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Abstract: This article presents a characterization of non-singular measurable transformation, denoted as T ,
mapping fromΩ to itself, along with bicomplex-valued�� -measurable functionu defined onΩ, which induces
a weighted composition operator. The study then proceeds to fully identify their� -compactness and� -closed-
ness within the range of bicomplex Lorentz spaces denoted as L ϑΩ, ,p q, M��( ), where ϑΩ, ,M( ) represents
a σ -finite complete �� -measure space, = +ϑ ϑ e ϑ e1 1 2 2 is a �� -measure, and the parameters satisfy < ≤ ∞p1 ,

≤ ≤ ∞q1 .
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1 Introduction and preliminaries on ℂ�

Bicomplex (��)-valued functions are used in many areas of mathematics, including probability theory and
mathematical analysis. Vector spaces are usually taken into account over real or complex numbers in con-
ventional functional analysis. Bicomplex scalars, on the other hand, provide a deeper framework that allows
additional possibilities for applications. The study of modules with bicomplex scalars within the framework of
functional analysis has garnered a lot of attention recently. The book by Alpay et al. [1] is a noteworthy
addition to this subject, which can present new ideas and viewpoints on this subject. It offers remarkable
findings, methods, and uses related to in the structure of functional analysis, the study of modules with
bicomplex scalars. Among other things, these conclusions cover several aspects of functional analysis,
including operator theory, function spaces, and spectral theory.

The Hahn-Banach theorem for bicomplex modules and hyperbolic modules is investigated in [2]. Topo-
logical bicomplex modules, exploring their topological properties and investigating concepts such as conver-
gence, continuity, and compactness in the sense of �� , are done in [3]. Fundamental theorems such as the
principle of uniform boundedness, open mapping theorem, interior mapping theorem for bicomplex modules,
and closed graph theorem are studied in [4]. �� -bounded linear operators and bicomplex functional calculus
are examined in [5].

In [6], in collaboration with [4], the authors delved further into the study of topological hyperbolic
modules, topological bicomplex modules, exploring the properties of linear operators, continuity, and related
topological concepts specific to these settings.
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The book authored by Luna-Elizarrarás et al. provides an in-depth exploration of bicomplex analysis and
geometry [7]. It covers holomorphic functions, integration, differential equations, and geometric properties
specific to the bicomplex domain.

Besides these, bicomplex Lebesgue spaces and some of their geometric and topological properties are
defined in [8,9] and [10]. Bicomplex sequence spaces lp ��( ) are defined and examined with various properties
in [11] and [12].

These references show the exploration of properties, the development of new theorems, and the applica-
tion of functional analysis techniques in the context of bicomplex numbers. Researchers and readers inter-
ested in these topics can refer to these articles and the books for detailed insights into the respective areas of
study.

We now summarize bicomplex numbers with some basic properties. The set of bicomplex numbers �� ,
which is a four-dimensional extension of the real numbers, is defined as

≔ = + ∈W w jw w w i, ,1 2 1 2�� �{ ∣ ( )}

where i and j are the imaginary units satisfying =ij ji, = = −i j 12 2 . Here, i�( ) is the field of complex numbers
with the imaginary unit i. According to ring structure, for any = + = +Z z jz W w jw,1 2 1 2 in �� , usual addition
and multiplication are defined as

+ = + + +
= − + +

Z W z w j z w

ZW z w z w j z w z w

,

.

1 1 2 2

1 1 2 2 2 1 1 2

( ) ( )

( ) ( )

The set �� forms a commutative ring under the usual addition and multiplication. It has a unit element
denoted as ≔1 1�� and is a module over itself.

The product of the imaginary units i and j bring out a hyperbolic unit k , such that =k 12 . This implies that
k is a square root of 1 and is distinct from i and j . The product operation of all units i j, , and k in the bicomplex
numbers is commutative and

= = − = −ij k jk i ik j, , and .

Hyperbolic numbers � are two-dimensional extensions of the real numbers that form a number system
known as the hyperbolic plane or hyperbolic plane algebra. They can be represented in the form = +β β kβ

1 2
,

where β
1
and β

2
are the real numbers, and k is the hyperbolic unit. In the hyperbolic number system, for any

two hyperbolic numbers = +β β kβ
1 2

and = +γ δ kδ1 2, addition and multiplication are defined as follows:

+ = + + +
= + + +

β γ β δ k β δ

βγ β δ β δ k β δ β δ

,

.

1 1 2 2

1 1 2 2 1 2 2 1

( ) ( )

( ) ( )

Furthermore, �� is a normed space with the norm = +W w w1
2

2
2

��∥ ∥ ∣ ∣ ∣ ∣ for any = +W w jw1 2 in �� .
In light of this, ≤W W W W21 2 1 2�� �� ��∥ ∥ ∥ ∥ ∥ ∥ for every ∈W W,1 2 �� , and finally, �� is a modified Banach
algebra [13].

If the hyperbolic numbers e1 and e2 are defined as

=
+

=
−

e
k

e
k1

2
and

1

2
,1 2

then it is easy to see that

= = = = + = ⋅ =∗ ∗e e e e e e e e e e e e, , , , 1, 01

2
1 2

2
2 1 1 2 2 1 2 1 2( ) ( )

are satisfied and = =e e1 2

2

2�� ��∥ ∥ ∥ ∥ , where = −∗W w jw1 2 is ∗-conjugate of W . Using this linearly inde-
pendent set e e,1 2{ }, any = + ∈W w jw1 2 �� can be written as a linear combination of e1 and e2 uniquely, i.e.,

= +W w jw1 2 can be written as

= + = +W w jw e z e z ,1 2 1 1 2 2 (1)
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where = −z w iw1 1 2 and = +z w iw2 1 2 [1]. Here z1 and z2 are the elements of i�( ) and the formula in (1) is called
the idempotent representation of the bicomplex number W .

Besides the Euclidean-type norm ⋅ ��∥ ∥ , another norm named with (� -valued) hyperbolic-valued norm
W k∣ ∣ of any bicomplex number = +W e z e z1 1 2 2 is defined as

= +W e z e z .k 1 1 2 2∣ ∣ ∣ ∣ ∣ ∣

For any hyperbolic number = + ∈α β kβ
1 2

� , an idempotent representation can also be written as ⊂� �� .
Thus, = + ∈α β kβ

1 2
� can be written as

= +α e α e α ,1 1 2 2

where = +α β β1 1 2
and = −α β β2 1 2

are the real numbers. If >α 01 and >α 02 for any =α β
1

+ = + ∈kβ e α e α
2 1 1 2 2 � , then we say that α is a positive hyperbolic number. Thus, the set of non-negative

hyperbolic numbers ∪+ 0� { } is defined by

∪ = = + − ≥ ≥
= = + ≥ ≥

+ α β kβ β β β

α e α e α α α

0 : 0, 0

: 0, 0 .

1 2 1

2

2

2

1

1 1 2 2 1 2

� { } { }

{ }

Now, let α and γ be any two elements of � . In [1,2] and [7], a relation ≼ is defined on � by

≼ ⇔ − ∈ ∪+α γ γ α 0 .� { }

It is shown in [1] that this relation “≼” defines a partial order on � . If idempotent representations of the
hyperbolic numbers α and γ are written as = +α e α e α1 1 2 2 and = +γ e γ e γ1 1 2 2

, then ≼ ⇔ ≤α γ α γ1 1
and

≤α γ2 2
. By ≺α γ, we mean <α γ1 1

and <α γ2 2
. Any function f defined on � is called � -increasing if

≺f α f γ( ) ( ), � -decreasing if ≻f α f γ( ) ( ), � -nonincreasing if ≽f α f γ( ) ( ) and � -nondecreasing if ≼f α f γ( ) ( )

whenever ≺α γ. For more details on hyperbolic numbers � and partial order “≼” one can refer to [1, Section
1.5] and [7].

Definition 1.1. Let A be a subset of� . A is called a� -bounded above set if there is a hyperbolic number δ such
that ≽δ α for all ∈α A. If ⊂A � is � -bounded from above, then the � -supremum of A is defined as the
smallest member of the set of all upper bounds of A [6].

Remark 1.1. [1, Remark 1.5.2] Let A be a � -bounded above subset of � , ≔ + ∈A λ e λ e λ A:1 1 1 1 2 2{ } and
≔ + ∈A λ e λ e λ A:2 2 1 1 2 2{ }. Then, the Asup� is given by

≔ +A e A e Asup sup sup .1 1 2 2�

Similarly, for any � -bounded below set A, � -infimum of A is defined as

= +A e A e Ainf inf inf .1 1 2 2�

Remark 1.2. A �� -module space or � -module space Y can be decomposed as

= +Y e Y e Y ,1 1 2 2 (2)

where =Y e Y1 1 and =Y e Y2 2 are �-vector or i�( )-vector spaces. The spelling in (2) is called as the idempotent
decomposition of the space Y [1,6,7].

Definition 1.2. LetM be aσ -algebra on a setΩ. A bicomplex-valued function = +μ μ e μ e
1 1 2 2 defined onΩ is called

a�� -measure onM if μ
1
and μ

2
are complex measures onM. In particular if μ

1
and μ

2
are the positive measures

on M, then μ is called a � -measure on M. Also, if μ
1
and μ

2
are the real measures on M, then μ is called

a +� -measure on M [14,15].

Assume that = μΩ Ω, ,M( ) is a σ -finite complete measure space and f
1
and f

2
are complex-valued (real-

valued) measurable functions on Ω. The function having idempotent decomposition = +f f e f e
1 1 2 2 is called as

a �� -measurable function and = +f f e f ek 1 1 2 2∣ ∣ ∣ ∣ ∣ ∣ is a � -valued measurable function on Ω [14,15].
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For any�� -valued measurable function = +f f e f e
1 1 2 2, it is easy to see that = +f f e f ek 1 1 2 2∣ ∣ ∣ ∣ ∣ ∣ is� -valued

measurable. Because if = +f f e f e
1 1 2 2 is a �� -valued measurable function, then f f,

1 2
are �-measurable func-

tions and real, imaginary parts of f
1
and f

2
are � -valued measurable. Also for any two �� -valued measurable

functions f and g , it can be easily seen that their sum and multiplication functions are also �� -measurable
functions [14,15]. More results on� -topology such as� -limit,� -continuity,� -Cauchy, and� -convergence can
be found in [2–4,6,7,15] and references therein.

Definition 1.3. Let = +μ μ e μ e
1 1 2 2 be a � -measure and = +λ λ e λ e1 1 2 2 be a �� -measure on M. Then, λ is said

to be absolutely �� -continuous with respect to μ, and denoted by ≪λ μ�� , if λi is absolutely continuous with
respect to μ

i
for =i 1, 2 [15].

If for ∈A λ, iM is concentrated on A for =i 1, 2, then λ is said to be �� -concentrated on A. Any two �� -
measures ′ = ′ + ′ ″ = ″ + ″λ λ e λ e λ λ e λ e,1 1 2 2 1 1 2 2 on M are called mutually �� -singular and denoted by ′ ⊥ ″λ λ��

if ′λi and ″λi are mutually singular for =i 1, 2 [15].

Theorem 1.1. (Lebesgue-Radon-Nikodym theorem) Let M be a σ -algebra on Ω. Let μ be a σ -finite � -measure
on M, and let λ be �� -measure on M.
(a) There is a unique pair of �� -measures ′λ and ″λ on M such that

= ′ + ″λ λ λ ,

where ′ ≪λ μ�� and ″ ⊥λ μ�� . If λ is � -finite measure on M, then ′λ and ″λ are also so.
(b) There exists a unique ∈h L μ

1

��( ) such that

∫′ =λ E h μd ,

E

( )

for all ∈E M [15, Theorem 3.13].

Definition 1.4. [15] Let ϑΩ, ,M( ) be a measure space with = +ϑ ϑ e ϑ e1 1 2 2, Ω,F M( ) indicate the set of all
M-measurable functions on Ω, and ∈u Ω,F M( ) be a �� -valued, measurable function. Let =EM

∈ ≻x u x MΩ : k{ ∣ ( )∣ } for any ≽M 0. Since u is a M-measurable function, = +u u e u ek 1 1 2 2∣ ∣ ∣ ∣ ∣ ∣ is � -valued
measurable, i.e., ∈EM M for any ≽M 0. If the set A is defined as = ≻ = =A M ϑ E0 : 0M{ ( ) }

∈ ≼ −+M u x Mϑ a e: . .k�{ ∣ ( )∣ }, then essential � -supremum of u, denoted by essup u� or ∞u
�∥ ∥ , is defined by

= =∞u u Aessup inf .
�

� �∥ ∥ ( )

2 �-distribution and �-rearrangement functions

Now suppose that ϑΩ, ,M( ) is a σ -finite complete �� -measure space and Ω,F M( ) is the set of all�� -measur-
able �� -valued functions on Ω. In a manuscript conducted recently [16], fundamental properties and related
theorems are given related to � -distribution and � -rearrangement functions. Therefore, we did not examine
these functions in this article.

Definition 2.1. Let = +u u e u e1 1 2 2 be an element of Ω,F M( ) and = +ϑ ϑ e ϑ e1 1 2 2 be a �� -measure. Then,
�� -distribution function ∪ → ∪+ +D : 0 0u � ��� { } { } of u is given by

= +
= ∈ > + ∈ >

D λ D λ e D λ e

ϑ x u x λ e ϑ x u x λ eΩ : Ω : ,

u u u1 1 2 2

1 1 1 1 2 2 2 2

1 2

��( ) ( ) ( )

{ ∣ ( )∣ } { ∣ ( )∣ }
(3)

for all = + ≽λ λ e λ e 01 1 2 2 .
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Definition 2.2. Let ∈ ∪+λ 0� { } and u be a �� valued, measurable function in Ω,F M( ). The � -decreasing
rearrangement of u is the function ∪ → ∪∗ + +u : 0 0� ��� { } { } defined by

= ≽ ≼
= ≥ ≤ + ≥ ≤
= +

∗

∗ ∗

u t α D α t

α D α t e α D α t e

u t e u t e

inf 0 :

inf 0 : inf 0 :

,

u

u u1 1 1 1 2 2 2 2

1 1 1 2 2 2

1 2

�� �
��( ) { ( ) }

{ ( ) } { ( ) }

( ) ( )

(4)

where inf ∅ = ∞� � .

According to [14, Example 2.2], since

= ≽ ∈ ≻ =∞u α ϑ x u x αinf 0 : Ω : 0 ,k
�

�∥ ∥ { { ∣ ( )∣ } }

and ≼∞ ∞ ∞u u u,1 2
�∥ ∥ ∥ ∥ ∥ ∥ , one can write = +∞ ∞ ∞u u e u e1 1 2 2

�∥ ∥ ∥ ∥ ∥ ∥ and so

= ≽ =
= ≽ ∈ > = =
=

∗

∞

u α D α

α ϑ x u x α j

u

0 inf 0 : 0

inf 0 : Ω : 0, 1, 2

.

u

j j j

�� �
��

�

�

( ) { ( ) }

{ { ∣ ( )∣ } }

∥ ∥

(5)

Definition 2.3. The function → ∪∗∗ + +u : 0� ��� { } is defined as

∫ ∫=
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ = +∗∗ ∗ ∗ ∗∗ ∗∗

u t
t

u s ds e
t

u s ds e u t e u t e
1 1

,

t t

1
0

1 1

2
0

2 2 1 1 1 2 2 2

1 2

��( ) ( ) ( ) ( ) ( ) (6)

where = +t t e t e1 1 2 2 and = +∗ ∗ ∗
u u e u e1 1 2 2�� . This function ⋅∗∗

u��( ) is called the� -maximal function of u since it is
the � -largest of all � -average values over ∗

u�� .

Remark 2.1. Even if the value of ∗∗
u t��( ) at =t 0 is not included in the aforementioned definition, the� -limit as

t1 and t2 approach zero from the right for = +t t e t e1 1 2 2 is defined for all rearrangements. In fact,

= +

= +

= + =
=

→

∗∗

→

∗∗ ∗∗

→
∗∗

→
∗∗

∗ ∗ ∗

∞

+ +

+ +

u t u t e u t e

u t e u t e

u e u e u

u

lim lim

lim lim

0 0 0

,

t t t t

t t

, 0 , 0

1 1 1 2 2 2

0
1 1 1

0
2 2 2

1 1 2 2

1 2 1 2

1 2

� �� �

��

�

( ) ( ( ) ( ) )

( ) ( )

( ) ( ) ( )

∥ ∥

where the last equality is from (5).

Theorem 2.1. Let = +u u e u e1 1 2 2, = +v v e v e1 1 2 2 be two elements of Ω,F M( ) and = +ϑ ϑ e ϑ e1 1 2 2 be a �� -mea-
sure with resonant measures ϑ1 and ϑ2. Then,

+ ≼ +∗∗ ∗∗ ∗∗
u v t u t v t ,�� �� ��( ) ( ) ( ) ( )

for all ∈ +t � .

Definition 2.4. Let = +ϑ ϑ e ϑ e1 1 2 2 be a �� -measure, ϑΩ, ,M( ) be a σ -finite complete �� -measurable space,
and Ω,F M( ) be the set of all measurable �� -valued functions on Ω. For < ≤ ∞p0 and < ≤ ∞q0 , bicomplex
Lorentz space, =L L ϑΩ Ω, ,p q p q, , M�� ��( ) ( ) is the set of all equivalence classes of �� -measurable functions

= + ∈f f e f e Ω,
1 1 2 2 F M( ) such that the functional f p q,

��∥ ∥ is � -finite, where

= +f e f e fp q p q p q, 1 1 , 2 2 ,
��∥ ∥ ∥ ∥ ∥ ∥
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and

∫
=

⎧

⎨
⎪

⎩
⎪

⎛

⎝
⎜

⎞

⎠
⎟ < < ∞ < < ∞

< ≤ ∞ = ∞

∞
∕ ∗

∕

>

∕ ∗

f

q

p
t f t

t

t
p q

t f t p q

d
, if 0 , 0 ,

sup , if 0 ,

i p q

p

i

q

q

t

p

i

, 0

1

1

0

1

‖ ‖
( ( ))

( )

for =i 1, 2.

Remark 2.2. For the �� -Lorentz L Ωp q,

��( ) space, the case = ∞p and < < ∞q0 is not of any interest. The reason
for this is that ≺ ∞∞f q,

��
�∥ ∥ says that =f 0 (ϑ -a.e) on Ω. The �� -Lorentz L Ωp q,

��( ) spaces can be seen as general-

izations of the ordinary �� -Lebesgue spaces, L Ω
p

��( ), which are examined in [10]. The reason for this is that if
one writes =q p, one can obtain =L LΩ Ωp p

p

,

��
��( ) ( ) for < ≤ ∞p0 .

Example 2.1. For any M-measurable set E of finite measure according to ϑ1 and ϑ2, we have

⎜ ⎟ ⎜ ⎟

⎜ ⎟

= +

= ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

χ e χ e χ

e
p

q
ϑ E e

p

q
ϑ E

p

q
ϑ E ,

E p q E p q E p q, 1 , 2 ,

1 1 2 2

q

p

q

p

q

p

1

1

1

1

1

1

��∥ ∥ ∥ ∥ ∥ ∥

( ) ( )

( )

for < < ∞p q0 , by [11, Definition 2.2]. If = ∞q , then

= +

= +

=

∞
>

∕ ∗

>

∕ ∗
χ e t u t e t u t

e ϑ E e ϑ E

ϑ E

sup sup
E p

t

p

t

p
, 1

0

1
1 2

0

1
2

1 1 2 2
p p

p

1 1

1

��∥ ∥ ( ) ( )

( ) ( )

( )

since ⋅ =e e 01 2 in �� .

Theorem 2.2. The �� -Lorentz Lp q,

�� space is a quasi-normed linear space.

Remark 2.3. The functional ⋅ p q,

��∥ ∥ is a norm if and only if ≤ ≤ < ∞q p1 or the trivial case = ∞ =p q.

Now, we investigate the conditions under which �� -Lorentz spaces L Ωp q,

��( ) are normed spaces. To

achieve this, we must propose a new functional, ⋅ p q,

��∥ ∥( ), which, for particular values of p and q, is equivalent

to ⋅ p q,

��∥ ∥ . The triangle inequality will be satisfied by the new functional, which is defined by maximal function

instead of rearrangement, for more values of p and q rather than ⋅ p q,

��∥ ∥ . The conclusions in this part will be

important for the discussion of the topological characteristics of the normed space ⋅L Ω ,p q p q, ,

�� ��( ( ) ∥ ∥ )( ) in the
section that follows.

Definition 2.5. For any ∈f L Ωp q,

��( ), the functional ⋅ p q,

��∥ ∥( ) defined by

= +f e f e fp q p q p q, 1 1 , 2 2 ,
��∥ ∥ ∥ ∥ ∥ ∥( ) ( ) ( )

induces a norm on L Ωp q,

��( ), where

∫
=

⎧

⎨
⎪

⎩
⎪

⎛

⎝
⎜

⎞

⎠
⎟ < < ∞ < < ∞

< ≤ ∞ = ∞

∞
∕ ∗∗

∕

>

∕ ∗∗

f

q

p
t f t

t

t
p q

t f t p q

d
, if 0 , 0 ,

sup , if 0 , .

i p q

p

i

q

q

t

p

i

, 0

1

1

0

1

‖ ‖
( ( ))

( )

( )
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Using Theorem 2.1 and the Minkowski inequality, it is easy to see that ⋅ p q,

��∥ ∥( ) satisfy the triangle inequality

for ≤ < ∞p1 and ≤ ≤ ∞q1 . Therefore, ⋅ p q,

��∥ ∥( ) is a norm on Lp q,

�� , and hence, ⋅L Ω ,p q p q, ,

�� ��( ( ) ∥ ∥ )( ) is a � -normed

space if < < ∞p1 , ≤ ≤ ∞q1 , or = ∞ =p q. Moreover, the norm ⋅ p q,

��∥ ∥( ) and the quasi-norm ⋅ p q,

��∥ ∥ are
� -equivalent, i.e.,

⋅ ≼ ⋅ ≼
−

⋅
p

p 1
,p q p q p q, , ,

�� �� ��∥ ∥ ∥ ∥ ∥ ∥( )

where the first inequality is an immediate consequence of the fact that ⋅ ≼ ⋅∗ ∗∗
u u�� ��( ) ( ), and the second follows

from the bicomplex version of the Hardy inequality.

Theorem 2.3. (Completeness). The �� -Lorentz space L Ωp q,

��( ) with the quasinorm ⋅ p q,

��∥ ∥ is � -complete for all
< < ∞ < ≤ ∞p q0 , 0 . Nevertheless, if < < ∞p1 , ≤ ≤ ∞q1 , = =p q 1, or = = ∞p q , then the normed space

⋅L Ω ,p q p q, ,

�� ��( ( ) ∥ ∥ )( ) is a bicomplex Banach space.

Theorem 2.4. Let S be the set of all simple integrable functions. Then, the set = + ∈e s e s s s S: ,1 1 2 2 1 2S { } is dense
in L Ωp q,

��( ) for < < ∞p0 and < < ∞q0 .

3 Characterizations of weighted composition operators

Let ϑΩ, ,M( ) be a σ -finite complete �� -measure space, →T : Ω Ω be a �� -measurable ( ∈−T E1 M( ) , for any
∈E M), non-singular ( =−ϑ T E 01( ( )) whenever =ϑ E 0( ) ) transformation, and = +u e u e u1 1 2 2 be a �� -valued

�� -measurable function defined on Ω. We establish a linear transformation =W Wu T, mapping the
�� -Lorentz space L Ωp q,

��( ) to the linear space encompassing all �� -valued �� -measurable functions, defined
as

∑

= =
= +

=
=

W f x W f x u T x f T x

e u T x f T x e u T x f T x

e u T x f T x ,

u T

i

i i i

,

1 1 1 2 2 2

1

2

( )( ) ( )( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( ))

for all ∈x Ω and = + ∈f e f e f L Ωp q1 1 2 2 ,

��( ).
IfW is � -bounded with range in L Ωp q,

��( ) subsequently, this transformation is termed a weighted compo-

sition operator on L Ωp q,

��( ). If = +u e e1 2, then

= + = ∘W f x e f T x e f T x f T xu T, 1 1 2 2
( )( ) ( ( )) ( ( )) ( )( )

is called a composition operator CT induced by T . If T is the identity mapping, then ≡W Mu will be a multi-
plication operator induced by u. The study of these operators on Lebesgue spaces has been carried out in
[17–22] and references therein. Composition and multiplication operators on the Lorentz spaces, weighted
Lorentz spaces, Lorentz-Karamata spaces were studied in [23–28] and [29].

This study characterizes non-singular measurable transformations T from Ω into itself, along with
�� -valued �� -measurable functions u on Ω, which induce weighted composition operators. Subsequently,
their compactness and closedness within the range of �� -Lorentz spaces L Ωp q,

��( ), where < ≤ ∞ ≤ ≤ ∞p q1 , 1 ,
are fully identified.

Theorem 3.1. Let ϑΩ, ,M( ) be a σ -finite complete �� -measure space and →u : Ω �� be a �� -measurable
function. Suppose that →T : Ω Ω is a �� -measurable, non-singular transformation such that the Lebesgue-
Radon-Nikodym derivative = + = ∕−f e f e f d ϑT dϑ

T T T1
1

2
2 1( ) is in ∞

L ϑ��( ). Then,

↦ ∘ ⋅ ∘W f u T f T:u T,

is � -bounded on L Ωp q,

��( ) for < ≤ ∞ ≤ ≤ ∞p q1 , 1 if ∈ ∞
u L ϑ��( ).

Weighted composition operators on bicomplex Lorentz spaces  7



Proof. Assume that f
T
is in ∞

L ϑ��( ) and =∞f γ
T

�∥ ∥ . Then, =∞f γ
T

1

1
∥ ∥ and =∞f γ

T

2

2
∥ ∥ for = + ≻γ e γ e γ 01 1 2 2

.
For any = + ∈f e f e f L Ωp q1 1 2 2 ,

��( ), the � -distribution function of W f( ) satisfies

∑

∑

∑

∑

= +

= ∈ >

= ∈ >

≼ ∈ >

≼ ∈ >

= + +

=

=

=

−

=

−
∞

=
∞

∥ ∥ ∥ ∥

∥ ∥

∞ ∞

∞

D λ D λ e D λ e

ϑ x u T x f T x λ e

ϑ T x u x f x λ e

ϑ T x u f x λ e

γϑ x u f x λ e

e γ e γ D λ e D λ e

γD λ

Ω :

Ω :

Ω :

Ω :

,

W f u T f T u T f T

i

i i i i i

i

i i i i i

i

i i i i i

i

i i i i i i

u f u f

u f

1 1 2 2

1

2

1

2

1

1

2

1

1

2

1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2

��

��
�

( ) ( ) ( )

{ ∣ ( ( )) ( ( ))∣ }

{ ∣ ( ) ( )∣ }

{ ∥ ∥ ∣ ( )∣ }

{ ∥ ∥ ∣ ( )∣ }

( )( ( ) ( ) )

( )

( ) ( ) ( ) ( ) ( )

for all = + ≽λ λ e λ e 01 1 2 2 , where = = +Wf W f e u T f T e u T f Tu T, 1 1 1 2 2 2
( ) ( ) ( ) ( ) ( ). Therefore, for each =t e t1 1

+ ≽e t 02 2 , we have

⎧
⎨
⎩

≻ ≼ +
⎫
⎬
⎭

⊂ ≻ ≼ +∥ ∥∞
λ D λ

t

γ
e

t

γ
e λ D λ e t e t0 : 0 : .

u f W f

1

1

1

2

2

2 1 1 2 2
�� ��

� ( ) { ( ) }( )

This inclusion says that

∑

⎟⎜

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

= ≽ ≼

≼
⎧
⎨
⎩

≽ ≼ +
⎫
⎬
⎭

=
⎧
⎨
⎩

≥ ≤
⎫
⎬
⎭

=
⎛
⎝

⎞
⎠

+
⎛
⎝

⎞
⎠

= +
⎛

⎝
⎛
⎝

⎞
⎠

+
⎛
⎝

⎞
⎠

⎞

⎠

= ⎛
⎝

⎞
⎠

∗

∥ ∥

=
∥ ∥

∞
∗

∞
∗

∞ ∞
∗ ∗

∞
∗

∞

∞

W f t λ D λ t

λ D λ
t

γ
e

t

γ
e

λ D λ
t

γ
e

u f
t

γ
e u f

t

γ
e

u e u e f
t

γ
e f

t

γ
e

u f
t

γ

inf 0 :

inf 0 :

inf 0 :

W f

u f

i

i u f i

i

i

i

1

1

1

2

2

2

1

2

1 1

1

1

1 2 2

2

2

2

1 1 2 2 1

1

1

1 2

2

2

2

i i

�� �
��

�
��

�� ��

�� ��

�
��

�

( ) ( ) { ( ) }

( )

( )

∥ ∥ ( ) ∥ ∥ ( )

(∥ ∥ ∥ ∥ ) ( ) ( )

∥ ∥

( )

and

⎟⎜ ⎜ ⎟ ⎜ ⎟⎜ ⎟≼ ⎛
⎝

⎞
⎠

= +
⎛

⎝
⎛
⎝

⎞
⎠

+
⎛
⎝

⎞
⎠

⎞

⎠
∗∗

∞
∗∗

∞ ∞
∗∗ ∗∗

W f t u f
t

γ
u e u e f

t

γ
e f

t

γ
e .1 1 2 2 1

1

1

1 2

2

2

2��
�

�� �� ��( ) ( ) ∥ ∥ (∥ ∥ ∥ ∥ ) ( ) ( )

Therefore, for ≤ < ∞q1 ,

∫

∫

∑

∑ ⎟⎜ ⎜ ⎟

= +

=
⎛

⎝
⎜

⎞

⎠
⎟

≼
⎛

⎝
⎜

⎛

⎝
⎛
⎝

⎞
⎠
⎞

⎠

⎞

⎠
⎟

=

∞
∕ ∗∗

∕

=
∞
∕

∞
∕ ∗∗

∕

Wf e u T f T e u T f T

e
q

p
t u T f T t

t

t

e u
q

p
t f T

t

γ

t

t

d

d

p q p q p q

i

i i

p

i i i
q i

i

q

i

i i
q

i

p

i

i

i

q

i

i

q

, 1 1 1 , 2 2 2 ,

1

2

0

1

1

1

2

1

0

1

1

��∥ ∥ ∥ ( ) ( )∥ ∥ ( ) ( )∥

( ( ( ) ( )) ( ))

∥ ∥ ( )

( ) ( ) ( )

(7)
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∑ ∑≼

=
=

∞
=

∕

∞
∕

e u e γ f

u γ f

i

i i

i

i i

p

i p q

p
p q

1

2

1

2

1
,

1
,

� ��

∥ ∥ ( ) ∥ ∥

∥ ∥ ∥ ∥

( )

( )

and

∑

∑

∑ ∑⎟ ⎟⎜ ⎜

⎜ ⎟

= +

=

≼
⎛
⎝

⎞
⎠

=
⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

=

∞ ∞ ∞

= >

∕ ∗∗

=
∞

>

∕ ∗∗

=
∞

=

∕
∞

∞
∕

∞

Wf e u T f T e u T f T

e t u T f T t

e u t f
t

γ

e u e γ f

u γ f

sup

sup

p p p

i

i

t

i

p

i i i

i

i i

t

i

p

i

i

i

i

i i

i

i i

p

i p

p
p

, 1 1 1 , 2 2 2 ,

1

2

0

1

1

2

0

1

1

2

1

2

1
,

1
,

i

i

��

� ��

∥ ∥ ∥ ( ) ( )∥ ∥ ( ) ( )∥

( ( ) ( )) ( )

∥ ∥ ( )

∥ ∥ ( ) ∥ ∥

∥ ∥ ∥ ∥

( ) ( ) ( )

( )

( )

(8)

can be written. As a result, W is a � -bounded operator on L Ωp q,

��( ) for < ≤ ∞ ≤ ≤ ∞p q1 , 1 , and

≼ ∞
∕W u γp q
p

,
1�� �∥ ∥ ∥ ∥( )

by (7) and (8). □

Theorem 3.2. Let u be a �� -valued measurable function and →T : Ω Ω be a non-singular measurable trans-
formation such that ⊂T E Eε ε( ) for each + = ≻e ε e ε ε 01 1 2 2 , where = ∈ ≻E x u x εΩ :ε k{ ∣ ( )∣ }. If W is � -bounded
on L Ωp q,

��( ) for < ≤ ∞ ≤ ≤ ∞p q1 , 1 , then ∈ ∞
u L ϑ��( ).

Proof. Assume that ∉ ∞
u L ϑ��( ). Then, for each ≻N 0, the set = ∈ ≻E x u x NΩ :N k{ ∣ ( )∣ } has a � -positive

measure. It means there exist >N N, 01 2 such that >u x N1 1∣ ( )∣ and >u x N2 2∣ ( )∣ for all ∈x EN where =N

+N e N e1 1 2 2 and ≻ϑ E 0N( ) . Using the definition of � -distribution function and the property + ≼χ e χ e
E E1 2

N N

+− −χ e χ e
T E T E1 2

N N
1 1( ) ( ) , one obtain

∑

∑

∑

= +

= ∈ >

≼ ∈ >

≼ ∈ >

=

=

=

−

−

D λ D λ e D λ e

ϑ x χ x λ e

ϑ x χ λ e

ϑ x u T x χ λ N e

Ω :

Ω :

Ω : .

χ χ χ

i

i E i i

i

i T E i i

i

i i T E i i i

1 1 2 2

1

2

1

2

1

2

EN
EN EN

N

N

N

1

1

��( ) ( ) ( )

{ ∣ ( )∣ }

{ ∣ ∣ }

{ ∣ ( ( )) ∣ }

( )

( )

(9)

Therefore,

∑

∑

∑

= ≽ ≼ =

= ≥ ≤

= ≥ ≤

≽ + ≥ ≤

=

∗ ∗

=

=

=
∗

Wχ t λ D λ t u T x χ T x t

λ D λ t e

N λ D λ N t e

N e N e λ D λ t e

N χ t

inf 0 :

inf 0 :

inf 0 :

inf 0 :

E Wχ E

i

i u T x χ T x i i i

i

i i u T x χ T x i i i i

i

i χ i i i

E

1

2

1

2

1 1 2 2

1

2

N EN N

i EN

i EN

EN

N

�� �
��

��

��

( ) ( ) { ( ) } ( ( ( )) ( ( ))) ( )

{ ( ) }

{ ( ) }

( ) { ( ) }

( ) ( )

( ( )) ( ( ))

( ( )) ( ( ))
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by (9). Thus, we have

∫

∫

∑

∑

=
⎛

⎝
⎜

⎞

⎠
⎟

≽
⎛

⎝
⎜

⎞

⎠
⎟

= +

∗∗

=

∗

=

∗

∗∗

Wχ t
t

u T x χ T x s ds e

N
t

χ s ds e

N e N e χ t

1

1

E

i i

t

i E i

i

i

i

t

E i

E

1

2

0

1

2

0

1 1 2 2

N

i

N

i

N

N

��

��

( ) ( ) ( ( ( )) ( ( ))) ( )

( ) ( )

( )( ) ( )

and ≽Wχ N χ
E p q E p q, ,N N

�� ��∥ ∥ ∥ ∥( ) ( ). This contradicts the boundedness of =W Wu T, . □

Combining the previous two theorems, we obtain the following.

Theorem 3.3. Let u be a �� -measurable, �� -valued function, and T be a non-singular measurable transforma-
tion on Ω such that the Lebesgue-Radon-Nikodym derivative = ∕−f d ϑT dϑ

T

1( ) is in ∞
L ϑ��( ) and ⊆T E Eε ε( )

for each = + ≻ε e ε e ε 01 1 2 2 , where = ≻E x u x ε:ε k{ ∣ ( )∣ }. Then, =W Wu T, is � -bounded on L Ωp q,

��( ) for
< ≤ ∞ ≤ ≤ ∞p q1 , 1 if and only if ∈ ∞

u L ϑ��( ).

4 Compactness and closed range

We are prepared to examine the compactness and closed range properties of the weighted composition
operator = = ⋅W f W f u T f Tu T,( ) ( ) ( ) ( ) on the �� -Lorentz spaces L Ωp q,

��( ) for < ≤ ∞ ≤ ≤ ∞p q1 , 1 .
Let →T : Ω Ω be a non-singular �� -measurable transformation such that the Lebesgue-Radon-Nikodym

derivative = + = ∕−f e f e f d ϑT dϑ
T T T1

1
2

2 1( ) is in ∞
L ϑ��( ) with = + =∞ ∞ ∞f e f e f γ

T T T1
1

2
2�∥ ∥ ∥ ∥ ∥ ∥ . Then, =∞f γ

T

1

1
∥ ∥

and =∞f γ
T

2

2
∥ ∥ for = + ≻γ e γ e γ 01 1 2 2

. For each = + ∈f e f e f L Ωp q1 1 2 2 ,

��( ) and = + ≻t e t e t 0,1 1 2 2

∑

∑

∑

∑

= ≽ ≼

= ≥ ≤

= ≥ ∈ ⋅ > ≤

= ≥ ∈ ⋅ > ≤

≼ ≥ ∈ ⋅ > ≤

= ⋅ =

∗

=
⋅

=

=

−

=
∗ ∗

Wf γt α D α γt

α D α γt e

α ϑ x u T x f T x α γt e

α ϑ T x u f x α γt e

α ϑ x u f x α t e

u f t M f t

inf 0 :

inf 0 :

inf 0 : Ω :

inf 0 : Ω :

inf 0 : Ω :

Wf

i

i u T x f T x i i i i

i

i i i i i i i i

i

i i i i i i i i

i

i i i i i i i

u

1

2

1

2

1

2

1

1

2

i i

�� �
��

�� ��

( ) ( ) { ( ) }

{ ( ) }

{ { ∣ ( ( )) ( ( ))∣ } }

{ { ∣( )( )∣ } }

{ { ∣( )( )∣ } }

( ) ( ) ( ) ( )

( ( )) ( ( ))

can be written. Therefore,

≼ + =∕ ∕ ∕Wf γ M f e γ M f e γ M f ,p q

p
u p q

p
u p q

p
u p q, 1

1

1 , 1 2

1

2 , 2
1

,1 2

�� �� �� ��∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥( ) ( ) ( ) ( ) (10)

by [11, Definition 2.2]. Now, let = ≠U x u x: 0{ ( ) } and assume that f
T
is bounded away from zero in the

� -metric onU . It means ≻f δ
T

( −ϑ a.e.) for some = + ≻δ e δ e δ 01 1 2 2 . Then, for all ∈E M with ⊂E U , we obtain

∫ ∫
= +

= +

≽ + =

− − −ϑT E ϑ T E e ϑ T E e

e f dϑ e f dϑ

δ ϑ E e δ ϑ E e δϑ E

E

T

E

T

1
1

1
1 2

1
2

1
1

1 2
1

1

1 1 1 2 2 2

( ) ( ( )) ( ( ))

( ) ( ) ( )
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and so ≽ ∕Wf δ M fp q
p

u p q,
1

,

�� ��∥ ∥ ∥ ∥( ) ( ). As a result, with (10),

≼ ≼∕ ∕δ M f Wf γ M fp
u p q p q

p
u p q

1
, ,

1
,

�� �� ��∥ ∥ ∥ ∥ ∥ ∥( ) ( ) ( ) (11)

can be written for each ∈f L Ωp q,

��( ) whenever ∈ ∞
f L ϑ
T ��( ) is bounded away from zero in the � -metric and

< ≤ ∞ ≤ ≤ ∞p q1 , 1 . By (11) and [23, Theorem 3.1], we can write the following theorem.

Theorem 4.1. Let →T : Ω Ω be a non-singular �� -measurable transformation such that the Lebesgue-Radon-
Nikodym derivative = + = ∕−f e f e f d ϑT dϑ

T T T1
1

2
2 1( ) is in ∞

L ϑ��( ) and bounded away from zero in the � -metric.
Let u be a �� -valued, measurable function on Ω such thatWu T, is bounded on the �� -Lorentz space L Ωp q,

��( ) for
< ≤ ∞ ≤ ≤ ∞p q1 , 1 . Then, the following are equivalent:
(i) Wu T, is compact,
(ii) Mu is compact,
(iii) L Hp q u δ, ,

��( ) are finite dimensional for each = + ≻δ e δ e δ 01 1 2 2 , where

= ∈ = ∈ ≽L H fχ f L ϑ and H x u x δ: Ω, , Ω : .p q u δ H p q u δ k, , , ,
u δ,

M�� ��( ) { ( )} { ∣ ( )∣ }

Given that =W C Mu T T u, , a condition sufficient for the compactness of the weighted composition operator
Wu T, on L Ωp q,

��( ) for < ≤ ∞ ≤ ≤ ∞p q1 , 1 can be inferred using [28, Theorem 3.1].

Theorem 4.2. Let →T : Ω Ω be a non-singular �� -measurable transformation such that the Lebesgue-Radon-
Nikodym derivative = + = ∕−f e f e f d ϑT dϑ

T T T1
1

2
2 1( ) is in ∞

L ϑ��( ) and u be a �� -valued, �� -measurable function
on Ω such that ∈ ∞

u L ϑ��( ). Let Un{ } be the set of all atoms of Ω with = + ≻ϑ U ϑ U e ϑ U e 0n n n1 1 2 2( ) ( ) ( ) for each n.
Then, Wu T, is compact on the �� -Lorentz space L Ωp q,

��( ) for < ≤ ∞ ≤ ≤ ∞p q1 , 1 if ϑ1 and ϑ2 are purely atomic
measures and

= →
−

γ
ϑ T U

ϑ U
0,

j

n
j n

j n

1( )

( )

for =j 1, 2.

Theorem 4.3. If ϑ is non-atomic measure, i.e., ϑ1 and ϑ2 are non-atomic measures and Wu T, is bounded on the
�� -Lorentz space L Ωp q,

��( ) for < ≤ ∞ ≤ ≤ ∞p q1 , 1 , then Wu T, is compact if and only if ⋅ =u f 0
T

(ϑ -a.e.).

Proof. It is easy to see that when ⋅ =u f 0
T

(ϑ -a.e.),Wu T, is compact. Now, let =W Wu T, be compact and assume
that ⋅ ≠u f 0

T
. Then, there exists a unit positive hyperbolic number = + ≻α e α e α 01 1 2 2 such that the set

= ∈ ≻ ∩ ∈ ≻U x u x α x f x αΩ : Ω :k T k{ ∣ ( )∣ } { ∣ ( )∣ }

has � -positive measure. Since ϑ1 and ϑ2 are non-atomic measures, there exists a decreasing sequence Un{ }

of �� -measurable subsets of U such that

= < <ϑ U
a

a ϑ U
2

, 0 ,j n

j

n j j( ) ( )

for =j 1, 2. Let = + = +v e v e v e en n n

χ

χ
1

1
2

2
1 2

Un

Un p q,
�� ( )( ) ( )

∥ ∥( )
. Then, vn{ } is a � -bounded sequence in L Ωp q,

��( ). For any

∈n �, let =m n2 . Then, for = + ≽t e t e t 0,1 1 2 2

∑

∑

⎛
⎝

⎞
⎠ =

⎧
⎨
⎩

≽ ≼
⎫
⎬
⎭

= ⎧⎨⎩
≥ ≤ ⎫⎬⎭

= ⎧⎨⎩
≥ ∈ ⋅ − > ≤ ⎫⎬⎭

−
∗

−

=
⋅ −

=

W
t

α
λ D λ

t

α

λ D λ
t

α
e

λ ϑ x u T x v v T x λ
t

α
e

inf 0 :

inf 0 :

inf 0 : Ω :

v v Wv Wv

i

i u T x v v T x i

i

i

i

i

i i i n

i

m

i
i

i

i

i

1

2

1

2

n m n m

i n

i

m

i

�� �
��( ) ( )

( )

{ ∣ ( ( )) ( )( ( ))∣ }

( )

( ( )) ( )( ( ))

( ) ( )

( ) ( )
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∑

∑

∑

∑

⎜ ⎟

= ⎧⎨⎩
≥ ∈ ⋅ − > ≤ ⎫⎬⎭

≽ ≥ ∈ − > ≤

= ≥ ∈ − > ≤

≽ ≥ ∈ − > ≤

= ⎛
⎝ + ⎞

⎠

=

−

=

=

=
∗

λ ϑ T y U u y v v y λ
t

α
e

λ ϑ y U v v y λ α t e

α
λ ϑ y U v v y λ t e

α
λ ϑ y U U v v y λ t e

α
e

α
e

χ t

χ

inf 0 : :

inf 0 : :

1
inf 0 : :

1
inf 0 : \ :

1 1

i

i i n i n

i

m

i
i

i

i

i

i

i i n n

i

m

i
i i i i

i i

i i n n

i

m

i
i i i

i i

i i n m n

i

m

i
i i i

U U

U p q

1

2

1

1

2

1

2

1

2

1

1

2

2

\

,

n m

n

��

��

{ ∣ ( ) ( )( )∣ }

{ { ∣( )( )∣ } }

{ { ∣( )( )∣ } }
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for some ≻ε 0 and large values of n. The absence of a convergent subsequence in Wvn{ } contradicts the
compactness of W . Hence, ⋅ =u f 0

T
(ϑ -a.e.). □

The subsequent theorem provides a characterization for a weighted composition operator to possess
a closed range on L Ωp q,

��( ).

Theorem 4.4. Let →T : Ω Ω be a non-singular �� -measurable transformation such that the Lebesgue-Radon-
Nikodym derivative = + = ∕−f e f e f d ϑT dϑ

T T T1
1

2
2 1( ) is in ∞

L ϑ��( ) and bounded away from zero in the � -metric.
Let u be a �� -valued, measurable function on Ω such thatWu T, is bounded on the �� -Lorentz space L Ωp q,

��( ) for
< ≤ ∞ ≤ ≤ ∞p q1 , 1 . Then, Wu T, has � -closed range if and only if there exists a = + ≻β e β e β 01 1 2 2

such that
≽u x βk∣ ( )∣ (ϑ -a.e.) on = ∈ ≠U x u xΩ : 0{ ( ) }.

Proof. Let = + ∈L U f χ e f χ e f L: Ωp q U U p q, 1 1 2 2 ,

�� ��( ) { ( )}, where = ∈ ≠U x u xΩ : 0{ ( ) }. First, assume that =W Wu T,

has � -closed range. Then, there exists an = + ≻ε e ε e ε 01 1 2 2 such that
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by (10). This contradiction implies that ≽u x βk∣ ( )∣ ( ϑ -a.e.) for all ∈x U .
Conversely, if ≽u x βk∣ ( )∣ (ϑ -a.e.) for all ∈x U , then using the property of ≻f δ

T
(ϑ -a.e.) for some

= + ≻δ e δ e δ 01 1 2 2 , bounded away from zero in the � -metric on U , we obtain
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for any ∈f L Up q,

��( ) by (11). As a result, Wu T, has � -closed range being =W L Uker Ω\u T p q, ,

��( ) ( ). □
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Corollary 4.1. If ⊂−T E Eε ε
1( ) for each ≻ε 0 and Wu T, has � -closed range, then ≽u x βk∣ ( )∣ (ϑ -a.e.) on =U

∈ ≠x X u x: 0{ ( ) } for some = + ≻β e β e β 01 1 2 2
.

The subsequent theorem can be directly derived utilizing observation (11) and using the modified version
of [23, Theorem 4.1].

Theorem 4.5. Let →T : Ω Ω be a non-singular �� -measurable transformation such that the Lebesgue-Radon-
Nikodym derivative = + = ∕−f e f e f d ϑT dϑ

T T T1
1

2
2 1( ) is in ∞

L ϑ��( ) and bounded away from zero in the � -metric.
Let u be a �� -valued, measurable function on Ω such that Wu T, is bounded on the �� -Lorentz space L Ωp q,

��( )

for < ≤ ∞ ≤ ≤ ∞p q1 , 1 . Then, the following are equivalent:
(1) Wu T, has � -closed range,
(2) Mu has � -closed range,
(3) ≽u x βk∣ ( )∣ (ϑ -a.e.) for some = + ≻β e β e β 01 1 2 2

on = ∈ ≠U x X u x: 0{ ( ) }.

Theorem 4.6. If ϑ is non-atomic measure, i.e., ϑ1 and ϑ2 are non-atomic measures and Wu T, is bounded on the
�� -Lorentz space L Ωp q,

��( ) for < ≤ ∞ ≤ ≤ ∞p q1 , 1 , thenWu T, is injective if and only if ∘ ≠u T 0 (ϑ -a.e.) and T is
surjective.

Proof. First, let Wu T, be injective. Assume that T is not surjective. Then, there exists a measurable set
⊂F TΩ\ Ω( ) such that ≠ ∈χ L0 Ω

F p q,

��( ) and =W χ 0u T F, ( ) . This means Wu T, is not injective, which is a contra-
diction. Furthermore, suppose that there exists a measurable set = ∈ =E x u T xΩ : 0{ ∣ ( ( ))∣ } such that ≻ϑ E 0( ) .
Then, a measurable set E1 can be found such that ⊂−T E E1

1( ) and ≺ ∞ϑ E1 �( ) . Then, ∈χ L Ω
E p q,1

��( ) and
∘ ⋅ ∘ =∗

u T χ T t 0
E1 ��( ) ( ) for all ≻t 0. This gives a non-trivial kernel of Wu T, , which is a contradiction. Hence,

∘ ≠u T 0 (ϑ -a.e.). The converse is easy. □

5 Conclusion

In this article, we study weighted composition operators on �� -Lorentz spaces, characterizing their behavior
and exploring their key properties. Our work highlights the relationship between bicomplex numbers, Lorentz
space geometry, and the action of these operators.

A key result is identifying conditions under which these operators are bounded, compact, or exhibit other
important properties. We demonstrate that their behavior depends heavily on the weight functions and the
structure of the underlying function spaces. Additionally, we expose connections to areas such as operator
theory and harmonic analysis.

This research advances the understanding of operators on function spaces with �� -valued functions and
Lorentz norms, offering insights that could benefit fields such as signal processing, quantum mechanics, and
mathematical physics. After reading this article, one can examine the spectral properties of such operators
and obtain more results. Additionally, he can explore connections between weighted composition operators
and other operator classes, such as Toeplitz, Hankel, or Lambert operators.

Further research could also be focusing on the injectivity and Fredholm properties of these operators.
Examining conditions for injectivity, characterizing their kernels and ranges, and studying their Fredholmness
would be interesting problems. These investigations could connect to integral equations and other function
spaces.
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