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1 Introduction
In this paper we study optimal investment decisions in incomplete markets where the prices of the risky
assets are driven by multivariate Lévy processes. Apart from the pricing and hedging of options on a single
asset, practically all �nancial applications require amultivariate model with dependence between the assets.
The knowledge of the corresponding univariate marginals is not su�cient since it provides no information
on the dependence structure which considerably in�uences the risks and returns of the value of the option.
Thus, multidimensional models are capable to describe the actual �nancial states in a more appropriate and
accurate manner. Moreover, an abundance of payo� function types such as the Basket option,Worst-o� call,
Worst-o� put and their Best-o� counterparts andmanymore can be treated withmultivariate pricingmodels.

The concept of cost-e�cient strategies has been introduced in [10, 11] and has been extended in a se-
ries of papers in Jouini and Kallal [22], Föllmer and Schied [15] in [32, 33], in [3, 4], as well as in Burgert and
Rüschendorf [7] and others in a fairly general setting. The aim of the method of cost e�ciency is to construct
to a speci�ed payo� distribution G a payo� XT with payo� distribution G (w.r.t. the underlying probability
measure P) which minimizes the price w.r.t. the pricing measure Q used in the market. G could be the distri-
bution of a given option XT . This approach thus improves concerning cost a given payo� or determines to a
speci�ed payo� distribution G a cheapest (cost e�cient) payo� having this payo� distribution. [28] contains
a discussion of various methods to specify payo� distributions in applications.
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The explicit form of cost-e�cient strategies has been determined in the above mentioned papers mainly
in the context of the Samuelson model. A detailed study of this concept for univariate exponential Lévy mod-
els was given in Hammerstein et al. [20] in the case that pricing is based on the Esscher martingale measure.
In this paper also the potential gain and the hedging behaviour of cost e�cient claims is investigated. As
a result it turns out, that the cost-e�cient payo� may lead to considerably reduced cost and compares also
favourably concerning hedging behaviour as checked for real market data.

In typical cases cost e�cient payo�s generate the payo� distribution by following the trend in themarket.
In particular they neglect possible hedging goals of investors but only aim to optimize the cost in order to
reach a distributional goal of the investment. They are thus tools for law invariant investors but don’t satisfy
protection or securization purposes. In recent papers in [4, 5] and in [30] the method of cost e�ciency has
been extended to include state dependent constraints and thus to specify inwhich states income is requested.

The frame of the method of cost e�ciency is the following. In a market model (Ω,F, (Ft)0≤t≤T , P) with
�nite time horizon [0, T] let S = (St)0≤t≤T ∈ Rd be a market model for d stocks and (Zt)0≤t≤T a pricing density
for S rendering the discounted process (e−rtStZt)0≤t≤T a P-martingale. The cost of a strategy with terminal
payo� XT then is given by

c(XT) = E[e−rTZTXT ]. (1.1)

A basic and debatable assumption of the approach of cost e�cient strategies is that the market participants
agree on one and the same pricingmeasure Q. In an incompletemarket this problem is not avoidable. Any no-
arbitrage price corresponds to a chosenmarketmeasure or equivalently to a speci�c utility principle. Also the
super hedging price, the empirical and riskminimizing pricingmeasures follows this principle and base their
pricing on a worst case martingale measure, on ‘minimal’ martingale measures minimizing some hedging or
risk functional. The assumption of a pricingmeasureQ allows as consequence to construct to any givenpayo�
distribution G a cheapest (cost-e�cient) payo� having this payo� distribution.

For a given payo� distribution G a strategy with terminal payo� XT distributed with G (i.e. XT ∼ G) is
called cost-e�cient if it minimizes the cost i.e.

c(XT) = min
XT∼G

c(XT). (1.2)

The strategy with payo� XT ∼ G is called most-expensive if

c(XT) = max
XT∼G

c(XT). (1.3)

The di�erence of the costs `(XT) = c(XT) − c(XT) is called the e�ciency loss of XT .
The following result characterizes cost-e�cient strategies in the general context described above (see e.g.

[3, 4]).

Theorem 1.1. Suppose that the state-price density ZT has a continuous distribution function FZT . Then XT =
G−1(1 − FZT (ZT)) is the cost-e�cient strategy and XT = G−1(FZT (ZT)) is the most-expensive way to achieve a
payo� with given distribution function G. Moreover, for any payo� XT ∼ G, the lower and upper cost bounds are
given by

c(XT) ≥ E[e−rTZTXT ] = e−rT
1∫

0

F−1
ZT (y)G−1(1 − y)dy, (1.4)

c(XT) ≤ E[e−rTZTXT ] = e−rT
1∫

0

F−1
ZT (y)G−1(y)dy, . (1.5)

Furthermore, one obtains as consequence that a random payo� XT ∼ G is cost-e�cient if and only if XT and
ZT are countermonotonic while XT ∼ G is most-expensive if and only if XT and ZT are comonotonic. In state
pricemodelswhere ZT = h(ST) (like in exponential Lévymodels) path-dependent payo�s arenot cost-e�cient
and can be improved by cost-e�cient payo�s which are path-independent i.e. are of the form XT = g(ST).
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In this paper we apply the concept of cost-e�ciency in the case of market models driven by multivariate
Lévy processes in the case that pricing is based on the Esscher martingale measure. The Esscher transform
has been introduced and motivated for contingent claim pricing in mathematical �nance for Lévy processes
in [16], [25], [12], [8], and [21] and has been extended to semimartingales and multivariate Lévy processes
in [23], [13] and in [31]. The Esscher pricing principle thus is a well established pricing principle justi�ed
by a corresponding utility principle and by some inherent simpli�cations it leads to. We show in our paper
that the determination of cost e�cient strategies is doable in some standard classes of multivariate Lévy
models under pricing by the Esscher pricing measure. We introduce in Section 2 the multivariate Esscher
transform and describe some of its basic and delicate properties on the existence and uniqueness of the risk-
neutral Esscher measure. In Section 3 we specify the construction of cost-e�cient claims in Theorem 1.1 to
the multivariate Lévy case. We �nd that generally basket options are ine�cient. In Section 4 we introduce
some multivariate normal mean variance mixture models in particular the NIG and the VG model and use
them for modelling bivariate log-returns. We estimate the Lévy parameters from daily log-returns of German
stock data and compute the Esscher parameters. As application in Section 5 we calculate to a given basket
option the cost-e�cient option and determine the e�ciency loss for the real data sets as discussed above.

2 The Esscher transform and risk neutral Esscher measure
Thenotion of Esscher transformation as a changeofmeasurewas introducedbyGerber andShiu [16] although
the concept of Esscher transformation for Lévyprocesses hadbeenused in�nancebefore onamathematically
profound basis (see e.g. Madan and Milne [25]). Since then it became an established tool in �nancial and
actuarial science. The Esscher measure provides the advantage that any Lévy process under the physical
measure stays a Lévy process under the Esscher measure.

For t ≥ 0 and d ∈ N, let S(i)
t = S(i)

0 e
L(i)
t , 1 ≤ i ≤ d denote the price of the i-th risky asset and assume that

S(i)
0 is F0-measurable. Let L(i) := (L(i)

t )t≥0 and assume that L := (L(1), . . . , L(d)) is a Lévy process with respect
to the �ltration (Ft)0≤t≤T . Both S(i)

0 and L(i)
t are real-valued. Recall that we consider strategies (Yt)0≤t≤T on a

�nite trading period [0, T]. Then, apart from the cases where L = (Lt)0≤t≤T either is a Brownian motion or a
Poisson process, such a Lévy market setting is incomplete. This means that the set of possible risk-neutral
martingale measures is not a singleton, but typically has uncountably many elements. We therefore assume
that the �nancial market is incomplete, but free of arbitrage, perfectly liquid and frictionless. To introduce
the Esscher martingale measure, we need several properties of the moment generating function of random
vectors.

Let (Ω,F, P) be a probability space and let X be random vector with values inRd , d ∈ N. Denote by 〈·, ·〉
the Euclidean scalar product in Rd. The moment generating function of X is given by

MX(u) := E[e〈u,X〉], u ∈ Rd . (2.1)

For u1, u2 ∈ Rd and any α ∈ (0, 1) holds using Hölder’s unequality

MX(αu1 + (1 − α)u2) = E[e〈αu1+(1−α)u2 ,X〉]

= E[e〈αu1 ,X〉 · e〈(1−α)u2 ,X〉]

≤ (E[e〈u1 ,X〉])α · (E[e〈u2 ,X〉])(1−α)

= MX(u1)α ·MX(u2)(1−α) .

Thus, log(MX(u)) is a convex function. As a consequence MX(u) is convex, since we can write the moment
generating function MX(u) = exp(log(MX(u)) as a composition of two convex functions.

Lemma 2.1. Let (Ω,F, P) be a probability space and let X be random vector with values inRd. Both MX(u) and
the logarithm of the moment generating function LX(u) := log(MX(u)) are convex functions.
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Now, consider a d-dimensional Lévy process L = (Lt)t≥0 on a �ltered probability space (Ω,F, (Ft)t≥0, P) satis-
fying the usual conditions. Due to the stationarity and independence of the increments of Lévy processes we
have the relation

MLt (u) = ML1 (u)t for all u ∈ Rd and t ≥ 0. (2.2)

The following basic assumption on the Lévy process, which serves here as a driver for the price process, is
made for the remainder of this paper. The notation of a degenerate Lévy process can be found in Sato [29, p.
165].

Assumption (Md) The d-dimensional random variable L1 is non-degenerate and possess amoment generating
function ML1 (u) := E[e〈u,L1〉] on some open interval (a, b) := (a(1), b(1)) × · · · × (a(d), b(d)) such that b(i) − a(i) > 1
and a(i) < 0 < b(i) for all 1 ≤ i ≤ d.

The latter condition will turn out to be necessary but not always su�cient for the existence of the risk-
neutral Esscher measure.

De�nition 2.2 (Esscher transform). Let (Lt)t≥0 be a d-dimensional Lévy process on some �ltered probability
space (Ω,F, (Ft)t≥0, P). We call Esscher transform any change of P to a locally equivalent measure Qθ with a
density process Zt = dQθ

dP |Ft = Zθt of the form

Zθt = e〈θ,Lt〉
MLt (θ)

, (2.3)

where MLt is the moment generating function of Lt, and θ ∈ (a, b).

We indicate by Eθ that the expectation is calculatedwith respect to Qθ. The process (Zθt )t≥0 is a density process
for all θ ∈ (a, b). This measure preserves the Lévy property: (Lt)t≥0 remains a Lévy process under the Esscher
measure Qθ. However, the discounted stock price process (e−rtSt)t≥0 will not be a martingale under all Qθ. A
parameter θ̄ is called risk neutral Esscher parameter if Qθ̄ is a martingale measure for S. Qθ̄ then is called the
Esscher martingale measure. The Esscher parameter θ̄ has to ful�l the following condition: For each 0 ≤ i ≤ d,
it must hold that Eθ̄[S(i)

t ] < ∞ and for all 0 ≤ u ≤ t ≤ T,

e−ruS(i)
u = Eθ̄[e−rtS(i)

t |Fu]. (2.4)

Due to the stationary and independent increments of a Lévy process (L(i)
t )t≥0 we have:

Eθ̄[e−rtS(i)
t |Fu] = e−rueL

(i)
u Eθ̄[e−r(t−u)S(i)

t−u].

Thus, the discounted price process is amartingale under Qθ̄ if and only if the equation S(i)
0 = Eθ̄[e−rtS(i)

t ] holds
for all t ≥ 0 and for 0 ≤ i ≤ d. Or equivalently,

S(i)
0 = Eθ̄[e−rtS(i)

t ] = e−rtS(i)
0 E
[ e〈θ̄,Lt〉
MLt (θ̄)

eL
(i)
t
]

= e−rtS(i)
0 E
[ e〈θ̄+1i ,Lt〉

MLt (θ̄)
]

= e−rtS(i)
0

(MLt (θ̄ + 1i)
MLt (θ̄)

)
= e−rtS(i)

0

(ML1 (θ̄ + 1i)
ML1 (θ̄)

)t
,

where 1i := (0, . . . , 0, 1, 0, . . . , 0) denotes the i-th standard basis vector of Rd. The above equation means
that θ̄ ∈ (a, b) has to solve the system of equations

er = ML1 (θ̄ + 1i)
ML1 (θ̄)

, 1 ≤ i ≤ d. (2.5)

This also explains why it is necessary to require ML1 to be de�ned on an interval (a, b), where the length
of each univariate interval (a(i), b(i)) is greater than one. In summary, the following characterizes Esscher
measures.
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Lemma 2.3. Let Assumption (Md) be ful�lled and suppose there is a parameter θ̄ such that ML1 (ϑ) and ML1 (ϑ+
1i) are �nite, 1 ≤ i ≤ d, and

r = LL1 (ϑ + 1i) − LL1 (ϑ) (2.6)

holds for 1 ≤ i ≤ d. Then, for all T > 0, the discounted price process (e−rtSt)t≥0 is a martingale under Qθ̄, with
respect to the �ltration (Ft)t≥0 if and only if equation (2.6) holds true. θ̄ is called risk-neutral Esscher parameter.

The Esscher parameters ϑ̄(i) of the univariate processes L(i) are identical to the components of the Esscher
parameter θ̄ of the multivariate Lévy process L if the components of L are independent. In general, as in the
examples considered in this paper, with dependent components of L they may be di�erent. As consequence
we get: If ϑ̄(i) are solutions of

r = LL(i)
1

(ϑ̄ + 1) − LL(i)
1

(ϑ̄), (2.7)

for 1 ≤ i ≤ d, and if θ̄ = (θ̄(1), . . . , θ̄(d)) denotes a solution of the system of equations (2.6), then, ϑ̄(i) = θ̄(i)

for all i, that is, θ̄ = (ϑ̄(1), . . . , ϑ̄(d)) if L(i) and L(j), i ≠ j are independent. In dependent Lévy models, however,
they may be di�erent.

From the latter we see that pricing in the univariate Lévy setting di�er from the multivariate case when
dependence in the components is present. The inclusion of further dependent components in the market
model may lead to lower prices of e�cient versions of options depending only on one component of the
market model compared to pricing in the single component model.

For illustration we consider an option on one asset with payo� f (S(i)
T ), 1 ≤ i ≤ d. The cost in the univariate

setting, that is, where only the Lévy process L(i) is present, is given by

c(f (S(i)
T )) = E

[ eϑ̄
(i)L(i)

T

ML(i)
T

(ϑ̄(i))
f (S(i)

T )
]
,

whereas in the multivariate setting, that is, where L = (L(1), . . . , L(d)) is the driving process, the cost is

c(f (S(i)
T )) = E

[ eϑ̄
(i)L(i)

T · e〈ϑ̄
[i] ,L[i]

T 〉

E[eϑ̄(i)L(i)
T · e〈ϑ̄[i] ,L[i]

T 〉]
f (S(i)

T )
]
,

where for y ∈ Rd the notation y[i] means (y(1), . . . , y(i−1), y(i+1), . . . , y(d)) ∈ Rd−1, 1 < i < d and (y(2), . . . , y(d))
resp. (y(1), . . . , y(d−1)) for i = 1 resp. i = d. The costs are equal if L has independent components.

As mentioned before, Assumption (Md) alone does not guarantee the existence of a solution θ̄. Theorem
2.6 provides a su�cient condition for existence and further shows that the solution, if existent, is unique. The
uniqueness is based on the following strict convexity result (see e.g. Witting [34, Satz 1.164]).

Proposition 2.4 (Strict convexity of Lµ). Let µ(dx) be a non-degenerate probability measure on (Rd ,Bd)
which possesses a moment generating function Mµ in some open domain. Then Hu(Lµ), the Hessian of Lµ, is
positive de�nite. In particular, Lµ is strictly convex on the interior of its range of existence.

Existence and uniqueness criteria formultivariate (exponential) Lévy processes have been studied in [23] and
in [31] and for d = 1 in [27]. For models based on the stochastic exponential S = S0 E(X) a characterization
of existence of an equivalent martingale measure is given in Tankov [31, Theorem 3]. Note that the stochastic
exponential S is a local martingale if and only if X is a local martingale, assuming Si0 ≠ 0. In case X is a
Lévy process this is equivalent to X being a martingale (even uniformly integrable on [0, T]). The proof of
Tankov’s theorem implies an existence result of an Esscher parameter if the underlying Lévy process has all
exponential moments.

Proposition 2.5. Let (X, P) be a d-dimensional Lévy process on [0, T] having all exponential moments EeλX1 <
∞, ∀λ ∈ Rd:
Then there exists a measure Qϑ ∼ P with

dQϑ
dP (x) = exp(ϑ · x)

MX(ϑ)
= ZϑT
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such that X is a martingale w.r.t. Qϑ.

Any exponential Lévy model S(i) = Si0 eL
(i)
can be represented as stochastic exponential model S(i) = Si0 E(X(i))

with some Lévy process X(i) and conversely. For a given stochastic exponential model Si0 E(X(i)) de�ne Y (i) =
lnE(X(i)); then exp(Y (i)) = E(X(i)). For the converse direction eX

(i)
= E(Y (i)) implies that Y (i) = L(eX

(i)
) is the

stochastic logarithm of eX
(i)

(see Goll and Kallsen [17, Lemma 5.8]). The characteristics of X(i) are given ex-
plicitly in terms of the characteristics of L(i). Based on the convexity result in Proposition 2.4 the following
existence and uniqueness result in Kallsen and Shiryaev [23, Theorems 4.4 and 4.5] implies existence and
uniqueness of the Esscher measure under some regularity conditions.

Theorem 2.6. Let condition (Md) hold for the Lévy process X ∈ Rd and de�ne Qθ = ZθTP. Then it holds:

1) The stochastic exponential processes Si = Sio E(X(i)) are martingales if and only if the integral functions
|x(i)eθ·x − hi(x)|*ν are of �nite variation, h(i) the cut o� function used, and

DMX(θ) = 0. (2.8)

Qθ then is called Esscher measure for S.
2) The Esscher measure is uniquely determined if it exists.

Proposition 2.4 and Theorem 2.6 give some general conditions for existence and uniqueness of the Esscher
measure. Condition (2.8) is a drift condition saying that the drift of X is zero w.r.t. Qθ. The existence and
uniqueness results can easily be transferred to the case of discounted models of the form e−rtS = eLt−rt. Only
the drift parameter has to be changed. In [36] it is shown that even in caseswhere anEsschermeasure does not
provide an equivalent martingale measure a mean correcting Esscher parameter can be chosen to reproduce
the price of a European call option with respect to any risk neutral measure.

Remark 2.7. A direct approach to solve equations (2.8) leads to consider δj(u) = LL1 (u + 1j) − LL1 (u) and
δ(u) = (δj(u))1≤j≤d. Then by Proposition 2.4 Hn(LL1 ), the Hessian of LL1 , is positive de�nite and one obtains

0 <
1∫

0

〈
1j , Hu(LL1 (u + 1j t))1j

〉
dt

=
〈
1j ,

1∫
0

Hu(LL1 (u + 1j t))1j dt
〉

=
〈
1j ,∇

(
LL1 (u + 1j) − LL1 (u)

)〉
= ∂
∂uj

δj(u)

i.e. δj are strictly increasing in u. In d = 1, 2 it leads under the assumption that lim
u↓a

ML1 (u) = lim
u↑b

ML1 (u) = ∞

by some simple geometric arguments to the existence of a unique solution of the equations:

δj(u) = c , 1 ≤ j ≤ d .

For the general case however one has to rely either on an iterative construction or on more general results in
Hodge theory as used to prove existence of solutions of log-Likelihood equations in [26].

By the uniqueness result in Theorem 2.6 we can now de�ne in a formal way the risk-neutral Esscher measure
under Assumption (Md).

De�nition 2.8 (Esscher martingale measure). The unique θ̄ ∈ Rd such that the process (e−rTSt)t≥0 is a mar-
tingale with respect to Qθ̄ is called the Esscher parameter and Qϑ̄ is called the Esscher martingale measure or
risk-neutral Esscher measure.
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Remark 2.9. An alternative way to prove the uniqueness of the risk-neutral Esscher measure is to prove unique-
ness of the minimal entropy martingale measure and to establish that a risk-neutral Esscher measure if it exists
is given by the minimum entropy martingale measure (see e.g. [18] and Esche and Schweizer [14, Theorem B]).

3 Cost bounds in multivariate Lévy models
In this section we specialize the general construction result for cost-e�cient payo�s in Theorem 1.1 to the
case of multivariate Lévy models. The formulas for the cost bounds are given in terms of the Lévy process
themselves (instead of the market models).

Proposition 3.1 (Cost-e�cient payo�s in multivariate Lévy models). Let
(Lt)t≥0 be a multivariate Lévy process with continuous distribution function FLT at maturity T > 0, and assume
that the risk-neutral Esscher parameter θ̄ exists.

Then XT = G−1(1 − F〈θ̄,LT〉(〈θ̄, LT〉)) is the cost-e�cient strategy and XT = G−1(F〈θ̄,LT〉(〈θ̄, LT〉)) is the most-
expensive way to achieve a payo� with payo� distribution G. Moreover, for any payo� XT ∼ G, the lower and
upper cost bounds are given by,

c(XT) ≥c(XT) = e−rT
∫

e〈θ̄,y〉

MLT (θ̄)
G−1(1 − F〈θ̄,LT〉(〈θ̄, y〉)) dPLT (y)

c(XT) ≤c(XT) = e−rT
∫

e〈θ̄,y〉

MLT (θ̄)
G−1(F〈θ̄,LT〉(〈θ̄, y〉)) dPLT (y).

(3.1)

Proof. Observe that

FZT (y) = P(ZT ≤ y) = P(〈θ̄, LT〉) ≤ ln(y ·MLT (θ̄))) = F〈θ̄,LT〉(ln(y ·MLT (θ̄))),

and, hence 1 − FZT (ZT) = 1 − F〈θ̄,LT〉(〈θ̄, LT〉) almost surely. Thus, the statement follows by applying Theorem
1.1 to XT = G−1(1 − FZT (ZT)) = G−1(1 − F〈θ̄,LT〉(〈θ̄, LT〉)). The most-expensive part is similar.

As consequence of the latter result we obtain

Corollary 3.2 (Characterization of cost-e�ciency). Under the assumptions of Proposition 3.1 it holds:

1. A strategy with terminal payo� XT is cost-e�cient if and only if XT is a decreasing function in 〈θ̄, LT〉.
2. A strategy with terminal payo� XT is most-expensive if and only if XT is an increasing function in 〈θ̄, LT〉.

Remark 3.3. Corollary 3.2 implies that strategies with payo�s of the form XT = f (〈a, LT〉) ∼ G are cost-e�cient
if

f is decreasing and a = t · θ̄ for some t > 0, (3.2)

while XT is most-expensive if

f is increasing and a = t · θ̄ for some t > 0, (3.3)

In the particular cases θ̄(i) > 0 for all i resp. θ̄(i) < 0 for all i we obtain a direct connection of cost-e�ciency to
monotonic behaviour in LT .

Corollary 3.4. Let (Lt)t≥0 be a Lévy process with continuous distribution function FLT at maturity T > 0, and
assume that a solution θ̄ of (2.5) exists.

1. If θ̄(i) < 0 for all 1 ≤ i ≤ d, then a cost-e�cient payo� XT ∼ G is componentwise increasing in LT .
2. If θ̄(i) > 0 for all 1 ≤ i ≤ d, then a cost-e�cient payo� XT ∼ G is componentwise decreasing in LT .

For the most-expensive strategy, the reverse holds true.
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Proof. Let all components of the risk-neutral Esscher parameter θ̄ have a negative sign and let XT ∼ G be a
cost-e�cient payo�. Then, due to Proposition 3.1 resp. Corollary 3.2 XT = G−1(1−F〈θ̄,LT〉(〈θ̄, LT〉)) is decreasing
in 〈θ̄, LT〉. Moreover, since θ̄(i) < 0 for all 1 ≤ i ≤ d the function h(LT) = 〈θ̄, LT〉 is componentwise decreasing in
LT . Thus, the strategy XT is componentwise increasing in LT . The other cases can be shown analogously.

Corollary 3.4 allows in the cases where θ̄(i) < 0 or θ̄(i) > 0 for all 1 ≤ i ≤ d to identify ine�cient payo�s from its
monotonic behaviour in the coordinates of LT .

Example 3.5 (Basket options are ine�cient). Form Corollary 3.2 we �nd in particular that basket options XT =
(αS(1)

T + βS(2)
T − K)+ are neither e�cient nor most-expensive. For α < 0 < β or β < 0 < α this is a consequence of

Corollary 3.4. In general this is a consequence of the fact that h(x1, x2) = a exp(x1) + b exp(x2) is not constant
on any line {x : 〈θ̄, x〉 = t} and thus h can not be represented as a function of the form f (〈θ̄, x〉). Thus XT by
Corollary 3.2 can not be cost e�cient nor most expensive. In Section 5 we determine cost-e�cient improvements
of basket options in some speci�c multivariate Lévy models.

4 Multivariate Lévy processes and application to real market data
In this sectionwe recall some properties ofmultivariate normalmixturemodels its densities andmoment gen-
erating functions as needed for the computation of the risk-neutral Esscher parameters for some class of Lévy
models. For two sets of real market data we give a statistical analysis in terms of three di�erent multivariate
Lévy models the NIG, the VG and the normal model.

Normal mean variance mixture models

Normal mean variance mixtures are valuable models for analysing data from a variety of heavy-tailed and
skew empirical distributions. They have been used a lot in the more recent literature for �nancial data but
also in various other areas. Detailed expositions are given in Barndor�-Nielsen [1], Blæsild [6] and Barndor�-
Nielsen et al. [2]. Some recent developments in particular for dependence modelling are given in [24].

An Rd-valued random variable X is said to have multivariate normal mean-variance mixture distribution
if

X d= µ + Zβ +
√
ZAW , (4.1)

where µ, β ∈ Rd , A is a real-valued d × d matrix such that ∆ := AA> is positive de�nite, W is a standard
normal distributed randomvector (W ∼ Nd(0, Id)) and Z ∼ FZ is a real-valued, non-negative randomvariable
independent ofW. An equivalent de�nition is the following:

A probability measure Q on (Rd ,Bd) is said to be a multivariate normal mean-variance mixture if

Q(dx) =
∫
R+

Nd(µ + yβ, y∆)(dx)FZ(dy), (4.2)

where the mixing distribution FZ is a probability measure on (R+,B+). A practical short hand notation of
equation (4.2) is F = Nd(µ + yβ, y∆) ◦ FZ .

Multivariate generalized hyperbolic distributions are de�ned as normal mean-variance mixtures with
Generalized inverse Gaussian (GIG) mixing distributions:

GHd(λ, α, β, δ, µ, ∆) = Nd(µ + y∆β, y∆) ◦ GIG(λ, δ
√
α2 − 〈β, ∆β〉), (4.3)

where it is usually assumed without loss of generality that det(∆) = 1, which we shall do in the following.
Due to the parameter restrictions of GIG distributions, the other GH parameters have to ful�l the constraints
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λ ∈ R, α, δ ∈ R+, β, µ ∈ Rd and

δ ≥ 0, 0 ≤
√
〈β, ∆β〉 < α, if λ > 0

δ > 0, 0 ≤
√
〈β, ∆β〉 < α, if λ = 0 (4.4)

δ > 0, 0 ≤
√
〈β, ∆β〉 ≤ α, if λ < 0.

The meaning and in�uence of the parameters is similar as in the univariate case. The representation in (4.1)
entails that the in�nite divisibility of the mixing Generalized inverse Gaussian distributions transfers to the
GHd distribution. In consequence there exists a Lévy process (Lt)t≥0 with L(L1) = GHd(λ, α, β, δ, µ, ∆) (see
e.g. Sato [29, Theorem 7.10 (iii)]). The following properties of GHd distributions and in particular of NIG and
VG distributions are given in Hammerstein [19].

If δ > 0 and
√
〈β, ∆β〉 < α, then the density of GHd(λ, α, β, δ, µ, ∆) can be derived from (4.3):

dGHd(λ,α,β,δ,µ,∆)(x) =
∞∫

0

dNd(µ+y∆β,y∆)(x)dGIG(λ,δ
√
α2−〈β,∆β〉)(y) dy

= e〈β,x−µ〉 (α2 − 〈β, ∆β〉) λ2
(2π) d2 αλ− d2 δλ

(
〈x − µ, ∆−1(x − µ)〉 + δ2) λ− d22

Kλ− d2 (α
√
〈x − µ, ∆−1(x − µ)〉 + δ2)

Kλ(δ
√
α2 − 〈β, ∆β〉)

.

The moment generating function of a multivariate generalized hyperbolic distribution is given in the follow-
ing proposition.

Proposition 4.1. If in equation (4.3) the GHd(λ, α, β, δ, µ, ∆) parameters ful�l the constraints in (4.4), then its
moment generating function is given by

MGHd(λ,α,β,δ,µ,∆)(u) = e〈u,µ〉
( α2 − 〈β, ∆β〉
α2 − 〈β + u, ∆(β + u)〉

) λ
2 · Kλ(δ

√
α2 − 〈β + u, ∆(β + u)〉)

Kλ(δ
√
α2 − 〈β, ∆β〉)

. (4.5)

The densities of the multivariate analogues of the NIG and VG then have a representation given in the next
lemma.

Lemma 4.2. With λ = − 1
2 the multivariate normal inverse Gaussian distribution NIGd(α, β, δ, µ, ∆) possesses

the density

dNIG(α,β,δ,µ,∆)(x) =
√

2
π
δα d+1

2 eδ
√
α2−〈β,∆β〉

(2π) d2

(
〈x − µ, ∆−1(x − µ)〉 + δ2

)− d+1
4 K d+1

2

(
α
√
〈x − µ, ∆−1(x − µ)〉 + δ2

)
e〈β,x−µ〉.

The density dVG(λ,α,β,µ,∆)(x) of the multivariate Variance-Gamma distribution, a limiting case of the GH distribu-
tion, can be derived by letting δ → 0. If λ > 0, then

dVG(λ,α,β,µ,∆)(x) = (α2 − 〈β, ∆β〉)λ

(2π) d2 αλ− d2 2λ−1Γ(λ)

(
〈x − µ, ∆−1(x − µ)〉

) (λ− d2 )
2 Kλ− d2

(
α
√
〈x − µ, ∆−1(x − µ)〉

)
e〈β,x−µ〉.

We brie�y recall the multivariate Samuelson model which serves as a benchmark model in this context. The
driving Lévy process is given by

L(i)
t = (µ(i) − σ

(i)2

2 )t + σ(i)B(i)
t , t > 0

for 1 ≤ i ≤ d, where (B(i)
t )t≥0 is a standard Brownian motion under the physical measure P, µ(i) is the drift and

σ(i) the volatility parameter. Thus, each asset price process ful�lls the stochastic di�erential equation

dS(i)
t = µ(i)S(i)

t + σ(i)S(i)
t dB(i)

t ,

with the processes B(i)
t being correlated such that E[dB(i)

t dB(j)
t ] = ρij dt where ρii = 1. The law of the multi-

variate Lévy process L is determined by a multivariate normal distribution with a drift vector µ̃ ∈ Rd, where
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µ̃(i) = (µ(i) − σ(i)2

2 ) and a positive-de�nite d × d covariance matrix Σ =
(

Cov(L(i)
1 , L(j)

1 )
)
, 1 ≤ i, j ≤ d, that is,

L(L1) = Nd(µ̃, Σ) such that σij = σ(i)ρijσ(j), with density

dLt (x) = 1√
(2π)d det(Σ)

e−
1
2

〈
(x−µ̃),Σ−1(x−µ̃)

〉
, t > 0

The moment generating function of L1 is equal to

MNd(µ̃,Σ)(u) = e〈u,µ̃〉+
1
2 〈u,Σu〉. (4.6)

Figure 1:Moment generating function for a bivariate NIG process. The parameters used to derive the moment generating
function are listed in Table 1.

Application to real market data

In this subsection we illustrate an application of somemultivariate Lévy processes to the analysis of real mar-
ket data. We consider German stock price data for Allianz and Volkswagen and for E.ON and Thyssen Krupp
from May 28, 2010 to September 28, 2012. That is, we consider the Lévy process L(A,VW) = (LAllianzt , LVWt )0≤t≤T
in order to model the daily log-returns of Allianz and Volkswagen in a bivariate Lévy model, and analogously
L(E.ON,TK) for E.ON and ThyssenKrupp (see Figure 2). Table 1 contains the estimated parameters fromdaily log-
returns of Allianz and Volkswagen for the bivariateNIG,VG, and the Samuelsonmodel. The interest rate used
to calculate the Esscher parameter θ̄ in the last column is the continuously compounded 1-Month-Euribor
rate of October 1, 2012, which is r = 4.2027 · 10−6; note that this is the continuously compounded daily rate
which we need to do daily calculations and used as well as for daily rebalancing for hedging purposes for
one-dimensional options. This explains the extremely small value. The annualized Euribor rates at that time
point are in the order 10−3 instead.

For the determination of the Esscher parameter we numerically solved the determining system of equa-
tions (2.5) using the estimated parameters. The alternative way proposed by Theorem 2.6 is to establish ex-
istence of the Esscher parameter �rst by determining the associated stochastic exponential model, which is
also based on the estimated parameters. Then check the (Md) condition and the �nite variation condition.
All of these seem to be doable. Then �nally solve numerically equation (2.8) in order to obtain the Esscher
parameter. This alternative seems however to be more involved.

Figure 1 gives the moment generating function for a bivariate NIG process L(E.ON,TK), which models the
daily log-returns of the E.ON and Thyssen Krupp stock prices from May 28, 2010 to September 28, 2012. See
Table 1 for the estimated parameters used for the computations.
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Figure 2: Left: Daily closing prices of Allianz and Volkswagen used for parameter estimation. Right: Daily closing prices of E.ON
and Thyssen Krupp used for parameter estimation.

An application of the bivariate NIG model to data of Allianz and Volkswagen is given in Figure 3. For
the statistical �tting of the model we used the estimated parameters from Table 1. The histogram of the daily
log-returns and the model �t for Allianz and Volkswagen is presented in Figure 3.

With the estimated parameters and the formulas for the moment generating functions in Proposition 4.1
it is possible to solve numerically equation (2.5) i.e. to determine the Esscher parameters (see Table 1).

Figure 3: Left: Histogram for the daily log-returns of Allianz and Volkswagen from May 28, 2010 to September 28, 2012. Right:
Fitted bivariate NIG density curve for Allianz and Volkswagen log-returns. The parameters used to derive the density are listed
in Table 1.

Although themoment generating function ofNIGd and VGd has an analytical representation, an analytic
expression for the Esscher parameter θ̄ is not available. For the multivariate normal distribution an explicit
expression for θ̄ is given in Gerber and Shiu [16, Section 7].

As pointed out in [20] in the univariate setting the sign of θ describes a drift; a negative sign a positive
drift and a positive sign a negative drift. The size of |θ̄| re�ects the magnitude of the drift of the price process
and thus can be regarded as a measure for the strength of the market trend.

In themultivariate settingwe have the following observation. From themore pronounced (positive) trend
in the Allianz and VWdata than in the E.ON and Thyssen Krupp data we can expect that the potential savings
in the Allianz and Volkswagen case are higher than for the E.ON and Thyssen Krupp case. Note that the de-
pendence between the stocks implies that the Esscher parameters in the jointmodel as in Table 1 are di�erent
form the parameters in the single models as considered in [20]. For example this dependence implies that in
the joint model Allianz gets a slightly positive Esscher parameter, indicating a mild relative negative drift in
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Table 1: Estimated parameters from daily log-returns of Allianz and Volkswagen and E.ON and Thyssen Krupp for the bivariate
NIG, VG, and the Samuelson model.

L(A,VW) λ α β δ µ ∆ θ̄
NIG −0.5 51.3819

( 3.1651
−3.4936

)
0.01809

( −0.000149
0.001942

) ( 1.097855 0.693566
0.693566 1.349024

) ( 0.937069
−3.169199

)
VG 1.5844 96.67

( 4.6788
−5.7154

)
0.0

( −0.000169
0.002553

) ( 1.112008 0.709215
0.709215 1.351597

) ( 1.025704
−3.299607

)
Normal µ =

( 0.000428
0.001287

)
, Σ =

( 0.0004105 0.0002615
0.0002615 0.0004675

) ( 1.114694
−3.368318

)
L(E.ON,TK) λ α β δ µ ∆ θ̄
NIG −0.5 50.7124

( 0.146985
−1.883107

)
0.01858

( 0.00019196
0.00073098

) ( 0.901532 0.751105
0.751105 1.734999

) ( 0.323143
0.037110

)
VG 1.4653 90.4023

( −0.43541
−0.50398

)
0.0

( −3.6075e−11
2.9021e−11

) ( 0.912754 0.752004
0.752004 1.715151

) ( 0.308843
0.066307

)
Normal µ =

( −0.0001002
−0.0001280

)
, Σ =

( 0.000356 0.000283
0.000283 0.000599

) ( 0.188492
0.131720

)

the joint model, while it has a mild positive drift in the individual model. As consequence this implies that
in the joint market it is possible to make use of the higher drift in the Volkswagen market and its correlation
to the Allianz market to obtain better (i.e. cheaper) constructions and improvements of options based on the
Allianz stock alone.

5 Application to basket options
As an example for the determination of e�cient options in case d = 2 we consider the long basket option.
As shown in Section 3 these basket options themselves are not e�cient in general. A basket option (on two
assets) is aweighted sumof S(1) and S(2), for the underlying S = (S(1), S(2)). This exotic optionwith strike K > 0,
weights w1, w2 ∈ R and maturity T > 0 has the payo�

Xba
T = (w1S(1)

T + w2S(2)
T − K)+.

The bivariate payo� function equals

ωba(y) = (〈
( w1
w2

)
, y〉 − K)+.

Denote SwT = w1S(1)
T + w2S(2)

T and observe for x > 0 that

Gba(x) = P((SwT − K)+ ≤ x) = P((SwT − K ≤ x, SwT > K) + P(SwT ≤ K) = FSwT (K + x),

that is,

Gba(x) =

{
FSwT (K + x), x > 0,
0, x ≤ 0.

(5.1)

Its generalized inverse is given by

G−1
ba (y) = (F−1

SwT (y) − K)+, y ∈ (0, 1). (5.2)

Applying Proposition 3.1 the cost-e�cient payo� that generates the same distribution Gba as the basket option
is therefore given by the following proposition.

Proposition 5.1 (Cost-e�cient basket option). The cost-e�cient payo� of the basket option Xba
T is given by

Xba
T =G−1

ba (1 − F〈θ̄,LT〉(〈θ̄, LT〉)) = (F−1
SwT (1 − F〈θ̄,LT〉(〈θ̄, LT〉)) − K)+. (5.3)

Its payo� function is given by

ωba(y) = (F−1
SwT (1 − F〈θ̄,LT〉(〈θ̄, log(y) − log(S0)〉)) − K)+,

where S0 = (Si0)1≤i≤2 and the logarithm is applied componentwise.
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Asexamplewe consider the standardbasket optionwithweightsw1 = w2 = 0.5 and strikeK = 15 for theE.ON,
Thyssen Krupp and the Allianz, Volkswagen data. This payo� is symmetrically increasing in rising markets.
For S(1)

T + S(2)
T ≤ 30 the outcome is zero, which means that such an option rewards the writer when at least

one of the assets S(i)
T is high while the other asset decreases at most at the same level (compare Figure 4). On

Figure 4: Standard payo� of a long basket option for E.ON and Thyssen Krupp with weights w1 = w2 = 0.5, maturity T = 23
days and strike K = 15.

the contrary, the corresponding cost-e�cient payo� Xba
T of the basket option shows a reverse behaviour. This

is consistent with Corollary 3.4 since the risk-neutral Esscher parameter θ̄ =
( 0.323143

0.037110
)
is componentwise

positive. Figure 5 displays the e�cient payo� Xba
T of the optimal long basket option on E.ON and Thyssen

Krupp stocks with strike K = 15 and maturity T = 23 days for the NIGmodel. Similar calculations are done
for the Allianz, Volkswagen data.

Figure 5: Optimal payo� of a long basket option for E.ON and Thyssen Krupp with weights w1 = w2 = 0.5, maturity T = 23 days
and strike K = 15 in the NIG model.

All computations are based on the estimated parameters given in Table 1. The initial stock prices S(i)
0 are

the closingprices atOctober 1, 2012, and the time tomaturity is chosen tobe T = 23 tradingdays,meaning that
the long basket options mature on November 1, 2012. The chosen initial stock prices equal SA0 = 93.42, SVW0 =
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Table 2: Comparison of the cost of a standard long basket option with its corresponding cost-e�cient counterpart on Allianz
and Volkswagen as well as E.ON and Thyssen Krupp.

L(A,VW) c(Xba
T ) c(Xba

T ) E�ciency loss in %
NIG 5.04 4.06 19.47
VG 5.00 4.00 20.00

Normal 5.09 3.97 22.06
L(E.ON,TK) c(Xba

T ) c(Xba
T ) E�ciency loss in %

NIG 2.161 2.061 4.65
VG 2.158 2.052 4.92

Normal 2.160 2.086 3.40

130.55, SE.ON0 = 17.48and STK0 = 16.73. Theweights arew1 = w2 = 0.5. The strike forAllianz andVolkswagen
is K = 110, whereas for E.ON and Thyssen Krupp it is K = 15.

In Table 2 the prices for the long basket option and its cost-e�cient counterpart as well as the e�ciency
loss for Allianz and Volkswagen and for E.ON and Thyssen Krupp in all three bivariate Lévy models as dis-
cussed in Section 4 are listed. As a result for the Allianz and Volkswagen case a substantial e�ciency loss is
observed for basket options while in the E.ON and Thyssen Krupp case the e�ciency loss is more moderate.
As shown in Hammerstein et al. [20, Proposition 2.3] for the one dimensional case a greater size of |θ̄| leads
to a higher e�ciency loss. This e�ect can be seen from Tables 1 and 2 in our two dimensional examples as
well. Thus, we expect that an analogous result also holds true in the multivariate setting in greater generality
when dependent components are present.

6 Numerical issues
In order determine the risk-neutral Esscher parameter i.e. to solve the system of non-linear equations as in
(2.5) we use numerical methods provided by the R program. In particular, the package nleqslv provides two
algorithms for solving systems of non-linear equations with either a Broyden or a full Newton method. For
further information we refer to Dennis and Schnabel [9] and the related documentaries.

For evaluation of multidimensional integrals over hypercubes we used the package cubature. The calcu-
lation of standard prices c(Xba

T ) needs about 10.1 seconds. Its absolute error lies in the region of 10−6. The com-
putational time becomes better if suitable starting values and hypercubes are chosen. For the cost-e�cient
versions c(Xba

T ) the calculation is more involved and needs signi�cantly more time. The running time varies
from 270 to 1.560 seconds depending on the particular Lévy model, accuracy, starting value, and hypercube
chosen if the number of simulations (of the bivariate Lévy process) is at most 105. For a higher number of sim-
ulations, and thus a more accurate calculation, the time of calculation of such prices can grow substantially.

7 Conclusion
In this paper we adapt and develop the techniques necessary to determine cost-e�cient payo�s in the case
of multivariate exponential Lévy asset models when pricing is based on the Esscher martingale measure. We
show that all calculations are doable for certain classes of multivariate Lévy models as NIG, VG or in the
normal case. As application we determine cost-e�cient payo�s generating the same payo� distribution as
the ine�cient basket options when pricing with the Esscher pricing measure. We describe the in�uence and
e�ect of dependence between the components of the Lévy model to the pricing of the cost e�cient payo�s in
the example of basket options which implies that the relative trend of a stock may switch in the joint model
and lead to greater improvements compared to the construction of e�cient claims in one dimensional mod-
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els. As a result we obtain that the e�ciency loss can be considerable indicating that the use of cost-e�cient
payo�smay be pro�table. It is expected, that as in the one-dimensional Lévy case also in themultivariate case
cost e�cient options behave favourably concerning the hedging behaviour but this still has to be explored.
In the one-dimensional case it has been shown in [20] and [35] concerning ∆-hedging as well as the basic
options. Extensions of the cost e�ciency method to empirical pricing measures and a heuristic approach to
the choice of the payo� distribution have been given in a recent paper in [28] in the case of one-dimensional
Lévy processes. An extension to the multivariate case is subject of subsequent work.
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