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Abstract: This study innovates a novel technique of the nonlinear fractional Langevin equation of Hilfer-
Hadamard type, incorporating an initial condition. The research demonstrates that this problem can be
reformulated as an integral equation featuring a Mittag-Leffler function within the kernel. Through rigorous
analysis, we establish the existence and uniqueness of solutions for this problem without imposing a con-
tractive assumption. Furthermore, the study extends these findings to encompass two specific types of frac-
tional differential equations characterized by two fractional derivatives and a variable coefficient. Theoretical
conclusions are supported by the provision of two illustrative examples.
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1 Introduction

Fractional differential equations (FDEs) play a decisive role in addressing practical challenges across various
disciplines such as biology, physics, and electrochemistry [1-6]. Recent advancements in FDE research, parti-
cularly those involving the Caputo or Riemann-Liouville fractional derivative, have shown notable progress
over the past decade. The introduction of the Hadamard derivative [7] by Hadamard in 1892 has provided
a new perspective in this field. Detailed information on the Hadamard derivative can be found in [4,8] and its
associated references. More recently, the Hilfer and Hilfer-Hadamard fractional derivatives have attracted
considerable interest among researchers [9-11], which generalize the Riemann-Liouville derivative. There are
some equations derived from practical problems that have been studied, such as Hilfer-Hadamard type FDEs
[12] and Hilfer-Hadamard FDEs in resistor, inductor, capacitor circuit models [13], etc. For recent developments
in Hilfer-Hadamard FDES, readers can explore [14-17] and its related references.

Fractional Langevin equations (FLEs) serve as a valuable mathematical framework for characterizing
various phenomena within dynamic systems of complex media. Existing research has concentrated on
exploring FLEs incorporating the Caputo or Riemann-Liouville fractional derivative under diverse boundary
conditions. These FDEs have found applications in disciplines including thermoelasticity, groundwater sys-
tems, and blood flow dynamics [18,19].
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This study investigates a specific FLE incorporating Hilfer-Hadamard derivatives and a variable
coefficient:
a DD+ 21x (1) + )DL (t) = £(¢, x(1),  t € (a,b], @

(T = ¢, )

where0 < a; <y, <a; <y, a,b>0,and A > 0, the functions n(t) and f(t, x(t)) will be defined subsequently.

The complexity of variable-coefficient functions leads to challenges in directly obtaining a representation
of solutions to (1) and (2), very few papers have considered FLEs with Hilfer-Hadamard fractional derivatives
and variable coefficients. Consequently, to address this gap in the literature, we focus on investigating
a specific nonlinear FLE with Hilfer-Hadamard fractional derivatives:

# DD+ A1x(0) = g8, x(0), yDEPX(D),  t € (a,b], 3)
(T0@h) = c. 4)

Clearly, (1) is the special case of (3).

Integral transforms and fixed point theorems are commonly used methods for dealing with nonlinear
FDEs. For example, in [19], the authors investigated the following nonlinear FLE with antiperiodic boundary
conditions

DB(DT + Mx(t) = f(t,x(t)), t€(0,1),0<a<1,1<p=<2,
x(0) + x(1) = 0, D% (0) + D%(1) = 0, D*x(0) + D%x(1) = 0,

where D¢ is the Caputo fractional derivative of order a. They transformed the aforementioned problem into
a nonlinear mixed Fredholm-Volterra integral equation, gave the following solution:

Clta Czta+1

+ , (5)
I(a+1) T(a+2)

X(@) = IUFFC, X()O) = AIX(C)(E) + ¢o +

and decided the constants ¢, g and ¢ by boundary value conditions [19, Lemma 3.1]. Moreover, they obtained
the existence and uniqueness of solution under appropriate assumptions on f and a contractive assumption
Agpr <119, Theorem 3.1].

In our paper, we utilize the generalized Mittag-Leffler function E,, [20] and the Prabhakar integral
operator [21] to define

Euv; i(t, 8) = [logé]v_lEy,vl—A[ logély l, (6)
(oo t] s)419()
a0 = [[10g] Bl 2 08 [*as, ™
and obtain a unique solution for problems (3) and (4) by
X(8) = s A, @) + [Eayarvay 1805, X(5), 5D X(S)I(D). ®)

An analytical solution for problems (1) and (2) is derived as a specific instance in Section 3. This approach
differs from the techniques presented in [19]. Our approach enables us to derive a novel representation of the
solution, which can describe more clearly the structure of the solution (Remark 3.1), and brings convenience
for further study of the other properties of the solution, including Hyers-Ulam stability and attractivity, etc.
Moreover, by utilizing the properties of Mittag-Leffler functions, we can study boundary value problems for
corresponding FLEs.

The main contributions of our article are given as follows:

* The general solution for equation (3) is provided using the generalized Mittag-Leffler function, as outlined
in Theorem 4.1.
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* In the absence of a contractive assumption, the existence and uniqueness of solutions are established,
as indicated in Theorem 4.1. This technique can help us remove an indispensable hypothesis similar
to Agpr < 1[19, Theorem 3.1].

« Explicit solutions for two types of initial value problems (IVPs) with a variable coefficient are derived as
specific instances of problems (3) and (4), as demonstrated in problems (22) and (23) and problems (27) and (28).

This article is organized as follows: Section 2 includes definitions and properties that will be referenced
in succeeding sections. Sections 3 and 4 delve into the existence and uniqueness of solutions. Section 5 outlines
the conclusions drawn from the analysis of two types of linear equations with variable coefficients. Finally,
two examples are provided in Section 6 to demonstrate the findings.

2 Preliminaries

Definition 2.1. [4] Let a > 0 and n = [a] + 1. The left-sided Hadamard fractional integral and fractional deri-
vative of order a for a function h are defined as follows:

a-1
logi] 1G] dr, t>a,
T T

t
1
TE0 = 15 |

t
. _ d n a _ 1 i n L n—a+1M
(DLRY() = [tE] (TEMWO = 0 a)[t dt] {[logr] —dr, > a

Lemma 2.1.[4] If0<a<1,8>0,0<a<b <o, tE (a,b], then the following statements hold:

J Z{logé]/H - F(Z(—f)ﬁ)[lo é ]a+ﬁ71
= % logé]ﬁ—aﬂ’ boa

)@
1 —
Oga

bl

t)f!
Dg+[ log E]

1
I'd - a)

Dg+1 =

t a-1
s Dg+[ 10g E] =0.

Let C[a, b] be the space of continuous functions y on[a, b] with the norm |ly||c = max;efqply(t)|. For0 < v <1,
we denote the weighted space

£V
Cvgla, b] = {y € C(a, b]; [IOg E] y(t) € Cla,b]} and H.YHCV,log = zIen[g)}f]

logél y(t)‘ . 9

Clearly, Cyogla, b] is a Banach space [4], and Coogla, b] = C[a, b]. The notations C and C,o; are used as

abbreviations for C[a, b] and C, 1o¢[a, b], respectively.
We introduce the weighted space

il ogla, b] = (0) € Cioyiogla, Bl; yDEPY(E) € Cioytogla, b,
with the norm [[Yflges, = max{{lyllg., DYl 1} We abbreviate C*6 | .[a, b] by C[*% . Clearly,

1P 1ogl@, b] C Ciyogla, b].

Lemma 2.2. [4] Let wy, w; > 0, and h € Cy 4. Then the following statements hold:
(T T Fh)(6) = (T 3 h)(0),
(DAT () = h(d),
(DET #h)(®) = (T 3 h)(0),  for wi> ws.
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Lemma 2.3. [4] Let w > 0 and y € C, qq.
(D) Ifv < w, then (T 2y)(t) € C.
(@) Ifv> w, then (J 2y)(t) € Cy-wlog-

Lemma 2.4. Let w € (0,1) and y € Cyog, if w > v, then

(J @y)a) = Lim (T 2y)(O) = 0.

Proof. From the definition of 7%:, we have

. [ [ t w-l[ s)” ds
[RENGIE WI ogt| (03] <
- (10)
= (logt - loga)w-v . W|W||Cvlog
-0, t—-a. u
Lemma 2.5. [4] Let w € (0,1). If y € Cy105 and J 5y € Cy o, then
(Tgya(, ¢ ]w‘l
W W = — -
(T #Dgy)) = y(t) T(w) log—|

2.1 Hilfer-Hadamard fractional derivative
Similar to [22], we present a definition of modified Hilfer-Hadamard derivative.

Definition 2.2. The left-sided Hilfer-Hadamard fractional derivative of order a € (0, 1), § € [0, 1] for h(t) is
defined by

DY) = DT @) - (T h)@)],  t € (a, b,

wherey = a + f(1 - a).
Lemma 2.6. If0 < a,w <1, B € [0, 1], then

B
#Dq’

[10g%]y_1 ](t) =0, t>aq,

t

w-a-1
Mloga] , t>a,w>).

w-1
a,p i -
1D loga] ](t) o0

Proof. From Lemma 2.1, we deduce that

y-1 y-1 y-1
HDZ’ﬁ“log%] ](t) = Z)fli’”“[j}l?’ logé] - [jiiy[logé] ](a*) =

4D [10g }(t) =D Vm[Jl V[log [Jl y log— ] (a”)
_ F(w) 1 y+a ]w—y
Tw+1- y) [log
r(w) t w-a-1

=F(w—a) 0 a

In addition, Lemma 2.6 implies the following result.
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y-1
Lemma 2.7. For a € (0,1) and B € [0,1), ifh € Cf_’fllog, then Hﬂgxﬂh(t) = 0 if and only if h(t) = d[logél ,
where d is an arbitrary constant.

Lemma 2.8. For h € Ciy1og, yD LT Lh(E) = h(t).

Proof. By Lemmas 2.4 and 2.2, we infer that

HD TG = D UT " WO - (T (@)
= DL IS W] = h@). -

Lemma 2.9. Ifh € Cf_’fjlog, then

1}’ +
T Dh(t) = h(o) - 2 )(a)[ ]

I(y)

Proof. Since h € Cf_”;log, we can see that h € (-0 and HDZLBh(t) € Ci-y,105, then
I0NT RO - (T2"h)@)] € CL 1g
and
{T0N(T (O = (T "h)@)]ia) = 0. ()
From Lemma 2.5, it follows that
T D" T ) = (T " )@")] = (T W(E) = (T h) (@),
thus
T 4uDh(®) = TLO NI O - (T h) @)
= DT T T h)O) - (T3 h)(a)]
= D;JJ;V*“D;J*“[(J;Vh)(t) - (T "m)(@)]
= DT DO - (T "))

T @) eyt
“hO -y (%% 0
Theorem 2.1. Let a € (0,1), € [0,1). Then g € Cf-’lj,mg if and only if
ty?!
80 = T 50)0 + log ] 12

where ¢ € G- 1oy and ¢ is an arbitrary constant.

Proof. Let g € Cf_’ﬁlog, there exists ¢(t) € Ci-,105 such that (;D'g)(t) = (t), then T Ly DI g(t) = T %o(t).
By Lemma 2.9, we have
(T o'8)a *)[ ]

J ey DePg(t) = g(t) - )

()
I(y)

y-1
Thus g(t) = J 5(t) + c[logé] , Where ¢ =

T9a)

If g satisfies (12), then (D3 g)(t) = ¢(t) and )
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2.2 Mittag-Leffler functions

Definition 2.3. [4,20] Let p, 6 > 0, z € C, the generalized Mittag-Leffler function E, ; is defined by:

E,2)=Y—.
po®) = 2 Tk + o)

Lemma 2.10. [4,20] Let p € (0,1), 0 > 0, E, 5(-) is nonnegative and for any z < 0:
1 1

Eyo(2) € —

Epp(2) £ T I(o)

T(p)’

Similar to [20], we obtain the following conclusions.

Lemma 2.11. For p,0,w > 0, and A > 0,

jzj*[ap,o; A, m)](t) = Ep,a+w; AL, a),
Df:*[gp,a; s, D)) = 8p,o—w; (ta), o>w.

Theorem 2.2. For p, 0 > 0, and w > 0, the following formulas hold:
@ HDZLB[Sp,c; A(s, W](t) = Epo-a; At, ), for o> a,
(i) gDEpy; (s, DNE) = -2y, i(t, @).

Proof. (i) Note that 7.-"(Ey: 1(5, ) = Ep ooy, 2(t, @), then T H(Ep g 1(5, )@Y = Epgary, A, @) = 0.
Now we arrive at
1D (Ep 5 (5, ) = DLV LT (Ep o 45, )E) = (T 5 (Epo; 2(5, A))@))]
= Z),ll:ym(gp,ml—y; A8, a))

= Sp,o—a; AL, a).
(ii) From Definition 2.2, we infer that
aD(Epy 15, )0 = DL LT LN Epys 25, IE) = (T (Epys a5, A))@))]

= DLV UTENEy: A5, A))(E) = Eq1(0)]
= DNy At @) - 1)

=D,
) tyP1

= Eqy-a; AL, @) Iy - a) OgE

= —)lsp’y; At a). O

Theorem 2.3. Let p, 0, w € (0,1), for ¢ € Cy-y10g, then
D T ¢l(Epo; 20)(SI() = (Ep,grw; 20)(8) = (Epo; 2T 9O,
(i) DG[(Epo; :9)(S)IE) = (Epo-w; 20)(0), 0 > w,

({t)) DI [(Epo; 1)) = Epo-a 19)(D), 0> @,
@) gD (Bpa :9)SE) = $(1) = AEp; 20)(0).
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Proof. Similar to [23, Theorem 6], (i), (ii) can be proved. By (ii), we conclude that

1D 1By )OI = D LT By 19)O) = T (B 19)(@)]
= D (B 001y 19)(O)]
= (Bp.o-c; 19)(0).

(iv)
D 1B 9SO = D™ LT o By ,)(O) = T o (Bp s 19)(@)]
d
= [td—t]j}z:a(Ep,a; A¢)(t)
t
(e (e [A 100 L] |22
_[tdt]J:Ep[ A[logs] ] s

= 0(0) = A(Ep,p; 20)(0). O

3 Representation of solutions

In this section, we will study the representation of solutions to IVP (3) and (4). First, similar to [24], we obtain
the following result.

Theorem 3.1. For A € R, a > 0, and 0 < y < 1, the following assertions hold:
(i) for h € Ci-yog, the series Yi_o(-AT %)¥h(t) is convergent and

2 (AT 8)RR(E) = h(t) = A(Eqq 2h)D),
k=0

(i) the operator I+ AJ o+ : Ci-y1og = Ci-plog IS invertible and

[

I+ AT W) = Y (-AT “*h(D). (13)
k=0
Proof. (i) For h € Cy-y1o;, We have
2 (FAT EORh(t) = h(t) + Y (~D*Teh(0)
k=0 k=1
; ka-1
t (—A)k[log—]
_ § h(s)
=R+ -a[ k; T(ka) s &
. ¢ ka+a-1
t o (1) [logf] h
_ _ s (s)
=h®) A{go I'tka + a) S ds

= h(t) - A(Ea,a; )Lh)(t)

(ii) For h € Cy-y,105, We obtain

T+ AT Y (AT LRR@) = Y (AT LR + Y (“DFAT %Y h(e) = h(0).
k=0 k=0 k=0
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Similarly, we deduce
2 (FAT SR + AT 2H(t) = h(t);
k=0

therefore, the operator (I + AJ 5:) : Ci-y,106 > Ci-10g is invertible and (13) holds. O

Theorem 3.2. Let g: J xR xR = R and g(;, u(-), v(-)) € G-y, 105 for any u,v € Cy-y, 1o, then x(t) € Cla_l’yfflog

satisfies (3) and (4) if and only if x(t) satisfies

X(8) = €8y it @) + [Eqyayea; 28(S, X(5), gD X(s)]1(D). (14)

Proof. Let x € Cf_l’)f}mg satisfy (3) and (4), then HZ)Zl’ﬂ X(t) + Ax(t) € Cf_z’ylj Yog C Cla_z’yfﬁog and from Lemma 2.4,
one obtains

(TS0 Px(6) + xOlia*) = 0. (15)
Denote
Gi(t) = g(t, x(t), yDEPx (1)), (16)

applying .7 %% to both sides of (3) and taking Lemma 2.9 and (15) into account, we obtain
#D () + Ax(t) - (TEG() = 0.
By Lemma 2.8, we find
#DPIx() + AT @) - (T WG ()] = 0. a7

By using Lemma 2.4, we have

(T IX(O) + AT 800 - (TE“GHOI)a) = c. (18)
By applying Z& to both sides of (17) and combining with Lemma 2.9 and (18), we obtain
c t it a
x(t) = r(yl)[logg] = AT 2x)(0) + (T " “G)(D). 19)

If x(t) satisfies (19), then x(t) € Ci-), 1o and
(T 00 = ¢ = AT 00 + (T 6.
From Lemma 2.4, it follows that (J ;:le)(w) = ¢, that is (4) holds, thus,
D, (T 0®) = (T2 0(@)] = DA 00 + (T TG0
==2x(t) + (T FG)(t) € Ci-y,log-
This means x € Cla_l’)fj}log and
#D P () + (1) = (TEG)(0).
Furthermore,
DT DB () + ()] = Gi(t) € Crey,tog
From Lemma 2.4, it follows that J iIVZ[HZ)f:ﬁ x(t) + Ax(t)](a*) = 0. Therefore,
#DE D" + Ax(®) = G(o),

which means that x(t) satisfies (3). Now, we prove the equivalence of (3) and (4) with (19).
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n-1
Set ¢ (t) = %yl)[ logi] , then from (19), we have
I+ AT Hx() = §(0) + (T " G(®).

By Theorem 3.1 (ii), we infer that

I+ ATt = Z( DT R (6)

S

k o T(kar +yy)

yi—1
:c[logé] EGMI‘A logE] ]

and
I+ 2T I FUCIO = 3 (AT KT &GO
k=0
p ¢ \arael ) wp ds
= J[log ;] Eai,aﬁaz[—A[ log;] 1(s, X(), D x(5)
a
Thus, the conclusion holds. O

By Theorems 2.2 (ii) and 2.3 (iii), it is evident that the following conclusions are valid and can be easily
observed.

Remark 3.1.
(i) The function CEayy; A(t, @) is a general solution to the homogeneous equation:

HDE DE + A = 0, ¢ € (a,b].
(i) The function Eg, g,+q,; 28 (¢, x(2), HZ)a1 F x(t)) is a particular solution to the inhomogeneous equation

a DD+ 21x (1) = gt x(0), yD (D).

Equation (14) shows the structure of solution more clearly than Fredholm-Volterra integral solution
expressed by (5).

4 Existence and uniqueness of solutions
In this section, we denote Q = Cf—’ﬁ,log-

Theorem 4.1. Let g(t, u(t), v(t)) € Ci-y, 10g for any u(t), v(t) € G-y, 10g and satisfy

18 (t, u(t), v(t)) - g(t, u(t), V()| < L(®lut) - u(o)| + LOv() - V()
where i, V € G-y, 10s and Ii(t) € C (i = 1, 2). Then IVP (3) and (4) has a unique solution x(t) € Q given by (14).
Proof. We define an operator ¥ : Q@ — Q by

(FX0) = CEaypy; 2t @) + [Bayayra; 28(5 X(8), gD x(s)](D), (20)

Obviously, by Theorem 3.2, ¥ is well defined and its fixed point serves as a solution to IVP (3) and (4).
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Note that (18) and by Theorem 2.3 (iii) and Lemma 2.2, we obtain
HDZEJBl[CSal,yl; /\(t; a)] = _A[Cgal,yl; A(t; a)] € Cl—yl,log;

and

H-Z)Zyﬁl[Eahaﬁaz; AGx(0)] = Eg; ay; 1Gx(D).

b

- bl 1 bl
o2

t -1 t -1 _ @B a,Bis
[loga] IGx(t) = Gx(O)| < [10ga] {hOIx(®) = X (O] + LO] gD 7X() = D X (O}

< (ltlle + &)X = Xlle,

Choosing

_ I'(ay)
A= (([llle + ||12||c)max[r(a1 + @) lo

we can see

[logé]l_yl PO - FRNO
o] o

1-n a
[logé] [logg] (tlle + Nlklle) ¢ -1
I + ay) a[log;]

< Ultllc + lIElle)T(a2)I(yy) Io 2]‘11[10 LJ“Z. - %

T T(a + y)l(w + ay) &4 L ©
AT(y,) [ [

< ——|log—| |Ix - X|le,

T + ) l lle

atap-1

IN

t)n ds
Eal,a1+azl_ﬂ[loggl ] “|Gx(s) - G;{(S)|?

S
a

nl ds -
— - x-X
S Il Il

IA

log

a

and

1-7
g 5| " o0 - )

1-y
t

a-1 d
Jlogt]" 166 - o1

1-y;
(ltlle + Nl&lic) ¢ ot -1 1oy v 1 ds B
raJows] (g S m

a
_ lble + 1lifle)r ) ( logL]"Z. I - 5|
Ie+y) | Ca ’

AI(y,) [ t

T T(a+yy) a

[10g%
<

@
lIx = X]lo-

Hence,

@

[IX = Xllo-

AT
| Fx - FX|lq < &[10 b

I'(ay + Y0 a

a
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Furthermore, we have

o] 7000~ 7
og | [(F3(®) - (FF)O)

IA

t
t 1-y t atax-1 t a ds
[logg] I[log;] Eal,al+a2[—A[logg] 1+ 1Grls) = Grx($)I =~
a

1-y @
¢ b
AT(y,) llog;] [log;] (lklle + llElle) j[log t]az—l[log s]a2+y1-1 s - 7|
- - - Q
s a

- T +yy) (o + @) '
p|
Al (ap)|log | (lhlle + llLllc) () £ P
- D {tog | " i - %l
I + az) I + y,) a
M) (LB s
- r(zal + Vl) Oga ||X XHQ)
and
t T a,By 2 2%
log | 1aD 1)) - (FHO]]
1=y,
[logé ¢ t a-1 d
S
T {[mg;] H16r(8) = Gre(S)l -
¢ 1-n
AL'(y) log_|  (llhllc + ll&lle) j[ 1og£]a2_1[logi]a2+yl_1ds||x -
T Tty I(a) AN a §
A(|H)le + ||12||c)r()/1)[ t 2% _
< — -
AZF(Vl) [1 t 20ty _
- r(zal + yl) Oga ||X X”-Q‘
Hence,
Azr()/) b 20
2y — FXF. < — 1T z -5
7% = 7751l < Ty yl)[IOga IIx = Xllg.
Through the process of induction, it can be inferred that
NT(yp) bY*
ky — k|| < MV zZ _¥
175 = 7%l < oo 5 {108 | Ilx = Tl

1"

21

When k is large enough, the right-hand side of (21) is less than L||x - X||o (L € (0, 1)). In view of the general-

ized Banach fixed point theorem, # possesses a unique fixed point x € Q satisfying (14).

O

Set Gy(t) = —n(t)HZ)?:ﬂlx(t) + f(t,x(t)) and n(t) € C, we conclude an immediate consequence of

Theorem 4.1.

Theorem 4.2. Let f(t, x(t)) € Ci—y, 10 for any x(t) € Ci-y, 10y and satisfy
If (&, x(®) - f(t, X(O)] < bOIX(®) =X O], X, X € Ci-y,10g,

where Li(t) € C. Then IVP (1) and (2) has a unique solution x(t) € Q.
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Corollary 4.1. Let f(¢t) € Ci-y,log- Then IVP
HDE D+ AX© = f(O, € (ab)
(T 0@ = ¢,
has a unique solution x(t) € Cf_l’}fj llog &iven via
X(t) = cEqyy; A(t, @) + [Eqyap4a5; 1S ()1(O).
For x(t) € Cf_lﬁ}mg, note that the fact [J (111"’2(11,1)31:'31 + Ax](a*) = 0, it is evident that
#DEP LD+ 2x () = f(1), t€ (a,b]
and
#DEPx(0) + x(t) = TY (1), t€(a,b]
are equivalent, and this leads to the following conclusion.
Corollary 4.2. Let f(¢t) € Ci-y,1og- Then IVP

D) + Ax(t) = TU (@), t€E (a,b],
(T0@) = ¢,

has a unique solution x(t) € Cf_l’lfj og &iven by

x(t) = Cgal,yl; At a) + [Eal,a1+a2; Af($)](0).

5 Special cases

By the results from Section 4, explicit solutions can be derived for the following two kinds of Hilfer-Hadamard-

type IVPs with a variable coefficient.

Theorem 5.1. Let n(t) € C and f(t) € Ci-y, 10g. Then problem

a DD+ 21X () + )DL X(t) = £(6), t € (a,b],
(T0@h) = ¢,

has a unique solution x(t) € Cf_”}fjflog represented by
I n-1

T(yp)

x(t) = logé

Proof. It follows from Theorem 4.1 that
X() = 08ayy; 1(t, @ + Eqayeas Al-NOrDEPX() + (O] € ¢4,

is a unique solution to problem (22) and (23).
By applying HDZl’ﬁ ' to (25) and writing y(t) = HZ)Zi’le(t), one obtains

V() = 4 DE 8y 2t @) + Eayayray Al-CWE) + FONOL.

+ T8y (DY (Eaya D OTHACE 5 28, @)~ By 1SN0}
k=0

(22)
(23)

24

(25)
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By Theorems 2.2 and 2.3, we obtain

y() = _Acaal,yl; At @) + Eqyay; 2[=0CIyC) + FOI). (26)
Let

yo (t) = _Acgal,yl; A(t; a) + Eal,az; )Lf(t)

yn (t) =y0(t) - Ea1,a2; A[n(')yn—l(.)](t)! n= 17 2} sy
then we find

yn (t) = Z (_1)k[(Eal,a2; )Lrl)(')]k{_/lcgal,yl; A(t: a) + Eal,az; )Lf(t)}
k=0
Hence,
Y@ = rllimyn(t) = D CDM(Bayay aDOIF{=AcE gy AL, @) + Egua 2f (D},
— 00 k=0

which gives an explicit solution to (26). This combining with (25) leads to (24). O

Theorem 5.2. Let 5(t) € C and f(t) € Cy-y, 10g- Then problem
(D + ()DL + Dx(t) = f(8), t € (a,b], @7)
1- +\
(T "x)@) = c, (28)

has a unique solution x(t) € C1a_1£,110g of the form

X(t) = C8a1,yl; /\(t: a) + Eal,al; A Z (—jz&a(‘))kj:%,f(t). (29)
k=0

Proof. Clearly, (27) can be rewritten as follows:
# DD+ Dx(t) + 8D X(6) + A8(EX(t) = (1), t € (a,b].
Setting
8t x(0), (D) = =8O (EDLEX(E) = ASOX(L) + £(D),

it follows from (19) and Theorem 4.1 that problems (27) and (28) have a unique solution x(t) € Cla_l’lﬁ 'log given by

— ¢ t nt a atagr @,B;
X0 = goslogg] - AT 800 ¢ TESOGDE + Dx© + f0) @)

By applying HZ)Z%"B ! to both sides of (30), one obtains
#DEPX(6) + Ax(t) = TEU-8OEDEP + Dx(©) + F(D)]. (31
Let y(t) = (HDZ?B '+ )x(t), then y belongs to Ci-), 1o and satisfies
(O =T =8y + fB). (32)
Let

Yo (®) = (T D),
Yo = YO + T E=6C W O, n=12, ..,
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we find
n
Yu(®) = go(—nk(g'g%a(-))kJZ%f(t).
Then the explicit solution y(t) to equation (32) is obtained as a limit of {y, (t)}:
y(@) = éo(-l)k(J335(‘))k522+1°(t)-
Hence,
#DEPX(O) + () = T Zﬁé(-fS(')Jf .
It follows from Corollary 4.2 and Theorem 2.3 that
X(t) = €Eqypy; 2(t, @) + Eqyapray 2 50(—66)3'2%)’7 ()
= CEqp; A(t, @) + Eqya; 2 éo(-l)k(J ST .

When 6(t) = § (#0) is a constant, we obtain the following conclusion.

Theorem 5.3. Let f(t) € Ci-y, 10g- Then problem

D% + 8)(D™P + Dx(t) = (1), € (a,b],
(Ta"x)(@) = ¢

has a unique solution x(t) € C“_l’}f 'log Tepresented by

X(t) = C8a1,y1; A(t; a) + Ea1,a1; /\(Eaz,az;tﬁf)(t)-
Proof. By using Theorem 3.1(i), we have
0o a 1 00 a
2 COMT YO = =5 2 (8T PO = Baas] MO
k=0 k=1

Now the result follows from Theorem 5.2 (5(t) = 6).

6 Applications
Example 6.1. Consider the following IVP:

11
1 21y D3 x()

"’O"_‘

11
2’3
gD |gDF +3

1+ DX (0]
1
(T PO = 1.

Takinga1=%,a2=%,ﬁl=%,,B2=%,/1=3,c=1, and

()|

gt u(), v(0) = 77 o

X(t) = — L + Jt - x(t) + (logt)s, t€E(1,b],

+ Jtu(t) + (logt)s, te(1,b], uveER,

DE GRUYTER

(33)

(34)

(35)
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we can see
lg(t, u(®), v(®) - gt, T(t), ¥(t)| < Velut) - &) + v(t) - VO, u,v, &7 ER.

11
By Theorem 4.1, problems (34) and (35) has a unique solution x(¢t) € C#}}

Llog*
Example 6.2. Consider the following IVP:

1

1 1
'8 X(t) + ty DI *x(t) = 2cos((logt): x(t) + 1) + (logt)™s, ¢t € (1, b],

1
I

LN 1
L= ICII

uDy "(nD

1
(T 21 = 2.
. 1 1 1 1
Takingay = 3, 2= 5, By = 5, B, = 5 N) =, A =2,¢ =2, and
ft,x(t)) = 2cos((logt) x(t) + 1) + (logtys, t€ (1,b], xER,
‘we can see

If(t, x(D) - f(t, X(t))| < 2(ogt): |x(t) - X(t)|, x,X €R.

1
Hence, from Theorem 4.2, problems (36) and (37) has a unique solution x(t) € C¢

- 15

(36)

@7

Acknowledgments: The authors wish to express their gratitude to the referees for their helpful suggestions.

This work was supported by the Natural Science Foundation of China (11971329).

Funding information: This work was supported by the Natural Science Foundation of China (11971329).

Author contributions: All authors read and approved the final manuscript.
Conflict of interest: The authors declare no conflict of interest.

Ethical approval: The conducted research is not related to either human or animals use.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated

or analysed during the current study.

References

[11 L Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, 1999.
[2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[31 S.G.Samko, A. A. Kilbas, and O. 1. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science

Publishers, Yverdon, 1993.

[4] A. A Kilbas, H. M. Srivastava, and }. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics

Studies, vol. 204, Elsevier, Amsterdam, 2006.

[5] L. Liand]. G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM ). Math. Anal. 50 (2018), 3963-3995,

DOLI: https://doi.org/10.1137/17M1145549.

[6] J. W.He and Y. Zhou, Non-autonomous fractional Cauchy problems with almost sectorial operators, Bull. Sci. Math. 191 (2024), 103395,

DOLI: https://doi.org/10.1016/j.bulsci.2024.103395.

[71 ). Hadamard, Essai sur I’étude des fonctions données par leur développement de Taylor, ). Math. Pures Appl. 8 (1892), 101-186.
[8] P.L. Butzer, A. A. Kilbas, and J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property,

J. Math. Anal. Appl. 269 (2002), 387-400, DOI: https://doi.org/10.1016/S0022-247X(02)00049-5.
[9] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.


https://doi.org/10.1137/17M1145549
https://doi.org/10.1016/j.bulsci.2024.103395
https://doi.org/10.1016/S0022-247X(02)00049-5

16

(o]

1]

2]

N3]

(4]

(3]

(el

(71

(8]

(9]

[20]

[21]
[22]

[23]

[24]

= Huiwen Wang and Fang Li DE GRUYTER

Y. Zhou and ). W. He, A Cauchy problem for fractional evolution equations with Hilfer’s fractional derivative on semi-infinite interval, Fract.
Calc. Appl. Anal. 25 (2022), 924-961, DOI: https://doi.org/10.1007/s13540-022-00057-9.

Y. Q. Wu and J. W. He, Existence and optimal controls for Hilfer fractional Sobolev-type stochastic evolution equations, ). Optim. Theory
Appl. 195 (2022), 79-101, DOI: https://doi.org/10.1007/s10957-022-02059-2.

D. Vivek, K. Shah, and K. Kanagarajan, Dynamical analysis of Hilfer-Hadamard type fractional pantograph equations via successive
approximation, J. Taibah Univ. Sci. 13 (2019), 225-230, DOLI: https://doi.org/10.1080/16583655.2018.1558613.

M. Manigandan, R. Meganathan, R. Sathiya Shanthi, and M. Rhaima, Existence and analysis of Hilfer-Hadamard fractional differential
equations in RLC circuit models, AIMS Math. 9 (2024), 28741-28764, DOLI: https://doi.org/10.3934/math.20241394.

M. D. Qassim, K. M. Furati, and N. E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal.
2012 (2012), 391062, DOI: https://doi.org/10.1155/2012/391062.

M. D. Kassim and N. E. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr.
Appl. Anal. 2013 (2013), 605029, DOI: https://doi.org/10.1155/2013/605029.

B. Ahmad and S. K. Ntouyas, Hilfer-Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal
Fract. 5 (2021), 195, DOI: https://doi.org/10.3390/fractalfract5040195.

J. Sompong, E. Thailert, S. K. Ntouyas, and U. S. Tshering, On coupled systems of Hilfer-Hadamard sequential fractional differential
equations with three-point boundary conditions, Carpathian . Math. 40 (2024), 443-458, DOI: https://doi.org/10.37193/CJM.2024.
02.14.

W. Zhang and ). Ni, Qualitative analysis of tripled system of fractional Langevin equations with cyclic anti-periodic boundary conditions,
Fract. Calc. Appl. Anal. 26 (2023), 2392-2420, DOTI: https://doi.org/10.1007/513540-023-00201-z.

H. Fazli and J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos Solitons Fractals 114 (2018),
332-337, DOL https://doi.org/10.1016/j.chaos.2018.07.009.

R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer,

Berlin, 2020.

T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7-15.
J. E. Restrepo and D. Suragan, Hilfer-type fractional differential equations with variable coefficients, Chaos Solitons Fractals 150 (2021),
111146, DOI: https://doi.org/10.1016/j.chaos.2021.111146.

A. A. Kilbas, M. Saigo, and R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral
Transforms Spec. Funct. 15 (2004), 31-49, DOI: https://doi.org/10.1080/10652460310001600717.

Y. D. Ri, H. C. Choi, and K. J. Chang, Constructive existence of solutions of multi-point boundary value problem for Hilfer fractional
differential equation at resonance, Mediterr. ). Math. 17 (2020), 95, DOI: https://doi.org/10.1007/s00009-020-01512-8.


https://doi.org/10.1007/s13540-022-00057-9
https://doi.org/10.1007/s10957-022-02059-2
https://doi.org/10.1080/16583655.2018.1558613
https://doi.org/10.3934/math.20241394
https://doi.org/10.1155/2012/391062
https://doi.org/10.1155/2013/605029
https://doi.org/10.3390/fractalfract5040195
https://doi.org/10.37193/CJM.2024.02.14
https://doi.org/10.37193/CJM.2024.02.14
https://doi.org/10.1007/s13540-023-00201-z
https://doi.org/10.1016/j.chaos.2018.07.009
https://doi.org/10.1016/j.chaos.2021.111146
https://doi.org/10.1080/10652460310001600717
https://doi.org/10.1007/s00009-020-01512-8

	1 Introduction
	2 Preliminaries
	2.1 Hilfer-Hadamard fractional derivative
	2.2 Mittag-Leffler functions

	3 Representation of solutions
	4 Existence and uniqueness of solutions
	5 Special cases
	6 Applications
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


