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Abstract: This study innovates a novel technique of the nonlinear fractional Langevin equation of Hilfer-
Hadamard type, incorporating an initial condition. The research demonstrates that this problem can be
reformulated as an integral equation featuring a Mittag-Leffler function within the kernel. Through rigorous
analysis, we establish the existence and uniqueness of solutions for this problem without imposing a con-
tractive assumption. Furthermore, the study extends these findings to encompass two specific types of frac-
tional differential equations characterized by two fractional derivatives and a variable coefficient. Theoretical
conclusions are supported by the provision of two illustrative examples.
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1 Introduction

Fractional differential equations (FDEs) play a decisive role in addressing practical challenges across various
disciplines such as biology, physics, and electrochemistry [1–6]. Recent advancements in FDE research, parti-
cularly those involving the Caputo or Riemann-Liouville fractional derivative, have shown notable progress
over the past decade. The introduction of the Hadamard derivative [7] by Hadamard in 1892 has provided
a new perspective in this field. Detailed information on the Hadamard derivative can be found in [4,8] and its
associated references. More recently, the Hilfer and Hilfer-Hadamard fractional derivatives have attracted
considerable interest among researchers [9–11], which generalize the Riemann-Liouville derivative. There are
some equations derived from practical problems that have been studied, such as Hilfer-Hadamard type FDEs
[12] and Hilfer-Hadamard FDEs in resistor, inductor, capacitor circuit models [13], etc. For recent developments
in Hilfer-Hadamard FDEs, readers can explore [14–17] and its related references.

Fractional Langevin equations (FLEs) serve as a valuable mathematical framework for characterizing
various phenomena within dynamic systems of complex media. Existing research has concentrated on
exploring FLEs incorporating the Caputo or Riemann-Liouville fractional derivative under diverse boundary
conditions. These FDEs have found applications in disciplines including thermoelasticity, groundwater sys-
tems, and blood flow dynamics [18,19].
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This study investigates a specific FLE incorporating Hilfer-Hadamard derivatives and a variable
coefficient:
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, >a b, 0, and >λ 0, the functions η t( ) and f t x t,( ( )) will be defined subsequently.
The complexity of variable-coefficient functions leads to challenges in directly obtaining a representation

of solutions to (1) and (2), very few papers have considered FLEs with Hilfer-Hadamard fractional derivatives
and variable coefficients. Consequently, to address this gap in the literature, we focus on investigating
a specific nonlinear FLE with Hilfer-Hadamard fractional derivatives:
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Clearly, (1) is the special case of (3).
Integral transforms and fixed point theorems are commonly used methods for dealing with nonlinear

FDEs. For example, in [19], the authors investigated the following nonlinear FLE with antiperiodic boundary
conditions
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where Dα is the Caputo fractional derivative of order α. They transformed the aforementioned problem into
a nonlinear mixed Fredholm-Volterra integral equation, gave the following solution:
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and decided the constants c c,
0 1

and c
2
by boundary value conditions [19, Lemma 3.1]. Moreover, they obtained

the existence and uniqueness of solution under appropriate assumptions on f and a contractive assumption
<Λ 1α β L, ,

[19, Theorem 3.1].
In our paper, we utilize the generalized Mittag-Leffler function Eμ ν, [20] and the Prabhakar integral

operator [21] to define
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and obtain a unique solution for problems (3) and (4) by
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An analytical solution for problems (1) and (2) is derived as a specific instance in Section 3. This approach
differs from the techniques presented in [19]. Our approach enables us to derive a novel representation of the
solution, which can describe more clearly the structure of the solution (Remark 3.1), and brings convenience
for further study of the other properties of the solution, including Hyers-Ulam stability and attractivity, etc.
Moreover, by utilizing the properties of Mittag-Leffler functions, we can study boundary value problems for
corresponding FLEs.

The main contributions of our article are given as follows:
• The general solution for equation (3) is provided using the generalized Mittag-Leffler function, as outlined
in Theorem 4.1.
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• In the absence of a contractive assumption, the existence and uniqueness of solutions are established,
as indicated in Theorem 4.1. This technique can help us remove an indispensable hypothesis similar
to <Λ 1α β L, ,

[19, Theorem 3.1].
• Explicit solutions for two types of initial value problems (IVPs) with a variable coefficient are derived as
specific instances of problems (3) and (4), as demonstrated in problems (22) and (23) and problems (27) and (28).

This article is organized as follows: Section 2 includes definitions and properties that will be referenced
in succeeding sections. Sections 3 and 4 delve into the existence and uniqueness of solutions. Section 5 outlines
the conclusions drawn from the analysis of two types of linear equations with variable coefficients. Finally,
two examples are provided in Section 6 to demonstrate the findings.

2 Preliminaries

Definition 2.1. [4] Let >α 0 and = +n α 1[ ] . The left-sided Hadamard fractional integral and fractional deri-
vative of order α for a function h are defined as follows:
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Lemma 2.1. [4] If < < >α β0 1, 0, < < < ∞a b0 , ∈t a b,( ], then the following statements hold:
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Let C a b,[ ] be the space of continuous functions y on a b,[ ] with the norm = ∈y y tmaxC t a b,‖ ‖ ∣ ( )∣[ ] . For ≤ <ν0 1,
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Clearly, C a b,ν,log
[ ] is a Banach space [4], and =C a b C a b, ,

0,log
[ ] [ ]. The notations � and Cν,log

are used as
abbreviations for C a b,[ ] and C a b,ν,log

[ ], respectively.
We introduce the weighted space

= ∈ ∈− − −+C a b y t C a b y t C a b, , ; , ,γ

α β

γ a

α β

H γ1 ,log

,

1 ,log

,

1 ,log
�[ ] { ( ) [ ] ( ) [ ]}

with the norm =
− − + −y y ymax ,

C C a

α β

H C

,

γ

α β
γ γ

1 ,log

,

1 ,log 1 ,log

�‖ ‖ {‖ ‖ ‖ ‖ }. We abbreviate −C a b,γ

α β

1 ,log

,

[ ] by −C γ

α β

1 ,log

, . Clearly,

⊂− −C a b C a b, , .γ

α β

γ1 ,log

,

1 ,log
[ ] [ ]

Lemma 2.2. [4] Let >ω ω, 0
1 2

, and ∈h Cμ,log
. Then the following statements hold:

=

=

= >

+

−

+ + +

+ +

+ + +

h t h t

h t h t

h t h t for ω ω

,

,

, .

a

ω

a

ω

a

ω ω

a

ω

a

ω

a

ω

a

ω

a

ω ω

1 2

1 2 1 2

1 1

2 1 1 2

� � �

� �

� � �

( )( ) ( )( )

( )( ) ( )

( )( ) ( )( )

Solution of nonlinear Langevin equations  3



Lemma 2.3. [4] Let >ω 0 and ∈y Cν,log
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2.1 Hilfer-Hadamard fractional derivative

Similar to [22], we present a definition of modified Hilfer-Hadamard derivative.

Definition 2.2. The left-sided Hilfer-Hadamard fractional derivative of order ∈ ∈α β0, 1 , 0, 1( ) [ ] for h t( ) is
defined by
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In addition, Lemma 2.6 implies the following result.
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2.2 Mittag-Leffler functions

Definition 2.3. [4,20] Let >ρ σ, 0, ∈z � , the generalized Mittag-Leffler function Eρ σ, is defined by:
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,

, ;

1 1

, ;

1

, ;

1

, 1 ;

, ;

� � � � � � �

� �

�

( ( ))( ) [ ( ( ))( ) ( ( ( ))( ))]

( ( ))

( )

(ii) From Definition 2.2, we infer that

= −

= −

= −

= −
−

⎛
⎝

⎞
⎠

= −

− + − − +

− + −

− +

−

− −

+ + + +

+ +

+

s a t s a t s a a

s a t E

t a

t a
γ α

t

a

λ t a

, , ,

, 0

, 1

,

1

Γ

log

, .

a

α β

H ρ γ λ a

γ α

a

γ

ρ γ λ a

γ

ρ γ λ

a

γ α

a

γ

ρ γ λ α

a

γ α

α λ

α γ α λ

γ ρ

ρ γ λ

,

, ;

1 1

, ;

1

, ;

1 1

, ; ,1

1

,1;

, ;

1

, ;

� � � � � � �

� � �

� �

�

�

( ( ))( ) [ ( ( ))( ) ( ( ( ))( ))]

[ ( ( ))( ) ( )]

( ( ) )

( )
( )

( ) □

Theorem 2.3. Let ∈ρ σ ω, , 0, 1( ), for ∈ −ϕ C γ1 ,log
, then

(i) = =++ +ϕ s t ϕ t ϕ tE E E
a

ω
ρ σ λ ρ σ ω λ ρ σ λ a

ω
, ; , ; , ;

� �[( )( )]( ) ( )( ) ( )( ),
(ii) = −+ ϕ s t ϕ tE E

a

ω
ρ σ λ ρ σ ω λ, ; , ;

� [( )( )]( ) ( )( ), >σ ω,

(iii) = −+ ϕ s t ϕ tE E
a

α β

H ρ σ λ ρ σ α λ

,

, ; , ;
� [( )( )]( ) ( )( ), >σ α,

(iv) = −+ ϕ s t ϕ t λ ϕ tE E
a

α β

H ρ α λ ρ ρ λ

,

, ; , ;
� [( )( )]( ) ( ) ( )( ).
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Proof. Similar to [23, Theorem 6], (i), (ii) can be proved. By (ii), we conclude that

= −

=
=

− + − − +

− +
+ −

−

+ + + +

+

ϕ s t ϕ t ϕ a

ϕ t

ϕ t

E E E

E

E .

a

α β

H ρ σ λ a

γ α

a

γ

ρ σ λ a

γ

ρ σ λ

a

γ α

ρ σ γ λ

ρ σ α λ

,

, ;

1 1

, ;

1

, ;

1

, 1 ;

, ;

� � � �

�

[( )( )]( ) [ ( )( ) ( )( )]

[( )( )]

( )( )

(iv)

∫

= −

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

⎡
⎣−

⎛
⎝

⎞
⎠

⎤
⎦

= −

− + − − +

−

+ + + +

+

ϕ s t ϕ t ϕ a

t
t

ϕ t

t
t

E λ
t

s

ϕ s

s
s

ϕ t λ ϕ t

E E E

E

E

d

d

d

d

log d

.

a

α β

H ρ α λ a

γ α

a

γ

ρ α λ a

γ

ρ α λ

a

α
ρ α λ

a

t

ρ

ρ

ρ ρ λ

,

, ;

1 1

, ;

1

, ;

1

, ;

, ;

� � � �

�

[( )( )]( ) [ ( )( ) ( )( )]

( )( )

( )

( ) ( )( ) □

3 Representation of solutions

In this section, we will study the representation of solutions to IVP (3) and (4). First, similar to [24], we obtain
the following result.

Theorem 3.1. For ∈λ � , >α 0, and < <γ0 1, the following assertions hold:
(i) for ∈ −h C γ1 ,log

, the series ∑ −=
∞

+λ h tk a

α k
0

�( ) ( ) is convergent and

∑ − = −
=

∞

+λ h t h t λ h tE ,

k

a

α k
α α λ

0

, ;
�( ) ( ) ( ) ( )( )

(ii) the operator + →− −+I λ C C:
a

α
γ γ1 ,log 1 ,log

� is invertible and

∑+ = −−

=

∞

+ +I λ h t λ h t .
a

α

k

a

α k1

0

� �( ) ( ) ( ) ( ) (13)

Proof. (i) For ∈ −h C γ1 ,log
, we have

∫

∫

∑ ∑

∑

∑

− = + −

= +
− ⎛

⎝
⎞
⎠

= −
− ⎛

⎝
⎞
⎠

+

= −

=

∞

=

∞

=

∞

−

=

∞

+ −

+ +λ h t h t λ h t

h t

λ

kα

h s

s
s

h t λ

λ

kα α

h s

s
s

h t λ h tE

log

Γ

d

log

Γ

d

.

k

a

α k

k

k

a

kα

a

t

k

k
t

s

kα

a

t

k

k
t

s

kα α

α α λ

0 1

1

1

0

1

, ;

� �( ) ( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )( )

(ii) For ∈ −h C γ1 ,log
, we obtain

∑ ∑ ∑+ − = − + − =
=

∞

=

∞

=

∞
++ + + +I λ λ h t λ h t λ h t h t1 .

a

α

k

a

α k

k

a

α k

k

k

a

α k

0 0 0

1� � � �( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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Similarly, we deduce

∑ − + =
=

∞

+ +λ I λ h t h t ;

k

a

α k

a

α

0

� �( ) ( ) ( ) ( )

therefore, the operator + →− −+I λ C C:
a

α
γ γ1 ,log 1 ,log

�( ) is invertible and (13) holds. □

Theorem 3.2. Let × × →g J: � � � and ⋅ ⋅ ⋅ ∈ −g u v C, , γ1 ,log
1

( ( ) ( )) for any ∈ −u v C, γ1 ,log
1

, then ∈ −x t C γ

α β

1 ,log

,

1

1
1( )

satisfies (3) and (4) if and only if x t( ) satisfies

= + + +x t c t a g s x s x s tE, , , .α γ λ α α α λ a

α β

H, ; , ;

,

1
1

1 1 2

1
1

� �( ) ( ) [ ( ( ) ( ))]( ) (14)

Proof. Let ∈ −x C γ

α β

1 ,log

,

1

1
1 satisfy (3) and (4), then + ∈ ⊂− −+ x t λx t C C

a

α β

H γ

α β

γ

α β,

1 ,log

,

1 ,log

,
1

1

1

2
2

2

2
2

� ( ) ( ) and from Lemma 2.4,
one obtains

+ =− ++ + x t λx t a 0.
a

γ

a

α β

H

1 ,
2

1
1

� �{ [ ( ) ( )]}( ) (15)

Denote

≔ +G t g t x t x t, , ,x a

α β

H

,
1

1

�( ) ( ( ) ( )) (16)

applying +
a

α
2

� to both sides of (3) and taking Lemma 2.9 and (15) into account, we obtain

+ − =+ +x t λx t G t 0.

a

α β

H a

α

x

,
1

1 2

� �( ) ( ) ( )( )

By Lemma 2.8, we find

+ − =+
+ + +x t λ x t G t 0.

a

α β

H a

α

a

α α

x

,
1

1 1 1 2

� � �[ ( ) ( )( ) ( )( )] (17)

By using Lemma 2.4, we have

+ − =− + ++ + +x t λ x t G t a c.
a

γ

a

α

a

α α

x

1
1 1 1 2

� � �{ [ ( ) ( )( ) ( )( )]}( ) (18)

By applying +
a

α
1

� to both sides of (17) and combining with Lemma 2.9 and (18), we obtain

= ⎛
⎝

⎞
⎠ − +

−
+

+ +x t
c

γ

t

a
λ x t G t

Γ

log .

γ

a

α

a

α α

x

1

1
1

1 1 2

� �( )
( )

( )( ) ( )( ) (19)

If x t( ) satisfies (19), then ∈ −x t C γ1 ,log
1

( ) and

= − +− − + + + −
+ + +x t c λ x t G t .

a

γ

a

γ α

a

α α γ

x

1 1 1
1 1

1 1 2
1

� � �( )( ) ( )( ) ( )( )

From Lemma 2.4, it follows that =− ++ x a c
a

γ1
1

�( )( ) , that is (4) holds, thus,

− = − +

= − + ∈

− + − − + − + − + + + −

−

+ + + + +

+

x t x a λ x t G t

λx t G t C .

a

γ α

a

γ

a

γ

a

γ α

a

γ α

a

α α γ

x

a

α

x γ

1 1 1 1 1 1

1 ,log

1
1

1 1 1
1

1
1 1 2

1

2

1

� � � � � �

�

[( )( ) ( )( )] [ ( )( ) ( )( )]

( ) ( )( )

This means ∈ −x C γ

α β

1 ,log

,

1

1
1 and

+ =+ +x t λx t G t .

a

α β

H a

α

x

,
1

1 2

� �( ) ( ) ( )( )

Furthermore,

+ = ∈− + −
−+ + + x t λx t G t C .

a

γ α

a

γ

a

α β

H x γ

1 1 ,

1 ,log

2
2

2
1

1

1

� � �[ ( ) ( )] ( )

From Lemma 2.4, it follows that + =− ++ + x t λx t a 0
a

γ

a

α β

H

1 ,
2

1
1

� �[ ( ) ( )]( ) . Therefore,

+ =+ + λ x t G t ,

a

α β

H a

α β

H x

, ,
2

2
1

1

� �[ ] ( ) ( )

which means that x t( ) satisfies (3). Now, we prove the equivalence of (3) and (4) with (19).

8  Huiwen Wang and Fang Li



Set ≔ ⎛
⎝

⎞
⎠

−
ϕ t log

c

γ

t

a

γ

Γ

1

1

1

( )͠
( )

, then from (19), we have

+ = + +
+ +I λ x t ϕ t G t .

a

α

a

α α

x
1 1 2

� �( ) ( ) ( ) ( )( )͠

By Theorem 3.1 (ii), we infer that

∑

∑

+ = −

= ⎛
⎝

⎞
⎠

⎡
⎣⎢−

⎛
⎝

⎞
⎠

⎤
⎦⎥

+

= ⎛
⎝

⎞
⎠

⎡
⎣−

⎛
⎝

⎞
⎠

⎤
⎦

−

=

∞

−

=

∞

−

+ +I λ ϕ t λ ϕ t

c
t

a

λ

kα γ

c
t

a
E λ

t

a

log

log

Γ

log log ,

a

α

k

k

a

kα

γ

k

t

a

α k

γ

α γ

α

1

0

1

0
1

1

1

,

1 1

1

1

1

1
1

1

� �( ) ( ) ( ) ( ) ( )

( )

͠ ͠

and

∫

∑+ = −

= ⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠

− +

=

∞
+

+ −

+

+ + + +

+

I λ G t λ G t

t

s
E λ

t

s
g s x s x s

s

s
log log , ,

d

.

a

α

a

α α

x

k

a

α k

a

α α

x

a

t
α α

α α α

α

a

α β

H

1

0

1

,

,

1 1 2 1 1 2

1 2

1 1 2

1

1
1

� � � �

�

( ) ( )( ) ( ) ( )( )

[ ] ( ( ) ( ))

Thus, the conclusion holds. □

By Theorems 2.2 (ii) and 2.3 (iii), it is evident that the following conclusions are valid and can be easily
observed.

Remark 3.1.
(i) The function c t a,α γ λ, ;

1
1

� ( ) is a general solution to the homogeneous equation:

+ = ∈+ + λ x t t a b0, , .

a

α β

H a

α β

H

, ,
2

2
1

1

� �[ ] ( ) ( ]

(ii) The function + +g t x t x tE , ,α α α λ a

α β

H, ;

,

1 1 2

1
1

�( ( ) ( )) is a particular solution to the inhomogeneous equation

+ =+ + +λ x t g t x t x t, , .

a

α β

H a

α β

H a

α β

H

, , ,
2

2
1

1
1

1

� � �[ ] ( ) ( ( ) ( ))

Equation (14) shows the structure of solution more clearly than Fredholm-Volterra integral solution
expressed by (5).

4 Existence and uniqueness of solutions

In this section, we denote ≔ −CΩ γ

α β

1 ,log

, .

Theorem 4.1. Let ∈ −g t u t v t C, , γ1 ,log
1

( ( ) ( )) for any ∈ −u t v t C, γ1 ,log
1

( ) ( ) and satisfy

− ≤ − + −∼ ∼∼ ∼g t u t v t g t u t v t l t u t u t l t v t v t, , , , ,
1 2

∣ ( ( ) ( )) ( ( ) ( ))∣ ( )∣ ( ) ( )∣ ( )∣ ( ) ( )∣

where ∈∼∼ −u v C, γ1 ,log
1

and ∈ =l t i 1, 2i �( ) ( ). Then IVP (3) and (4) has a unique solution ∈x t Ω( ) given by (14).

Proof. We define an operator →: Ω Ω� by

= + + +x t c t a g s x s x s tE, , , .α γ λ α α α λ a

α β

H, ; , ;

,

1
1

1 1 2

1
1

� � �( )( ) ( ) [ ( ( ) ( ))]( ) (20)

Obviously, by Theorem 3.2, � is well defined and its fixed point serves as a solution to IVP (3) and (4).
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Note that (18) and by Theorem 2.3 (iii) and Lemma 2.2, we obtain

= − ∈ −+ c t a λ c t a C, , ,

a

α β

H α γ λ α γ λ γ

,

, ; , ; 1 ,log

1
1

1
1

1
1 1

� � �[ ( )] [ ( )]

and

=++ G t G tE E .

a

α β

H α α α λ x α α λ x

,

, ; , ;

1
1

1 1 2 1 2

� [ ( )] ( )

Choosing

≔ + ⎧⎨⎩ +
⎛
⎝

⎞
⎠

⎫⎬⎭
l l

α

α α

b

a
Λ max

Γ

Γ

log , 1 ,

α

1 2

2

1 2

1

� �(‖ ‖ ‖ ‖ )
( )

( )

we can see

⎛
⎝

⎞
⎠ − ≤ ⎛

⎝
⎞
⎠ − + −

≤ + −

− −
+ +

t

a
G t G t

t

a
l t x t x t l t x t x t

l l x x

log log

,

γ

x x

γ

a

α β

H a

α β

H

1 1

1 2

, ,

1 2 Ω

1 1

1
1

1
1

� �

� �

∣ ( ) ( )∣ { ( )∣ ( ) ( )∣ ( )∣ ( ) ( )∣}

(‖ ‖ ‖ ‖ )‖ ‖

͠ ͠

͠

͠

∫

∫

⎛
⎝

⎞
⎠ −

≤ ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣−

⎛
⎝

⎞
⎠

⎤
⎦ ⋅ −

≤

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ +

+
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ⋅ −

≤
+
+ +

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ⋅ −

≤
+

⎛
⎝

⎞
⎠ −

−

− + −

+

−

− −

t

a
x t x t

t

a

t

s
E λ

t

s
G s G s

s

s

l l

α α

t

s

s

a

s

s
x x

l l α γ

α γ α α

b

a

t

a
x x

γ

α γ

t

a
x x

log

log log log

d

log log

Γ

log log

d

Γ Γ

Γ Γ

log log

ΛΓ

Γ

log ,

γ

γ

a

t
α α

α α α

α

x x

t

a

γ
b

a

α

a

t
α γ

α α

α

1

1 1

,

1

1 2

1 2

1 1

Ω

1 2 2
1

2
1

1 2

Ω

1

2
1

Ω

1

1
1 2

1 1 2

1

1 1

2
1

1 2

2

� �

� �

� �

∣( )( ) ( )( )∣

∣ ( ) ( )∣

(‖ ‖ ‖ ‖ )

( )
‖ ‖

(‖ ‖ ‖ ‖ ) ( ) ( )

( ) ( )
‖ ‖

( )

( )
‖ ‖

͠

͠

͠

͠

͠

and

∫

∫

⎛
⎝

⎞
⎠ −

≤

⎛
⎝

⎞
⎠ ⎛

⎝
⎞
⎠ −

≤

⎛
⎝

⎞
⎠ +

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ⋅ −

=
+

+
⎛
⎝

⎞
⎠ ⋅ −

≤
+

⎛
⎝

⎞
⎠ −

−

−

−

−

− −

+
t

a
x t x t

α

t

s
G s G s

s

s

l l

α

t

s

s

a

s

s
x x

l l γ

α γ

t

a
x x

γ

α γ

t

a
x x

log

log

Γ

log

d

log

Γ

log log

d

Γ

Γ

log

ΛΓ

Γ

log .

γ

a

α β

H

t

a

γ

a

t
α

x x

t

a

γ

a

t
α γ

α

α

1

,

1

2

1

1

1 2

2

1 1

Ω

1 2
1

2
1

Ω

1

2
1

Ω

1

1
1

1

2

1

2
1

2

2

� � �

� �

� �

∣ [( )( ) ( )( )]∣

( )
∣ ( ) ( )∣

(‖ ‖ ‖ ‖ )

( )
‖ ‖

(‖ ‖ ‖ ‖ ) ( )

( )
‖ ‖

( )

( )
‖ ‖

͠

͠

͠

͠

͠

Hence,

− ≤
+

⎛
⎝

⎞
⎠ −x x

γ

α γ

b

a
x x

ΛΓ

Γ

log .

α

Ω

1

2
1

Ω

2

� �‖ ‖
( )

( )
‖ ‖͠ ͠

10  Huiwen Wang and Fang Li



Furthermore, we have

∫

∫

⎛
⎝

⎞
⎠ −

≤ ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠ ⋅ −

≤
+

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ +

+
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ −

=

⎛
⎝

⎞
⎠ +

+ +
⎛
⎝

⎞
⎠ −

≤
+

⎛
⎝

⎞
⎠ −

−

− + −

+

−

− + −

t

a
x t x t

t

a

t

s
E λ

t

s
G s G s

s

s

γ

α γ

l l

α α

t

s

s

a
s x x

α l l

α α

γ

α γ

t

a
x x

γ

α γ

t

a
x x

log

log log log

d

ΛΓ

Γ

log log

Γ

log log d

ΛΓ log

Γ

Γ

Γ 2

log

Λ Γ

Γ 2

log ,

γ

γ

a

t
α α

α α α

α

x x

t

a

γ
b

a

α

a

t
α α γ

b

a

α

α

α

1

2 2

1 1

,

1

2
1

1

1 2

1 2

1 1

Ω

2 1 2

1 2

1

1
1

2

Ω

2

1

1
1

2

Ω

1

1
1 2

1 1 2

1

1 1

2 2
1

1

2

2

� �

� �

� �

� �

∣( )( ) ( )( )∣

[ ] ∣ ( ) ( )∣

( )

( )

(‖ ‖ ‖ ‖ )

( )
‖ ‖

( ) (‖ ‖ ‖ ‖ )

( )

( )

( )
‖ ‖

( )

( )
‖ ‖

͠

͠

͠

͠

͠

and

∫

∫

⎛
⎝

⎞
⎠ −

≤

⎛
⎝

⎞
⎠ ⎛

⎝
⎞
⎠ ⋅ −

≤
+

⎛
⎝

⎞
⎠ +

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ −

≤
+

+
⎛
⎝

⎞
⎠ −

≤
+

⎛
⎝

⎞
⎠ −

−

−

−

−

− + −

+
t

a
x t x t

α

t

s
G s G s

s

s

γ

α γ

l l

α

t

s

s

a
s x x

l l γ

α γ

t

a
x x

γ

α γ

t

a
x x

log

log

Γ

log

d

ΛΓ

Γ

log

Γ

log log d

Λ Γ

Γ 2

log

Λ Γ

Γ 2

log .

γ

a

α β

H

t

a

γ

a

t
α

x x

t

a

γ

a

t
α α γ

α

α

1

,

2 2

1

2

1

1

2
1

1

1 2

2

1 1

Ω

1 2
1

1
1

2

Ω

2

1

1
1

2

Ω

1

1
1

1

2

1

2 2
1

2

2

� � �

� �

� �

� �

∣ [( )( ) ( )( )]∣

( )
∣ ( ) ( )∣

( )

( )

(‖ ‖ ‖ ‖ )

( )
‖ ‖

(‖ ‖ ‖ ‖ ) ( )

( )
‖ ‖

( )

( )
‖ ‖

͠

͠

͠

͠

͠

Hence,

− ≤
+

⎛
⎝

⎞
⎠ −x x

γ

α γ

b

a
x x

Λ Γ

Γ 2

log .

α

2 2

Ω

2

1

1
1

2

Ω

2

� �‖ ‖
( )

( )
‖ ‖͠ ͠

Through the process of induction, it can be inferred that

− ≤
+

⎛
⎝

⎞
⎠ −x x

γ

kα γ

b

a
x x

Λ Γ

Γ

log .

k k

k kα

Ω

1

1
1

Ω

2

� �‖ ‖
( )

( )
‖ ‖͠ ͠ (21)

When k is large enough, the right-hand side of (21) is less than − ∈L x x L 0, 1
Ω

‖ ‖ ( ( ))͠ . In view of the general-
ized Banach fixed point theorem, � possesses a unique fixed point ∈x Ω satisfying (14). □

Set = − ++G t η t x t f t x t,x a

α β

H

,
1

1

�( ) ( ) ( ) ( ( )) and ∈η t �( ) , we conclude an immediate consequence of
Theorem 4.1.

Theorem 4.2. Let ∈ −f t x t C, γ1 ,log
1

( ( )) for any ∈ −x t C γ1 ,log
1

( ) and satisfy

− ≤ − ∈ −f t x t f t x t l t x t x t x x C, , , , ,γ1 1 ,log
1

∣ ( ( )) ( ( ))∣ ( )∣ ( ) ( )∣͠ ͠ ͠

where ∈l t
1

�( ) . Then IVP (1) and (2) has a unique solution ∈x t Ω( ) .
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Corollary 4.1. Let ∈ −f t C γ1 ,log
1

( ) . Then IVP

⎧
⎨
⎩

+ = ∈

=− +

+ +

+

λ x t f t t a b

x a c

, , ,

,

a

α β

H a

α β

H

a

γ

, ,

1

2
2

1
1

1

� �

�

[ ] ( ) ( ) ( ]

( )( )

has a unique solution ∈ −x t C γ

α β

1 ,log

,

1

1
1( ) given via

= + +x t c t a f s tE, .α γ λ α α α λ, ; , ;
1

1
1 1 2

�( ) ( ) [ ( )]( )

For ∈ −x t C γ

α β

1 ,log

,

1

1
1( ) , note that the fact + =− ++ + λ x a 0

a

α

a

α β

H

1 ,
2

1
1

� �[ ( ) ]( ) , it is evident that

+ = ∈+ + λ x t f t t a b, ,

a

α β

H a

α β

H

, ,
2

2
1

1

� �[ ] ( ) ( ) ( ]

and

+ = ∈+ +x t λx t f t t a b, ,

a

α β

H a

α,
1

1 2

� �( ) ( ) ( ) ( ]

are equivalent, and this leads to the following conclusion.

Corollary 4.2. Let ∈ −f t C γ1 ,log
1

( ) . Then IVP

⎧
⎨
⎩

+ = ∈

=− +

+ +

+

x t λx t f t t a b

x a c

, , ,

,

a

α β

H a

α

a

γ

,

1

1
1 2

1

� �

�

( ) ( ) ( ) ( ]

( )( )

has a unique solution ∈ −x t C γ

α β

1 ,log

,

1

1
1( ) given by

= + +x t c t a f s tE, .α γ λ α α α λ, ; , ;
1

1
1 1 2

�( ) ( ) [ ( )]( )

5 Special cases

By the results from Section 4, explicit solutions can be derived for the following two kinds of Hilfer-Hadamard-
type IVPs with a variable coefficient.

Theorem 5.1. Let ∈η t �( ) and ∈ −f t C γ1 ,log
1

( ) . Then problem

⎧
⎨
⎩

+ + = ∈

=− +

+ + +

+

λ x t η t x t f t t a b

x a c

, , , 22

, 23

a

α β

H a

α β

H a

α β

H

a

γ

, , ,

1

2
2

1
1

1
1

1

� � �

�

[ ] ( ) ( ) ( ) ( ) ( ] ( )

( )( ) ( )

has a unique solution ∈ −x t C γ

α β

1 ,log

,

1

1
1( ) represented by

∑= ⎛
⎝

⎞
⎠ + − ⋅

−

=

∞
++x t

c

γ

t

a
η λc t a f tE E

Γ

log 1 , ‒ .

γ

a

α

k

k
α α λ

k
α γ λ α α λ

1

1

0

1

, ; , ; , ;

1

1

1 2 1
1

1 2

� �( )
( )

( ) [( )( )] { ( ) ( )( )} (24)

Proof. It follows from Theorem 4.1 that

= + − + ∈+ −+x t c t a η t x t f t CE,α γ λ α α α λ a

α β

H γ

α β

, ; , ;

,

1 ,log

,

1
1

1 1 2

1
1

1

1
1

� �( ) ( ) [ ( ) ( ) ( )] (25)

is a unique solution to problem (22) and (23).

By applying +
a

α β

H

,
1

1

� to (25) and writing = +y t x t
a

α β

H

,
1

1

�( ) ( ), one obtains

= + − ⋅ ⋅ + ⋅++y t c t a η y f tE, .

a

α β

H α γ λ α α α λ

,

, ; , ;

1
1

1
1

1 1 2

� �( ) { ( ) [ ( ) ( ) ( )]( )}
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By Theorems 2.2 and 2.3, we obtain

= − + − ⋅ ⋅ + ⋅y t λc t a η y f tE, .α γ λ α α λ, ; , ;
1

1
1 2

�( ) ( ) [ ( ) ( ) ( )]( ) (26)

Let

⎧
⎨
⎩

= − +
= − ⋅ ⋅ =−

y t λc t a f t

y t y t η y t n

E

E

,

, 1, 2, …,

α γ λ α α λ

n α α λ n

0
, ; , ;

0
, ;

1

1
1

1 2

1 2

�( ) ( ) ( )

( ) ( ) [ ( ) ( )]( )

then we find

∑= − ⋅ − +
=

y t η λc t a f tE E1 , .
n

k

n

k
α α λ

k
α γ λ α α λ

0

, ; , ; , ;
1 2 1

1
1 2

�( ) ( ) [( )( )] { ( ) ( )}

Hence,

∑= = − ⋅ − +
→∞ =

∞

y t y t η λc t a f tE Elim 1 , ,

n
n

k

k
α α λ

k
α γ λ α α λ

0

, ; , ; , ;
1 2 1

1
1 2

�( ) ( ) ( ) [( )( )] { ( ) ( )}

which gives an explicit solution to (26). This combining with (25) leads to (24). □

Theorem 5.2. Let ∈δ t �( ) and ∈ −f t C γ1 ,log
1

( ) . Then problem

⎧
⎨
⎩

+ + = ∈

=− +

+ +

+

δ t λ x t f t t a b

x a c

, , , 27

, 28

a

α β

H a

α β

H

a

γ

, ,

1

2
2

1
1

1

� �

�

( ( ))( ) ( ) ( ) ( ] ( )

( )( ) ( )

has a unique solution ∈ −x t C γ

α β

1 ,log

,

1

1
1( ) of the form

∑= + − ⋅
=

∞

+ +x t c t a δ f tE, .α γ λ α α λ

k

a

α k

a

α

, ; , ;

0

1
1

1 1

2 2

� � �( ) ( ) ( ( )) ( ) (29)

Proof. Clearly, (27) can be rewritten as follows:

+ + + = ∈+ + +λ x t δ t x t λδ t x t f t t a b, , .

a

α β

H a

α β

H a

α β

H

, , ,
2

2
1

1
1

1

� � �( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ]

Setting

≔ − − ++ +g t x t x t δ t x t λδ t x t f t, , ,

a

α β

H a

α β

H

, ,
1

1
1

1

� �( ( ) ( )( )) ( )( )( ) ( ) ( ) ( )

it follows from (19) and Theorem 4.1 that problems (27) and (28) have a unique solution ∈ −x t C γ

α β

1 ,log

,

1

1
1( ) given by

= ⎛
⎝

⎞
⎠ − + − + +

−
+

+ + +x t
c

γ

t

a
λ x t δ t λ x t f t

Γ

log .

γ

a

α

a

α α

a

α β

H

1

1

,

1

1 1 2
1

1

� � �( )
( )

( )( ) [ ( )( ) ( ) ( )] (30)

By applying +
a

α β

H

,
1

1

� to both sides of (30), one obtains

+ = − + ++ + +x t λx t δ t λ x t f t .

a

α β

H a

α

a

α β

H

, ,
1

1 2
1

1

� � �( ) ( ) [ ( )( ) ( ) ( )] (31)

Let = ++y t λ x t
a

α β

H

,
1

1

�( ) ( ) ( ), then y belongs to −C γ1 ,log
1

and satisfies

= − ++y t δ t y t f t .
a

α
2

�( ) [ ( ) ( ) ( )] (32)

Let

⎧
⎨
⎩

=

= + − ⋅ ⋅ =−

+

+

y t f t

y t y t δ y t n

,

, 1, 2, …,

a

α

n a

α

n

0

0 1

2

2

�

�

( ) ( )( )

( ) ( ) [ ( ) ( )]( )
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we find

∑= − ⋅
=

+ +y t δ f t1 .
n

k

n

k

a

α k

a

α

0

2 2

� �( ) ( ) ( ( )) ( )

Then the explicit solution y t( ) to equation (32) is obtained as a limit of y t
n

{ ( )}:

∑= − ⋅
=

∞

+ +y t δ f t1 .

k

k

a

α k

a

α

0

2 2

� �( ) ( ) ( ( )) ( )

Hence,

∑+ = − ⋅
=

∞

+ + +x t λx t δ f t .

a

α β

H a

α

k

a

α k,

0

1
1 2 2

� � �( ) ( ) ( ( ) ) ( )

It follows from Corollary 4.2 and Theorem 2.3 that

∑

∑

= + − ⋅

= + − ⋅

+
=

∞

=

∞

+

+ +

x t c t a δ f t

c t a δ f t

E

E

,

, 1 .

α γ λ α α α λ

k

a

α k

α γ λ α α λ

k

k

a

α k

a

α

, ; , ;

0

, ; , ;

0

1
1

1 1 2

2

1
1

1 1

2 2

� �

� � �

( ) ( ) ( ( ) ) ( )

( ) ( ) ( ( )) ( )
□

When ≡ ≠δ t δ 0( ) ( ) is a constant, we obtain the following conclusion.

Theorem 5.3. Let ∈ −f t C γ1 ,log
1

( ) . Then problem

⎧
⎨
⎩

+ + = ∈

=− +

+ +

+

δ λ x t f t t a b

x a c

, , ,

a

α β

H a

α β

H

a

γ

, ,

1

2
2

1
1

1

� �

�

( )( ) ( ) ( ) ( ]

( )( )
(33)

has a unique solution ∈ −x t C γ

α β

1 ,log

,

1

1
1( ) represented by

= +x t c t a f tE E, .α γ λ α α λ α α δ, ; , ; , ;
1

1
1 1 2 2

�( ) ( ) ( )( )

Proof. By using Theorem 3.1(i), we have

∑ ∑− = − − =
=

∞
+

=

∞

+ +δ f t
δ

δ f t f tE
1

.

k

k

a

α k

k

a

α k
α α δ

0

1

1

, ;

2 2

2 2

� �( ) ( ) ( ) ( ) ( ) ( )( )

Now the result follows from Theorem 5.2 ( =δ t δ( ) ). □

6 Applications

Example 6.1. Consider the following IVP:

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎡
⎣⎢

+ ⎤
⎦⎥

=
+

+ ⋅ + ∈

=

−

+

+ +
+

+

+

x t
t x t

x t

t x t t t b

x

3

1

log , 1, , 34

1 1. 35

H H

H

H

1

1

10

,

1

5

1

1

2

,

1

3

2

1

,

1

,

1

1

3

1

2

1

3

1

2

1

3

1

3� �
�

�

�

( )
∣ ( )∣

∣ ( )∣
( ) ( ) ( ] ( )

( )( ) ( )

Taking = = = = = =α α β β λ c, , , , 3, 1
1

1

2
2

1

10
1

1

3
2

1

5

, and

=
+

+ + ∈ ∈−g t u t v t
t v t

v t
t u t t t b u v, ,

1

log , 1, , , ,

2

1

3 �( ( ) ( ))
∣ ( )∣

∣ ( )∣
( ) ( ) ( ]
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we can see

− ≤ − + − ∈∼ ∼ ∼∼ ∼ ∼g t u t v t g t u t v t t u t u t t v t v t u v u v, , , , , , , , .

2 �∣ ( ( ) ( )) ( ( ) ( ))∣ ∣ ( ) ( )∣ ∣ ( ) ( )∣

By Theorem 4.1, problems (34) and (35) has a unique solution ∈x t C
,log

,

1

3

1

2

1

3( ) .

Example 6.2. Consider the following IVP:

⎧

⎨
⎪

⎩
⎪

⎡
⎣⎢

+ ⎤
⎦⎥

+ = + + ∈

=

−

+

+ + +

+

x t t x t t x t t t b

x

2 2 cos log 1 log , 1, , 36

1 2. 37

H H H
1

1

5

,

1

8

1

1

3

,

1

4

1

1

3

,

1

4

1

1

2

1

2

1

4� � �

�

( ) ( ) (( ) ( ) ) ( ) ( ] ( )

( )( ) ( )

Taking =α
1

1

3

, =α
2

1

5

, =β
1

1

4

, =β
2

1

8

, =η t t( ) , =λ 2, =c 2, and

= + + ∈ ∈−f t x t t x t t t b x, 2 cos log 1 log , 1, , ,

1

2

1

4 �( ( )) (( ) ( ) ) ( ) ( ]

we can see

− ≤ − ∈f t x t f t x t t x t x t x x, , 2 log , , .

1

2 �∣ ( ( )) ( ( ))∣ ( ) ∣ ( ) ( )∣͠ ͠ ͠

Hence, from Theorem 4.2, problems (36) and (37) has a unique solution ∈x t C
,log

,

1

2

1

3

1

4( ) .
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