3, −0.2, −0.1, −0.05, −0.01, 0.01, 0.05, 0.1, 0.2
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} .

As one should expect, this is the most important dependence in the comparative performance of our
predictor. Since the information givenby X2,t−1 cannot be used bypredictions based only onunivariate series,
our predictor gives much better performance when this dependence is strong, as seen in Figure 3. In the case
where the dependence is strong, the information of X2,t−1 almost completely dictates the value of X1,t and
this is why we observe a great di�erence between M̂L

α
N and MLαN .
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Figure 3: Impact of the dependence between X1,t and X2,t−1, as measured by the average length of the prediction intervals in
panel (a). The plain line gives the value of MLαN and the dashed gives the value of M̂L

α
N . Panel (b) gives the proportion of ob-

served values outside of prediction intervals. The circles give the results for prediction intervals based on univariate series
while plus signs are for prediction intervals based on bivariate series, and the horizontal lines give the 95% con�dence inter-
val. For both panels, the x-axis gives the Kendall’tau between X1,t and X2,t−1.

3.3 Impact of the marginal distributions

Another questionwewant to tackle is the impact of themargins. In order to isolatemore closely the impact of
thedi�erent correlations in the�rst set of simulations,weusedonly the Student copulawith Studentmargins.
In the next experiment, we still use Student copula, but we are going to use di�erent marginal distributions.
The parameters of the Student copula are the same as before and we �x the correlation matrix at Ri,j = 0.25
for all i ≠ j. The results are displayed in Table 1.

Remark 6. As pointed out by a referee, it is expected that the heavier tailed Student distribution as well as
normal distributions with higher variance should have an impact on the mean length of prediction intervals.
The point of using the MSRE measure here is to have all the values in [0, 1] so that we can compare di�erent
types of distributions. Looking at the results of Table 1, we see that the MLαN measure behaves similarly to the
MSRE measure, but on a larger scale. Thus, we may conclude that marginal distribution do indeed a�ect the
precision of the predictions.

3.4 Impact of the dependence structure

Our last numerical experiment shows that thedependence structurehas an impact on thegain inperformance
of predictions based on bivariate series compared to predictions based on univariate series. At �rst sight, we
could think that using the information provided by the series X2 might always give better predictions but we
�nd that the dependence structure of the Clayton copula almost negate this advantage. From the de�nition
of the Clayton copula we see that the dependence structure is symmetric, that is, all the dependencies of



70 | Clarence Simard and Bruno Rémillard

Table 1: Evolution of MSRE and MLαN as a function of the marginal distributions. Numbers in parenthesis are the proportion of
observed values out of prediction intervals.

Margins MSRE M̂SRE MLαN M̂L
α
N

T5 0.0819 0.0671 4.9503 (0.0545) 4.3449 (0.0512)
T8 0.0815 0.0664 4.4407 (0.0526) 3.9101 (0.0513)
T10 0.0812 0.0662 4.2891 (0.0534) 3.7835 (0.0514)
T15 0.0810 0.0658 4.1025 (0.0536) 3.6287 (0.0499)
T20 0.0810 0.0658 4.0171 (0.0545) 3.5547 (0.0521)
T30 0.0808 0.0656 3.9333 (0.0535) 3.4858 (0.0514)
T50 0.0808 0.0655 3.8736 (0.0539) 3.4345 (0.0509)

LN(0, 1) 0.1114 0.0819 6.6889 (0.0522) 5.7896 (0.0517)
χ2

8 0.0841 0.0672 14.7845 (0.0522) 13.1147 (0.0512)
Exp3 0.0956 0.0737 10.5561 (0.0520) 9.2709 (0.0513)
N(0, 1) 0.0806 0.0654 3.7803 (0.0526) 3.3573 (0.0516)
N(0.4) 0.0807 0.0654 7.5583 (0.0520) 6.7141 (0.0520)
N(0, 8) 0.0807 0.0654 10.6900 (0.0520) 9.4942 (0.0513)
N(2, 1) 0.0806 0.0654 3.7802 (0.0531) 3.3580 (0.0532)
N(4, 1) 0.0807 0.0654 3.7796 (0.0536) 3.3566 (0.0509)
N(8, 1) 0.0806 0.0654 3.7796 (0.0538) 3.3570 (0.0515)

the vector Xt = (X1,t−1, X2,t−1, X1,t , X2,t) are the same. Moreover, the strength of the dependencies increases
when θ increases. When θ is close to zero, the elements of the vector Xt are close to be independent and so,
there is not much information to use to predict the next value. On the opposite, when θ is high, both series
are almost the same and, this time, the series X2 cannot provide useful information to our predictor.

The results illustrated inFigure 4 show the evolutionof predictionperformances in termsof theparameter
θ. We see that both predictors perform badly when θ is small and perform better as long as θ becomes bigger.
We also see that the di�erence between both prediction errors is slowly decreasing for high values of θ. This is
due to the fact that the Kendall’s tau between X1,t and it’s �rst lag X1,t−1 is close to one, and so, the additional
information provided by X2 becomesmarginal. Aswe see,with the dependence structure given by the Clayton
copula the advantage of using predictions based on the bivariate series is minor.

3.5 Impact of estimation errors

In all the previousnumerical experiments,we supposed that copulas andmarginal distributionswere known,
i.e. there was no need to estimate parameters. This way, we were able to isolate the e�ect of using the infor-
mation provided by the second series. We saw that using multivariate predictions outperform univariate pre-
dictions, but in some cases the improvement is rather small. In these cases, one can ask if the errors caused
by parameters estimation might negate the advantage of the multivariate forecasting method. Mostly when
themultivariate method requires more parameters to estimate. In this section, we carry two numerical exper-
iments to test the impact of estimation errors on the performance of the predictions.

For our �rst experiment we generate a bivariate seriesXt of length N + 1 from a Student copula with ν = 8
degrees of freedom and correlation matrix

R =


1 0.25 0.25 0.25

0.25 1 0.7 0.25
0.25 0.7 1 0.25
0.25 0.25 0.25 1

 .
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Figure 4: Impact of the parameter θ in the Clayton copula. In panel (a), the plain line represents the value of MLαN and the
dashed gives the value of M̂L

α
N . Panel (b) gives the proportion of observed values outside of prediction intervals. The circles

give the results for prediction intervals based on univariate series while plus signs are for prediction intervals based on bivari-
ate series, and the horizontal lines give the 95% con�dence interval. The x-axis gives the values of θ.

We estimate the parameters of the copula using the N �rst values of the series and predict the value N + 1.
We repeat this experiment 10,000 times and compute the performance of the 10,000 predictions. To generate
the series, we also take Student marginal distributions with the same degrees of freedom as the copula.

In order tohavedi�erent precisions for the estimatedparametersweperform this experimentwith sample
sizes N ∈ {100, 250, 500, 750}. The results are displayed in Table 2.

Table 2: Impact of estimation errors for the Student copula. From left to right we have: the length of the series, the mean
squared error for the univariate and bivariate methods, and the mean length of prediction intervals for the univariate and bi-
variate methods. The numbers in parenthesis are the percentage of observed values out of the prediction intervals. They are
written in bold when signi�cantly di�erent from 5%, at the 95% level.

Student copula
Length MSE M̂SE MLαN M̂L

α
N

100 1.2784 0.8240 4.5897 (5.89) 3.3043 (6.43)
250 1.2426 0.8233 4.4658 (5.32) 3.242 (5.92)
500 1.2855 0.8005 4.4505 (5.39) 3.2366 (5.54)
750 1.3362 0.7932 4.413 (5.73) 3.3241 (5.34)

The �rst observation from Table 2 is that pointwise predictions are more precise for the bivariate method.
Our second observation is that, even though the bivariate method still creates smaller prediction intervals,
the proportion of observed values outside the prediction intervals are inside the con�dence interval only for
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the series of length 750. This means that the predictions of the quantiles using the bivariate method are more
sensitive to estimation errors than the univariate method. However, increasing the sample size reduces the
covering error.

Our second experiment retains the same idea as before, except we generate a bivariate series following a
Clayton copulawith parameter θ = 5 and uniformmarginal distributions. Looking at the results in Table 3, we
see that the bivariate method outperforms the univariate method since the mean average error for pointwise
predictions as well as the mean length of prediction intervals are smaller and the number of observed values
outside prediction intervals are all within the con�dence interval.

Table 3: Impact of estimation errors for the Clayton copula. From left to right we have: the length of the series, the mean
squared error for the univariate and bivariate methods, and the mean length of prediction intervals for the univariate and bi-
variate methods. The numbers in parenthesis are the percentage of observed values out of the prediction intervals. These val-
ues are not signi�cantly di�erent from 5%, at the 95% level.

Clayton copula
Length MSE M̂SE MLαN M̂L

α
N

100 0.0174 0.0131 0.4730 (4.90) 0.4129 (4.74)
250 0.0168 0.0129 0.4712 (5.04) 0.411 (4.80)
500 0.0167 0.0129 0.4664 (4.90) 0.4076 (5.00)
750 0.0168 0.0128 0.4683 (5.09) 0.4086 (5.29)

From these results, we conclude that predictions based on the bivariate method still gives better predic-
tionswhen considering estimation errors. However, in the case of the Student copula, it seems that prediction
intervals using the bivariate method are more sensitive to estimation errors, which is probably caused by the
fact that it uses more parameters. This explanation is also supported by the results on the Clayton copula.
In this case, all the predictions rely on one estimated parameter and the bivariate method always gives the
best predictions. It would be interesting to know if this conclusion can be generalized, but it would require
an exhaustive study to fully understand the e�ect of estimation errors.

4 Application
In this section we present an application of our method for forecasting the estimated realized volatility using
the bivariate time series of the estimated realized volatility and the volume of transactions. We �rst compare
the performance of the predictions between the univariate and the bivariate version of our method and then
use themultivariate GARCH-BEKKmodel as a benchmark to compare predictions based on a bivariatemodel.
But �rst, we discuss the estimation of the realized volatility.

Realized volatility might be de�ned as an empirical measure of returns volatility. In a general setting, if
we suppose that the value of an asset is a semimartingale X, then the realized volatility of X over the period
[0, T] is its quadratic variation at time T, [X]T . Thus, an estimator of the realized volatility can be de�ned as
the sum of squared returns

R̂V(X)[0,T] =
N∑
i=1

(Xti − Xti−1 )2 , (7)

where Xti , i = 0, . . . , n, are observed values and 0 = t0 ≤ t1 ≤ · · · ≤ tn = T. The �rst mention of realized
volatility is probably [29] but we refer the reader to [4] for a detailed justi�cation of the realized volatility
estimation.
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Since each price observation is noisy (bid-ask spread, etc), a more realistic model for observed price
should be Yti = Xti + ϵti , where ϵti is a random variable. In this context, it is easy to show that (7) is an incon-
sistent estimator. A common practice to estimate realized volatility is to use (7) and to take observations every
5 to 30 minutes. In using less observations the bias due to noise is somewhat diminished and the estimation
precision becomes acceptable. However, to perform our realized volatility estimation we used the estimator
of [28] which is an asymptotically unbiased estimator that allows using high-frequency data. Another good
estimator is given by [20] which makes use of high and low observed values. The reason we prefer the former
estimator is that we used trade prices and it seems that this estimator is less a�ected by bid/ask spread.
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Figure 5: Estimated realized volatility (top panel) and volume of transactions (bottom panel).
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Figure 6: Scatter plot for the normalized rank of the �rst di�erence of the log of the realized volatility and the volume of trans-
action.
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The data we are using are from the Trade and Quote database. We used Apple (APPL) trade prices from
2006/08/08 to 2008/02/01, which consists of 374 trading days. In order to avoid periods of lower frequency
trading we used data from 9:00:00 to 15:59:59. In combination with the estimation of realized volatility we
also computed the aggregated volume of transactions; see Figure 5.

4.1 Predictions based on copula models

For our time series to satisfy the required hypothesis of stationarity, we have to take the �rst di�erence of the
logarithm of both series. We de�ne X1,t = log(r̂vt) − log(r̂vt−1) and X2,t = log(v̂olt) − log(v̂olt−1) where r̂vt is
the estimated volatility, and v̂olt is the aggregated volume of transaction and the time scale is in days.

To verify the stationarity assumption of both series, we used a non-parametric change point test using the
Kolmogorov-Smirnov statistic. With P-values of 21.7% and 34.1% for the series X1 and X2, one cannot reject
the null hypothesis of stationarity. Finally, to try to have a visual interpretation of the dependence between
the two series, Figure 6 displays a scatter plot of the normalized ranks. This is a proxy for a sample generated
under the underlying copula of (X1,t , X2,t).

Then we carried out parameters estimation and goodness-of-�t tests for Clayton, Gaussian and Student
copulas, as proposed in [23]. One should note that these goodness-of-�t tests also test the hypothesis that the
series are Markovian.

From the P-values listed in Table 4, we selected the Student copula as the best model for the copula
of (X1,t−1, X2,t−1, X1,t , X2,t). The estimated parameters for the Student copula distribution are the degree of
freedom, ν̂ = 12.4707, and the correlation matrix

R̂ =


1 0.6936 −0.3628 −0.1234

0.6936 1 −0.2960 −0.3035
−0.3628 −0.2960 1 0.6936
−0.1234 −0.3035 0.6936 1

 .
The associated Kendall’s tau matrix is then given by

τ =


1 0.4880 −0.2364 −0.0788

0.4880 1 −0.1913 −0.1963
−0.2364 −0.1913 1 0.4880
−0.0788 −0.1963 0.4880 1

 .
It is not true in general that the copula for (X1,t−1, X1,t) will also be Student; this will be true if the series

X1,t is Markovian. This is indeed the case here and it happens that the best model for (X1,t−1, X1,t) is actually
the Student copula; see Table 5 for the results of the di�erent goodness-of-�t tests. The estimated degree of
freedom is ν̂ = 4.6751 and the correlation matrix is de�ned by taking the corresponding entries from the
correlation matrix of the bivariate model. Note also that the test of independence between the two series, as
described in Section 2.4.3, has been performed and the null hypothesis of independence is rejected with a
P-value equal to zero.

Table 4: P-values of goodness-of-�t tests of (X1,t−1, X2,t−1, X1,t, X2,t) computed with 1000 bootstrap samples.

Copula Clayton Gaussian Student
P-value (%) 0 3.2 5.5

Then we used our methodology to make one-period ahead predictions for the next 100 out-of-sample
values of the series X1. The results of the prediction intervals are displayed in Figure 7 while the pointwise
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Table 5: P-values of goodness-of-�t tests for (X1,t−1 , X1,t) and (X2,t−1 , X2,t), computed with 1000 bootstrap samples.

Model (X1,t−1, X1,t) (X2,t−1, X2,t)
Copula Clayton Gaussian Student Clayton Gaussian Student

P-value (%) 1.7 59.9 65.9 58.5 10.9 10.9

predictions are shown in Figure 8. We mention that the pointwise predictions from the univariate and the
bivariate model are close and it is di�cult to distinguish them. When we compare the performance of the
predictions, we �nd that the bivariate method has a little advantage over the univariate method, see Table 6.

Table 6:Mean squared error and mean length of prediction intervals for predictions based on the univariate and the bivariate
method. The means are taken on N = 100 predictions and α = 5%. The number in parenthesis is the proportion of observed
values outside prediction intervals.

Univariate Bivariate
MLαN 2.2493 (0.09) 2.2045 (0.09)
MSE 0.4033 0.4023

However, one can asks if this di�erence is signi�cant. To answer this question, we apply a test for pre-
dictive accuracy designed in [11]. Let X1,t, X̂1,t and X̄1,t be respectively the series of the observed values, the
predictions based on the bivariate model and the predictions based on the univariate model. We de�ne the
series of the loss di�erential of the squared errors, dt = (X1,t − X̂1,t)2 − (Xt,1 − X̄1,t)2, and test the null hypoth-
esis H0: dt = 0. Under the hypothesis that the series of the loss di�erential {dt}Nt=1 is covariance stationary
and short-memory, [11] state that

√
N(d̄ − µ) → N(0, 2πfd(0)) where fd(0) is the spectral density of the loss

di�erential at frequency 0. De�ning the statistic

S1 = d̄√
1
N 2πf̂d(0)

,

where f̂d(0) is a consistent estimator of fd(0) we �nd that S1 = −0.1966 so that we don’t reject H0 at level of
con�dence 95%.

By looking at the estimated correlation matrix R̂, we see that the temporal correlation between X1,t and
X1,t−1 is rather strong. Following the numerical experiments of Section 3, we should only expect a minor ad-
vantage of the bivariate method since the correlation between X1,t and the �rst lag of the second series X2,t−1
is not dominant. This observation is a possible explanation why the performance of the bivariate method in
this application is better but not signi�cantly better.

On the other hand, in this particular case, the AIC criterion is applicable, since (X1,t−1, X1,t) is modeled
by a Student copula which is embedded in the Student copula used tomodel (X1,t−1, X2,t−1, X1,t , X2,t). In the
univariate case, from the goodness-of-�t test we get a log-likelihood of 33.34 and there are two parameters
to estimate, while for the bivariate case the log-likelihood is 154.84 with 6 parameters to estimate. Since the
number of parameters is small with respect to the sample size we use the AIC criterion without the correction
term, as de�ned in [2], that is,AIC = 2k−2LLwhere k is thenumber of parameters and LL is the log-likelihood.
Computing the AIC criterion gives -62.69 for the univariate model and -297.68 for the bivariate model which
suggests that the bivariate model should be used since its AIC is smaller.
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4.2 Comparison with the multivariate GARCH-Bekk model.

After comparing the performance of our method with its univariate version, we would like to use another
bivariate model as a benchmark. So, we now model the series Xt = (X1,t , X2,t)′ with a multivariate GARCH-
BEKK, see [13]. In this model, we suppose that

Xt = µ + H
1
2
t ϵt

where µ is a 2 × 1 vector of constants and ϵt is a 2-dimensional vector of independent standard normals. The
covariance matrix Ht is de�ned by

Ht = CC′ + Aϵt−1ϵ′t−1A′ + BHt−1B′

where A, B are 2 × 2 matrices and C is a 2 × 2 lower triangular matrix. To estimate the parameters, we used
the USCD_GARCH toolbox for Matlab created by Kevin Sheppard and the result of the esimation is

A =
[

0.6055 −0.3053
0.1126 0.1345

]
, B =

[
−0.0001 0
0.0001 0

]

and

C =
[

0.4873 0
0.2277 0.2439

]
.

Finally, we have that µ = (4.409 × 10−4, 5.407 × 10−7).
For this particular model, pointwise predictions based on the conditional expectation are less relevant

since it is a constant. The result of 95% prediction intervals are displayed in Figure 9. To compare the per-
formance with the bivariate copula based model, we look at the mean length of prediction intervals, MLαN .
For the multivariate GARCH-BEKK model, the mean length of prediction intervals is 3.6489 with 4 observed
values outside prediction intervals while for the bivariate copula model we have a mean length of prediction
intervals of 2.2045 with 9 observed values outside prediction intervals. In both cases the number of observed
values outside prediction intervals is inside the 95% con�dence interval. One can see that the predictions
based on the bivariate copula model give better predictions than those from the multivariate GARCH-BEKK
model.

5 Conclusions
In this paper, we presented a forecasting method for time series based on multivariate copulas and we
compared the performance of the predictions with the univariate version. We also discussed the implemen-
tation of the proposed methodology, introducing a new test of independence between time series. Using
the Student copula, we illustrated the impact of di�erent combinations of dependencies for the vector
(X1,t−1, X2,t−1, X1,t , X2,t) andwe saw that some combinations aremore favorable for themultivariate method
than others. We also saw that with the symmetrical dependence structure of the Clayton copula, the mul-
tivariate forecasting method shows only a minor advantage. In addition, we tested the e�ect of estimation
errors. It was observed that the multivariate method keeps its advantage, but for series following a Student
copula, the sample size should be taken su�ciently large in order to provide good estimated parameters if
one want to use prediction intervals. These results might be explained by the number of estimated param-
eters used for the predictions. Finally, to illustrate the methodology, we presented a complete application
with parameters estimation and goodness-of-�t tests on the bivariate series of realized volatility and volume
of transactions and concluded that predictions based on the bivariate copula model outperform predictions
based on the univariate copula model as well as the multivariate GARCH-BEKK model.
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Figure 7: 95% prediction intervals for X1, using the bivariate model (top panel) and the univariate model (bottom panel).
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Figure 8: Pointwise predictions using the conditional expectation of the univariate (dashed line) and the bivariate model (plain
line). Observed values are shown by the dotted line.
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A Simulation

A.1 Simulation of multivariate time series with Student copula

The Student copula is based on a multivariate Student distribution. Suppose (X,Y) is a d = (d1 + d2)-
dimensional random vector which follows a Student distribution with mean 0, correlation matrix R and ν
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Figure 9: 95% prediction intervals for X1 using a multivariate Bekk-GARCH.

degrees of freedom. We write the matrix R as a block matrix

R =
[
RX RXY
RYX RY

]

where RX, RY, RYX and RXY are respectively the correlation matrices of the variables in subscript. It is easy
to check that all possible joint distributions of a multivariate Student vector are also of Student distributions
with respective correlation matrix and the same degrees of freedom. Let Tν,R be the distribution function of
a multivariate Student vector. The Student copula, noted Cν,R is de�ned, for all (u, v) ∈ (0, 1)d1+d2 , by

Cν,R(u, v) = Tν,R
{
T−1
ν (u1), . . . , T−1

ν (ud1 ), T−1
ν (v1), . . . , T−1

ν (vd2 )
}
.

Using Schur’s complement on the correlationmatrix R, it is possible to show that the conditional distribution
of Y givenX is also a Student distribution with ν̃ = ν + d1 degrees of freedom, mean µ = BX, and scale matrix
R̃ = λ

ν̃Ω, where λ = ν + x>Σ−1
X x, Ω = RY − RYXR−1

X RXY, and B = RYXR−1
X . The details of the derivations are

given in Appendix B.
To generate a d-dimensional time series {Xt}t∈N such that (Xt−1,Xt) has a Student conditional copula

Cν,R with marginal distributions F1, . . . , Fd, and

R =
[
R1 R12
R21 R1

]
,

we use the following algorithm:

1. Generate Y0 from a d-dimensional Student distribution with ν degrees of freedom and correlation ma-
trix R1.

2. For all t ∈ N, generate Yt from a d-dimensional Student distribution with ν̃ degrees of freedom, scale
matrix R̃ and mean BYt−1, where B = R21R−1

1 .
3. Compute Ujt = Tν(Yjt), for all j ∈ {1, . . . , d}.
4. Set (X1t , . . . , Xdt) =

(
F−1

1 (U1t), . . . , F−1
d (Udt)

)
.

Recall that to generate a d-dimensional random vector Y from the Student distribution Tν,µ,R, one can
generate V from the χ2

ν distribution and set Y = Z
√
ν/V + µ where Z is a d-dimensional normal vector inde-

pendent of V with mean 0 and correlation matrix R.
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A.2 Simulation of multivariate time series with Clayton copula

The Clayton copula is a member of the Archimedean family. A copula Cϕ is said to be Archimedean with
generator ϕ if

Cϕ(u) = ϕ−1 {ϕ(u1) + . . . + ϕ(ud)
}

for any bijection ϕ : [0, 1) → [0,∞) such that (−1)i d
i

disϕ
−1(s) ≥ 0 for all s ≥ 0 and all i = 0, . . . , d − 1.

Archimedean copulas are uniquely de�ned by the generator, up to a positive scaling factor. The Clayton cop-
ula is part of the Archimedean family and is de�ned by the generator ϕθ(t) = (t−θ − 1)/θ with θ > 0. Note
that more generally it is possible to de�ne a generator for the Clayton copula with parameter θ ≥ − 1

d−1 but we
restrict ourself to the case with positive parameter. Suppose that (U,V) is a (d1 + d2)−dimensional random
vector which follows a Clayton copula Cd,θ, where d = d1 +d2. Then it is possible to show that the conditional
copula of V given U is a Clayton copula with parameter θ̃ = θ

1+d1θ .
To generate a 2d-dimensional time series {Xt}t=0,1,... such that (Xt−1,Xt) follows a Clayton copula C2d,θ

with marginal distributions F1, . . . , Fd we use the following algorithm:

1. Generate U0 from the distribution Cd,θ.
2. For all t ∈ N and j ∈ {1, . . . , d} compute

Ujt =

 d∑
j=1

U−θj,t−1 − d + 1

(V−θ̃j,t − 1
)

+ 1

−1/θ

where Vt ∼ Cd,θ̃ with θ̃ = θ
1+dθ .

3. Set Xjt = F−1
j (Ujt) for all j ∈ {1, . . . , d} and all t ∈ N.

Recall that to generate a d-dimensional random vector Y from a Clayton copula Cd,θ, we can simulate in-
dependently S from a Gamma(1/θ, 1) and E1, . . . , Ed from a Exp(1), and then we set Yj = (1 + Ej/S)−θ for
j ∈ {1, . . . , d}.

B Conditional Student distribution
Let Z> = (X>,Y>) be a d = (d1 + d2)-dimensional random vector which follows a multivariate Student
distribution Td(x; ν, µ, Σ), where ν is the degrees of freedom, µ> = (µ>X , µ

>
Y ) is a (d1 + d2)-dimensional real

vector which is the location vector and

Σ =
[
ΣX ΣXY
ΣYX ΣY

]
is the scale block matrix. The density function of the above multivariate Student distribution is de�ned as

td(x, y; ν, µ, Σ) =
Γ( ν2 + d

2 )
|Σ|1/2Γ( ν2 )(πν)−d/2

(
1 + (X − µ)>Σ−1(X − µ)

ν

)−( ν2 + d
2 )
,

where Γ(x) is the gamma function. Moreover, it is well know that all joint distributions of a multivariate Stu-
dent distribution are also Student. For our concern, X follows a d1-dimensionalmultivariate distributionwith
parameters ν, µ1 and ΣX.

Let Id and 0d be respectively the d−dimensional identity matrix and null matrix. Using Schur’s method
we can write Σ = A ×M × B where

A =
[

Id1 0d1×d2

ΣYXΣ−1
X Id2

]

M =
[

ΣX 0d1×d2

0d2×d1 ΣY − ΣYXΣ−1
X ΣXY

]
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B =
[

Id1 Σ−1
X ΣXY

0d2×d1 Id2

]
.

Then we see that we can write the inverse of Σ the following way,

Σ−1 =
[
Σ−1
X + B̃M̃−1Ã −B̃M̃−1

−M̃−1Ã M̃−1

]
(8)

where Ã = ΣYXΣ−1
X , M̃ = ΣY − ΣYXΣ−1

X ΣXY and B̃ = Σ−1
X ΣXY. Using (8), we have the decomposition

(Z − µ)>Σ−1(Z − µ) = (Y − µY − ÃX)>M̃−1(Y − µY − ÃX)
+(X − µX)>Σ−1

X (X − µX). (9)

It then follows from (9) and some algebraic manipulation that the conditional distribution of Y given
X = x is a d2-dimensional Student distribution with degrees of freedom ν̃ = ν + d1, location parameter
µ̃ = µ2 + Ãx and scale matrix λ

ν̃ M̃, where λ = ν + (x − µX)>Σ−1
X (x − µX).

C Proof of Theorem 2.2
For j ∈ {1, . . . , d} and x1, x2 ∈ R, set

HT,j(x1, x2) = ∂u1Cj,α̂T,j
{
FT,j(x1), FT,j(x2)

}
,

Hj(x1, x2) = ∂u1Cj,αj
{
Fj(x1), Fj(x2)

}
.

By assumption,
√
T
(
α̂T,j − αj

)
 Aj,

√
T
(
FT,j − Fj

)
 Bj ◦ Fj, so it is easy to check that as T →∞,

√
t
{
HT,j(x1, x2) − Hj(x1, x2)

}
 Hj(x1, x2)
= A>j ∂u1 Ċj{Fj(x1), Fj(x2)}

+Bj ◦ Fj(x1)∂2
u1Cj{Fj(x1), Fj(x2)}

+Bj ◦ Fj(x2)∂u1∂u2Cj{Fj(x1), Fj(x2)},

where Ċj(u1, u2) = ∇αjCj,αj (u1, u2), and Cj = Cj,αj .
Under the null hypothesis of independence, εj,t = Hj(Xj,t−1, Xj,t) are i.i.d. and uniformly distributed.

Setting

DT(u1, . . . , ud) = 1
T

T∑
t=1

d∏
j=1

I
(
eT,j,t ≤ uj

)
, uj ∈ [0, 1], j ∈ {1, . . . , d},

and letting Π denotes the d-dimensional independence copula, it then follows from [18] that under the hy-
pothesis of independence,

√
T (DT − Π) E −

∑d
j=1 µj(Hj), where

µj(u1, . . . , ud) = E

 f {Fj(Xj,1), Fj(Xj,2)
}∏
k≠j

I(εk ≤ uk)

∣∣∣∣∣∣ εj = uj


= E

[
f
{
Fj(Xj,1), Fj(Xj,2)

}∣∣ εj = uj
]∏
k≠j
uk ,

andHj takes values in the set of functions of the form f
{
F1(X1,1), . . . , Fd(Xd,1)

}
, for some functions f ∈ Mj.

In our setting, one obtains that
µj(Hj) = Bj(uj)

∏
k≠j
uk ,
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where

Bj(uj) = A>j E
[
∂u1 Ċj{Fj(X̃j,1), Fj(X̃j,2)}

∣∣∣ ε̃j = uj
]

+E
[
Bj ◦ Fj(X̃j,1)∂2

u1Cj{Fj(X̃j,1), Fj(X̃j,2)}
∣∣∣ ε̃j = uj

]
+E
[
Bj ◦ Fj(X̃j,2)∂u1∂u2Cj{Fj(X̃j,1), Fj(X̃j,2)}

∣∣ ε̃j = uj
]
,

with (X̃j,1, X̃j,2) is an independent copy of (Xj,1, Xj,2), independent of Bj, and ε̃j = Hj
(
X̃j,1, X̃j,2

)
.

Note that for any j ∈ {1, . . . , d}, Bj(1) = 0. As a result, one can apply [17] to obtain that for any A ∈ Ad,
KT,A has the same asymptotic behavior as

K̃T,A(u1, . . . , ud) = 1√
T

T∑
t=2

∏
j∈A

{
I
(
εj,t ≤ uj

)
− uj

}
, u1, . . . , ud ∈ [0, 1],

which in turn converge toKA. This comes from the fact that the so-called Möbius transform ofBj(uj)
∏
k≠j uk

is identically 0 [17]. This completes the proof.
As a Corollary to Theorem 2.2, one obtains the asymptotic behavior of the empirical process

DT,j(uj) =
√
T
{

1
T

T∑
t=1

I
(
eT,j,t ≤ uj

)
− uj

}
, uj ∈ [0, 1], j ∈ {1, . . . , d}.

Note that the independence assumption is not needed here.

Corollary 1. Under the same assumptions as in Theorem 2.2, for any j ∈ {1, . . . , d}, DT,j = Dj = βj − Bj,
where βj is a Brownian bridge with representation βj(uj) = E(1, . . . , 1, uj , 1, . . . , 1), uj ∈ [0, 1].

Remark 7. In fact, according to [23], the empirical processes DT,j are the one used to construct tests of
goodness-of-�t for the assumption that the univariate series Xj,t is a Markov process.
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