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1 Introduction

Mittag-Leffler (M-L) functions play an important role in fractional calculus. However, the univariate M-L
functions do not provide the addition property

E1COEN(y) # E«(x + y).

Due to the lack of this property, bivariate M-L functions are needed in application areas. Over the past decade,
some important bivariate M-L functions were defined [1-3]. In this study, we consider the following bivariate
M-L function [3]:

QI o,|

c < 8+ kyt _ _
Bipeo)= 2 2 (ak(+)/§'ll+ S Re@ > 0Re®) >0

The integral operator involving the above function in the kernel is given as follows [3]:
EFf(2) = I(z - OF IS (wnlz - 0F, oz - DF) (DL, 60

where @, 8, €, §, w1, w, are complex numbers with Re(@), Re(B), Re(€) > 0.

In this work, in order to obtain new findings and viewpoints, we will generate this integral operator
involving the bivariate M-L function in the kernel with respect to the function 7(z). With the special choices of
the function 7(z) other than the usual one, the general operator includes the Hadamard, Katugampola, and
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Erdélyi-Kober, and Tempered versions. We now proceed by recalling the necessary background to be used
throughout the study.

Definition 1.1. [4] Suppose a € R is a constant and f € L'[a, b] is a function. The Riemann-Liouville fractional
integral of order v is defined by

1

RI'f(2) = )

- err@de, Rew)>0,z€ [0 bl CR.

Definition 1.2. [4] Leta € R be a constant, f € C"[a, b] a function. The Riemann-Liouville fractional derivative
of order v is defined by
RLV dm RLtm-v
D"f(2) = Fr JI77Vf(2)), m=|Re(v)] +1,Re(v) 2 0.
The Riemann-Liouville fractional integral operator exhibits semigroup behavior with respect to the
parameters ¢ and v

Rg[“ ° Ré,IVf(Z) — R‘ll,I‘quf(Z)’

where ° indicates the composition of operators.

Definition 1.3. Let f € L'[a, b], v € C such thatv > 0, ¢ a monotonic C'[a, b] function, and a € R is a constant.
Then, with respect to the function ¢, the Riemann-Liouville fractional integral of the function f of order
v is defined as follows:

z

1
Bl (@) = m_{d)’(f)((ﬁ(l) - ) f(E)dE. @
a
Remark 1.1. Setting ¢(z) = z, Definition 1.3 recovers the Riemann-Liouville fractional integral operator of
order v.

Remark 1.2. Setting ¢(z) = logz, Definition 1.3 recovers the Hadamard fractional integral operator [5]
Z v-1
1 1 z
Hyv — — _
o (@) = F<">£ ; log[ E] f©e.

Remark 1.3. Setting ¢(z) = z°*! and multiplying the resultant operator by (p + 1), we obtain the
Katugampola fractional integral operator [6]

1 1-v Z
(0 + D [f (2)] = %jzp(zp*1 - EPTYIIF(E)AE.

Remark 1.4. Setting ¢(z) = z°, replacing f(z) by z°f(z), and multiplying by z°“*7, we obtain the Erdélyi-
Kober fractional integral operator [7]

z

[emorize - goy peyae.

O'Z_U(V+’l)

1
@) = o

z7o(v+n)

Remark 1.5. Setting ¢(z) = z, and replacing f(z) by e*#~9f(z), we obtain the Tempered fractional integral
operator [8,9]

@ = o @ - e
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It should be noted that the operators in (2) satisfy the semigroup property
i) "yl @) = il © Fdlbef @) = e @),

Definition 1.4. Suppose f,¢ € C"[a, b] and ¢’(z) > 0. For every z € [a,b] and v € C, with Re(v) 20,
the Riemann-Liouville fractional derivative of order v with respect to the function ¢ is defined as follows:

KiDyf (2) = B @),

n

[¢ (z) dz]
withn-1<Re(v)<n€ ZzZ".

According to the group theory, the fractional operators with regard to functions can be written as con-

jugations of the original fractional operators with a few compositional operators. As a result, it is simple to

illustrate different results about fractional operators in relation to functions.
Now, define Q, by Q;f = f > ¢ such that

(@ /)2) = f(¢(2)).

Now, define the inverse operator as Q¢‘ 1= Qg
It is not hard to see that

RLy _ o RLpy , A1
oy = Qs ° ol Q"

. -1

Dby = Qs © gD * Q1.

The structure of this work is as follows: In Section 2, we recall the fractional calculus properties of the integral
operator (1) and also obtain new properties via series approach. In Section 3, we generalize the operators in (1)
by taking these operators with respect to the function 7(z). Section 4 is devoted to the concluding remarks.

2 Analysis of the operators containing bivariate M-L function
in the kernel

In this section, we recall the main characteristics of the operators in (1). We also obtain new properties of these
operators such as product rule and chain rule.

Theorem 2.1. [3, Theorem 7] Suppose that @, B, &, wy, w, are parameters in C with Re(a) > 0, Re(B) > 0,
Re(€) > 0. Then, we obtain

0 0o 5 . ) Al
82 ﬁwé wz z Z ( )kklllll wZRLIak Bl gf(Z) (3)
k=0 =0

where z € [a,b] CR and f € L'[a, b].

This series formula MGMLO:series:eqn helps to give many properties of the operators 82 ﬁ‘*’; *“2 which are

inherited from the Riemann-Liouville integral operator. For instance, the following composition property holds true
[3, Corollary 4]:

BN ES 41 (2) = B3 5f (2), @

where f € I'[a, b] and @, B, €, §, w;, w, are complex numbers with Re(@) > 0, Re(B) > 0, Re(&) > 0.
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Moreover, representation (3) helps to prove the following semigroup property:

— 851+62 w1, wzf(z)

a,p,& a,pB,e; a,p,&+&

861 w1, 0)2[ 862 w1, o)zf(z)

where f € L'[a, b] and @, B, &, &w-, w, be parameters in C with Re(a) > 0, Re(B) > 0, Re(&)) > 0, Re(&) > 0.
We continue to use the series formula (1) to obtain some useful results.

Proposition 2.1. The image of the power function under the action of 82 ﬁ“’; *“? is given as
EFE Nz — ) = T + Dz ~ OES g (@12 — ), 0z -~ @)F),

where @, B, £, §, wy, w, are complex parameters with Re(@) > 0 and Re(B) > 0, are real parameters.

Proof. Using the following formula [10,11]:

I(u +1)
RLyve, _ \u = u+v -
Jd(z-a) T(a+ v+ 1)2 , Re(u) > -1,Re(v) >0,
and (1) we obtain
5; g, o v OOl gy arepree P
QSCT,E,E Z Z k'l' I (Z )
k=0 1=0

re v (oo +1) K+ BleE
= - u+e ke — \ak+pl+e+u
(@-a) ,ZO ZO D@k +Bl+e+u+ Dk @

=T+ D = A °Efg ¢ p(en(z - @), w2z - )P,

which is the desired result. U

Example 2.1. By selecting specific parameter values and plotting 8(7 ﬁ“’; “y(z77), we can examine how
the resulting functions behave and use this to illustrate the conclusion of Proposition 2.1.

We use the function z7/2 with a = 0 and u = —%, and select § =1 and w; = w, = 1, then we examine

the following scenarios:

— 1 5 1 _ 1
. Fora=§,ﬁ=5,s=5,wehave

k+l
. 1 Dy+1 22
gL 1l 7712y = [ ]E le2 712y = L S, e
0 1/2,1/2,1/2( ) 9 1/21/21( ) \/_gr(l Lk )k'l'
whose red (upper) curve is shown in Figure 1.
. 1301‘(7=1 B =1, =7 wehave

1 (1) ZZk2+l
81; 11 (Z—l/Z) = r[_]ZZEl (Zl/z’ z) = Zz L
0~1/21,5/2 2 1/2,13 kZzF(S +k+ )k'l'
whose blue (middle) curve is shown in Figure 1.
. Ford=1,ﬁ=%,§= %,wehave

k+2l

; 1 (D122
bl 12y = F[—]z3E1 7 g2y = 3y Sk ZE
0611/27/627%) 5 11/24( ) = I{ZZM s ol

whose green (lower) curve is shown in Figure 1.
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Figure 1: Graph for Example 2.1.

The graphs in Figure 1 are the result of plotting all three of these functions collectively. Figure 1 was
created with Maple18 by considering truncated sums 0 < k, n < 20. From the graph, the following conclusions
can be drawn.

As z increases, the red function (@ = %, B = %, g = %) grows faster than the other two. Atleast for0 < z < 5,
the magnitudes of the other two functions are more similar; nonetheless, the blue function (@ = %, E =1,&= g)
is significantly greater than the green one @ =1, = %, £= %).

This is understandable as raising the values of @, E , and £ will increase the value of the gamma function,
which reduces the value of the function. At least when z is large, increasing its exponents will typically have
the opposite effect. However, since gamma functions are known to increase at a rate faster than power

functions, the main determinant of size comparisons between these functions will be the variations in the
gamma function’s argument.

Proposition 2.2. The image of the function e** under the action of _m8§:§’}§wz is given as
_ -5
5 o W™ = W@
_wgg’,z_)}éwzeyz = u—S 1- L - wz[-l_ﬁ + L ez,

1- wou®
where z € [a,b] and @, B, €, w1, Wy, i are complex parameters with Re(£) > 0, Re(@), Re(B) > 0 and Re(u) > 0.
Proof. Using the known formula [7]

KiIVers = yverz,  Re(u) > 0,Re(v) > 0,

and (3), we obtain

B - § (SN 103 gy s 1z
&R et = Z ZT_WI e
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< < (@ hnwfwy 2
=Z ZTH (@k+Bl+8)puz

s (6 )kw1 (6 + k)z(wzu Py

. Z

W
1- wu®
-5

1=0
= uet(1 - wouF Z 6
k=0

_ -a
= et (1 - wyr Py [ e
1- wu™®

Thus, the result is proved. O

5 w1 Wy

Proposition 2.3. The image of the three parameters M-L function under the action of ,&7’ ‘B s given by

Eag (2 - OFIE] (w(z - ay)

c v - (810 iwf wiw! Bl
- E+l— — g)ak+Bl+ni
=@-a Z :Z:zl"(ak+ﬁl+ql+e+u)k'l'l'( a) :

where z € [a, b] and @, E £,8, wi, wy, n, U, o are complex parameters with Re(g) > 0 and Re(a), Re(ﬁ),
Re(n), Re(u) > 0.
Proof. We know [12,13] that

Bz - )" 'Ef (0(z - F)) = 2 - **Ef . (w(z - @)F)

_y @ i)
S & UTBi+u+v)

Therefore, using (3), we obtain
5w
Eape iz - ' E] (w(z - a))

6 + +B 1+
(6)k lw1 wz RLIak Bl e((z a)“'lE,;f#(w(Z -a)")

Ms
M s

k=0 -0 K
o w (hrwfw Blees
) go 1:20 @ O P E s (02— )

1S S (& s(@)wf it I
- a)FHl _ \@k+Blegi
@0 kgo 1=zo 1=ZO T@k+pBl+ni+e+ u)k'l'z'( @) ’

which is the desired result. O

Example 2.2. By selecting specific parameter values and plotting 081 1 Uz 2E1 1

1 .
z2||, we can examine how the

resulting functions behave on a graph and use this to illustrate the conclusion of Proposition 2.3.
Setting§ =1, w1 =w,=1,a=B=n=pu-= % we consider the following cases:

_
« For & = ¢, we have
k+1+i
(1)k+lZ 2
1/2 12 11/10
0E121/28/5(2 V2L p10(21%)) = 20 ) A
Gt B Ly Dy

whose blue (lower) curve is shown in Figure 2.
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— 6
* For & = -, we have

k+1+i
1 11 -1/2p1 1/2) = ,7/10 Wperr 2 2
081121126152 V2 p10(21%) = 27110} .

17 l i >
k,l,ir(ﬁ + 7 + 3 + E)kll'

whose red (middle) curve is shown in Figure 2.
_ 4
*» Forg = 5, We have
k+l+i
111 _ 1 _ D1z 2
&1 2452 V2E 91 9(211%) = 23110y PR
n,m r[% +oH o+ i]k!l!

’

2 2 2

whose green (upper) curve is shown in Figure 2.
Figure 2 illustrates the abovementioned three cases. Figure 2 was created by considering truncated
sums 0 < k,n < 20.
As z increases, the fastest growing function is the green function (€ = %), followed by the red function

(€= g), and finally, the blue function (€ = %).

This is understandable as raising the values of £ will increase the value of the gamma function, which
reduces the value of the function. At least when z is large, increasing its exponents will typically have the
opposite effect. However, since gamma functions are known to increase at a rate faster than power functions,
the main determinant of size comparisons between these functions will be the variations in the gamma
function’s argument.

Now, we continue to prove the product value and chain rule by using representation (3).

Theorem 2.2. Suppose that f and g are functions such that f is continuous and g is differentiable. Then,
the following product rule holds true:

20 1

15 1

101

Figure 2: Graph for Example 2.2.
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i il’(é +k+ DIA - ak = Bl - ©)ofwy ak+Blre
oo 1o TSI - ak - Bl - € - mk!im! I

:z\ S

Hf(2g@) = Z Fi @)

Proof. Using the series formula and the product rule for the Riemann-Liouville integral operator [10,20],

©

5 e + k+ Dwfwly
5 Tk

ir(g +k+ Dofwl] i
LG L =

SRt (2@ = H™ P @)g(@)

2
ad ~ak = Bl = € |or axspreeemy,, 4"8(2)
g m ]cl f(2) " l

Z d"g(z) i TS + k+ Dwfwi(-ak - Bl - & b ieeme
L4 & AT 1@k m ¢ ‘
Since _ak_rf l_g] = #ﬁ;:gm we obtain the result. O

Theorem 2.3. Suppose that f and g are functions such that f is continuous and g is differentiable. Then,
the following chain rule holds true:

5 w0 ey 5 I8+ k+ Dlwy(z - o) Fwaz - of ' < (c-2m
Gaps SE@N=E-0) Z ZO T(5)I(@k + Bl + ekl L mi(@k + Bl+ & +m)
|5 f @) n [de@)
Zl dg(z) PLZ.,P," ]l‘:llpj!(j!)Pj[ : ]

Proof. Applying Theorem 2.2, we obtain

EXPf(g(2))]

dn(f - g) > SIS +k+ DI - ak - ﬁl - S)wl szL ak+Bl+e+m
Z dz™ go Z=ZO r(6)ra - ak - Bl-& - m)kll!m! ! (1)]

m=0
i d"(f - g) i gl"(g +k+ DI - ak - Bl - g)wlszl (z - C)Ek+El+é+m
dz" |5 5 TrA - ak - Bl-&- mkilim! T(@k + Bl+&+m+1)

m=0

i d"(f - &) i if(g + k+ DT(1 - @k - Bl - &)[wi(z - ) [waz = )P (z - c)**™

dz™ = = (ak+Bl+e+m) m!
k=0 L) G raks e+ mkiii

(=}

m=0

I(§ + k + DI - ak - Bl - &)[wi(z - ) [wy(z - ¢)P] (c - z)™

= (@k+Bl+&+m) m!
D)7 @i+ e i

d"(f - &) < 5 i I(& + k + D[wi(z - )T [waz - )P (c - 2)"
I(§)ak + Bl + £ + m)[(ak + Bl + kIl m!

2 dn(feg)|
- @-cFy (f g)Z

m
m=0 dz

||Mg

= (z-C)SZ

meo 42" |5 is
= (z-c)F z i I(§ +k +_l)[wi(z _E)E]k_[wz(l - C)E]l o d™(f o g) _ (c :Z)m_
k=0 [=0 I'(8)I'(ak + pl + &)k!I! 2, dz" mi@k+ Bl+E+m)
e <T@+ k+ Diwiz - O wyz - o)F ) & (- 2)m
- kg :Z I(8)I(ak + El + &)kl mzzom!(ak + El +E+m)
9 < 41 (g(2) mo i (dg(z))?
o dag@r PZ H P( ]|)Pl dz/ ] ]

which is the desired result. (I
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3 Operators with respect to functions

Erdélyi introduced the idea of taking fractional integrals with regard to a power function in 1964 [14]. In a 1970
publication [15], Osler presented the entire extension of this concept to Riemann-Liouville fractional calculus.
This construction and its characteristics are covered in greater detail in textbooks [4,7,11]. The popularity of
“@-fractional calculus” has increased in recent years, referring to the study of fractional operators with
respect to a function ¥(z), since Almeida introduced a Caputo version in 2017 [16]. Other fractional operators,
such as tempered [17], Hilfer [18], and operators with general analytic kernels [19], have also been taken with
regard to functions, in addition to the classical Riemann-Liouville and Caputo.

The operators with bivariate M-L kernel, which were summarized and studied in Section 2, will be
generalized in this section by taking them with respect to a monotonic function of C. It is then easy to apply
many of the findings from Section 2 to the generalized operators by using conjugation relation.

Definition 3.1. Let f € L'[a, b] and g € CY[a, b] be two functions with g positive and monotonically increasing.

Let @, B, £, 8, w1, w; be parameters in C with Re(@) > 0 and Re(B) > 0. The fractional integral operator
containing bivariate M-L kernel of the function f with respect to the function 7 is defined by

%%J@_mm—mwwswmm—mWwwm—mwwmmm )

Remark 3.1. Setting 7(z) = z, (5) recovers the integral operator involving E; ﬁ s(z y) in the kernel, as given
in (1).

Remark 3.2. Setting 7(z) = log(z), (5) reduces to the Hadamard-type version of bivariate M-L integral operator:

wl[log ]‘7 wz[log ]/(t)dt

z —
1 r1 zZfF
Ho6; —
o Elgbiég(lf(z) = ) I?[log?] Eg
a

(p+1)*

Remark 3.3. Setting 7(z) = z°*! and multiplying the resultant operator by 0)

, we obtain the Katugampola-

type version of bivariate M-L integral operator:

_z
6 s W1, Wy (p + 1)1_‘E

(P + 1)_ [ i ”,mf( )] = o IZP(Z/JH - tp1)E-1E ES (wl(zpﬂ — tPYT (,(2P*) - tP+1)ﬁ)f(t)dt

I(z)

Remark 3.4. Setting 7(z) = z, replacing f(z) by z%f(z), and multiplying by % we obtain the Erdélyi-
Kober-type version of bivariate M-L integral operator:
O'Z_U(V"”I)

" Z0V+0-1(z0 — {0)E- 1E,fﬁ LW1(29 = 1), wy(zP*1 - tPHB)F(E)dL.
a

Remark 3.5. Setting 7(z) = z, and replacing f(z) by %f(z), we obtain the Tempered-type version of

bivariate M-L integral operator:

7@&%U—Hjuwfumwm—mwm—mwMWmm

Definition 3.2. We consider 7 € C'[a, b] to be a positive function that increases monotonically, and [a, b] to be
a fixed real interval. Suppose that @, f, €, §, w1, w, € C have Re(@) = 0 and Re(f) > 0. Consequently, N € N
is the natural number such that N - 1 < Re(@) < N. For a function f € CV[c, d], the fractional derivative
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with bivariate M-L kernel with regard to the function g is defined by

5 aly
e -8,
E/%J wr(z)f( z) = T(Z) dZ (agﬂ,ﬁ{j\llf?;r(z)f(z))'
Theorem 3.1. The following representation holds true:
§; §;
a‘gﬁg = ° w7 Z’)lswzf(z) QT )

§;w1, _ §;
aDﬁ,%),lé?)Tz(z) - Q‘L’ w(a) Da E)lewzf(z) Qr ’
where the inner composition of T is defined as the operator Q,, working as

Q(f)=f-1, 1e(Qf)2)=[f(r(2).

(6)

0]

Proof. For functions, the proof can be comparable to that of the classical Riemann-Liouville fractional calculus
[4,7]. As we already know, the relevant operational identity is satisfied by the simple first-order derivative with

respect to a function

d 1 d

RLpy1 RLy1 . -1

= = -— =0, o ®plte. QL
@ dr(z)  T(z) dz T T

We set a function f € L![a, b] for fractional integrals and then take the following steps:
fiz~f@);
Qf 1z~ f(T2));
r(a)gg ;;)15(-02 ° r_lf - r(a>8§ ;Lgulng(f o T)(2),

(5 ;W1,W2

Q © LT e QT 12 = (BT RS o THT(2)).
According to the definition (1), we have

@S ,‘;’{;’Z(f o t1)(z)

I (2 = OF B 01z - OF, oz - OF)f (X ()it
7(a)
™(2)

where u = 77Y(z). Finally, we substitute 7(z) for z and we obtain

8, -1
Qr ° T(a)aa Z?Jlew'rz(z) f(Z)

_[(T(Z) ~ TW)™ES 5 (wi(1(2) ~ TW)7, wy(t(2) ~ TW)P)f (w)r'(u)du

§,w,w
wSaf e @)

I (2 = TW)*EL g (wi(z = TW)T, waz = TW)P)(wi(z = TW)P)f ()T’ (w)du,

()]

which proves (6). N times repeatedly use of (6) and (8), we obtain the desired expression (7) for fractional

derivatives.
Theorem 3.2. The following series formula holds true:

c < (6)k+lw w +B 1+
2ﬁwé(;)€z)f)( kZ > k'l'l 2Ry ?é)’” @)

O
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Proof. According to (5), we obtain

WESF e ) = I(T(Z) = O E g ((@1(7(2) - (D), 0x(1(2) - TP F (DT (D)t

a,B,&;1(z

[

g
"3 e I (w) - P PO o

k=0 1=0
= s 3 Ohnwfws (B ak+pl+e
B kgo I=ZO k' IT(Z) f)(Z) .

Proposition 3.1. The following composition property holds true:
RLIr(z)(a8g‘jﬁt‘g’;ﬁgz}f(z)) 2 ﬁwérg T(Z}f(z Ei 5 Wy, wyT(Z)(RLIT(z)f(Z)):
where f € L'[a, b], monotonic function T € C'[a, b], and @, (B,), (p,), (w;) are complex parameters with Re(g)

> 0, Re(@) > 0, and Re(B,) > 0 for all i.

Proof. Using (4) and Theorem 3.1, we have

5; . 5. B}
L (Eap i @) = Q; © (e Qe Qe Sy Fre Q7

5 w1w2 °

- Q-r r(a) T(a)Sa B.E Qr_

_ §; w0 -1
=Q; ° wCafire ° &

&b
a ﬁwéfg T(z)f(z)
and
8; wy, _ 8; wy, — -
a E,/{%;(;)(zz)(alr(z (Z)) - Q‘[ ° 85 Ewé'{;')(zz) ° Q o Q‘[ T(a) Q !
- 5; -
- Qr 8(1 Bw; (;)(Zz) ° T(a) Q
5; _
=Q ° T(a)ga Bwéf); er
5;
Eafiraea) @ O
Proposition 3.2. The following result
RL 6 , _ (€9)
D% E L e (@) = 5 b (@) ©)

holds true for any function f € C[a, b, k = [£1, any monotonic function T € CY[a, b], and any complex para-
meters @, B, €, w1, w; with Re(@) > 0 and Re(B) > 0.
Proof. The proof of (9) comes from Theorem 5.1 in [3], once more utilizing the classical relation and

Theorem 3.1.

RL -
DT(Z) Qe T(a)DU er- O

Theorem 3.3. The following semigroup property holds true:
5 &b ghis:
EapainaCaipef @) = Eap e @
where f € I'[a, b], T € CY[a, b] is a monotonic function, and @, B, &, &, 81, 8, w1, w, are complex parameters
with Re(@) > 0, Re(€) > 0 and Re(B;) > 0 for all i.
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Proof. Since

§; w,w §; w,w -1
Saﬂé‘[?z) QT T(a)gaﬂé e T

we have

815 w1, 82 w1,0 815 w1, -1 8 w1, w -1
galﬁ 811 r(zz)(aSaZﬁ elz réz}f(z)) Q; ° @ 8:115811 ‘o Qr ° Q ° @ Sazﬁ slz ‘e QT

— 8146 wy,wz -1

=0 ° Sa Be+e QT

- o861ty wiw, 0O
a®a,p,e+&x1(z)

Theorem 3.4. The action of the operator ,D’; Bz ON oSy glvnyy 1S given by

§; w,w 0; W1, _ (0-8; wy,w3)
Pap e Cap e @) = iCapu-ziif (@)

where f € L} a,b], T € CYa, b] is a monotonic function, and @, B, &, i, wy, w, are complex parameters with
Re(@) = 0 and Re(€) > 0.

Proof. The semigroup property for fractional integrals in this context is given by Theorem 3.3, Definition 3.2 for
the fractional derivative with bivariate M-L kernel with respect to a function, and Proposition 3.2 for composi-
tion with a standard fractional derivative with respect to a function. O

Example 3.1. The following method can be used to apply the bivariate M-L integral operator with regard to
a power function to another power function:

5 wi,wp _ _
aad,ﬁ,g;(z—a)d(z =

# 5 a 7
+1)(z - @) FE° - )%, - a)®),
N5 ](Z YFE . L [0z - %, wy(z - )

where @, B, €, §, w, w, are complex parameters with Re(a) > 0 and Re(B) >0 and o> 0, u > 0 are real
parameters.

Remark 3.6. Setting 7(z) = z° Example 3.1 contains a generalized version of Erdelyi-type version of the
bivariate M-L integral operator.

Proof. By using Definition 3.1, we suppose 7(z) = (z - a)? and f(z) = (z — a)*. Then, with the help of the
Example 3.1, such that

5; _
86[%) Qr w(a) 8(1 Ble 7(z) ° 1
we have
gﬂwé (E)ZZ a)"(z )t = QT °a g%}lng ° Qr_l(z -t
Clearly,
Qlz-aF=(@-atet1 =z~ (VZ +a) = (W) = 2.
Then,

Sg: e 2 2 = J(z - OF'E, aﬁ $5 (w12 = 0T, waz - t)F)tede

z
o o0 (6)k+lw1szl o

— -t Ek+pl+E tadt
kgo l=z() [(@k + Bl + &)k J;(Z )

22 8 eriwiwl ak+pl
o k=0 l=01"(ak+ﬁl+g+—+1)k|1|
u H 5 =~ 7
=T|=— + 1{(z)*éE a B
p + (Z) ﬁE g 1(0)1Z , WoZ )
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and

801,02 -1_ o8wLw; _
Q°oCapr ° O =aCaprapZ ~ O

H +oEp8
=Tl— +1 — Q)MFOEE
[G+ ](z Q)" FE°

— q\oad — q\B
ajﬂgﬂ(wl(z )™, wy(z = a)). O

Example 3.2. By selecting specific parameter values and plotting aagjﬁ?g‘“«z%), we can examine how the

resulting functions behave and use this to illustrate the conclusion of Example 3.1.

Setting§ =1, wy=wy,=1,a=1,p5 = %, and using the function z/? witha = 0 and y = %, we consider the
following cases:
* Foro = % we have

2k+n

212 (Dr+1 2 4
gNRLZR A2y = gEL (12 A4y = gy — K
oL 11723 gl"(:i +k+ %)k!l!

whose blue (lower) curve is shown in Figure 3.
2
* Foro = 5, we have

7 7 (1) ZZk;n
i1l 2y = r[_]z7/6E1 (2213, 7113) = F[—]z7/6 L’
0©1,1/2,1;22/3 4 1,1/2,17‘1 4 k%,r(% +k+ %)k!l!

whose red (middle) curve is shown in Figure 3.
*» Foro = %, we have

6k+3n

5 5 Di+1Z
_]25/4]3111 L8(24, 29%) = r[_]ZSM S()I‘;Z’
35wy 3V GTC + K+ Dkl

111 1/2\ =
011 o192 °) = T

whose green (upper) curve is shown in Figure 3.

1201

100

80

y 601

401

20

0 50 100 150 200

Figure 3: Graph for Example 3.2.
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Figure 3 illustrate the abovementioned three cases. Figure 3 was created with Maplel8 by considering
truncated sums.

The fastest growing function is the green function (o = %), followed by the red function (o = %), and finally
the blue function (o = %).

This is understandable as raising the value of o has two effects: it decreases the argument of the gamma
function in the denominator and increases the exponent of x in the numerator.

Example 3.3. The following is an application of the bivariate M-L integral operator with regard to a logarithm
function to a power function:
5 e
7, ﬁw; (fi)zg(z a)(z -t = -

where @, (B, -..,B,), (P, +,py)s (W1, ..., wn) are parameters in C with Re(a@) > 0 and Re(f)) > 0 for all j and
u > 0 is a real parameter.

Remark 3.7. Setting 7(z) = log(z), Example 3.3 contains a generalized version of Hadamard-type version of
the bivariate M-L integral operator.

Proof. An example of a monotonically growing function on any interval (a, b] is 7(z) = log(z — a), where
7(z) - - is z — a*. Additionally, (z — a)* = e is the function to which we are applying the fractional
integral operator. Thus, applying Theorem 2.2’s finding, we obtain

fiz = (z-a)¥,

Qf:z ~ ek,

Sg Bw; W2 Qf_lf z 82 Bwé Wappz
a N )
_ ol oW g, ot @R
u _E (Uz[»l _ﬁ_ e ’
1- wp 1- wout
5; - 5;
Qo 08apr " e Q12 P8yp rain(Z — OF
_ 5
5 Wi 5, Wi @h)
= Hal‘i_g—wzﬂﬁ‘fi_/; (z - a)¥,
1- wp 1- wout
which is the desired result. O

Example 3.4. By selecting specific parameter values, we can examine the resulting functions and use this to
illustrate the conclusion of Example 3.3.

Setting §=1lLw=wy=1a-= % [7 = % €= 3 with a = 0, we consider the following cases:

1
¢ For u = 3, we have

. 1 -3/2 (1/3)—1/2 (1/3)—(1/2+2/3) -3/2

111 — — — — P —
0E1122/33/2105/(2") = 3] PT1- (1/3)72/3 (1732 + 1-(1/3)23 M3,

whose blue (lower) curve is shown in Figure 4.
» For u = 7, we have

. 2Y73/2 (2/5)71/2 (2/5)"W/2+2/3) -3/2

1;11 . - - - -
0E1122/33/2108 () = 5 1 1- /57 (2/5)743 + 1= @52 (2)*5,

whose red (middle) curve is shown in Figure 4.
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-5-

Figure 4: Graph for Example 3.4.

1
* For = 5, we have

-3/2

ot

- -2/3
/2) + 1- (1/2)—2/3

111 U
0811221331208 (2D =

1]‘3’2[1 __apy

2 1 - (1/2)723
whose green (upper) curve is shown in Figure 4.
When these three functions are plotted together using Maplel8 by considering truncated sums, the graphs

are obtained in Figure 4.
As the value of u increases, the green function (u = %) decreases the slowest, followed by the red function

(u= %), while the blue function (u = %) decreases the fastest.

Theorem 3.5. Consider the complex functions f and h. Then, the integral operator (5) satisfies the following
product rule:

ctgington= £ R[S S U R b
Proof. Using the series formula (3.2) and known results [10,20], we obtain
ad ") = Z ?W“’ PP @h@)
g %%W mio -ak ,fl e}ngggpuﬁmf(Z)%
i;o "h(z)| < g ;W -ak rfl 8]RLIg(kz;ﬁl+£+mf(Z)]
) 20% é i F(Z;rlz;—l)arzgl _/;_;k_ f_l ,;1)2(;).1:321125 PEme )], 0
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Theorem 3.6. Consider the complex functions f and h. Then, the integral operator (5) satisfies the following
chain rule:
I(S + k + D[wi(z - ¢)"F[wa(z - )P i (c-2)m

[(8)I(ak + Bl + &)k!I! asoml@@k + Bl + & + m)

T (dh@))?
()

o BN

ST =@ - F Y Y
k=0 1=0

Zl dh(z)r Pl.l;Pm

Proof. It yields that

&5 ;’; I f (h(z2))]
S d"(foh)| < ST + k+ DI - ak - Bl - &)wfwlp asgrrerm
=T go l:zo T@)I( - ak - Bl & - mkilimi €62 (Dl

¢ d"(f = ) g ir(é +k+ DI - ak - Bl - ®wfw)  (z - c)akBlrem

=2

mo 4z |5 S TE)IA - ak - Bl - & - mk!l'm! T(ak + Bl+ &+ m+1)
_ g d™(f = h) i iF(S +k+ De1l - ak - Bl - g_)[wl(z - O [wy(z - )T (z - )F*m
s A" S5 I(8)m (@k+Bl+E+m) ml

sin(r(ak + Bl+&+m))k!l!

I + k+ DI - ak - Bl - &)[wi(z - ¢)*F[wy(z - )T (¢ - z)™

o G@kepliem m
0 D)7 Grnak+ pie ek

M s

< d™(fe h)| e
PR IR

m
mo 4z k=0

e IS ¢ T+ k+ Dz - O F[wyz - ) (¢ - )"
S @O T kZO I_ZO T(8)@k + Bl + & + m)I(ak + Bl + DK m!

m=0
e T(8 + k + D[wi(z = ) F[wa(z - 0)F] < d"(f > h) (c-z)m
-0 ,EO ,zzo e(8)I(@k + Bl + E)KI! L7 dz"  mi@k+Bl+g+m)
_ 0 aE T(8 + k + D{wi(z = )7 F[wy(z - )] < (c-2)m
=m0 ,ZO ,:ZO T(8)I(ak + Bl + E)k!I! mzzom!(ﬁk + Bl+ & +m)
|5 42 u )"
2 2 il
which is the desired result. U

4 Conclusion

The generalized fractional integral operators in this study are related to the bivariate M-L function in the
kernel. In the process, we have examined a recently defined bivariate M-L and its corresponding integral
operator. Numerous features and consequences of the integral operator are recalled by the series formula.

Then, we have defined the generalized version of integral operator with bivariate M-L function in the
kernel with respect to function 7(z). In the special choices of 7(z), this generalized integral operator contains
the usual, Hadamard, Erdélyi-Kober, Katugampola, and Tempered-type version of the bivariate M-L integral
operator. We have examined the fundamental properties of the general integral operator using series repre-
sentations and conjugation relations.

In the future study, we will define and investigate the Hilfer derivative and integral versions of this
general family.



DE GRUYTER Fractional calculus containing certain bivariate Mittag-Leffler kernel == 17

Funding information: The authors state no funding involved.

Author contributions: Both authors contributed equally to this work.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Not applicable.

References

[11  M.A. Ozarslan and C. Kirt, On a double integral equation including a set of two variables polynomials suggested by Laguerre polynomials
Leibniz rule for fractional derivatives generalised and an application to infinite series, ). Comput. Anal. Appl. 22 (2017), 1198-1207.

[21 M. A. Ozarslan and C. Kiirt, Bivariate Mittag-Leffler functions arising in the solutions of convolution integral equation with 2D-Laguerre-
Konhauser polynomials in the kernel, Appl. Math. Comput. 347 (2019), 631-644.

[3]1 A. Fernandez, C. Kirt, and M. A. Ozarslan, A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus
operators, Comput. Appl. Math. 39 (2020), 200.

[4] A. A Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[5] J. Hadamard, Essai sur laetude des fonctions donnees par leur development de Taylor, ). Math. Pures et Appl. 8 (1892), no. 3, 101-186.

[6] U.N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput. 218 (2011), 860-865.

[71 S. G. Samko, A. A. Kilbas, and O. I. Marichev, fractional Integrals and Derivatives: Theory and Applications, Taylor & Francis,
London, 2002.

[8] C.Li,W.Deng, and L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete
Contin. Dyn. Syst. Ser. B 24 (2019), no. 4, 1989-2015.

[9] A.Fernandez and C. Ustaoglu, On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math. 366 (2020), 112400.

[10] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[11] T.J. Oldham and J. Spanier, The Fractional Calculus, Academic Press, San Diego, 1974.

[12] R. Gorenflo, A. A. Kilbas, F. Mainardi, and . J. Rogosin, M-L Functions, Related Topics and Applications, Springer, Berlin, 2016.

[13] H. M. Srivastava, A. Fernandez, and D. Baleanu, Some new fractional-calculus connections between Mittag-Leffler functions,
Mathematics 7 (2019), no. 6, 485.

[14] A. Erdélyi, An integral equation involving Legendre functions, ]. Soc. Industr. Appl. Math. 12 (1964), no. 1, 15-30.

[15] T.). Osler, Leibniz rule for fractional derivatives generalised and an application to infinite series, SIAM J. Appl. Math. 18 (1970), 658-674.

[16] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat. 5
(2017), no. 44, 460-481.

[17]1 H. M. Fahad and A. Fernandez, Tempered and Hadamard-type fractional calculus with respect to functions, Mediterr. ). Math. 18 (2021),
Art. No. 143.

[18] J. Sousa and E. C. Oliveira, On the W -Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simulat. 60 (2018), 72-91.

[19] A. Fernandez, M. A. Ozarslan, and D. Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput. 354 (2019),
248-265.

[20] L Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.



	1 Introduction
	2 Analysis of the operators containing bivariate M-L function in the kernel
	3 Operators with respect to functions
	4 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


