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Abstract: This paper deals with the modified sampling Kantorovich operators. We start by presenting the pri-
mary notations of Orlicz spaces and fundamental auxiliary results. To show modular convergence of the corre-
sponding operators in Orlicz spaces, we obtain well definiteness in Orlicz spaces and norm convergence in the
space of continuous functions with compact support. In the last section, we present some examples of p-kernels
which satisfy the corresponding assumptions and present some graphical representations.
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1 Introduction

Bernstein polynomials play a significant role in approximation theory, primarily because they provide a con-
structive proof of the classical Weierstrass approximation theorem (see [1]). In order to enhance the rate of
convergence to the desired function and reduce the approximation error, King [2] proposed a modification to
the traditional Bernstein polynomials for functions f € C[0, 1]. This approach involves a sequence of continuous
functions (rn) defined on [0,1], where each r,(x) satisfies 0 < r,(x) < 1for all x € [0,1] and n € N. Later, in [3],
the authors introduced another variation of the Bernstein operators for f € C[0, 1] as follows:

n

-1 _ -1 k n k —k
(Bu(for™))(p00) = ga (for™) <n (3 o' a— peor
where a particular function p: [0,1] — R is utilized under certain appropriate conditions.

On the other hand, to establish an approximation scheme valid over the entire real line, Butzer and his
research group in Aachen introduced the concept of generalized sampling operators, defined by

(GLf)x):= Zf(:;);((wx— k), xeR,w >0,
kez

where y: R — R denotes a specific function that fulfills certain conditions, and f: R — R is a bounded and
continuous function on R. A broad range of works has examined these generalized sampling operators and
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their variants; see [4-25]. To deal with the approximation of functions that are not necessarily continuous, Bar-
daro et al. [26] developed an L!-based version of these sampling operators by substituting the pointwise samples
f ( k ) with the average values w /, - (kD) w
expressed as

f(wdu. This led to the formulation of sampling Kantorovich operators,

(k+1)/w
(K% f)00:= Z;((wx kw / fwdu, x € R,
kez T

where f is a locally integrable function and y serves as a kernel function. The sampling Kantorovich operators
have been extensively investigated across various functional settings; see [27-33].

In a very recent study [34], the authors proposed a modified version of the generalized sampling series,
given by

(GEP£)00 = [GE(fop™)] (o)

=Y (fop™ < )){(wp(x) k), XxX€R, w>0,
kez
where y is an appropriately chosen kernel function. In their work, they explored the approximation capabilities
of this operator in both the space of continuous functions and in weighted spaces of functions. Moreover, by
employing a Voronovskaja-type result (see [34, Theorem 5]), they compared the approximation efficiency of the
classical generalized sampling operators with that of their newly defined operators and demonstrated that the
latter offers improved approximation under suitable conditions.

Inspired by the effectiveness of this new framework and the widespread use of sampling Kantorovich oper-
ators, the same group of authors extended their approach in [35] by introducing a modified version of the
sampling Kantorovich operators, defined as

(K57 £ o0 = [KE(fop™)] (o))

(k+1)/w
=) xwp(x) — Kyw / (fop™)wdu, x€E€R, w>0,
kez i

where y: R — R is a suitable kernel and fo p~': R — R is a locally integrable function. They analyzed the
approximation features of these operators in both standard continuous function spaces and weighted spaces of
continuous functions.

This paper is structured as follows: Section 2 outlines the essential notations and preliminaries. Section 3
provides a summary of the operators along with some fundamental results. In Section 4, we focus on investigat-
ing the approximation behavior of the corresponding operators within Orlicz spaces. Final section is devoted
to present some examples of p-kernels which satisfy corresponding assumptions and present some graphical
representations.

2 Basic notations and preliminaries

We use the symbols N, Z, and R to denote the sets of positive integers, integers, and real numbers, respectively.
The set of all non-negative real numbers is denoted by IR;. The space C(R) refers to the set of all continuous
functions defined on R, which are not necessarily bounded. The subset CB(R) consists of all functions in C(R)
that are bounded, equipped with the norm || f||: = sup,cg | f(x)|. Additionally, we denote by UC(R) the space of
functions in CB(R) that are uniformly continuous, and by C.(R) the space of functions with compact support. The
symbol M(R) stands for the set of all (Lebesgue) measurable real or complex functions, while L*(R) represents
the space of essentially bounded measurable functions on R.
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Let p: R — R be a strictly increasing function that satisfies the following conditions:

(py) p belongs to C(R);

(py) p(0) = 0 and lim,_, ,  p(x) = *o0;
(p3) P00 > 1holds for every x € R
(py) P € L (R).

Remark 1. It is possible to find many examples of p functions which satisfy the conditions (p;) — (p,). For
example, we state p(x) = ax for all @« > 1and p(x) = 2x + tanh x.

2.1 Context of Orlicz spaces

Letn: IR0+ - IR;)* be a convex x-function, that is, a function satisfying the following conditions:

i.7(0) = 0, n(u) > 0 for all u > 0, and # is non-decreasing on R;
ii. 7 is convex on Ry

We now define the modular functional

rifl= [n(soonax  (r e M),

R

It is well known that I is a convex modular on the space M(R) (see [36—-38]), and it generates the Orlicz
space defined by
L"(R):= {f € M(R): I"[Af] < 400 for some 4 > 0}.

The Orlicz space L"(R) is a vector space, and its subspace
E'"(R):={f € M(R): I"[Af] < 4o for every A > 0}

is called the space of all finite elements of L7(R). In general, E"(R) is a proper subspace of L7(R); however, the
two spaces coincide if and only if the so-called A,-condition is satisfied, that is,

nQu) < Mn(u), ue€Ry

for some constant M > 0. Examples of #-functions satisfying the A,-condition can be found in [26,36,37].

In the context of the L"(R) space, we can consider two distinct notions of convergence for net of func-
tions. The first, named “modular convergence” describes the asymptotic behavior of a sequence (f,,,),,-¢ Within
L"(R) approaching a limit function f through the modular functional I". Namely, (f,,),,-¢ is said to modularly
convergent to f if for some 4 > 0,

lim I"[A(f,— f)]1=0
w—+00

holds. This notion induces a topology in L"(R), known as the “modular topology”.
Furthermore, another concept of convergence, called “norm convergence” can be established by introduc-
ing a norm on L"(R), referred as the Luxemburg norm. This norm, denoted by || - [|,,, is defined as

I fll,;:=inf{A>0:I"[f/A] <1}.

As a result, norm convergence represents a stronger notion of convergence than modular convergence in
L"(R) (convergence in the sense of the norm ||-|, generated by # of a sequence (f,) to f implies its modular
convergence to f). Easily, for a net of functions (f,),,»o in L"(R), the convergence lim,,_,Ilf, — fll, =0 is
equivalent to the condition lim,,_ ,  I"[A(f,, — f)] = 0 for all A > 0. However, these two notions of convergence
become coincide only if the function # satisfies the A, condition. For further details concerning these spaces,
see, e.g., [36—40].
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3 Construction of the operators and some basic results

For any f > 0, absolute moment of order f associated with p (or simply p-absolute moment) is given by

M} (x):=sup Y | x(pw) = K|k — p@l’, u € R,

UER kez

Definition 1. Throughout the paper, a function y : R — R will be called a kernel associated with p (or simply
p-kernel) if it satisfies the following assumptions:
D x € CR);
(y2)foreveryu € R
my(x.u) = Y x(pw -k =1

kez

(y3) for f > 0, p-absolute moment of y is finite, that is

M} (%) = sup Y’ | x(p@ = 0|1k = pw)|” < +oo.
UER =7

By v, we will denote the class of all functions satisfying the assumptions (1), (y2) and (y3). Now, we recall
a family of Kantorovich type sampling operators so called modified sampling Kantorovich series given by

(KL"£)00 = [KE(fop™)](p00)

(k+1)/w 31
=) xwp() — kyw / (fop™)wdu, x e R, w >0
kez k/w

for y € y and locally integrable functions f o p~™.
Now, we state a remark which was proved in [26] for classical moments of kernel functions but it is trivial
to adapt to p-moments of kernel functions:

Remark 2. For all functions y belongs to y, we have
..My ( x) < +o0;
ii. for every 6 > 0
im Y xwpt)—k|=0

+
T ke wp) 2ws

uniformly with respect to x € R;
iil. For every 6 > 0 and € > 0, there exists a constant M > 0 such that

wl x(wp() — Kldx < €

|pOOI>M

for every sufficiently large w > 0 and k/w € [-6, §].

We also note that, for v,y > 0 with v < y,Mf(;() < +oo implies M?( ) < +o0. When y has compact sup-
port, we immediately have that M;’ (y) < +oo for every y > 0, see [41].
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Remark 3 ([35]).
i. The operator (3.1) is well-defined if, for example, f € L*(R).
ii. Let y € w be a p-kernel. If f: R — R is a bounded function, then

Jim (K f)(@) = f()
holds at each continuity point t € R of f. Moreover, if f o p~' € UC(R), then we have
; P g —
lim KL f = fllo = 0.
The proof of above items could be found in the corresponding reference.
Lemma 1. Let f € L"(R). Then, we have f o p~! € L"(R).

Proof. By the assumption f € L"(R), we know that for some A > 0, I"[Af] < +oc0. We aim to show that
I [ﬂ(fop_l)] = /n()ﬂf(p_l(x))DdX < +o00.
R
Using change of variables x = p(t), we can write
IA(fop™)] = /11(|/1f(t)|)p’(t)dt.
R
Since p’ € L®(R),let C:= ||p’||, < +00. Then, by assumption
I"A(fop™)] < C‘/n(|if(t)|)dt = CI"[Af] < +co.
R

Thus, we have fo p™' € L"(R). O
Lemma 2. Let y € y be a p-kernel. Then, y € L'(R).

Proof. Asin [6, (2.3)], we have with a: = p~1(0) and b: = p~1(1)

1 b
[ iw=o1au= 3, [ Lo~ 01850
0

kez a

[irwiau= ¥
R

kez

b
= 2/ | 2(p(v) = K)|p' (v) dv

kez

b
< IIP’IIOOZ/ |x(p(v) — k)| dv

kez

b
=1l [ F o) =Bl dw < o0

kez
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4 Convergence of KX’ in L"(R)

In this section, we present convergence of KX in L"(R). Firstly, we start with the well-definiteness of the
operators.
Theorem 1. Let f € L"(R) and y € y be a p-kernel. Then the operator Kf{:” maps L"(R) in L"(R). Indeed,

I[AK%Y f] < Mé’tﬂf) I LI [AMy () (fop™)]

for some A > 0.

Proof. By Lemma 1, we have f o p~! € L"(R). This means that, there exist A > 0 such that I [I (fo p_l)] < +o0.
Choosing 4 > 0 such that /lMg (x) < 7, then applying Jensen’s inequality twice, we get

raKge ) = [n(3) (52 w] ax

R
(k+1)/w
S/n A L wp ) — k) lw / |(f0p‘1)(u))du dx
R kez k/w
(k+1)/w
<o 2q [ (| (rerw|)au [ wlruwowo ~oax.
o () & o -

Now, using change of variable wp(x) — (k) = v in the last integral and (ps), we get

(k+1)/w
PR < s ¥ [ (0| (For)a] au ity
MO ()./) kez i/ w

< mllzlllﬂ [AMZ () (fop™)]

M (y

< ﬁllxllﬂ” [7(for™)] < +oo

which is desired. O

Theorem 2. Let fop™ € C.(R), ¥y € y be a p-kernel. Then,

wginwnxg;" f=fll,=0. (€%
Proof. In order to establish the limit in (4.1), it suffices to show that for each fixed 1 > 0

: X5 _ _
Jim [ n(AKE? f00 = f0o]) dx =0,
R

or, equivalently, that the family of functions

@, () = n(AIKE" FO) = f(0I)
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converges to zero in L(R). To prove this, we invoke the Vitali convergence theorem by verifying the
following three properties:
) (ozw)w>0 converges in measure to zero;
(V,) For every € > 0 there exists a measurable set E, C R with |E,| < co such that, for any measurable F
disjoint from E,,
/ a,(x)dx < e for all sufficiently large w.
F
(V5) For each € > 0 thereis a 6 > 0 so that whenever E C R is measurable with |E| < 6,

/ a,(x)dx < e for all sufficiently large w.

E

Having established (V,)-(V3), Vitali’s theorem guarantees that «,, — 0 in L'(R), which completes the proof of
(4.1). (v,) follows directly from Remark 3 (ii) and continuity of #. To verify property (V,), fix € > 0 and choose
7 >0andy > ¥ +1/wso that

supp f C B(0, 7).

Observing that [5, E] N B(0, 7) = @ whenever k ¢ B(0, wy), we can write

w
(k+1)/w

| fw)ldu = 0.
k/w

Next, by Remark 2 (iii) there exists M > 0 (which we may take, w.l.o.g, larger than ¥) such that for every
sufficiently large w and for all kK € B(0, wy) one has
w|;((wp(x)—k)| dx < e.
lpCol>M

By Jensen’s inequality and Fubini-Tonelli theorem, we can write what follows:

/(e eof e

o) |>M
AM?
< W w y(wpx) — k)|dx
Iki=wr o \¥ 1p0OI>M
p
.. n(AMG (1)1 fll o) L

My (x)w
where L is the number of integers k such that |k| < wy. For every w > 1, we have
L<Rw+1] =1,
where [-] denotes the integer part. Thus,

n(AMF ()11 flles)

L' =¢-C
M (x)w

n(2](kE*) 00| Jax < e

[pCOI>M

for every w > 1. Therefore, for £ > 0 we set E"E = B(0, M). Then for every measurable set F, with F N EE =, we
have
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/n(ﬂ( (K&?)00 = f00)] )x = /n(i\(Kﬁg*")(x)\)dx

F F

< [ a(afuczm] o

[p)[>M
<e-C.

Finally, concerning (V), for any fixed £ > 0, there is a measurable set B, with

1Bl < Mé’()()niflllflloo)

for || f|l, > 0. Then, using Remark 3 we have for every w > 0

/ﬂ(ﬁ((K,f;f’f)(x)Ddxs /n(/lMg(;()”f”oo) <€

B B,

/n(ﬂ|(K£"’f)(x)—f(x)|)dx

(O]

This means that, the integrals

are equi-absolutely continuous. Since A > 0 is arbitrary, we have desired.

DE GRUYTER

O

As a final and the main result of this section, we mention the modular convergence of the operators K.

Theorem 3. f € L"(R) and y € y be a p-kernel. Then, there exist A > 0 such that

lim I"[A(KL"f - f)] =

w—+00

Proof. Using Lemma 1 we know that both f and f o p~! belong to L"(R). Let € > 0 be fixed. By density of C,(R)

in L(R), there exist A’ and function g € C,(R) such that

ri(f-g) < 7l

4.2)

Let Z:= go p~. Itis easy to see that g is continuous and has compact support because of properties of p. So

we can write fo p™! — g = (f — g) o p7". Using change of variable and (p, ), we have
PIX(fop =B =1 (f - g)or™

= /n(|ﬂ’(f - g)(t)j)p’(t)dt

R

<[/l 1' [ (F - 8)] <=

Now, let us set A > 0 such that 3AM} ( x) < A’. Considering properties of #, (4.2) and Theorem 1, we get

I"[4(K5"f = 1)l
<I"BAKE"f—K.'g)| +I"[3A(KL g — 8)] + T"[3A(f — g)]

_M,,

<<M,,( )Ilzlll ” ,”w>s+l”[31(1<”g g)l-

The assertion follows from Theorem 2 for enough large w.

()lellll”[ﬂ’(f g)op | +I"BA(K; g — g)] +1"[34(f - 8)]
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5 Examples of p-kernels and graphical representations

In this section, we provide concrete examples of p-kernels that satisfy the assumptions outlined in Definition 1.
We then present graphical comparisons to illustrate the approximation behavior of the modified sampling
Kantorovich operators K%* versus the classical operators K7

5.1 Examples of p-kernels

A crucial step in applying the theory is finding suitable kernel functions. The condition ( x2), also known as
the partition of unity condition, can be conveniently verified using the Fourier transform and the Poisson sum-
mation formula (see [4, p. 123 and Section 5.1.5], [42]). Using Poisson summation formula ( ;(2) is equivalent to

1, k=0
x@rk) =

0, k € z\{0}

where 7(v) = [ yWe "du,v € R.

5.1.1 The central B-spline kernel

A highly effective and widely used family of kernels are the central B-splines of order n € N, defined by:

L 1 n _ ] n B . n—1
an(t)._i(n_l)!jzzo( 1)<j><2+t 1)+, teR

where (t),: = max{t, 0}.

These functions are ideal because they have compact support [—n/2,n/2], which guarantees that the
moment condition (y3) holds for any § > 0. The partition of unity condition ( ¥2) is also satisfied.

Modified sampling Kantorovich operators of f € L"(R) takes on the form

(k+1)/w
(K’ £)0 = Y, 0,(wp(x) = kow / (for™)wdu, x € R,w >0
kez k/w

using B-Spline kernel.

5.1.2 The Fejér kernel

Another important example is the Fejér kernel, which is not compactly supported but decays quickly. It is defined
as:

F(t): = %sinc%%), teER

This kernel also satisfies all the necessary assumptions to be a p-kernel, see [26].
Modified sampling Kantorovich operators of f € L"(R) takes on the form

(k+1)/w
(kG2 F)oo = X Faope - kow / (For )i, x € R, w > 0
kez k/w

using Fejér’s kernel.
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5.2 Graphical comparisons

This subsection provides a comparative analysis of the modified and classical sampling Kantorovich operators.
The comparison is illustrated through graphical representations, which are generated using the central B-spline
kernel of order 5. Throughout the examples, we consider the function p: R — R defined as p(t) = 2t + tanh(t).
It is easy to see that function p is continuous on R, p(0) = 0 and lim__,, ., p(t) = +o0. The derivative of p, p’(t) =
2+ sech’(t) and its range is (2,3]. So, p’(t) > 1 for all t € R and p’ € L®(R). Hence, the conditions (p;) — (p,)
are all satisfied. We also consider functions f: R — R as

-1, if x< -2
X+ 2.5, if —2<x<-1
fx)=1o, if —1<x<0
cos(xx), if0<x<1
1, otherwise
151 ,
.
Vs
s
/
1 ’ ~ -—--
/7 \
r Y
7 \
’ \
05| £ \
Y
> \
\
oF e mm e == \
\
\
\
\
05 \
A
Y
\
< . L L L : : S |
25 2 15 -1 0.5 0 0.5 1 1.5
X Figure 1: Graph of function f.

25 2 15 1 05 0 05 1 15  Figure2: Graph of function f and operators

x (K72 1)- (K5°75).
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X Figure 3: Graph of function g.

-==g

Ky
I

K"y

Figure4: Graph of function f and operators (K g), (K:‘ﬁg)

and g: R > Ras

-1, if |t <1
8 =
s otherwise
t
In Figure 1, the graph of function f is presented. In Figure 2, we compare classical sampling Kantorovich
operators and modified sampling Kantorovich operators using w = 7 and 5th B-Spline kernel.
In Figure 3, the graph of function g is presented. In Figure 4, we compare classical sampling Kantorovich
operators and modified sampling Kantorovich operators using w = 4 and Fejer’s kernel.
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