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Abstract: This paper deals with the modified sampling Kantorovich operators. We start by presenting the pri-

mary notations of Orlicz spaces and fundamental auxiliary results. To show modular convergence of the corre-

sponding operators in Orlicz spaces, we obtain well definiteness in Orlicz spaces and norm convergence in the

space of continuous functions with compact support. In the last section, we present some examples of 𝜌-kernels

which satisfy the corresponding assumptions and present some graphical representations.
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1 Introduction

Bernstein polynomials play a significant role in approximation theory, primarily because they provide a con-

structive proof of the classical Weierstrass approximation theorem (see [1]). In order to enhance the rate of

convergence to the desired function and reduce the approximation error, King [2] proposed a modification to

the traditional Bernstein polynomials for functions f ∈ C[0, 1]. This approach involves a sequence of continuous

functions
(
rn
)
defined on [0,1], where each rn(x) satisfies 0 ≤ rn(x) ≤ 1 for all x ∈ [0, 1] and n ∈ ℕ. Later, in [3],

the authors introduced another variation of the Bernstein operators for f ∈ C[0, 1] as follows:

(
Bn
(
f ⚬ 𝜌−1

))
(𝜌(x)) =

n∑
k=0

(
f ⚬ 𝜌−1

)(k

n

)(
n

k

)
(𝜌(x))k(1− 𝜌(x))n−k

where a particular function 𝜌 : [0, 1]→ ℝ is utilized under certain appropriate conditions.

On the other hand, to establish an approximation scheme valid over the entire real line, Butzer and his

research group in Aachen introduced the concept of generalized sampling operators, defined by

(
G
𝜒
𝑤 f
)
(x):=

∑
k∈ℤ

f

(
k

𝑤

)
𝜒 (𝑤x − k), x ∈ ℝ,𝑤 > 0,

where 𝜒 : ℝ→ ℝ denotes a specific function that fulfills certain conditions, and f : ℝ→ ℝ is a bounded and

continuous function on ℝ. A broad range of works has examined these generalized sampling operators and
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their variants; see [4–25]. To deal with the approximation of functions that are not necessarily continuous, Bar-

daro et al. [26] developed an L1-based version of these sampling operators by substituting the pointwise samples

f
(

k

𝑤

)
with the average values𝑤∫ (k+1)∕𝑤

k∕𝑤 f (u)du. This led to the formulation of sampling Kantorovich operators,

expressed as

(
K
𝜒
𝑤 f
)
(x):=

∑
k∈ℤ
𝜒 (𝑤x − k)𝑤

(k+1)∕𝑤

∫
k∕𝑤

f (u)du, x ∈ ℝ,

where f is a locally integrable function and 𝜒 serves as a kernel function. The sampling Kantorovich operators

have been extensively investigated across various functional settings; see [27–33].

In a very recent study [34], the authors proposed a modified version of the generalized sampling series,

given by (
G
𝜒,𝜌
𝑤 f

)
(x) =

[
G
𝜒
𝑤

(
f ⚬ 𝜌−1

)]
(𝜌(x))

:=
∑
k∈ℤ

(
f ⚬ 𝜌−1

)( k

𝑤

)
𝜒 (𝑤𝜌(x)− k), x ∈ ℝ, 𝑤 > 0,

where𝜒 is an appropriately chosen kernel function. In their work, they explored the approximation capabilities

of this operator in both the space of continuous functions and in weighted spaces of functions. Moreover, by

employing a Voronovskaja-type result (see [34, Theorem 5]), they compared the approximation efficiency of the

classical generalized sampling operators with that of their newly defined operators and demonstrated that the

latter offers improved approximation under suitable conditions.

Inspired by the effectiveness of this new framework and the widespread use of sampling Kantorovich oper-

ators, the same group of authors extended their approach in [35] by introducing a modified version of the

sampling Kantorovich operators, defined as(
K
𝜒,𝜌
𝑤 f

)
(x) =

[
K
𝜒
𝑤

(
f ⚬ 𝜌−1

)]
(𝜌(x))

:=
∑
k∈ℤ
𝜒 (𝑤𝜌(x)− k)𝑤

(k+1)∕𝑤

∫
k∕𝑤

(
f ⚬ 𝜌−1

)
(u)du, x ∈ ℝ, 𝑤 > 0,

where 𝜒 : ℝ→ ℝ is a suitable kernel and f ⚬ 𝜌−1 : ℝ→ ℝ is a locally integrable function. They analyzed the

approximation features of these operators in both standard continuous function spaces and weighted spaces of

continuous functions.

This paper is structured as follows: Section 2 outlines the essential notations and preliminaries. Section 3

provides a summary of the operators along with some fundamental results. In Section 4, we focus on investigat-

ing the approximation behavior of the corresponding operators within Orlicz spaces. Final section is devoted

to present some examples of 𝜌-kernels which satisfy corresponding assumptions and present some graphical

representations.

2 Basic notations and preliminaries

We use the symbols ℕ, ℤ, andℝ to denote the sets of positive integers, integers, and real numbers, respectively.

The set of all non-negative real numbers is denoted by ℝ+
0
. The space C(ℝ) refers to the set of all continuous

functions defined on ℝ, which are not necessarily bounded. The subset CB(ℝ) consists of all functions in C(ℝ)
that are bounded, equipped with the norm ‖ f ‖:= supx∈ℝ| f (x)|. Additionally, we denote by UC(ℝ) the space of
functions in CB(ℝ) that are uniformly continuous, and by Cc(ℝ) the space of functionswith compact support. The
symbolM(ℝ) stands for the set of all (Lebesgue) measurable real or complex functions, while L∞(ℝ) represents
the space of essentially bounded measurable functions on ℝ.
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Let 𝜌 : ℝ→ ℝ be a strictly increasing function that satisfies the following conditions:

(𝜌1) 𝜌 belongs to C(ℝ);
(𝜌2) 𝜌(0) = 0 and limx→±∞𝜌(x) = ±∞;

(𝜌3) 𝜌
′(x) > 1 holds for every x ∈ ℝ

(𝜌4) 𝜌
′ ∈ L∞(ℝ).

Remark 1. It is possible to find many examples of 𝜌 functions which satisfy the conditions (𝜌1)− (𝜌4). For

example, we state 𝜌(x) = 𝛼x for all 𝛼 > 1 and 𝜌(x) = 2x + tanh x.

2.1 Context of Orlicz spaces

Let 𝜂 : ℝ+
0
→ ℝ+

0
be a convex 𝜂-function, that is, a function satisfying the following conditions:

i. 𝜂(0) = 0, 𝜂(u) > 0 for all u > 0, and 𝜂 is non-decreasing on ℝ+
0
;

ii. 𝜂 is convex on ℝ+
0
.

We now define the modular functional

I𝜂
[
f
]
:=

∫
ℝ

𝜂
(| f (x)|)dx (

f ∈ M(ℝ)
)
.

It is well known that I𝜂 is a convex modular on the space M(ℝ) (see [36–38]), and it generates the Orlicz
space defined by

L𝜂(ℝ):= { f ∈ M(ℝ) : I𝜂[𝜆 f ] < +∞ for some 𝜆 > 0}.

The Orlicz space L𝜂(ℝ) is a vector space, and its subspace

E𝜂(ℝ):= { f ∈ M(ℝ) : I𝜂[𝜆 f ] < +∞ for every 𝜆 > 0}

is called the space of all finite elements of L𝜂(ℝ). In general, E𝜂(ℝ) is a proper subspace of L𝜂(ℝ); however, the
two spaces coincide if and only if the so-calledΔ2-condition is satisfied, that is,

𝜂(2u) ≤ M𝜂(u), u ∈ ℝ+
0

for some constantM > 0. Examples of 𝜂-functions satisfying theΔ2-condition can be found in [26,36,37].

In the context of the L𝜂(ℝ) space, we can consider two distinct notions of convergence for net of func-

tions. The first, named “modular convergence” describes the asymptotic behavior of a sequence ( f𝑤 )𝑤>0 within

L𝜂(ℝ) approaching a limit function f through the modular functional I𝜂 . Namely, ( f𝑤 )𝑤>0 is said to modularly

convergent to f if for some 𝜆 > 0,

lim
𝑤→+∞

I𝜂[𝜆( f𝑤 − f )] = 0

holds. This notion induces a topology in L𝜂(ℝ), known as the “modular topology”.
Furthermore, another concept of convergence, called “norm convergence” can be established by introduc-

ing a norm on L𝜂(ℝ), referred as the Luxemburg norm. This norm, denoted by ‖ ⋅ ‖𝜂 , is defined as
‖ f ‖𝜂 := inf{𝜆 > 0 : I𝜂[ f∕𝜆] ≤ 1}.

As a result, norm convergence represents a stronger notion of convergence than modular convergence in

L𝜂(ℝ) (convergence in the sense of the norm ‖⋅‖𝜂 generated by 𝜂 of a sequence ( fn) to f implies its modular

convergence to f ). Easily, for a net of functions ( f𝑤 )𝑤>0 in L𝜂(ℝ), the convergence lim𝑤→+∞‖ f𝑤 − f ‖𝜂 = 0 is

equivalent to the condition lim𝑤→+∞I
𝜂[𝜆( f𝑤 − f )] = 0 for all 𝜆 > 0. However, these two notions of convergence

become coincide only if the function 𝜂 satisfies the Δ2 condition. For further details concerning these spaces,

see, e.g., [36–40].
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3 Construction of the operators and some basic results

For any 𝛽 ≥ 0, absolute moment of order 𝛽 associated with 𝜌 (or simply 𝜌-absolute moment) is given by

M
𝜌

𝛽

(
𝜒
)
:= sup

u∈ℝ

∑
k∈ℤ

|𝜒 (𝜌(u)− k)||k − 𝜌(u)|𝛽 , u ∈ ℝ.

Definition 1. Throughout the paper, a function 𝜒 : ℝ→ ℝ will be called a kernel associated with 𝜌 (or simply

𝜌-kernel) if it satisfies the following assumptions:

(𝜒1) 𝜒 ∈ C(ℝ);
(𝜒2) for every u ∈ ℝ

m
𝜌

0

(
𝜒, u

)
=
∑
k∈ℤ
𝜒 (𝜌(u)− k) = 1;

(𝜒3) for 𝛽 > 0, 𝜌-absolute moment of 𝜒 is finite, that is

M
𝜌

𝛽

(
𝜒
)
= sup

u∈ℝ

∑
k∈ℤ

|𝜒 (𝜌(u)− k)||k − 𝜌(u)|𝛽 < +∞.

By𝜓 , we will denote the class of all functions satisfying the assumptions (𝜒1), (𝜒2) and (𝜒3). Now, we recall

a family of Kantorovich type sampling operators so called modified sampling Kantorovich series given by(
K
𝜒,𝜌
𝑤 f

)
(x) =

[
K
𝜒
𝑤

(
f ⚬ 𝜌−1

)]
(𝜌(x))

:=
∑
k∈ℤ
𝜒 (𝑤𝜌(x)− k)𝑤

(k+1)∕𝑤

∫
k∕𝑤

(
f ⚬ 𝜌−1

)
(u)du, x ∈ ℝ,𝑤 > 0

(3.1)

for 𝜒 ∈ 𝜓 and locally integrable functions f ⚬ 𝜌−1.
Now, we state a remark which was proved in [26] for classical moments of kernel functions but it is trivial

to adapt to 𝜌-moments of kernel functions:

Remark 2. For all functions 𝜒 belongs to 𝜓 , we have

i.M
𝜌

0

(
𝜒
)
< +∞;

ii. for every 𝛿 > 0

lim
𝑤→+∞

∑
|k−𝑤𝜌(x)|≥𝑤𝛿

|𝜒 (𝑤𝜌(x)− k)| = 0

uniformly with respect to x ∈ ℝ;
iii. For every 𝛿 > 0 and 𝜀 > 0, there exists a constantM > 0 such that

∫|𝜌(x)|>M
𝑤|𝜒 (𝑤𝜌(x)− k)|dx < 𝜀

for every sufficiently large𝑤 > 0 and k∕𝑤 ∈
[
−𝛿, 𝛿

]
.

We also note that, for 𝜈, 𝛾 > 0 with 𝜈 < 𝛾,M
𝜌
𝛾 (𝜒 ) < +∞ impliesM

𝜌
𝜈 (𝜒 ) < +∞. When 𝜒 has compact sup-

port, we immediately have thatM
𝜌
𝛾 (𝜒 ) < +∞ for every 𝛾 > 0, see [41].
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Remark 3 ([35]).

i. The operator (3.1) is well-defined if, for example, f ∈ L∞(ℝ).
ii. Let 𝜒 ∈ 𝜓 be a 𝜌-kernel. If f : ℝ→ ℝ is a bounded function, then

lim
𝑤→∞

(
K
𝜒,𝜌
𝑤 f

)
(t) = f (t)

holds at each continuity point t ∈ ℝ of f . Moreover, if f ⚬ 𝜌−1 ∈ UC(ℝ), then we have

lim
𝑤→+∞

‖K𝜒,𝜌𝑤 f − f ‖∞ = 0.

The proof of above items could be found in the corresponding reference.

Lemma 1. Let f ∈ L𝜂(ℝ). Then, we have f ⚬ 𝜌−1 ∈ L𝜂(ℝ).

Proof. By the assumption f ∈ L𝜂(ℝ), we know that for some 𝜆 > 0, I𝜂[𝜆f ] < +∞. We aim to show that

I𝜂
[
𝜆
(
f ⚬ 𝜌−1

)]
=

∫
ℝ

𝜂
(|||𝜆 f (𝜌−1(x))|||

)
dx < +∞.

Using change of variables x = 𝜌(t), we can write

I𝜂
[
𝜆
(
f ⚬ 𝜌−1

)]
=

∫
ℝ

𝜂
(|𝜆 f (t)|)𝜌′(t)dt.

Since 𝜌′ ∈ L∞(ℝ), let C̃:= ‖𝜌′‖∞ < +∞. Then, by assumption

I𝜂
[
𝜆
(
f ⚬ 𝜌−1

)]
≤ C̃

∫
ℝ

𝜂(|𝜆 f (t)|)dt = C̃I𝜂[𝜆 f ] < +∞.

Thus, we have f ⚬ 𝜌−1 ∈ L𝜂(ℝ). □

Lemma 2. Let 𝜒 ∈ 𝜓 be a 𝜌-kernel. Then, 𝜒 ∈ L1(ℝ).

Proof. As in [6, (2.3)], we have with a:= 𝜌−1(0) and b:= 𝜌−1(1)

∫
ℝ

|𝜒 (u)| du = ∑
k∈ℤ

1

∫
0

|𝜒 (u− k)| du = ∑
k∈ℤ

b

∫
a

|𝜒 (𝜌(𝑣)− k)| d𝜌(𝑣)

=
∑
k∈ℤ

b

∫
a

|𝜒 (𝜌(𝑣)− k)|𝜌′(𝑣) d𝑣

≤ ‖𝜌′‖∞∑
k∈ℤ

b

∫
a

|𝜒 (𝜌(𝑣)− k)| d𝑣

= ‖𝜌′‖∞
b

∫
a

∑
k∈ℤ

|𝜒 (𝜌(𝑣)− k)| d𝑣 <∞.

□
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4 Convergence of K
𝝌,𝝆

𝒘
in L𝜼(ℝ)

In this section, we present convergence of K
𝜒,𝜌
𝑤 in L𝜂(ℝ). Firstly, we start with the well-definiteness of the

operators.

Theorem 1. Let f ∈ L𝜂(ℝ) and 𝜒 ∈ 𝜓 be a 𝜌-kernel. Then the operator K
𝜒,𝜌
𝑤 maps L𝜂(ℝ) in L𝜂(ℝ). Indeed,

I𝜂
[
𝜆K

𝜒,𝜌
𝑤 f

]
≤

1

M
𝜌

0

(
𝜒
)‖𝜒‖1I𝜂[𝜆M𝜌

0

(
𝜒
)(
f ⚬ 𝜌−1

)]
for some 𝜆 > 0.

Proof. By Lemma 1,we have f ⚬ 𝜌−1 ∈ L𝜂(ℝ). Thismeans that, there exist𝜆 > 0 such that I𝜂
[
𝜆
(
f ⚬ 𝜌−1

)]
< +∞.

Choosing 𝜆 > 0 such that 𝜆M
𝜌

0

(
𝜒
)
≤ 𝜆, then applying Jensen’s inequality twice, we get

I𝜂
[
𝜆K

𝜒,𝜌
𝑤 f

]
=

∫
ℝ

𝜂
(
𝜆
|||(K𝜒,𝜌𝑤 f

)
(x)
|||
)
dx

≤
∫
ℝ

𝜂

⎛⎜⎜⎜⎝
𝜆

⎡⎢⎢⎢⎣
∑
k∈ℤ

|𝜒 (𝑤𝜌 (x)− k)|𝑤
(k+1)∕𝑤

∫
k∕𝑤

|||( f ⚬ 𝜌−1)(u)|||du
⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
dx

≤
1

M
𝜌

0

(
𝜒
)∑
k∈ℤ

⎧⎪⎨⎪⎩
(k+1)∕𝑤

∫
k∕𝑤

𝜂
(
𝜆M

𝜌

0

(
𝜒
)|||( f ⚬ 𝜌−1)(u)|||

)
du

∫
ℝ

𝑤|𝜒 (𝑤𝜌(x)− k)|dx
⎫⎪⎬⎪⎭
.

Now, using change of variable𝑤𝜌(x)− (k) = 𝑣 in the last integral and (𝜌3), we get

I𝜂
[
𝜆K

𝜒,𝜌
𝑤 f

]
≤

1

M
𝜌

0

(
𝜒
)∑
k∈ℤ

⎧⎪⎨⎪⎩
(k+1)∕𝑤

∫
k∕𝑤

𝜂
(
𝜆M

𝜌

0

(
𝜒
)|||( f ⚬ 𝜌−1)(u)|||

)
du

⎫⎪⎬⎪⎭
‖𝜒‖1

≤
1

M
𝜌

0

(
𝜒
)‖𝜒‖1I𝜂[𝜆M𝜌

0

(
𝜒
)(
f ⚬ 𝜌−1

)]

<
1

M
𝜌

0

(
𝜒
)‖𝜒‖1I𝜂[𝜆( f ⚬ 𝜌−1)] < +∞

which is desired. □

Theorem 2. Let f ⚬ 𝜌−1 ∈ Cc(ℝ), 𝜒 ∈ 𝜓 be a 𝜌-kernel. Then,

lim
𝑤→+∞

‖‖K𝜒,𝜌𝑤 f − f ‖‖𝜂 = 0. (4.1)

Proof. In order to establish the limit in (4.1), it suffices to show that for each fixed 𝜆 > 0

lim
𝑤→+∞∫

ℝ

𝜂
(
𝜆 ||K𝜒,𝜌𝑤 f (x)− f (x)||) dx = 0,

or, equivalently, that the family of functions

𝛼𝑤(x) = 𝜂
(
𝜆 |K𝜒,𝜌𝑤 f (x)− f (x)|)
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converges to zero in L1(ℝ). To prove this, we invoke the Vitali convergence theorem by verifying the

following three properties:

(V 1)
(
𝛼𝑤
)
𝑤>0

converges in measure to zero;

(V2) For every 𝜀 > 0 there exists a measurable set E𝜀 ⊂ ℝ with |E𝜀| <∞ such that, for any measurable F

disjoint from E𝜀,

∫
F

𝛼𝑤(x) dx < 𝜀 for all sufficiently large𝑤.

(V3) For each 𝜀 > 0 there is a 𝛿 > 0 so that whenever E ⊂ ℝ is measurable with |E| < 𝛿,
∫
E

𝛼𝑤(x) dx < 𝜀 for all sufficiently large𝑤.

Having established (V 1)–(V3), Vitali’s theorem guarantees that 𝛼𝑤 → 0 in L1(ℝ), which completes the proof of
(4.1). (V 1) follows directly from Remark 3 (ii) and continuity of 𝜂. To verify property (V2), fix 𝜀 > 0 and choose

𝛾̃ > 0 and 𝛾 > 𝛾̃ + 1∕𝑤 so that

supp f ⊂ B(0, 𝛾̃ ).

Observing that
[
k

𝑤
,
k+1
𝑤

]
∩ B(0, 𝛾̃) = ∅ whenever k ∉ B(0,w𝛾), we can write

(k+1)∕𝑤

∫
k∕𝑤

| f (u)| du = 0.

Next, by Remark 2 (iii) there exists M > 0 (which we may take, w.l.o.g, larger than 𝛾̃) such that for every

sufficiently large𝑤 and for all k ∈ B(0,w𝛾) one has

∫|𝜌(x)|>M
𝑤
|||𝜒(𝑤𝜌(x)− k

)||| dx < 𝜀.
By Jensen’s inequality and Fubini-Tonelli theorem, we can write what follows:

∫|𝜌(x)|>M
𝜂
(
𝜆
|||(K𝜒,𝜌𝑤

)
(x)
|||
)
dx

≤
∑

|k|≤𝑤𝛾
𝜂
(
𝜆M

𝜌

0

(
𝜒
)‖ f ‖∞)

M
𝜌

0

(
𝜒
)
𝑤 ∫|𝜌(x)|>M

𝑤|𝜒 (𝑤𝜌(x)− k)|dx

< 𝜀 ⋅
𝜂
(
𝜆M

𝜌

0

(
𝜒
)‖ f ‖∞)

M
𝜌

0

(
𝜒
)
𝑤

⋅ L,

where L is the number of integers k such that |k| ≤ 𝑤𝛾 . For every𝑤 ≥ 1, we have

L ≤ [2(𝛾𝑤+ 1)] =: L′,

where [⋅] denotes the integer part. Thus,

∫|𝜌(x)|>M
𝜂
(
𝜆
|||(K𝜒,𝜌𝑤

)
(x)
|||
)
dx < 𝜀 ⋅

𝜂
(
𝜆M

𝜌

0

(
𝜒
)‖ f ‖∞)

M
𝜌

0

(
𝜒
)
𝑤

⋅ L′ =: 𝜀 ⋅ C

for every𝑤 ≥ 1. Therefore, for 𝜀 > 0 we set Ẽ𝜀 = B(0,M). Then for every measurable set F̃, with F̃ ∩ Ẽ𝜀 = ∅, we
have
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∫
F̃

𝜂
(
𝜆
|||(K𝜒,𝜌𝑤

)
(x)− f (x)

|||
)
dx =

∫
F̃

𝜂
(
𝜆
|||(K𝜒,𝜌𝑤

)
(x)
|||
)
dx

≤
∫|𝜌(x)|>M

𝜂
(
𝜆
|||(K𝜒,𝜌𝑤

)
(x)
|||
)
dx

< 𝜀 ⋅ C.

Finally, concerning (V3), for any fixed 𝜀 > 0, there is a measurable set B𝜀 with

||B𝜀|| < 𝜀

M
𝜌

0

(
𝜒
)
𝜂
(
𝜆‖ f ‖∞)

for ‖ f ‖∞ > 0. Then, using Remark 3 we have for every𝑤 > 0

∫
B𝜀

𝜂
(
𝜆
|||(K𝜒,𝜌𝑤 f

)
(x)
|||
)
dx ≤

∫
B𝜀

𝜂
(
𝜆M

𝜌

0

(
𝜒
)‖ f ‖∞) < 𝜀.

This means that, the integrals

∫
(⋅)

𝜂
(
𝜆
|||(K𝜒,𝜌𝑤 f

)
(x)− f (x)

|||
)
dx

are equi-absolutely continuous. Since 𝜆 > 0 is arbitrary, we have desired. □

As a final and the main result of this section, we mention the modular convergence of the operators K
𝜒,𝜌
𝑤 .

Theorem 3. f ∈ L𝜂(ℝ) and 𝜒 ∈ 𝜓 be a 𝜌-kernel. Then, there exist 𝜆 > 0 such that

lim
𝑤→+∞

I𝜂
[
𝜆
(
K
𝜒,𝜌
𝑤 f − f

)]
= 0.

Proof. Using Lemma 1 we know that both f and f ⚬ 𝜌−1 belong to L𝜂(ℝ). Let 𝜀 > 0 be fixed. By density of Cc(ℝ)
in L𝜂(ℝ), there exist 𝜆′ and function g ∈ Cc(ℝ) such that

I𝜂
[
𝜆′
(
f − g

)]
<

𝜀‖‖𝜌′‖‖∞ (4.2)

Let g̃:= g ⚬ 𝜌−1. It is easy to see that g̃ is continuous and has compact support because of properties of 𝜌. So
we can write f ⚬ 𝜌−1 − g̃ =

(
f − g

)
⚬ 𝜌−1. Using change of variable and

(
𝜌4
)
, we have

I𝜂
[
𝜆′
(
f ⚬ 𝜌−1 − g̃

)]
= I𝜂

[
𝜆′
(
f − g

)
⚬ 𝜌−1

]
=

∫
ℝ

𝜂
(|||𝜆′( f − g

)
(t)
|||
)
𝜌′(t)dt

≤ ‖‖𝜌′‖‖∞I𝜂[𝜆′( f − g
)]
< 𝜀.

Now, let us set 𝜆 > 0 such that 3𝜆M
𝜌

0

(
𝜒
)
≤ 𝜆′. Considering properties of 𝜂, (4.2) and Theorem 1, we get

I𝜂
[
𝜆
(
K
𝜒,𝜌
𝑤 f − f

)]
≤ I𝜂

[
3𝜆
(
K
𝜒,𝜌
𝑤 f − K

𝜒,𝜌
𝑤 g

)]
+ I𝜂

[
3𝜆
(
K
𝜒,𝜌
𝑤 g − g

)]
+ I𝜂

[
3𝜆
(
f − g

)]
≤

1

M
𝜌

0

(
𝜒
)‖𝜒‖1I𝜂[𝜆′( f − g

)
⚬ 𝜌−1

]
+ I𝜂

[
3𝜆
(
K
𝜒,𝜌
𝑤 g − g

)]
+ I𝜂

[
3𝜆
(
f − g

)]

<

(
1

M
𝜌

0

(
𝜒
)‖𝜒‖1 + 1‖‖𝜌′‖‖∞

)
𝜀+ I𝜂

[
3𝜆
(
K
𝜒,𝜌
𝑤 g − g

)]
.

The assertion follows from Theorem 2 for enough large𝑤. □
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5 Examples of 𝝆-kernels and graphical representations

In this section, we provide concrete examples of 𝜌-kernels that satisfy the assumptions outlined in Definition 1.

We then present graphical comparisons to illustrate the approximation behavior of the modified sampling

Kantorovich operators K
𝜒,𝜌
𝑤 versus the classical operators K

𝜒
𝑤.

5.1 Examples of 𝝆-kernels

A crucial step in applying the theory is finding suitable kernel functions. The condition
(
𝜒2
)
, also known as

the partition of unity condition, can be conveniently verified using the Fourier transform and the Poisson sum-

mation formula (see [4, p. 123 and Section 5.1.5], [42]). Using Poisson summation formula
(
𝜒2
)
is equivalent to

𝜒̃ (2𝜋k) =
⎧⎪⎨⎪⎩
1, k = 0

0, k ∈ ℤ∖{0}

where 𝜒̂ (𝑣) = ∫ℝ𝜒 (u)e
−i𝑣udu, 𝑣 ∈ ℝ.

5.1.1 The central B-spline kernel

A highly effective and widely used family of kernels are the central B-splines of order n ∈ ℕ, defined by:

𝜎n(t):=
1

(n− 1)!

n∑
j=0

(−1) j
(
n

j

)(
n

2
+ t − j

)n−1
+
, t ∈ ℝ

where (t)+:= max{t, 0}.
These functions are ideal because they have compact support [−n∕2, n∕2], which guarantees that the

moment condition (𝜒3) holds for any 𝛽 > 0. The partition of unity condition
(
𝜒2
)
is also satisfied.

Modified sampling Kantorovich operators of f ∈ L𝜂(ℝ) takes on the form

(
K
𝜎n,𝜌
𝑤 f

)
(x) =

∑
k∈ℤ
𝜎n(𝑤𝜌(x)− k)𝑤

(k+1)∕𝑤

∫
k∕𝑤

(
f ⚬ 𝜌−1

)
(u)du, x ∈ ℝ,𝑤 > 0

using B-Spline kernel.

5.1.2 The Fejér kernel

Another important example is the Fejér kernel, which is not compactly supported but decays quickly. It is defined

as:

F(t):= 1

2
sinc 2

(
t

2

)
, t ∈ ℝ

This kernel also satisfies all the necessary assumptions to be a 𝜌-kernel, see [26].

Modified sampling Kantorovich operators of f ∈ L𝜂(ℝ) takes on the form

(
K
F,𝜌
𝑤 f

)
(x) =

∑
k∈ℤ

F(𝑤𝜌(x)− k)𝑤

(k+1)∕𝑤

∫
k∕𝑤

(
f ⚬ 𝜌−1

)
(u)du, x ∈ ℝ,𝑤 > 0

using Fejér’s kernel.
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5.2 Graphical comparisons

This subsection provides a comparative analysis of the modified and classical sampling Kantorovich operators.

The comparison is illustrated through graphical representations, which are generated using the central B-spline

kernel of order 5. Throughout the examples, we consider the function 𝜌 : ℝ→ ℝ defined as 𝜌(t) = 2t + tanh(t).

It is easy to see that function 𝜌 is continuous onℝ, 𝜌(0) = 0 and limt→±∞𝜌(t) = ±∞. The derivative of 𝜌, 𝜌′(t) =
2+ sech 2(t) and its range is (2,3]. So, 𝜌′(t) > 1 for all t ∈ ℝ and 𝜌′ ∈ L∞(ℝ). Hence, the conditions

(
𝜌1
)
−
(
𝜌4
)

are all satisfied. We also consider functions f : ℝ→ ℝ as

f (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1, if x < −2

x + 2.5, if − 2 ≤ x < −1

0, if − 1 ≤ x < 0

cos(𝜋x), if 0 ≤ x ≤ 1

1, otherwise

Figure 1: Graph of function f .

Figure 2: Graph of function f and operators(
K
𝜎5
7
f
)
,
(
K
𝜎5 ,𝜌

7
f
)
.
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Figure 3: Graph of function g.

Figure 4: Graphof function f and operators
(
KF
4
g
)
,
(
K
F,𝜌

4
g
)
.

and g : ℝ→ ℝ as

g(t) =
⎧⎪⎨⎪⎩
−1, if |t| < 1

5

t2
, otherwise

In Figure 1, the graph of function f is presented. In Figure 2, we compare classical sampling Kantorovich

operators and modified sampling Kantorovich operators using𝑤 = 7 and 5th B-Spline kernel.

In Figure 3, the graph of function g is presented. In Figure 4, we compare classical sampling Kantorovich

operators and modified sampling Kantorovich operators using𝑤 = 4 and Fejer’s kernel.
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