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Abstract: This note provides an initial theoretical justification for how ℓp-norm regularizations can control the
non-asymptotic probability of false dominance (FD) classification in empirically optimal portfolios that satisfy
empirical stochastic dominance constraints under an independent and identically distributed setting. The
analysis employs a dual characterization of the norm-constrained problem as one of distributionally robust
optimization, which enables the application of concentration inequalities involving the Wasserstein distance
from the empirical distribution. This approach yields explicit upper bounds for the non-asymptotic FD prob-
ability, offering insights into the minimal sample size requirements necessary for maintaining this probability
below a pre-specified significance level. The results provide a theoretical framework that outlines directions
for future extensions to more general settings involving temporally dependent financial time series.
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1 Introduction

Portfolio optimization based on stochastic dominance (SD) restrictions provides a non-parametric general-
ization of the classical mean-variance approach, accommodating investment strategies beyond those charac-
terized by satiation or elliptical return distributions.

A growing body of literature has addressed the computational and inferential challenges associated with
SD-based portfolio optimization, making these methods increasingly empirically viable [1–4]. Typically, port-
folio selection involves optimizing an empirical criterion under the constraint that the chosen portfolios
empirically dominate a benchmark portfolio. However, empirically optimal portfolios, by construction, dom-
inate the benchmark in-sample but remain susceptible to false dominance (FD) classification errors in the
population.

Regularization techniques, in particular, norm-based regularizations, have been empirically observed to
enhance both in-sample and out-of-sample performance [5–8] of empirically optimal portfolios not necessarily
in the context of SD. When enhanced with SD constraints, regularized empirical portfolio selection can also
demonstrate in- and out-of-sample improvements, especially w.r.t. the risk of FD classification [2–4].

The aim of this note is to provide an initial theoretical justification for these informal empirical findings by
establishing novel non-asymptotic bounds for FD probabilities in an independent and identically distributed
(iid) framework. The approach leverages a distributionally robust optimization (DRO) characterization
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involving Wasserstein distances, which offers a systematic control of classification errors and guarantees
robustness against distributional perturbations. This characterization not only bridges the gap between
empirical regularization practices and SD theory but also provides a new interpretive framework that quan-
tifies how ℓp-norm regularizations reduce FD risk.

The structure of the note is as follows: Section 2 analyzes the SD framework for portfolio optimization and
its regularized formulation. Section 3 derives the DRO characterization and the non-asymptotic bounds for the
probability of FD, offering practical insights into how regularization influences portfolio robustness in finite
samples. Furthermore, in the final section, we outline future research directions, including the extension of
our results to temporally dependent financial series, which would further enhance the applicability of these
theoretical findings to real-world portfolio management scenarios.

2 SD and portfolio optimization framework

�( ) ∈Xt t is a process with values in some subset of �d. The random vector Xt represents the one period returns
of d financial assets, � denotes their latent time-invariant joint distribution, and �� ⊂ d is the pointwise
bounded from below support of � . Boundedness from above is considered plausible for moderate observation
frequencies. The researcher has at her disposal an observable sample from the process, ( ) =Xt t T1, … , ; �T denotes
the empirical distribution of the sample.

A portfolio on X0 is any element of the dual space of �d; the elements of its representing vector are the
portfolio weights. Alternative portfolios are evaluated inside the expected utility paradigm, using utility
functions �� →u : that are increasing, continuous, and concave. These populate the closed (in the topology
of uniform convergence on compacta), convex set �2 while �

⋆
2 denotes the set of Russell-Seo utilities-see [9],

i.e. the utilities of the form �( ) ( )= − − ∈+u x z x z, , those constitute the extreme points of �2; � { }−⋆
02 does

not contain the constant utility at zero-corresponding to the threshold that equals the pointwise infimum of �.
�

=
2 is the set of constant utilities, subsequently, � �− =

2 2 analogously denotes �2 without constant utilities.
The analysis involves a set of portfolios �⊆Λ d. It is considered convex and compact. In what follows

λ, τ denote respectively a typical element of Λ and a distinguished benchmark portfolio inside Λ.
The above enable the definition of an SD relation on the sets of prospects, via �2: in the stationary

framework considered, λ is said to dominate τ w.r.t. the utility class �2 iff �( )τ λD u, , ,

� �� � �( ( )) ( ( ))≔ ′ − ′ ≥ ∀ ∈λ X τ Xu u u0,0 0 2, where �� denotes integration w.r.t. � . Thus, λ is preferred
over τ by every utility in the considered class, this is what is known in the literature as the second-order
SD of λ over the benchmark τ ,

�
≽λ τ
,2

. The definition remains invariant if �2 is replaced by �
⋆
2 [9]. Further-

more, �
�

{ }≔ ∈ ≽≽
Λ λ Λ λ τ;

,2

is the non-empty convex set of portfolios that dominate the benchmark in the

population. Non-emptyness holds due to reflexivity of the dominance relation, and convexity follows from the
concavity of the utility functions at hand, the linearity of the portfolio formation, and the monotonicity of the
integral. Substituting the latent � with �T in

�
≽
,2

, the empirical analogue �
≽

Λ
T
is obtained.

Consider a choice � �∈ ≽
λ Λ

T T
. Controlling the probability of FD for �λ

T
, i.e., �

� �

( )≽ ≽λ τ λ τ/ ̸
,2 ,2T

, can be of

particular empirical interest, as FD can lead to suboptimal portfolio choices. This can asymptotically, as → ∞T ,
vanish as long as the probabilistic properties of the sampling scheme ensure that � �⇝T where ⇝ denotes
convergence in distribution and the existence of some >ε 0 such that �� (‖ ‖ ) < +∞+

Xsup
T

ε
0 2

1

T
, where ‖ ‖⋅ 2

denotes the Euclidean norm. This is due to that �
⋆
2 is uniformly Lipschitz, and due to uniform integrability.

The weak convergence is easily establishable in contexts of stationarity and ergodicity for �( ) ∈Xt t ; bounded-
ness for the + ε1 moments of the normed process would follow in those stationary and ergodic frameworks
along which a financially plausible assumption of ��(‖ ‖ ) < +∞+

X
ε

0 2

1 , see for example Section 3.1 and Theorem
1 of [10]. The question of controlling this probability is also of interest for fixed, and potentially realistically
large enough T . This is what is investigated in the subsequent analysis.

2  Stelios Arvanitis



Every choice � �∈ ≽
λ Λ can be represented as a solution, albeit trivial in cases where a constant criterion is

involved, of the optimization problem ���
( ( ))′∈ ≽ λ Xumaxλ Λ 0 for some �∈u 2. More importantly, for a given

non-constant �∈u 2, any solution, say �( )λ u, , to the optimization problem ���
( ( ))′∈ ≽ λ Xumaxλ Λ 0 can be of

economic interest; any solution to it can be perceived as the best u can achieve in terms of expected utility, if
she insists on working with portfolios that would be weakly preferred by every risk averter to the benchmark.
This is a problem of portfolio optimization augmented with SD (second order) conditions.

Latency of � implies generally the latency of �( )λ u, . The latter can be statistically approximated by its
empirical analogue; �( )λ u, T , i.e., the solution to the empirical portfolio optimization augmented with
empirical SD conditions ���

( ( ))′∈ ≽ λ xumaxλ Λ
T

T
. Hence, the analysis that follows considers an arbitrary yet

fixed u and asks whether there is a modification of the optimization problem that enables the non-
asymptotic investigation of the probability of FD for its solutions.

2.1 Regularized formulation of portfolio optimization

A modification used in practice augments the expected utility criterion with an additive regularization term
that depends on the ℓp distance between the portfolio sought and the benchmark. The intuition is that when
the (Lagrange) multiplier of the aforementioned distance is chosen optimally, then in order for a portfolio that
lies “away” from the benchmark to solve the optimization problem, it would have to “strongly” satisfy the
empirical dominance conditions at least in some neighborhood of u.

As mentioned above, the ℓp-distance from the benchmark portfolio weights is considered here,∥ ∥− ≔λ τ p

( ∣ ∣ )∑ −=
∕λ τi

d

i i
p p

1
1 , for the case where ≥p 1, and ∣ ∣−= λ τmaxi d i i1, … , for = +∞p . The regularized optimization

portfolio is then defined by:

� ��

�

( ) ( ( ( )) ∥ ∥ )∈ ′ − −
≽

λ λ x λ τu p ξ u ξ, , , arg max ,
Λ

T T T p

T

T (1)

where the random variable ≥ξ 0T assumes the role of the regularization multiplier. Existence of the regular-
ized optimization portfolio is ensured by the concavity and continuity of u, the linearity of ��T

, the convexity
and continuity of‖ ‖⋅ , and the convexity of the set �

≽
Λ

T
, which holds due to the concavity of the members of �2,

and the measurable maximum theorem, refer Theorem 18.19.3 in [11]. Optimal selection of the multiplier is
expected to influence the non-asymptotic properties of the probability of FD. The modified problem addition-
ally thus depends on both the choice of the multiplier ξT and the norm order p.

It is possible that Λ already includes (explicit or implicit) pre-existing norm constraints; then, the analysis
studies the effect on the probability of FD of tightening of the existing norm constraints.

Algorithmically, given the �
⋆
2 formulation of the dominance relation by [9], and if u is the identity,

something that corresponds to portfolio mean maximization under dominance constraints, a usual practical
specification of Problem (1) is

�∥ ∥ ( ) ( )∑ ∑ ∑′ − − − ′ − − ′ ≥ ∀ ∈
∈ = =

+
=

+
⋆λ X λ τ τ X λ X

T
ξ

T
z

T
z zmax

1
, s.t.

1 1
0, ,

λ Λ
t

T

t T p

t

T

t

t

T

t

1 1 1

(2)

where now �⋆ is a finite discretization of the support �. If Λ is convex, and =p 1, or = ∞p , then Problem (2) is
reducible to an �(∣ ∣ )× +⋆O T d , LP formulation via the linear relaxations technology of [12]. Whenever

< < +∞p1 , the aforementioned relaxations can be combined with piecewise linear approximations of the
ℓp norm, in which case the problem contains �(∣ ∣ )× + ×⋆O T d S variables, where S denotes the number of
segments that support the linear pieces. For a general concave u, the problem can likewise be formulated as
a convex optimization problem with linearizable restrictions, refer [13] for a survey of LP relaxations of SD
problems. In any case, the solution produced by the LP relaxations, is characterized as any element of

��
�

( ( ( )) ∥ ∥ )′ − −≽
⋆ λ x λ τu ξarg max Λ T p

T
T

, where now
�
⋆

≽Λ
T

is the set of λ that satisfies the resulting �(∣ ∣ )×⋆O T

relaxed empirical dominance inequalities.
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3 Results

The issue of the derivation of non-asymptotic properties for the portfolio solutions of the empirical regularized
problem is considered here, with a view toward the fixed T properties of the probability of FD.

In the first part of this section, the regularized problem is translated to a problem of DRO using a dual
formulation of regularized problems involving Lipschitz criteria to problems of conservative optimization in
Wasserstein neighborhoods of �T . There, the Lagrange multiplier ξT plays an important role in the DRO
formulation below, as it determines the radius of pessimism and at least locally the slacks for the dominance
constraints.

In the second part, this conservative representation is exploited in order to non-asymptotically bound
the probability of FD characterization via concentration inequalities.

Some further notation be will also useful: for�, an arbitrary distribution having finite first moment on�d,

and ( )q p such that + = 1
p q

1 1 , the first Wasserstein distance between � and the empirical distribution �T is

defined by � � � � � �
�( ) ∥ ∥ ( )( )∫≔ −∈ ×

⋆ ⋆p z z dγ z z, ; min ,T γ qΓ ,T d d , where � �( )Γ ,T denotes the set of Borel prob-

ability distributions on � �×d d that have respective “marginals” � �,T , and also have finite q moments [14].
� metrizes weak convergence [15]. For >ε 0, � � � �� �( ) { ( ) }≔ ≤ε p ε, : , ;p T T is the Wasserstein closed

ball centered at �T with radius ε. Also, ( ) ( )
⎪

⎪

≔ ≔ − − =
⎧
⎨
⎩

− ≤

− >
d p d l

p

p

, max ,

, 2

, 2.

l

p p

p

p

1

2

1 1 1

2

1 1

2

1

2

1

3.1 DRO formulation

A characterization of the regularized problem in (1) as a DRO problem is obtained here. It is based on strong
convex duality results for robust optimization (refer for example Lemma 1 of [14]).

The event � � �� �� �{ ( ) ( ( ) ) }( )≔ ∃ >∈λ τ λu p ξ D u u p ξ, , , : inf , , , , , , 0T T ξ T T1 ,p T T
characterizes the samples

for which the empirical regularized program has non-trivial solutions. Furthermore, for every sample realiza-
tion in � � �� �� � �{ { } ( ) ( ( ) ) }( )≔ ∀ ∈ − ∀ >⋆

∈λ τ λv v p ξ D v v p ξ0 , , , , : inf , , , , , , 0T T ξ T T2 2 ,p T T
, every choice of the

objective utility results in non-trivial empirical solutions. It is noted that �2 is a subset of �1 due to the Russell-
Seo utility representation [9]. Then,

Proposition 1. (Distributional Robustness). Suppose that u has a unital Lipschitz coefficient. Then,
(1) Given �1, there exists some non-empty open subset � ( )u2 of �2, for which Problem (1) is equivalent to

�
� �

�
� �

( ( ))
( )

′
∩ ∈≽ ≽

λ xumax inf ,
Λ Λ ξ,

T u p T T
(3)

�
� �

�
�

( ) ( )
( )

≔
⎧
⎨
⎩

∈ > ∀ ∈
⎫
⎬
⎭

≽
∈

Λ λ τ λΛ D v v u: inf , , , 0, .u
ξ,

2

p T T

(4)

(2) Given �2, Problem (1) is equivalent to
�

� �
�

�

( ( ))
( )

′
∈≽

λ xusup inf

Λ
ξ,

ξT

p T T
(5)

�
� �

�
�

( ) { }
( )

≔
⎧
⎨
⎩

∈ > ∀ ∈ −
⎫
⎬
⎭

≽
∈

⋆
Λ λ τ λwhere Λ D v v: inf , , , 0, 0 .ξ

ξ,
2T

p T T

(6)

Proof. Theorem 1 of [14] implies that

� �

�
� �

�

� �

�

�

( ( )) ( )∥ ∥ ( ( ))

( ( ) ) ( ( ) ) ∥ ∥

( )

( )

+ − − − = + −

+ − = + − + −
∈

∈

τ λ τ λ τ τ λ τ

τ τ λ τ τ τ λ τ λ τ

G ξ c G

D u D u ξ

inf

, , , inf , , ,
,

T p
ξ

T
ξ

T p

,

,

T

p T T

p T T
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for �� �( ) ( ( ))≔ ′λ λ XG u . This and translation in �d by τ directly imply that Problem (1) is equivalent to
� � �� ( )( )∈ λGmax infΛ ξ,p T T

. Using a scaling and translation argument that is allowed for Von Neymann-Morgen-
stern preferences, �2 can be chosen uniformly bounded due to the uniform Lipschitz property of �

⋆
2 and the

Russell-Seo representation [9]. This and Lemma 2.7.5 of [16] along with the compactness of the support, imply
that �2 is totally bounded, and thereby equicontinuous. This and uniform integrability then imply that

�( ) ∥ ∥− −τ λ λ τD u ξ, , , T p is jointly continuous in ( )λu, . Since there exists a nontrivial solution to (1), it
must satisfy �( ) ∥ ∥≥ −τ λ λ τD u ξ, , , T T p. This then implies the existence of � ( )u2 . � ( )u2 is open as a union
of open sets; it is obtained as the inverse image of ( )+∞0, w.r.t. the regularized criterion evaluated at the
solution, on �2. Finally, similar to Theorem 1 of [10], for the portfolio defined as

�
(( ) )

( )
= − +⋆ ⋆γ γ δ w δ w1

τ u,
,

with �
� �

( ) ( ) ( )
( ) { }

∫≔ −⋆γ λw u p ξ w v, , , d
τ T T, 02

, where w lies in the set of non-degenerate Borel measures on �2,
and wu the degenerate measure at u, ( )∈⋆δ 0, 1 , we have that ∈ ≽

γ ΛξT
due to the concavity of the utilities

involved; then, by the definition of the portfolios involved, and due the Lipschitz continuity of �( )⋅τD u, , , T

and of the ℓp norm, setting �( )≔λ λ u p ξ, , ,T T T it is obtained that

� �

�

� �

� �

�

�

( ( )) ∥ ∥ ( ( )) ∥ ∥

(∥ ∥ ) ( )

( )

≤ ′ − − − ′ + −

≤
⎛

⎝
⎜ +

⎞

⎠
⎟⋆

∈

−

λ λ τ γ X γ τ

x Λ

u ξ u ξ

δ ξ d

0

sup diam ,

T T T p T p

ξ

T

,

2

T T

p T T

p
1 1

2

and (5) holds since ⋆δ can be chosen arbitrarily small. □

Lipschitz coefficient unitarity holds for example in the case of portfolio choice via maximization of
expected return; then, u is the identity. More generally, given that utility rescaling does not affect prefer-
ences and optimal choice, if u is non-trivial and has a bounded derivative, then the Lipschitz coefficient can
be always set equal to one. The regularized version of the objective function is equal, due to duality, to a
robust expected value of ( )⋅ ′xu ; actually this is the most conservative expectation over the Wasserstein ball
centered at the empirical cummulative distribution function, with radius formed by the Lagrange multi-
plier. The dual representation of � [17] implies that �� ( )ξ,p T T is convex; then, Sion’s Minimax Theorem
[18] implies that � �� � � �� �� �( ( )) ( ( ))′ = ′∈ ∈≽ ≽λ X λ Xu umax inf inf maxΛ Λ

T
p p

T
. This conforms to the solution

characterization as the most conservative (over the aforementioned ball) maximizer of expected utility
that stochastically dominates the benchmark.

Due to the equi-continuity properties of �2, and if there exists an empirically optimal portfolio that strictly
dominates the benchmark, i.e., �1 holds, the empirical problem has a representation where the regularization
term, permeates as a positive slack to a neighborhood of SD conditions around �( )τ λD u, , , T ; each of these
conditions then, by the same duality property, has a conservative characterization given in (4). Hence,
regularizing the objective implies a local regularization for the dominance conditions. Under the stronger
�2, the representation uses the regularization term as a positive slack on the totality of non-trivial SD condi-
tions. This implies that there exist elements of �( )λ u p ξ, , ,T T that satisfy enhanced versions of the SD inequal-
ities, resulting in strong properties regarding the probability of FD classifications, as the result in the Section
3.2. It is noted that due to the Russell-Seo representation [9], the linearity of D w.r.t. u and the properties of the
infimum, under �2, the regularization permeates every SD condition involving a non-constant utility.

3.2 Non-asymptotic bounds for the FD probability

In order to derive nonasymptotic bounds for the probability of selecting a portfolio that does not dominate
the benchmark in the population (FD), the event � �− ≠ ∅≽ ≽

Λ Λ
T

is also utilized: it corresponds to the samples
for which FD classification actually occurs, when regularization is not used inside the SD inequalities.

Furthermore, for >τ 0 let ��
( )

[ ( ∥ ∥ )]≔ +
h τ

xτ

τ

1 ln exp 2
2

, and for >m 2 let �( ) ( )≔ × −C d 2 3d dlog
3

� ��( ( ) ) [∥ ∥ ] ( ( ) )
( ) ( )− < + − ≥xd d d dlog 4 log
T m T

3

log

2 2 3

log

2

3 3 , where � denotes the indicator function. Then, the
following result is obtained via the use of concentration inequalities involving the Wasserstein distance from
the empirical distribution.
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Proposition 2. (FD classification and opportunity loss) Suppose that �( ) ∈Xt t is iid, that >d 2, that for some
>τ 0, ��( ( ∥ ∥ )) < +∞xτexp 2

2 , and that u has unital Lipschitz coefficient. If �( )≔λ λ u p ξ, , ,T T T , and � ≔
� �− ≠ ∅ ∩≽ ≽

Λ Λξ 2
T

, then

(1) For any ≥T 1, and if �‖ ‖ ( ) ∥ ∥ ( )− > −λ τ λξ d p C d Tinf 2 sup
λT T p 2

d

1

,

� �

� �

( )

( ) ( )

( )
≤

⎛

⎝

⎜
⎜
⎜
−

⎛
⎝ − ⎞

⎠
⎞

⎠

⎟
⎟
⎟

− ⋆

>

+
C d T TM ξ p

h τ
exp

1 , Λ, , ,

2 inf
,

T

τ

2

2
2

0
2

d

d

1

(7)

where
�

� �

�

�

�

( )

‖ ‖ ( )

( ) ∥ ∥
≔⋆

− − ⋆

M ξ p, Λ, , ,

λ τ τ λ

λT

ξ D v

d p2

inf sup inf , , ,

2 sup
λ

T T p T
2

2

.

Consequently, if the event �2 with probability converging to one and �‖ ‖− → ∞λ τTξ infT T p
2 2 , then, the probability

of FD classification for any with asymptotically positive probability �∈ −≽
λ Λ ΛT ξT

converges to zero.
(2) There exists some ≥T 10 such that for any ≥T T0, if the regularization coefficient satisfies �‖ ‖− >λ τξ infT T p

( ) ∥ ∥ ( ) ( )
⎧
⎨
⎩

⎫
⎬
⎭

−
>λd p C d T h τ2 sup max , 2 inf

Λ τ

T

T
2 0

ln
d

1

, then,

� �� � �( ) ( )− ≠ ∅ >≽ ≽
Λ Λ .

T
(8)

(3) Finally, if ⋆λ denotes the optimal solution to the population problem, then for any ≥T 1, and if ( )> −ξ C d TT
d

1

,

� � � �� � �(∣ ( ( )) ( ( ))∣ ( ) ∥ ∥ ∥ ∥ ∥ ∥ )

( )

( )
′ − > − + ≤

⎛

⎝

⎜
⎜
⎜
−

⎛
⎝ − ⎞

⎠
⎞

⎠

⎟
⎟
⎟

⋆′ ⋆ ⋆

−

>

+

λ x λ x X λ λ λu u d p ξ

C d T Tξ

h τ
exp

1

2 inf
.T p T

T

τ

0 2 2

2

2

0
2T T

d

d

1

(9)

Proof. Given �2, the event �− ≠ ∅≽ ≽
Λ ΛξT

is equivalent to the inequalities’ system composed of
�� �� � ( )( ) ≥∈⋆ τ λD uinf inf , , , 0ξ T,p T T2

and �� ( ) <⋆ τ λD uinf , , , 0T2
. Due to the Kantorovich-Rubinstein represen-

tation of � [17], Proposition 1.2, and the equivalence between the ℓp norms in �d,

�

� � � �

� � � �

� � � �

� � � �

� � � �

� � �
�

� � �
�

�

� �

�

�

�

�

�

� �

� �

�

� � � �

� � �

� � �

� �

�

�

� � �

( )

( ) ( ) ( )

( ( ) ‖ ‖ ) ( ) ( )

( ) ( ) ‖ ‖ ( )

∣ ( ) ( )∣ ‖ ‖ ( )

∥ ∥ ( ) ‖ ‖ ( )

( )

‖ ‖ ( )

( ) ∥ ∥

( )

‖ ‖ ( )

( ) ∥ ∥

( )

⎜

⎜

⎜

⎟

⎟

⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

− ≠ ∅ ∩

≤
⎛
⎝

− ≥ − ∩
⎞
⎠

≤
⎛
⎝

− − − ≥ − ∩
⎞
⎠

≤
⎛
⎝

− ≥ − − ∩
⎞
⎠

≤
⎛

⎝
⎜ − ≥ − − ∩

⎞

⎠
⎟

≤
⎛
⎝

≥ − − ∩
⎞
⎠

≤
⎛
⎝

≥
− −

∩
⎞
⎠

≤
⎛
⎝

≥
− − ⎞

⎠

≽ ≽

∈

⎛
⎝ − ⎞

⎠

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆

⋆

⋆

⋆

Λ Λ

τ λ τ λ τ λ

τ λ λ τ τ λ τ λ
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where the final inequality in the previous display follows from the monotonicity of � . Due to the Bobkov-
Godge equivalence (refer Theorem 1.3 of [19], refer also Corollary 2.4 and Particular Case 2.5 of [20]), and
Theorem 1.1 of [21], the existence of the exponential squared moment for ∥ ∥X0 2, and relation (14) of [22],
for any >⋆t 0, we have that

� � � � � �� �
( )

⎜ ⎟ ⎜ ⎟
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⎝
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⋆
⋆

>
t

Tt

h τ
, ;
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2
, ;

1

2
exp

2 inf
.T T
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2

0
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Setting in the above � � �� ⎟⎜≔ − ⎛
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⎛
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⋆t t , ;T

1

2
for � � �� ⎟⎜> ⎛

⎝
⎛
⎝

⎞
⎠
⎞
⎠t , ;T

1

2
, and observing that
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, whenever � � �� ⎟⎜> ⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠t , ;T

1

2
, we obtain from the proof of

Theorem 2.3 of [23] (where we identify 4 as an upper bound for the constant cp), as well as from the proof

of Theorem 3.1 of [23], where first, we identify
( )≤ −c 1
d

d

log
3 due to the equivalence between the Euclidean and

the max norm, and the form of the packing number for closed max-balls, and, second, let → ∞m in the case
where ( ) ( )− <d d Tlog log

3 3
due to the existence of the exponential squared moment, that if ( )> −t C d T d

1

, then
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Setting in the previous � �( )≔ ⋆
t M ξ p, Λ, , ,T 2 and observing that when the event � �− ≠ ∅ ∩≽ ≽

Λ Λξ 2
T

occurs, the nonstochastic term �
� � ( )⋆ τ λD vsup inf , , ,T2

is negative, establishes (7).
Furthermore, due to Theorem 2 of [24] and the Berry-Esseen theorem, and for any v, for which

�( ) <τ λD v, , , 0, we obtain that there exist constants >C C c, , 01 2 , independent of T , and a positive asympto-
tically negligible sequence ( )γ T that satisfies ( ) → ∞T γ T , such that eventually,
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Then, if (7) holds, and since under � the �
� � ( )⋆ τ λD vsup inf , , ,T2

is negative, if furthermore
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+ + −−

λ τ λξ d p h τinf 2 2 inf sup
ΛT T p τ

T T C

T
0 2

ln ln 1 ln
1

2

1
1 , the second result in (8) follows. For the

final result, note that due to the triangle inequality, the Lipschitz continuity property of v, the boundedness
of the support, the Cauchy-Schwarz inequality, and the equivalence between the ℓp norms in �d,
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and the result in (9) follows by setting ≔t ξT in (3.2). □
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The results rely first on the iidness of the sample, an assumption that is compatible with our data
frequency; it can be extended to m-dependent processes as well as to a class of Markov processes that possess
contractive transition kernels [22].

Second, they rely on the existence of some square-exponential moment for∥ ∥X0 2

2. This is equivalent to the
existence of the moment generating function of ∥ ∥X0 2

2 in a neighborhood of zero, a condition that fails
whenever ∥ ∥X0 follows a distribution with the right-tail behavior of the log-normal distribution. The expo-
nential moment existence holds whenever X is bounded, or more generally whenever its squared elements
follow sub-Gaussian distributions (refer indicatively Chapter 2 of [25]). The maximal moment parameter τ can

be estimated via the ratio �

�

�

�

( ) (∥ ∥ )

(∥ ∥ )

+
+

X

X

κ 1
T

κ

T

κ

0 2
2

0 2
2 2

, due to the power series representation of the exponential moment

and the properties of the ratio test for real series. Given this the optimization resulting to ( )> h τinfτ 0
2 can be

empirically approximated. The choice of some non-optimal τ can also be considered at the cost of a potentially
less efficient probability bound, and a larger regularization parameter.

The probability bounds in the first and third cases of the theorem decline exponentially fast in
� �( )

⋆
TM ξ p, Λ, , ,T

2
2 2 and TξT

2, respectively, and hold for all T as long as the worst case value, over the adverse
event � , of the penalization term ‖ ‖− −λ τξT T p, and, respectively, the penalization coefficient, dominates in

absolute value a sequence of order ( )−exp
T

d

ln ; this declines slowly when the base asset dimensionality is large.
This low rate of asymptotic negligibility for the penalization term can be circumvented at either the cost of
some positive large multiplicative constant in front of the probability bound, or at the cost that the results hold
eventually for large enoughT that also depends on the regularizer (refer for example [21]). The requirement of
existence of squared exponential moments, can also be circumvented at the cost of loss of exponentially
decreasing probability bounds; the existence of regular (polynomial) moments of some order would imply
eventual polynomially decreasing probability bounds in � �( )

⋆
TM ξ p, Λ, , ,T

2
2 2 and TξT

2, respectively, refer also
[21]. It is possible that the form of the bounds as well as the requirements for the penalization related
quantities can be refined using results pertaining to infinitesimally Hilbertian structures, like Corollary 4.11
in [26].

The first result estimates the probability of the adverse event �; this corresponds to the existence of
empirically enhanced optimal portfolios that are non-dominant in the population. It says that if the regular-
ization term �‖ ‖−λ τξ infT T p is strictly greater than a term of the form CT d

1

, then, the logarithmic probability
that there exist empirically enhanced portfolios that are nondominant in the population, is bounded above by

the term
� �( ( ) ) ( )

( )
−

− − + ⋆

>

C d T TM ξ p

h τ

1 , Λ, , ,

2 inf

d

d T

τ

1
2 2

2

0
2 . It is noted that the �‖ ‖−λ τξ infT T p term is not linear in the regularization

multiplier, since by construction ∈ ≽
λ ΛT ξT

. Nevertheless the term �‖ ‖−λ τinf T p can be approximated via
resampling, something that implies that it is statistically feasible to do inference on the validity of the
inequality. The bound depends on the aforementioned worst case value over the event of the penalization
term, the base assets dimensionality, the size of the portfolio space, through ( )d p on the choice of the ℓp norm,
the squared exponential moment parameter, and the supremum over the elements of � of �� ( )⋆ τ λD vinf , , ,

2
;

e.g, if � ‖ ‖ ( ) ∥ ∥ ( )− = −λ τ λξ d p C d Tinf 2.1 sup
λT T p 2

d

1

, then, the result implies that the probability of FD error is

eventually bounded above by ( )− ⋆ −c Texp 1
d

2

for some (estimable) positive constant ⋆c . Thus, for a given

significance level ( )∈α 0, 1 , and if ( )
( )≥ − ⋆ −T
α

c

ln d

d 2 , the probability of FD is thus bounded above by α. The
same upper bound on the probability of FD holds whenever the adverse case regularization term is greater

than the maximum between ( ) ( ) ( )− −>
−

−
−+

α h τ C d T T2 ln inf 1τ 0

1
d

d

1 1

2 and ( ) ∥ ∥ ( ) −λd p C d T2 sup
λ 2

d

1

. Tracing

the proof shows that analogous bounds would hold for all �
≽

Λ
T
, as long as the weaker �1 holds, yet failure

of population dominance only happens inside � ( )
⋆

u2 with � probability 1.
For an analogous result, regarding the solutions of the LP relaxed formulation formed as

��
�

( ( ( )) ∥ ∥ )≔ ′ − −⋆
≽

⋆Λ λ x λ τu ξarg max Λξ T p
T

T
T

, arguing analogously to the first part of the proof of the proposi-

tion, it is not difficult to see that the logarithmic probability of the event �� �≔ − ≠ ∅ ∩⋆ ⋆ ≽
Λ Λξ 2

T
is bounded
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above by the term
� �( ( ) ) ( )

( )
−

− − + ⋆

>

C d T TM ξ p

h τ

1 ˆ , Λ, , ,

2 inf

d

d T

τ

1
2 2

2

0

2 , where now � � � �( ) ( )≔⋆ ⋆
M ξ p M ξ pˆ , Λ, , , , Λ, , ,T T2 2 2 2

� �
� � � �( ( ) ( ))

( ) ∥ ∥

( )−
−⋆ ⋆ ⋆ ⋆τ λ τ λ

λ

D v D v

d p

sup inf , , , inf , , ,

2 sup
Λ

T T
2 2

2

, for � � �( ) { ( ) }≔ − − ∈⋆ ⋆
+

⋆z x z,2 , and ∈ ⋆
λ ΛT ξT

. The numerator of the

second term above represents a conservative estimate of the approximation error due to the LP-discretization
of the support �; under the event �⋆, this term is non-negative, thus augmenting the resulting probability
bound compared to the one regarding the probability of � .

The second result says that for the appropriate choice of the regularization multiplier, the probability of
FD for the members of the enhanced set will eventually become smaller than the probability of FD for the
whole of �

≽
Λ

T
, whenever failure of population dominance happens due to the complement of � ( )

⋆
u2 . It shows

the significance of the positive slacks implied by the regularization parameters on the SD conditions, for the
small sample mitigation of the particular decision error.

The third result corresponds to an oracle inequality that relates the opportunity loss entailed by the
empirical regularized problem to the ℓp-deviation between the empirical and the population solution and
the regularization factor. If the empirical solution is consistent, it implies asymptotic negligibility for the
opportunity loss w.h.p.

If instead of the regularized problem the norm-constrained Lagrangean formulation is used,

��
�

( ( ))
( )

′
∩ ≽

λ xumax ;
Λ Λcp T

T (10)

( ) { ∥ ∥ }≔ ∈ − ≤Λ λ Λ λ τc c: ,p p (11)

for >c 0, then by the Lagrangian Duality Theorem, see Ch. 8, Theorem 1 of [27], the above results would
transfer in this framework, as long as the term ξT is replaced by the worst case over the relevant event optimal
Lagrange multiplier, and likewise the term �‖ ‖−λ τinf T p is replaced by c.

4 Discussion

The theoretical results developed in this note provide a rigorous initial justification for the role of ℓp-norm
regularizations in controlling FD classification risks within portfolio optimization problems enhanced by SD
constraints. By leveraging a DRO framework characterized by Wasserstein distances, the analysis elucidates
some of the mechanisms through which norm-based regularization might enhance out-of-sample robustness
and mitigate classification errors.

Although the focus of this note remains theoretical, the derived results, and more importantly their
potential extensions to more realistic frameworks, could have empirical relevance, particularly for financial
practitioners and researchers engaged in portfolio construction:
• The derived non-asymptotic probability bounds provide a theoretical basis for choosing the regularization
parameter ξT , ensuring that the risks of FD classification remain controlled at the desired significance levels.
Such guidance could be especially valuable in high-dimensional portfolio settings where over-fitting is
prevalent.

• The analysis allows highlighting minimum sample size requirements to ensure that FD probabilities are kept
below a threshold. This insight is particularly relevant for small-sample empirical studies where traditional
estimation techniques may fail.

While this note establishes initial foundational results, several critical avenues for theoretical develop-
ment remain open:
(1) The current results are derived under the assumption of iid observations. However, financial time series

typically exhibit temporal dependencies at least in moderate and high observation frequencies. Extending
our results to ergodic and strongly mixing processes represents a non-trivial challenge. Potential
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approaches include leveraging Bakry-Émery positive curvature-dimension conditions, as those relate to
transportation inequalities and concentration phenomena; refer [28] for further insights.

(2) Similar results would be analogously derivable to the above for other SD relations, if the relevant set of
utility functions that define the relation is equi-continuous w.r.t. the topology of locally uniform conver-
gence. This could accommodate cases of preferences with non-global disposition towards risk like appro-
priate sets of S-shaped utilities associated with the prospect SD relation [29] or [30]. Moreover,
it is observed that in these instances, the numerical expression of the related optimization problems
may not entirely simplify to standard LP programs because they may include components of mixed integer
linear programming formulations. In such cases, the associated problems could be solved via cutting plane
methods (refer for example [31]), or via the use of meta-heuristic methods like the SMA algorithm (refer for
example [32]). The even more complicated issue of deriving the probabilistic properties of solutions
emerging from adopting such as optimization methods to SD problems is an interesting path for further
research.

(3) Conducting empirical studies using real-world financial datasets (e.g., S&P 500 constituents, bond indices,
FX rates) would allow for testing the practical performance of the proposed framework, including
in-sample vs out-of-sample performance comparisons and FD risk reduction verification.

(4) While this note focuses on ℓp-norm regularization, other techniques such as elastic net regularization and
sorted ℓ1-norm regularization could yield complementary insights by balancing sparsity, diversification,
and robustness.

While the current analysis lays a potential theoretical groundwork for understanding how ℓp-norm
regularizations reduce FD risk in SD frameworks, much remains to be explored. Extending these results to
temporally dependent data will be offering deeper insights into robust portfolio optimization across real-
world financial applications. Furthermore, as empirical validation becomes available, these theoretical
insights could directly inform practical portfolio strategies, risk management decisions, and algorithmic
trading frameworks.
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