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Abstract: In this paper we determine lowest cost strategies for given payoff distributions called cost-efficient
strategies in multivariate exponential Lévy models where the pricing is based on the multivariate Esscher
martingale measure. This multivariate framework allows to deal with dependent price processes as arising
in typical applications. Dependence of the components of the Lévy Process implies an influence even on the
pricing of efficient versions of univariate payoffs. We state various relevant existence and uniqueness results
for the Esscher parameter and determine cost efficient strategies in particular in the case of price processes
driven by multivariate NIG- and VG-processes. From a monotonicity characterization of efficient payoffs we
obtain that basket options are generally inefficient in Lévy markets when pricing is based on the Esscher
measure. We determine efficient versions of the basket options in real market data and show that the proposed
cost efficient strategies are also feasible from a numerical viewpoint. As a result we find that a considerable
efficiency loss may arise when using the inefficient payoffs.
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1 Introduction

In this paper we study optimal investment decisions in incomplete markets where the prices of the risky
assets are driven by multivariate Lévy processes. Apart from the pricing and hedging of options on a single
asset, practically all financial applications require a multivariate model with dependence between the assets.
The knowledge of the corresponding univariate marginals is not sufficient since it provides no information
on the dependence structure which considerably influences the risks and returns of the value of the option.
Thus, multidimensional models are capable to describe the actual financial states in a more appropriate and
accurate manner. Moreover, an abundance of payoff function types such as the Basket option, Worst-off call,
Worst-off put and their Best-off counterparts and many more can be treated with multivariate pricing models.

The concept of cost-efficient strategies has been introduced in [10, 11] and has been extended in a se-
ries of papers in Jouini and Kallal [22], F6llmer and Schied [15] in [32, 33], in [3, 4], as well as in Burgert and
Riischendorf [7] and others in a fairly general setting. The aim of the method of cost efficiency is to construct
to a specified payoff distribution G a payoff X1 with payoff distribution G (w.r.t. the underlying probability
measure P) which minimizes the price w.r.t. the pricing measure Q used in the market. G could be the distri-
bution of a given option X7. This approach thus improves concerning cost a given payoff or determines to a
specified payoff distribution G a cheapest (cost efficient) payoff having this payoff distribution. [28] contains
a discussion of various methods to specify payoff distributions in applications.
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The explicit form of cost-efficient strategies has been determined in the above mentioned papers mainly
in the context of the Samuelson model. A detailed study of this concept for univariate exponential Lévy mod-
els was given in Hammerstein et al. [20] in the case that pricing is based on the Esscher martingale measure.
In this paper also the potential gain and the hedging behaviour of cost efficient claims is investigated. As
a result it turns out, that the cost-efficient payoff may lead to considerably reduced cost and compares also
favourably concerning hedging behaviour as checked for real market data.

In typical cases cost efficient payoffs generate the payoff distribution by following the trend in the market.
In particular they neglect possible hedging goals of investors but only aim to optimize the cost in order to
reach a distributional goal of the investment. They are thus tools for law invariant investors but don’t satisfy
protection or securization purposes. In recent papers in [4, 5] and in [30] the method of cost efficiency has
been extended to include state dependent constraints and thus to specify in which states income is requested.

The frame of the method of cost efficiency is the following. In a market model (Q, F, (F¢)o<t<1, P) With
finite time horizon [0, T] let S = (S)o<t<r € R? be a market model for d stocks and (Z)o<<r a pricing density
for S rendering the discounted process (e "S¢Z¢)o<cr @ P-martingale. The cost of a strategy with terminal
payoff X7 then is given by

c(Xr) = Ele™" ZX1]. (1.1)

A basic and debatable assumption of the approach of cost efficient strategies is that the market participants
agree on one and the same pricing measure Q. In an incomplete market this problem is not avoidable. Any no-
arbitrage price corresponds to a chosen market measure or equivalently to a specific utility principle. Also the
super hedging price, the empirical and risk minimizing pricing measures follows this principle and base their
pricing on a worst case martingale measure, on ‘minimal’ martingale measures minimizing some hedging or
risk functional. The assumption of a pricing measure Q allows as consequence to construct to any given payoff
distribution G a cheapest (cost-efficient) payoff having this payoff distribution.

For a given payoff distribution G a strategy with terminal payoff X, distributed with G (i.e. X; ~ G) is
called cost-efficient if it minimizes the cost i.e.

cXq) = min, c(Xr). 1.2)

The strategy with payoff X; ~ G is called most-expensive if

c(X7) = max c(X7). (1.3)
Xr~G

The difference of the costs #(X1) = c(X7) — c(X;) is called the efficiency loss of Xr.
The following result characterizes cost-efficient strategies in the general context described above (see e.g.
3, 4]).

Theorem 1.1. Suppose that the state-price density Z has a continuous distribution function Fz,. Then X; =
G (1 - Fz,(Zy)) is the cost-efficient strategy and Xt = G *(Fz,(Zr)) is the most-expensive way to achieve a
payoff with given distribution function G. Moreover, for any payoff X1 ~ G, the lower and upper cost bounds are
given by

1

c(Xp) > Ele ™" ZrX,] = &7 / FA ()G (1 - dy, (14)
0
1

c(Xr) < EleZ;Xr) = &7 / FA ()G ()dy, . (15)
0

Furthermore, one obtains as consequence that a random payoff X7 ~ G is cost-efficient if and only if X7 and
Z are countermonotonic while X7 ~ G is most-expensive if and only if X; and Z; are comonotonic. In state
price models where Z7 = h(St) (like in exponential Lévy models) path-dependent payoffs are not cost-efficient
and can be improved by cost-efficient payoffs which are path-independent i.e. are of the form X7 = g(St).
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In this paper we apply the concept of cost-efficiency in the case of market models driven by multivariate
Lévy processes in the case that pricing is based on the Esscher martingale measure. The Esscher transform
has been introduced and motivated for contingent claim pricing in mathematical finance for Lévy processes
in [16], [25], [12], [8], and [21] and has been extended to semimartingales and multivariate Lévy processes
in [23], [13] and in [31]. The Esscher pricing principle thus is a well established pricing principle justified
by a corresponding utility principle and by some inherent simplifications it leads to. We show in our paper
that the determination of cost efficient strategies is doable in some standard classes of multivariate Lévy
models under pricing by the Esscher pricing measure. We introduce in Section 2 the multivariate Esscher
transform and describe some of its basic and delicate properties on the existence and uniqueness of the risk-
neutral Esscher measure. In Section 3 we specify the construction of cost-efficient claims in Theorem 1.1 to
the multivariate Lévy case. We find that generally basket options are inefficient. In Section 4 we introduce
some multivariate normal mean variance mixture models in particular the NIG and the VG model and use
them for modelling bivariate log-returns. We estimate the Lévy parameters from daily log-returns of German
stock data and compute the Esscher parameters. As application in Section 5 we calculate to a given basket
option the cost-efficient option and determine the efficiency loss for the real data sets as discussed above.

2 The Esscher transform and risk neutral Esscher measure

The notion of Esscher transformation as a change of measure was introduced by Gerber and Shiu [16] although
the concept of Esscher transformation for Lévy processes had been used in finance before on a mathematically
profound basis (see e.g. Madan and Milne [25]). Since then it became an established tool in financial and
actuarial science. The Esscher measure provides the advantage that any Lévy process under the physical
measure stays a Lévy process under the Esscher measure.

Fort>0and d € N, let 59 = Sg)ew), 1 < i < d denote the price of the i-th risky asset and assume that
Sg) is Fo-measurable. Let L® := (LE"))QO and assume that L := (L, ..., L@)isa Lévy process with respect
to the filtration (F¢)p<sr. Both Sg) and Lfi) are real-valued. Recall that we consider strategies (Y¢)o<<r On a
finite trading period [0, T]. Then, apart from the cases where L = (L)< either is a Brownian motion or a
Poisson process, such a Lévy market setting is incomplete. This means that the set of possible risk-neutral
martingale measures is not a singleton, but typically has uncountably many elements. We therefore assume
that the financial market is incomplete, but free of arbitrage, perfectly liquid and frictionless. To introduce
the Esscher martingale measure, we need several properties of the moment generating function of random
vectors.

Let (Q2, F, P) be a probability space and let X be random vector with values in R4, d € N. Denote by (-, )
the Euclidean scalar product in R?. The moment generating function of X is given by

My(u) := E[e®X], ueR% .1)
For u, u, € R% and any a € (0, 1) holds using H6lder’s unequality

Mx(au; + (1 - @)u,) = E[e{®1-au2X)]
_ E[e(au1,X) . e((l—a)uz,X)]
< (E[e" 0] - (Elet X
= Myx(uy)® - Mx(uy)@ .

Thus, log(Mx(u)) is a convex function. As a consequence Mx(u) is convex, since we can write the moment
generating function Mx(u) = exp(log(Mx(u)) as a composition of two convex functions.

Lemma 2.1. Let (Q, F, P) be a probability space and let X be random vector with values in R¢. Both Mx(u) and
the logarithm of the moment generating function £x(u) := log(Mx(u)) are convex functions.
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Now, consider a d-dimensional Lévy process L = (Lt)s0 on a filtered probability space (Q, F, (F¢)w0, P) satis-
fying the usual conditions. Due to the stationarity and independence of the increments of Lévy processes we
have the relation

My, (u) = My, (u)' forallu e R?and t > 0. (2.2)

The following basic assumption on the Lévy process, which serves here as a driver for the price process, is
made for the remainder of this paper. The notation of a degenerate Lévy process can be found in Sato [29, p.
165].

Assumption (M) The d-dimensional random variable L is non-degenerate and possess a moment generating
function My, (u) := E[e!“'] on some open interval (a, b) := (a®, b)) x- - - x (a@, b'?D) such that b — a® > 1
and a® <0 < b forall1 <i<d.

The latter condition will turn out to be necessary but not always sufficient for the existence of the risk-
neutral Esscher measure.

Definition 2.2 (Esscher transform). Let (L¢)e0 be a d-dimensional Lévy process on some filtered probability
space (Q, F, (Ft)t0, P). We call Esscher transform any change of P to a locally equivalent measure Q° with a
density process Z; = 99" |5 = Z? of the form

e<‘9’Lt>

Zi = ML)’ (2.3)

where M, is the moment generating function of Ly, and 6 € (a, b).

We indicate by E, that the expectation is calculated with respect to Q7. The process (Z?)..o is a density process
forall 6 € (a, b). This measure preserves the Lévy property: (L¢)so remains a Lévy process under the Esscher
measure QY. However, the discounted stock price process (e7'S;)s-0 will not be a martingale under all Q. A
parameter 0 is called risk neutral Esscher parameter if Qé is a martingale measure for S. Qé then is called the
Esscher martingale measure. The Esscher parameter 6 has to fulfil the following condition: Foreach 0 < i < d,
it must hold that Eé[Sg")] <ooandforallO<sus<ts<T,

esY = Eole S|, (24)
Due to the stationary and independent increments of a Lévy process (LE"))&O we have:
Eé[e—rl’sgi) ‘gju] - e—ru eLS)Eé[e_r(t_u)SEi_)u].

Thus, the discounted price process is a martingale under Q?ifand only if the equation S g) =E E’[e" ts Ei)] holds
forall t > 0 and for O < i < d. Or equivalently,

e(0+1i,Ly)

My, (6)

e(é:Lt>
M, (0)

ety (ML, 0+ 1) bl (M, (0 + 1)\t
_ rtS(l) L il _ rtS(l) 1 " ,
ey ( M;,(9) )= s My, (B) )

eL(fi)] = e"tS(i)E[

SO = E¥lets] = e SOE| = oSt

where 1, := (0,...,0,1,0,...,0) denotes the i-th standard basis vector of RY. The above equation means
that 8 e (a, b) has to solve the system of equations

er _ MLl(e + ILz‘)

Y 1<is<d. (2.5)
My, (6)

This also explains why it is necessary to require M, to be defined on an interval (a, b), where the length
of each univariate interval (a®, b?) is greater than one. In summary, the following characterizes Esscher
measures.
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Lemma 2.3. Let Assumption (My) be fulfilled and suppose there is a parameter 6 such that My, (9) and My, (9+
1;) are finite, 1 < i < d, and
r=20,9+1)-2.,09) (2.6)

holds for 1 < i < d. Then, for all T > 0, the discounted price process (e "' S;)s0 is a martingale under Qé, with
respect to the filtration (F¢)o if and only if equation (2.6) holds true. 8 is called risk-neutral Esscher parameter.

The Esscher parameters 9% of the univariate processes L are identical to the components of the Esscher
parameter 6 of the multivariate Lévy process L if the components of L are independent. In general, as in the
examples considered in this paper, with dependent components of L they may be different. As consequence
we get: If ¥ are solutions of

=L@+ 1)-£,009), @7)

for1 <i<d,andif 6 = (8, ..., 8?D) denotes a solution of the system of equations (2.6), then, 3 = §@
for all i, thatis, 8 = (9, ..., 99)if L9 and LY, i # j are independent. In dependent Lévy models, however,
they may be different.

From the latter we see that pricing in the univariate Lévy setting differ from the multivariate case when
dependence in the components is present. The inclusion of further dependent components in the market
model may lead to lower prices of efficient versions of options depending only on one component of the
market model compared to pricing in the single component model.

For illustration we consider an option on one asset with payoff f(S (Ti)), 1 < i < d. The cost in the univariate
setting, that is, where only the Lévy process LY is present, is given by

8Ly

(s = E[ - ° @0

(5P,

whereas in the multivariate setting, that is, where L = (L(l), ey L(d)) is the driving process, the cost is

gl)L(i) . <3[1] L[1]>

PN - E[ fsP],

Ele oL PRCLR i ]
where for y € R? the notation y! means (y\V, ..., yt, y@0  y@)c R 1 <j<dand (y?,...,y?D)
resp. YV, ...,y D) fori = 1 resp. i = d. The costs are equal if L has independent components.

As mentioned before, Assumption (M) alone does not guarantee the existence of a solution 8. Theorem
2.6 provides a sufficient condition for existence and further shows that the solution, if existent, is unique. The
uniqueness is based on the following strict convexity result (see e.g. Witting [34, Satz 1.164]).

Proposition 2.4 (Strict convexity of £,). Let u(dx) be a non-degenerate probability measure on (R4, BY)
which possesses a moment generating function M, in some open domain. Then Hy,(£,), the Hessian of £y, is
positive definite. In particular, £, is strictly convex on the interior of its range of existence.

Existence and uniqueness criteria for multivariate (exponential) Lévy processes have been studied in [23] and
in [31] and for d = 1 in [27]. For models based on the stochastic exponential S = So £(X) a characterization
of existence of an equivalent martingale measure is given in Tankov [31, Theorem 3]. Note that the stochastic
exponential S is a local martingale if and only if X is a local martingale, assuming S}, # 0. In case X is a
Lévy process this is equivalent to X being a martingale (even uniformly integrable on [0, T]). The proof of
Tankov’s theorem implies an existence result of an Esscher parameter if the underlying Lévy process has all
exponential moments.

Proposition 2.5. Let (X, P) be a d-dimensional Lévy process on [0, T] having all exponential moments Ee™* <

oo, VA € RY:
Then there exists a measure Qg ~ P with

dQS( ) - exp(9 - x)

X _ 79
Mx(9)
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such that X is a martingale w.r.t. Q.

Any exponential Lévy model S = S}, e can be represented as stochastic exponential model S© = Si &(X®)
with some Lévy process X and conversely. For a given stochastic exponential model S}, £(X”) define Y =
In £(XD); then exp(Y?) = £(XD). For the converse direction e’ = &(Y®) implies that Y® = £(eX") is the
stochastic logarithm of eXm (see Goll and Kallsen [17, Lemma 5.8]). The characteristics of XD are given ex-
plicitly in terms of the characteristics of L®. Based on the convexity result in Proposition 2.4 the following
existence and uniqueness result in Kallsen and Shiryaev [23, Theorems 4.4 and 4.5] implies existence and
uniqueness of the Esscher measure under some regularity conditions.

Theorem 2.6. Let condition (M) hold for the Lévy process X € R? and define Qq = Z‘%P. Then it holds:

1) The stochastic exponential processes St = St &(X?) are martingales if and only if the integral functions
|xDef* — hi(x)|*v are of finite variation, h¥) the cut off function used, and

DMyx(6) = 0. (2.8)

Qg then is called Esscher measure for S.
2) The Esscher measure is uniquely determined if it exists.

Proposition 2.4 and Theorem 2.6 give some general conditions for existence and uniqueness of the Esscher
measure. Condition (2.8) is a drift condition saying that the drift of X is zero w.r.t. Qg. The existence and
uniqueness results can easily be transferred to the case of discounted models of the form e ™S = el:"*, Only
the drift parameter has to be changed. In [36] it is shown that even in cases where an Esscher measure does not
provide an equivalent martingale measure a mean correcting Esscher parameter can be chosen to reproduce
the price of a European call option with respect to any risk neutral measure.

Remark 2.7. A direct approach to solve equations (2.8) leads to consider §;(u) = £;,(u + 1;) - £;,(u) and
6(u) = (6;(w))1<j<a- Then by Proposition 2.4 Hy(L1,), the Hessian of £1,, is positive definite and one obtains

0< [ (1), Hulgy, (u+ 1,001, ) de

1
RS O\H

1
]1,~,/Hu(£L1(u+11,-t))11j dt)
0

1
P

17, V(82,0 + 1)) - £1,00) )

5j(u)

Q
=

J
i.e. §; are strictly increasing in u. In d = 1, 2 it leads under the assumption that liin My, (u) = li%lbl M, (u) = oo
uja u

by some simple geometric arguments to the existence of a unique solution of the equations:
Siw)=c, 1s<j=d.

For the general case however one has to rely either on an iterative construction or on more general results in
Hodge theory as used to prove existence of solutions of log-Likelihood equations in [26].

By the uniqueness result in Theorem 2.6 we can now define in a formal way the risk-neutral Esscher measure
under Assumption (M,).

Definition 2.8 (Esscher martingale measure). The unique S Rd such that the process (e 77 S¢)0 is a mar-
tingale with respect to Q° is called the Esscher parameter and Q° is called the Esscher martingale measure or
risk-neutral Esscher measure.
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Remark 2.9. An alternative way to prove the uniqueness of the risk-neutral Esscher measure is to prove unique-
ness of the minimal entropy martingale measure and to establish that a risk-neutral Esscher measure if it exists
is given by the minimum entropy martingale measure (see e.g. [18] and Esche and Schweizer [14, Theorem B]).

3 Cost bounds in multivariate Lévy models

In this section we specialize the general construction result for cost-efficient payoffs in Theorem 1.1 to the
case of multivariate Lévy models. The formulas for the cost bounds are given in terms of the Lévy process
themselves (instead of the market models).

Proposition 3.1 (Cost-efficient payoffs in multivariate Lévy models). Let
(Lt)=0 be a multivariate Lévy process with continuous distribution function Fy, at maturity T > 0, and assume
that the risk-neutral Esscher parameter 0 exists.

ThenX; = G™'(1 - Fiorn ((8, L1))) is the cost-efficient strategy and X = G‘1(F<9,LT>((9, Lt))) is the most-
expensive way to achieve a payoff with payoff distribution G. Moreover, for any payoff Xt ~ G, the lower and
upper cost bounds are given by,

ey _ L
1 @C (1 Fa (@)
tr 3.1

e UF (B y)) AP ()
M, (9) @,y (6, ) y).

T

c(X7) 2c(Xy) = e"T/

c(X7) <c(X7) = e"T/

Proof. Observe that

Fz,(y) = P(Zr < y) = P((6, L1)) < In(y - M[,(0))) = F<@,LT>(ln(y - My, (0))),

and, hence 1 -Fz,(Zr)=1-F @.L1) ((8, Lt)) almost surely. Thus, the statement follows by applying Theorem
11toX; =G (1 -Fz(Zr)=G1'(1- Fio i ((8, Lt))). The most-expensive part is similar. O

As consequence of the latter result we obtain

Corollary 3.2 (Characterization of cost-efficiency). Under the assumptions of Proposition 3.1 it holds:

1. A strategy with terminal payoff X1 is cost-efficient if and only if X1 is a decreasing functionin (8, Lt).

2. A strategy with terminal payoff X is most-expensive if and only if X is an increasing function in (8, Lt).
Remark 3.3. Corollary 3.2 implies that strategies with payoffs of the form Xt = f({a, LT)) ~ G are cost-efficient
if

f is decreasing and a = t - 0 for some t > 0, (3.2

while Xt is most-expensive if
fisincreasingand a = t - @ for some t > 0, (3.3)

In the particular cases 8% > 0 for all i resp. 8 < 0 for all i we obtain a direct connection of cost-efficiency to
monotonic behaviour in Lt.

Corollary 3.4. Let (L¢)0 be a Lévy process with continuous distribution function Fy, at maturity T > 0, and
assume that a solution 0 of (2.5) exists.

1 If09 <oforall1<i<d,thena cost-efficient payoff Xt ~ G is componentwise increasing in L.
2. If69 > 0forall 1 < i < d, then a cost-efficient payoff X7 ~ G is componentwise decreasing in L.

For the most-expensive strategy, the reverse holds true.
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Proof. Let all components of the risk-neutral Esscher parameter 8 have a negative sign and let X; ~ G be a
cost-efficient payoff. Then, due to Proposition 3.1 resp. Corollary 3.2 X = G'(1-F @.Ly) ((9, Lr)))is decreasing
in (9, Lt). Moreover, since 69 < oforall1 < i < d the function h(Ly) = (9, L7) is componentwise decreasing in
Lr. Thus, the strategy X is componentwise increasing in Lt. The other cases can be shown analogously. [

Corollary 3.4 allows in the cases where 8 < 0 or 8® > 0 forall 1 < i < d to identify inefficient payoffs from its
monotonic behaviour in the coordinates of Lr.

Example 3.5 (Basket options are inefficient). Form Corollary 3.2 we find in particular that basket options Xt =
(aS(Tl) + ﬁS(TZ) - K). are neither efficient nor most-expensive. For a < 0 < S or 8 < O < a this is a consequence of
Corollary 3.4. In general this is a consequence of the fact that h(x1, x;) = a exp(x1) + b exp(x2) is not constant
on any line {x : (B, x) = t} and thus h can not be represented as a function of the form f((0, x)). Thus Xy by
Corollary 3.2 can not be cost efficient nor most expensive. In Section 5 we determine cost-efficient improvements
of basket options in some specific multivariate Lévy models.

4 Multivariate Lévy processes and application to real market data

In this section we recall some properties of multivariate normal mixture models its densities and moment gen-
erating functions as needed for the computation of the risk-neutral Esscher parameters for some class of Lévy
models. For two sets of real market data we give a statistical analysis in terms of three different multivariate
Lévy models the NIG, the VG and the normal model.

Normal mean variance mixture models

Normal mean variance mixtures are valuable models for analysing data from a variety of heavy-tailed and
skew empirical distributions. They have been used a lot in the more recent literature for financial data but
also in various other areas. Detailed expositions are given in Barndorff-Nielsen [1], Blaesild [6] and Barndorft-
Nielsen et al. [2]. Some recent developments in particular for dependence modelling are given in [24].

An R%valued random variable X is said to have multivariate normal mean-variance mixture distribution
if

Xyt zp+VZAW, (4.1)

where u, 8 € R4, A is a real-valued d x d matrix such that A := AA is positive definite, W is a standard
normal distributed random vector (W ~ Ny(0, I;)) and Z ~ F; is a real-valued, non-negative random variable
independent of W. An equivalent definition is the following:

A probability measure Q on (R4, BY) is said to be a multivariate normal mean-variance mixture if

Qdx) = / Na( + yB, yA)(dx)F4(dy), 4.2)
Ry

where the mixing distribution F; is a probability measure on (R.,B.). A practical short hand notation of
equation (4.2) is F = Ny(u + yB, yA) o F5.

Multivariate generalized hyperbolic distributions are defined as normal mean-variance mixtures with
Generalized inverse Gaussian (GIG) mixing distributions:

GH4 (A, a, B, 8, u, A) = Ny(u + yAB, yA) o GIG(A, 6+/a? — (B, AB)), (4.3)

where it is usually assumed without loss of generality that det(A) = 1, which we shall do in the following.
Due to the parameter restrictions of GIG distributions, the other GH parameters have to fulfil the constraints
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AeR, a,8eRy, B, uecRYand

620,0=<+/(B,4B) <a, ifA>0
6>0,0=<+/(B,AB) <a, ifA=0 (4.4)
6>0,0<+/(B,4B) <a, ifA<O0.

The meaning and influence of the parameters is similar as in the univariate case. The representation in (4.1)
entails that the infinite divisibility of the mixing Generalized inverse Gaussian distributions transfers to the
GH, distribution. In consequence there exists a Lévy process (L¢)o0 with £(L1) = GH4(A, @, B, 8, u, A) (see
e.g. Sato [29, Theorem 7.10 (iii)]). The following properties of GH, distributions and in particular of NIG and
VG distributions are given in Hammerstein [19].

If 6 >0and /(B, AB) < a, then the density of GH4(A, a, B8, §, u, A) can be derived from (4.3):

dGHd(}l,a,ﬁ,ﬁ,y,A)(X) = /de(i“yAﬁ’yA)(X)dGlG(A,ﬁ /az_<,3,A,3>)(J/) dy
0

e @ = B ABDE . ;2 4Ky a(ay/ (-, AN - ) + 62)
m)iati6t (= p 470 p0) + 57) Ky(6+/a% - (B, 4B))

The moment generating function of a multivariate generalized hyperbolic distribution is given in the follow-
ing proposition.

=e

Proposition 4.1. Ifin equation (4.3) the GH,(A, a, B8, §, 1, A) parameters fulfil the constraints in (4.4), then its
moment generating function is given by

(4.5)

MGHd(}l,a,ﬁ,é,y,A)(u) = elwH) (a2 —

a® - (B, AB) ) P K82 - (B+u, A(B+ )
(B+u, A(B +u)) Ky(6/a2 = (B, AB))

The densities of the multivariate analogues of the NIG and VG then have a representation given in the next
lemma.

Lemma 4.2. WithA = —% the multivariate normal inverse Gaussian distribution NIG4(a, B, 8, u, A) possesses
the density

2 Sast 8V~ (B.AB) _ -4 -
Anic(a,,6,u,(X) = \/;azin[)d ((X -, AT (- ) + 52) K% (0‘\/<X - A (x - ) + 62)9<ﬂ’x ",

The density dyg,a,p,u,4)(X) Of the multivariate Variance-Gamma distribution, a limiting case of the GH distribu-
tion, can be derived by letting § — 0. If A > O, then

d
w-4)

7 K/F% (a\/(x -, A1 (x - ’J)>)e<ﬁ,x—y>.

(@’ - (B, AB)
(271)% @t~ 5 2A-1T(A)

(- p 8 =)

dVG(/l,a,ﬁ,y,A)(X) =

We briefly recall the multivariate Samuelson model which serves as a benchmark model in this context. The
driving Lévy process is given by

52
L0 = a0~ D)4 60D, £ 0
e =W T S tH 05

for 1 <i < d, where (BE"))QO is a standard Brownian motion under the physical measure P, y(i) is the drift and
o' the volatility parameter. Thus, each asset price process fulfills the stochastic differential equation

ds® = s 4 5050 g0,

with the processes Bﬁi) being correlated such that E [dBEi) dBEj)] = p;; dt where p; = 1. The law of the multi-
variate Lévy process L is determined by a multivariate normal distribution with a drift vector ji € R?, where
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ﬂ(i) = (y(i) - %i)z) and a positive-definite d x d covariance matrix X = (Cov(L(li), L(lj))), 1 <1i,j < d, that is,
L(L1) = Ny(f1, £) such that g;; = 0¥p;;0%, with density

1
v (2m)d det(2)

The moment generating function of L, is equal to

dr,(x) = e‘%<(x"7)’zfl("‘ﬁ)>, t>0

My, 5y (W) = el i, 4.6)
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Figure 1: Moment generating function for a bivariate NIG process. The parameters used to derive the moment generating
function are listed in Table 1.

Application to real market data

In this subsection we illustrate an application of some multivariate Lévy processes to the analysis of real mar-
ket data. We consider German stock price data for Allianz and Volkswagen and for E.ON and Thyssen Krupp
from May 28, 2010 to September 28, 2012. That is, we consider the Lévy process LAVW) = (pAlianz pvWy .
in order to model the daily log-returns of Allianz and Volkswagen in a bivariate Lévy model, and analogously
LE-ON.TO for E,ON and Thyssen Krupp (see Figure 2). Table 1 contains the estimated parameters from daily log-
returns of Allianz and Volkswagen for the bivariate NIG, VG, and the Samuelson model. The interest rate used
to calculate the Esscher parameter 6 in the last column is the continuously compounded 1-Month-Euribor
rate of October 1, 2012, which is r = 4.2027 - 107%; note that this is the continuously compounded daily rate
which we need to do daily calculations and used as well as for daily rebalancing for hedging purposes for
one-dimensional options. This explains the extremely small value. The annualized Euribor rates at that time
point are in the order 107> instead.

For the determination of the Esscher parameter we numerically solved the determining system of equa-
tions (2.5) using the estimated parameters. The alternative way proposed by Theorem 2.6 is to establish ex-
istence of the Esscher parameter first by determining the associated stochastic exponential model, which is
also based on the estimated parameters. Then check the (M) condition and the finite variation condition.
All of these seem to be doable. Then finally solve numerically equation (2.8) in order to obtain the Esscher
parameter. This alternative seems however to be more involved.

Figure 1 gives the moment generating function for a bivariate NIG process LN which models the
daily log-returns of the E.ON and Thyssen Krupp stock prices from May 28, 2010 to September 28, 2012. See
Table 1 for the estimated parameters used for the computations.
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Allianz and VW stock prices 28.05.2010 — 28.09.2012 E.ON and ThyssenKrupp stock prices 28.05.2010 — 29.09.2012

140
L

— Thyssenkrupp
- EON

120
L

100
L

stock price in Euro

T T T T T T T T
10.06.2010 23.11.2010 12.05.2011 25.10.2011 11.04.2011 24.00.2012 10.06.2010 23.11.2010 12.05.2011 25.10.2011 11.04.2011 24.00.2012

Figure 2: Left: Daily closing prices of Allianz and Volkswagen used for parameter estimation. Right: Daily closing prices of E.ON
and Thyssen Krupp used for parameter estimation.

An application of the bivariate NIG model to data of Allianz and Volkswagen is given in Figure 3. For
the statistical fitting of the model we used the estimated parameters from Table 1. The histogram of the daily
log-returns and the model fit for Allianz and Volkswagen is presented in Figure 3.

With the estimated parameters and the formulas for the moment generating functions in Proposition 4.1
it is possible to solve numerically equation (2.5) i.e. to determine the Esscher parameters (see Table 1).

800 800
800—

Figure 3: Left: Histogram for the daily log-returns of Allianz and Volkswagen from May 28, 2010 to September 28, 2012. Right:
Fitted bivariate NIG density curve for Allianz and Volkswagen log-returns. The parameters used to derive the density are listed
in Table 1.

Although the moment generating function of NIG,; and VG, has an analytical representation, an analytic
expression for the Esscher parameter 6 is not available. For the multivariate normal distribution an explicit
expression for 8 is given in Gerber and Shiu [16, Section 7].

As pointed out in [20] in the univariate setting the sign of 8 describes a drift; a negative sign a positive
drift and a positive sign a negative drift. The size of || reflects the magnitude of the drift of the price process
and thus can be regarded as a measure for the strength of the market trend.

In the multivariate setting we have the following observation. From the more pronounced (positive) trend
in the Allianz and VW data than in the E.ON and Thyssen Krupp data we can expect that the potential savings
in the Allianz and Volkswagen case are higher than for the E.ON and Thyssen Krupp case. Note that the de-
pendence between the stocks implies that the Esscher parameters in the joint model as in Table 1 are different
form the parameters in the single models as considered in [20]. For example this dependence implies that in
the joint model Allianz gets a slightly positive Esscher parameter, indicating a mild relative negative drift in



12 —— Ludger Riischendorf and Viktor Wolf DE GRUYTER OPEN

Table 1: Estimated parameters from daily log-returns of Allianz and Volkswagen and E.ON and Thyssen Krupp for the bivariate
NIG, VG, and the Samuelson model.

LAYW A a B 5 u A 0
_ 3.1651 ~0.000149 1.097855 0.693566 0.937069
P ol oa2so ) (ume) | 001809 Coootin) | (oempses vamsess) | (iearsa)
4.6788 -0.0001 : : X
VG 1.5844 | 96.67 (291%%) 0.0 (70:009553 A (0705915 1-331597) (-3.299207)
— (0.00042 —70.0004105 0.0002615 1.114694
Normal ¥ = (0:001287) » = = (00002615 0-0004673) (—3_368318)
LEON,TK) A a B 8 H A 0
— 0.146985 0.00019196 0.901532 0.751105 0.323143
NIG 0.5 50.7124 (—(1).8%3107) 0.01858 | ( 0.20073093) (8';5%105 1734999 ( 8'(3)(3)221;11;2)
043541 -3.6075e-11 1912754 0.752004 .
VG 1.4653 | 90.4023 | (2530398 0.0 ( z.9gz1e711) (8753004 1715751 ( 8.03328%)
— ( ~0.0001002 — 70.000356 0.000283 1
Normal 1= (20:0001280) » = = (3:00083 0.000553 ) ( :1317%)

the joint model, while it has a mild positive drift in the individual model. As consequence this implies that
in the joint market it is possible to make use of the higher drift in the Volkswagen market and its correlation
to the Allianz market to obtain better (i.e. cheaper) constructions and improvements of options based on the
Allianz stock alone.

5 Application to basket options

As an example for the determination of efficient options in case d = 2 we consider the long basket option.
As shown in Section 3 these basket options themselves are not efficient in general. A basket option (on two
assets) is a weighted sum of SW and S, for the underlying S = (S(l) s S(z)). This exotic option with strike K > 0,
weights w1, w, € R and maturity T > O has the payoff

Xba = (wls(Tl) + WZS(TZ) -K)..
The bivariate payoff function equals
™) = (W), y) - K.
Denote S% = wy S(Tl) + Wy S(Tz) and observe for x > O that

Gpa(x) = P((ST - K)+ < x) = P(St - K < x, ST > K) + P(ST < K) = FsvTv(K +X),

that is,
F W(K + X)s X > O,
Gpa(x) = { 5 (5.1)
o, x <0.
Its generalized inverse is given by
Goa¥) = (Fsi(¥) - K)+, y € (0, 1). (5.2)

Applying Proposition 3.1 the cost-efficient payoff that generates the same distribution Gy, as the basket option
is therefore given by the following proposition.

Proposition 5.1 (Cost-efficient basket option). The cost-efficient payoff of the basket option X2 is given by
X7 = Gpa(1 = F g,y (8, L1))) = (Fsp(1 = F g 1,y (B, L)) = K- (53)
Its payoff function is given by
w™(y) = (Fs(1 - F g,y ((8,10g(y) - 10g(So)))) - K),

where Sg = (Sg)lsisz and the logarithm is applied componentwise.
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As example we consider the standard basket option with weights w; = w, = 0.5 and strike K = 15 for the E.ON,
Thyssen Krupp and the Allianz, Volkswagen data. This payoff is symmetrically increasing in rising markets.
For S(Tl) + S(Tz) < 30 the outcome is zero, which means that such an option rewards the writer when at least
one of the assets S(Ti) is high while the other asset decreases at most at the same level (compare Figure 4). On

—T 30
- 25

20

1g 12 0.0

Figure 4: Standard payoff of a long basket option for E.ON and Thyssen Krupp with weights w; = w, = 0.5, maturity T = 23
days and strike K = 15.

the contrary, the corresponding cost-efficient payoff )_('%a of the basket option shows a reverse behaviour. This
is consistent with Corollary 3.4 since the risk-neutral Esscher parameter 6 = (3323143 ) is componentwise
positive. Figure 5 displays the efficient payoff X'}a of the optimal long basket option on E.ON and Thyssen
Krupp stocks with strike K = 15 and maturity T = 23 days for the NIG model. Similar calculations are done
for the Allianz, Volkswagen data.

0.5

0.0

Figure 5: Optimal payoff of a long basket option for E.ON and Thyssen Krupp with weights w; = w, = 0.5, maturity T = 23 days
and strike K = 15 in the NIG model.

All computations are based on the estimated parameters given in Table 1. The initial stock prices Sg) are
the closing prices at October 1, 2012, and the time to maturity is chosen tobe T = 23 trading days, meaning that
the long basket options mature on November 1, 2012. The chosen initial stock prices equal S = 93.42, SYW =
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Table 2: Comparison of the cost of a standard long basket option with its corresponding cost-efficient counterpart on Allianz
and Volkswagen as well as E.ON and Thyssen Krupp.

LEW | c(xb) | c(X5) | Efficiency loss in %
NIG 5.04 4.06 19.47
VG 5.00 4.00 20.00
Normal 5.09 3.97 22.06

LEONTO [ ¢(xba) | ¢(X5?) | Efficiency loss in %
NIG 2.161 2.061 4.65
VG 2.158 2.052 4.92
Normal 2.160 | 2.086 3.40

130.55, SEON = 17.48 and SI¥ = 16.73. The weightsare w; = w; = 0.5. The strike for Allianz and Volkswagen
is K = 110, whereas for E.ON and Thyssen Krupp it is K = 15.

In Table 2 the prices for the long basket option and its cost-efficient counterpart as well as the efficiency
loss for Allianz and Volkswagen and for E.ON and Thyssen Krupp in all three bivariate Lévy models as dis-
cussed in Section 4 are listed. As a result for the Allianz and Volkswagen case a substantial efficiency loss is
observed for basket options while in the E.ON and Thyssen Krupp case the efficiency loss is more moderate.
As shown in Hammerstein et al. [20, Proposition 2.3] for the one dimensional case a greater size of || leads
to a higher efficiency loss. This effect can be seen from Tables 1 and 2 in our two dimensional examples as
well. Thus, we expect that an analogous result also holds true in the multivariate setting in greater generality
when dependent components are present.

6 Numerical issues

In order determine the risk-neutral Esscher parameter i.e. to solve the system of non-linear equations as in
(2.5) we use numerical methods provided by the R program. In particular, the package nleqslv provides two
algorithms for solving systems of non-linear equations with either a Broyden or a full Newton method. For
further information we refer to Dennis and Schnabel [9] and the related documentaries.

For evaluation of multidimensional integrals over hypercubes we used the package cubature. The calcu-
lation of standard prices c(X‘}a) needs about 10.1 seconds. Its absolute error lies in the region of 107°. The com-
putational time becomes better if suitable starting values and hypercubes are chosen. For the cost-efficient
versions c@l}a) the calculation is more involved and needs significantly more time. The running time varies
from 270 to 1.560 seconds depending on the particular Lévy model, accuracy, starting value, and hypercube
chosen if the number of simulations (of the bivariate Lévy process) is at most 10°. For a higher number of sim-
ulations, and thus a more accurate calculation, the time of calculation of such prices can grow substantially.

7 Conclusion

In this paper we adapt and develop the techniques necessary to determine cost-efficient payoffs in the case
of multivariate exponential Lévy asset models when pricing is based on the Esscher martingale measure. We
show that all calculations are doable for certain classes of multivariate Lévy models as NIG, VG or in the
normal case. As application we determine cost-efficient payoffs generating the same payoff distribution as
the inefficient basket options when pricing with the Esscher pricing measure. We describe the influence and
effect of dependence between the components of the Lévy model to the pricing of the cost efficient payoffs in
the example of basket options which implies that the relative trend of a stock may switch in the joint model
and lead to greater improvements compared to the construction of efficient claims in one dimensional mod-
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els. As a result we obtain that the efficiency loss can be considerable indicating that the use of cost-efficient
payoffs may be profitable. It is expected, that as in the one-dimensional Lévy case also in the multivariate case
cost efficient options behave favourably concerning the hedging behaviour but this still has to be explored.
In the one-dimensional case it has been shown in [20] and [35] concerning A-hedging as well as the basic
options. Extensions of the cost efficiency method to empirical pricing measures and a heuristic approach to
the choice of the payoff distribution have been given in a recent paper in [28] in the case of one-dimensional
Lévy processes. An extension to the multivariate case is subject of subsequent work.

Acknowledgement: The first author would like to thank Jan Kallsen, Chris Rogers and Peter Tankov for dis-
cussions and hints on the multivariate Esscher transform. The authors also thank two reviewers for several
corrections, comments, and suggestions on a first version and for hints to the literature.
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