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Abstract: In this study, we investigate a nonlinear heat equation incorporating both a viscoelastic term and
a reaction-diffusion term that depends on space-time variables. Initially, we establish the local Hadamard well-
posedness results using the standard Faedo-Galerkin method. Subsequently, we demonstrate that the solution
exhibits finite-time blowup for initial energy values that are both negative and nonnegative. Finally,
we establish the global existence of the solution and provide general decay estimates for the energy functions
with small initial energy, utilizing Martinez’s inequality.
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1 Introduction

In this study, we consider the following nonlinear parabolic equation:
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∂
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μ x t u g t s

x

μ x s u x s s f x t u x t, , , d , , , , 0, 1 0, ,t x
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x
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0
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( ( ) ) ( ) ( ( ) ( )) ( ) ( ) ( ) ( ) (1.1)

associated with the homogeneous Robin boundary conditions

− = + =u t h u t u t h u t0, 0, 1, 1, 0,x x0 1
( ) ( ) ( ) ( ) (1.2)

and supplemented with initial condition

=u t u x0, ,
0

( ) ( ) (1.3)

where ⩾h h, 0
0 1

are given constants such that + >h h 0
0 1

, and μ μ g f u, , , ,
1 2

0
are given functions satisfying

conditions to be specified later.
Problem (1.1)–(1.3) without viscoelastic term and =μ 1

1

is called heat equation or parabolic equation and
has the simple form

− = ∈ × ∞u u f u x tΔ , , Ω 0, .t ( ) ( ) ( ) (1.4)

Problem (1.1)–(1.3) along with (1.4), together with appropriate boundary and initial conditions, arises naturally
in engineering and physical sciences. Such problems have been extensively investigated, and numerous results
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regarding existence, nonexistence, regularity, and asymptotic behavior have garnered significant attention
from mathematicians. For instance, Gazzola and Weth [1] considered the following initial-boundary value
problem
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where ⊂Ω

n� is an open bounded domain with smooth boundary∂Ω, and < < +
−p1

n

n

2

2

. By using potential well
method, which was first introduced by Payne and Sattinger [2], the authors studied the dichotomy between
global existence and blowup for the resulting solutions via the initial energy. Roughly speaking, the natural
phase space can be divided into three parts corresponding to three initial energy levels. Since the initial energy
level is over the mountain pass level, by exploiting comparison principle as well as strong parabolic maximum
principle, the authors gave us some properties of the resulting solution. Inspired by this celebrated research,
a vast number of research works related to parabolic equations, coupled parabolic equation or pseudo-para-
bolic equation have been investigated. Interested readers can find it in [3–10]. The common point of these
studies is that the authors just consider the equations containing the coefficient independence on spatial-time
variables. Problem (1.1)–(1.3) n is the mathematical model of many natural phenomena in physical science and
engineering. For example, in the study of heat conduction in materials with memory, to our best knowledge,
the first study that treats the heat equation with coefficient dependence on spatial-time variables is [11]. In this
study, the authors consider the following nonlinear heat equation:
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μ x s u x s s f u x t, , , d , , 0, 1 0, ,t x
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( ( ) ) ( ) ( ( ) ( )) ( ) ( ) ( ) ( ) (1.6)

associated with the homogeneous Robin boundary conditions

− = + =u t h u t u t h u t0, 0, 1, 1, 0,x x0 1
( ) ( ) ( ) ( ) (1.7)

and supplemented with initial condition.

=u t u x0, ,
0

( ) ( ) (1.8)

First, by adopting the Faedo-Galerkin method, the authors established the existence and uniqueness of the
weak solutions. Subsequently, by employing certain differential inequalities, the authors provided a sufficient
condition for finite-time blowup as well as exponential decay estimates. With the inclusion of the term μ

1

and

the viscoelastic term ∫ − ∂
∂g t s μ x s u x s s, , d

t

x
x

0
2

( ) ( ( ) ( )) in our equation, we cannot employ the potential well

method to identify invariant sets under the flow of our problem. Consequently, obtaining a priori estimates for
the solution becomes challenging. To address this issue, we need to utilize an alternative method first intro-
duced by Vitillaro [12]. This method has been widely employed to investigate problems involving viscoelastic
terms, as in [13–15]. However, some open questions remain related to this problem. These questions can be
stated as follows:
(1) In order to prove the blowup results, the authors just focused on the negative initial energy, i.e., <E 0 0( ) .

Thus, a natural question arises: can we prove that the solution blows up in finite time with nonnegative
initial energy?

(2) In order to obtain the decay estimate for solution at infinity, the authors required that the relaxation
function g satisfy the inequality

′ ⩽ − ∀ ∈ ∞g t ξ g t t, 0, ,
1

( ) ( ) [ )

where ξ
1
is a positive constant. This estimate, combined with the positively of the function g , yields

≲ −g t ξ texp
1

( ) ( ). This means that the relaxation function g must be dominated by an exponential function.
Thus, a natural question arises: can we consider the generalized case

′ ⩽ − ∀ ∈ ∞g t ξ t g t t, 0, .( ) ( ) ( ) [ )
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This work is organized as follows.

(1) In Section 2, we introduce some notations, preliminaries, and present the local Hadamard well-posedness
result.

(2) In Section 3, we introduce a novel method for proving the blowup result with both negative and non-
negative initial energy. The innovation in this section lies in our ability to address both cases simulta-
neously using the same auxiliary function;

(3) Section 4 is dedicated to proving a sufficient condition for the global existence and decay of weak solutions.

2 Preliminary results and notations

For the sake of convenience, we put =Ω 0,1( ). We omit the definitions of the usual function spaces such that
=L L Ω

p p( ) and =H H Ω

m m( ). Let ⋅ ⋅,⟨ ⟩ be the scalar product in L
2 and ⋅ ⋅,

H
1⟨ ⟩ be the scalar product in H

1.
The notation ⋅ p∥ ∥ stands for the L

p norm, ⋅ = ⋅
2

∥ ∥ ∥ ∥ , and ⋅ X∥ ∥ for the norm in the Banach space X . We denote
by ′X the dual space of X . We denote by L T X0, ;

p( ) with ∈ ∞p 1,[ ] for the Banach space of measurable
functions ⟶u T: 0, �( ) , such that

∫=
⎛

⎝
⎜

⎞

⎠
⎟ ∈ ∞u u t t pd for 1, ,L T X

T

X

p

0, ;

0

p

p

1

∥ ∥ ∥ ( )∥ [ )( )

and

=
∈

∞u u tesssup .L T X

t T

X0, ;

0,

∥ ∥ ∥ ( )∥( )
( )

Let ∈ ×μ μ C T, Ω 0,
1 2

( [ ]) such that ⩾ >μ x t μ, 0
i i
( ) for all ∈ ×x t T, Ω 0,( ) [ ] and for all ∈i 1, 2{ }.

We consider two families of symmetric bilinear forms ⋅ ⋅ ⩽ ⩽a t; ,i t T0
{ ( )} on ×H H

1 1 defined by

= + +a t u v μ t u v h μ t u v h μ t u v; , , 0, 0 0 1, 1 1 ,i i x x i i0 1
( ) ⟨ ( ) ⟩ ( ) ( ) ( ) ( ) ( ) ( ) (2.1)

for all ∈ ∈u v H t T, , 0,

1 [ ], and ∈i 1, 2{ }. We have the following lemmas. The proofs are straightforward,
so we omit the details.

Lemma 2.1. The embedding ↪H C Ω

1 ( ) is compact, and we have the following estimate:

⩽ ∀ ∈v v v H2 , .C HΩ

1

1∥ ∥ ∥ ∥( )

Lemma 2.2. Let ∈ ×μ μ C T, Ω 0,
1 2

( [ ]) with ⩾ >μ x t μ, 0
i i
( ) for all ∈ ×x t T, Ω 0,( ) [ ] and for all ∈i 1, 2{ }.

Then, the symmetric bilinear forms ⋅ ⋅ ⋅ ⋅a t a t; , , ; ,
1 2
( ) ( ) are continuous on ×H H

1 1 and coercive on H
1. Furthermore,

we have

⩽ ⩾a t u v a u v a t u u a v; , , ; , ,i iT H H i i
H

0

2

1 1
1

∣ ( )∣ ∥ ∥ ∥ ∥ ( ) ∥ ∥ (2.2)

for all ∈ ∈u v H t T, , 0,

1 [ ], and ∈i 1, 2{ }, where

= + + = ∈
∈ ×

a h h μ x t a μ h h i1 2 2 max , ,

1

3

min 1, max , , 1, 2 .iT

x t T
i i

i
0 1

, Ω 0,

0 0 1
( ) ( ) { { }} { }

( ) [ ]
(2.3)

Lemma 2.3. Let ∞ ⟶ ∞E : 0, 0,[ ) [ ) be a decreasing function and ∞ ⟶ ∞φ : 0, 0,[ ) [ ) a strictly increasing
function of class ∞C 0,

1([ )) such that

= = ∞
→∞

φ and φ t0 0, lim .

t

( ) ( ) (2.4)
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Assume that there exist ⩾σ 0 and >ω 0 such that

∫ ′ ⩽ ∀ ∈ ∞
∞

+
E t φ t t

ω

E E S Sd

1

0 , 0, .

S

σ σ1 ( ) ( ) ( ) ( ) ( ) (2.5)

Then, the function ⟼t E t( ) has the following decay property: for all ∈ ∞t 0,[ ), we have
(1) If =σ 0, then

≲ − ∀ ∈ ∞E t ωφ t texp , 0, ;( ) ( ( )) [ ) (2.6)

(2) If >σ 0, then

≲ + ∀ ∈ ∞−
E t ωσφ t t1 , 0, .

σ

1

( ) ( ( )) [ ) (2.7)

We conclude this section by presenting the local Hadamard well-posedness results. To achieve this,
we first provide a precise definition of the weak solution to problem (1.1)–(1.3).

Definition 2.1. A function u is called a weak solution of problem (1.1)–(1.3) on the open interval T0,( )

if and only if the function u belongs to the following functional space:

≔ ∈ ∈∞
W u L T H u L T L0, ; : 0, ;T t

1 2 2{ ( ) ( )} (2.8)

satisfying the following distributional identity

∫′ + − − =u t v a t u t v g t s a s u s v s f u t v, ; , ; , d , ,

t

1

0

2
⟨ ( ) ⟩ ( ( ) ) ( ) ( ( ) ) ⟨ [ ]( ) ⟩ (2.9)

for all test function ∈v H
1, and the initial condition

=u u0 ,
0

( ) (2.10)

where

≔f u x t f x t u x t, , , , .[ ]( ) ( ( )) (2.11)

To ensure the existence results, we must stipulate the following hypotheses:

[A1] ∈u H
0

1;
[A2] ′ ∈ × ∞μ μ C, Ω 0,

1 1

( [ )) and there exists the constant μ
1

such that ⩾ >μ x t μ, 0
1

1

( ) for all ∈x t,( )

× ∞Ω 0,[ );
[A3] ∈ × ∞μ C Ω 0,

2

( [ ));
[A4] ∈ × ∞ ×f C Ω 0, �( [ ) );
[A5] ∈ ∞g C 0,

1([ )).

Employing the standard Faedo-Galerkin method, we can readily establish the following result.

Theorem 2.1. Let [A
1
]–[A

5
] be invalid. For any ∈ ∞T 0,( ), there exists ∈T T

*

0,( ] such that problem (1.1)–(1.3)
admit a local weak solution ∈u WT

*

.
Furthermore, if in addition

[A4] For all >M 0, there exists > 0Mℓ such that

− ⩽ − ∀ ∈ ∈ ∞ ∈ −f x t u f x t u u u x t u u M M, , , , , Ω, 0, , , , ,M1 2 1 2 1 2
∣ ( ) ( )∣ ℓ ∣ ∣ [ ) [ ]

then the solution is unique.
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3 Finite time blowup and lifespan estimates

The main goal of this section is to show that with some suitable conditions, every weak solution to problem
(1.1)–(1.3) blows up in finite time. In this section, we aim to consider problem (1.1)–(1.3) in a specific case

= =f x t u K x t f u μ x t μ x, , , , ,
2 2

( ) ( ) ( ) ( ) ( ). First, we posit the following assumptions:

[A2′ ] ′ ∈ × ∞μ μ C, Ω 0,
1 1

( [ )), and there exists the constant μ
1

such that ⩾ >μ x t μ, 0
1

1

( ) , and ⩽∂
∂ x t, 0

μ

t

1

( )

for all ∈ × ∞x t, Ω 0,( ) [ );
[A3′ ] ∈μ C Ω

2

( ) and there exists the constant μ
2

such that ⩾ >μ x μ 0
2

2

( ) for all ∈x Ω.

Now, on the product space ×H H
1 1, we consider the following symmetric bilinear forms:

= + + ∀ ∈
= + + ∀ ∈

∂
∂

= ′ + ′ + ′ ∀ ∈

a u v u v h u v h u v u v H

b u v μ u v h u v h u v u v H

a

t

t u v μ t u v h μ t u v h μ t u v u v H

, , 0 0 1 1 , , ,

, , 0 0 1 1 , , ,

; , , 0, 0 0 1, 1 1 , , .

x x

x x

x x

0 1

1

2
0 1

1

1

1
0

1
1

1

1

( ) ⟨ ⟩ ( ) ( ) ( ) ( )

( ) ⟨ ⟩ ( ) ( ) ( ) ( )

( ) ⟨ ( ) ⟩ ( ) ( ) ( ) ( ) ( ) ( )

Furthermore, it is easy to prove that the forms ⋅ ⋅ ⋅ ⋅a b, , ,( ) ( ) are continuous on ×H H
1 1 and coercive on H

1.

On the other hand, the norms ⟼ ⟼ =v v v v a v v, ,
H a

1∥ ∥ ∥ ∥ ( ) , and ⟼ =v v b v v,b∥ ∥ ( ) are equivalent.
In fact, we have the following lemmas.

Lemma 3.1. There exist positive constants a a μ μ, , ,
1 2

such that
(1) ⩾a v v a v,

H

2

1
( ) ∥ ∥ for all ∈v H

1;

(2) ⩽a u v a u v,
H H

1 1∣ ( )∣ ∥ ∥ ∥ ∥ for all ∈u v H,

1;
(3) ⩾b v v μ v,

a
2

2( ) ∥ ∥ for all ∈v H
1;

(4) ⩽b u v μ u v, a a
2

∣ ( )∣ ∥ ∥ ∥ ∥ for all ∈u v H,

1;
(5) ⩾a t v v μ v; ,

a1

1

2( ) ∥ ∥ for all ∈v H
1;

(6) ⩽a t u v μ u v; , a a1
1

( ) ∥ ∥ ∥ ∥ for all ∈u v H,

1;

(7) ⩽∂
∂ t v v; , 0

a

t

1

( ) for all ∈ ∈ ∞v H t, 0,

1 [ ).

Lemma 3.2. On H
1, the norms ⟼v v a∥ ∥ and ⟼v v b∥ ∥ are equivalent and

⩽ ⩽ ∀ ∈μ v v μ v v H, .a b a
2

2

1∥ ∥ ∥ ∥ ∥ ∥

To derive blowup results, we also need to specify the following set of assumptions:

[K1] ∈ × ∞K K C, Ω 0,t ( [ )) satisfying
(i) ⩽ K x t0 ,( ) for all ∈ × ∞x t, Ω 0,( ) [ );
(ii) ⩾K x t, 0t( ) for all ∈ × ∞x t, Ω 0,( ) [ ).

[F1] ∈f C
1 �( ) and there exists a constant >p 2 such that

∫⩾ = ⩾ ∀ ∈uf u p f z z pF u ud 0, .

u

0

�( ) ( ) ( )

[G1] ∈ ∞g C 0,

1([ )) with the following properties:
(i) >g t 0( ) for all ∈ ∞t 0,[ );
(ii) ′ ⩽g t 0( ) for all ∈ ∞t 0,[ );

(iii) ⩽∞
−

−G
p p

p

μ

μ

2

1

2

1

2

( )

( )
with =∞ →∞G G tlimt ( ), where ∫=G t g s sd

t

0

( ) ( ) .
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Let us introduce the modified energy functional

∫= − +
⋆

−E t a t u t u t

G t

u t

g u t

K x t F u x t x

1

2

; ,

2 2

, , d ,
b1

2

0

1

( ) ( ( ) ( ))
( )

∥ ( )∥
( )( )

( ) ( ( )) (3.1)

where

∫⋆ = − −g u t g t s u t u s sd .

t

b

0

2( )( ) ( )∥ ( ) ( )∥ (3.2)

Lemma 3.3. Let [A
1
], [ ′A

2
] [ ′A

3
], [K

1
], [F

1
], and [G

1
] be in force. Then, we have the following estimate:

∫
⎛

⎝
⎜ + ′

⎞

⎠
⎟ ⩽ ∀ ∈ ∞

t

E t u s s t T

d

d

d 0, 0, .

t

0

2( ) ∥ ( )∥ [ ) (3.3)

Moreover, the following energy inequality holds

∫+ ′ ⩽ ∀ ∈ ∞E t u s s E t Td 0 , 0, .

t

0

2( ) ∥ ( )∥ ( ) [ ) (3.4)

Proof of Lemma 3.3. By using ut as a test function to equation (1.1) and integrating both sides on Ω, we obtain

∫ ∫
⎛

⎝
⎜ + ′

⎞

⎠
⎟ =

∂
∂

+
′⋆

− −
t

E t u s s

a

t

t u t u t

g u t g t

u t K x t F u x t x

d

d

d

1

2

; ,

2 2

, , d ,

t

b t

0

2
1

2

0

1

( ) ∥ ( )∥ ( ( ) ( ))
( )( ) ( )

∥ ( )∥ ( ) ( ( )) (3.5)

for any smooth solution u. We can extend (3.5) to weak solutions by employing density arguments.
By combining (3.5) with [ ′A

2
], [K

1
], [F

1
], and [G

1
], we completely obtain the result of Lemma 3.3. □

In the next theorem, we will prove that the weak solution u blows up in finite time, provided the initial
energy is negative.

Theorem 3.1. Assume that [A
1
], [ ′A

2
] [ ′A

3
], [K

1
], [F

1
], and [G

1
] hold. If the initial energy <E 0 0( ) , then the weak

solution of problem (1.1)–(1.3) blows up at finite time.

Proof of Theorem 3.1. By the last statement in Theorem 2.1, it is enough to prove that no global solution in
∞0,[ ) can exist. Therefore, we proceed by assuming, for contradiction, that weak solutions exist across the

entire time domain ∞0,[ ). Next with > >T β0, 0
0

and >τ 0 specified later, we define the auxiliary functional

∫= + − + + ∀ ∈M t u s s T t u β t τ t Td , 0, .

t

0

2

0 0

2 2

0
( ) ∥ ( )∥ ( )∥ ∥ ( ) [ ] (3.6)

By direct computation, we find that

∫′ = − + + = ′ + +M t u t u β t τ u s u s s β t τ2 2 , d 2 .

t

2

0

2

0

( ) ∥ ( )∥ ∥ ∥ ( ) ⟨ ( ) ( )⟩ ( ) (3.7)

From (3.6) and (3.7), it is easy to check that >M t 0( ) for all ∈t T0,
0

[ ] and ′ = >M βτ0 2 0( ) . By direct calcula-
tion, it follows from (3.7) that

″ = ′ +M t u t u t β2 , 2 .( ) ⟨ ( ) ( )⟩ (3.8)

On the other hand, testing the equation in (1.1) with u, integrating both sides on Ω and plugging the previous
result into the expression of ″M t( ), we discover

∫″ = − + − +M t β a t u t u t g t s b u s u t s K t f u t u t2 2 ; , 2 , d 2 , .

t

1

0

( ) ( ( ) ( )) ( ) ( ( ) ( )) ⟨ ( ) ( ( )) ( )⟩ (3.9)
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Now, we put

∫ ∫=
⎛

⎝
⎜ + +

⎞

⎠
⎟
⎛

⎝
⎜ ′ +

⎞

⎠
⎟ϑ t u s s β t τ u s s βd d .

t t

0

2 2

0

2( ) ∥ ( )∥ ( ) ∥ ( )∥ (3.10)

Note that by utilizing Cauchy-Schwarz inequality, we can assert that

∫

∫ ∫

∫ ∫

′ =
⎛

⎝
⎜ ′ + +

⎞

⎠
⎟

⩽
⎛

⎝
⎜⎜ ′ + +

⎞

⎠
⎟⎟

⩽
⎛

⎝
⎜ ′ +

⎞

⎠
⎟
⎛

⎝
⎜ + +

⎞

⎠
⎟

M t u s u s s β t τ

u s s u s s β t τ

u s s β u s s β t τ

1

4

, d

d d

d d .

t

t t

t t

2

0

2

0

2

0

2

2

0

2

0

2 2

[ ( )] ⟨ ( ) ( )⟩ ( )

∥ ( )∥ ∥ ( )∥ ( )

∥ ( )∥ ∥ ( )∥ ( )

This estimate, combined with (3.6) and (3.10), entails

∫′ ⩽ ⩽
⎛

⎝
⎜ ′ +

⎞

⎠
⎟M t ϑ t M t u s s β

1

4

d .

t

2

0

2[ ( )] ( ) ( ) ∥ ( )∥ (3.11)

Hence, it follows from (3.6), (3.9), and (3.11) that

″ − ′ ⩾M t M t

p

M t M t D t

2

2 ,

2( ) ( ) [ ( )] ( ) ( ) (3.12)

where ⟶D T: 0,
0

�[ ] is the function defined by

∫ ∫= − + − + −
⎛

⎝
⎜ ′ +

⎞

⎠
⎟D t β a t u t u t g t s b u s u t s K t f u t u t p u s s β; , , d , d .

t t

1

0 0

2( ) ( ( ) ( )) ( ) ( ( ) ( )) ⟨ ( ) ( ( )) ( )⟩ ∥ ( )∥ (3.13)

By utilizing the Cauchy-Schwarz inequality, with >δ 0, we obtain

∫ ∫− = + − −

⩾ ⎛
⎝ − ⎞

⎠ − ⋆

g t s b u s u t s G t u t g t s b u s u t u t s

δ

G t u t

δ

g u t

, d , d

1

1

2 2

,

t

b

t

b

0

2

0

2

( ) ( ( ) ( )) ( )∥ ( )∥ ( ) ( ( ) ( ) ( ))

( )∥ ( )∥ ( )( )

(3.14)

and by [K
1
] and [F

1
], we also deduce that

∫⩾K t f u t u t p K x t F u x t x, , , d .

0

1

⟨ ( ) ( ( )) ( )⟩ ( ) ( ( )) (3.15)

Combining (3.1), (3.4), and (3.13)–(3.15), we may conclude that

⩾ − − + ⎛
⎝ − ⎞

⎠ − ⎛
⎝ + − ⎞

⎠

+ ⎛
⎝ − ⎞

⎠ − + ⋆

D t β p pE

δ

a t u t u t

δ

δ

G t u t

p δ

a t u t u t G t u t g u t

1 0

2

1 ; ,

2

1

2

1

2 2

; , .

b

b

1

2

1

2

( ) ( ) ( ) ( ( ) ( )) ( )∥ ( )∥

( ( ( ) ( )) ( )∥ ( )∥ ( )( ))

(3.16)

Now, we estimate the right-hand side of (3.16) as follows. By recalling Lemmas 3.1 and 3.3, we easily obtain

⎛
⎝ − ⎞

⎠ ⩾
−

∀ ∈ ∞
p

a t u t u t

p μ

μ

u t t

2

1 ; ,

2

2

, 0, .
b1

1

2

2( ( ) ( ))
( )

∥ ( )∥ [ )

Nonlinear heat equation with viscoelastic term  7



Thus, it follows from the fifth property of Assumption [G
1
] that

⎜ ⎟
⎛
⎝

+ − ⎞
⎠

⩽
−

⩽
−

⩽ ⎛
⎝ − ⎞

⎠

∞
p

p

G t u t

p

p

G u t

p μ

μ

u t

p

a t u t u t

2

1

2

1

1

2

2

2

2

1 ; , .

b b b

2

2

2
1

2

2

1

( )∥ ( )∥
( )

∥ ( )∥
( )

∥ ( )∥

( ( ) ( ))

Thus, by choosing = ∈ ⎛
⎝ − ⎤

⎦−δ p β, 0,

pE

p

0

1

( ) , from (3.12) and (3.16), we obtain

⩾ ⎡
⎣
⎛
⎝ − ⎞

⎠ ′ + ⎤
⎦ ∀ ∈− −
− −

M t

p

M M t M t T1

2

0 0 0 , 0, .

p p

2

1

2
0

p

2

2

( ) ( ) ( ) ( ) [ ] (3.17)

If we choose ∈ ⎛
⎝ ∞⎞

⎠−τ ,

Ψ

p β

2 0

2

( )

( )
and ∈ ⎡

⎣ ∞⎞
⎠− −T ,

βτ

p βτ Ψ
0

2 2 0

2

( ) ( )
, then we will have

=
⎛
⎝ − ⎞

⎠

=
− ′ =

+
−

∈
−

′
T

M M

p M

T Ψ βτ

p βτ

T
*

0

1

2 0

2 0

2 0

2

0, .

p M

M t

1

2

0

0

2

0

p

p

2

2

( ) ( )

( ) ( )

( )

( )
( ]

( )

( )

(3.18)

Therefore, from (3.17) and (3.18), we deduce that = ∞↗ u tlimt T H
*

1∥ ( )∥ . This is a contradiction with the fact that
the solution is global and it shows that the solution blows up at finite time. This completes the proof
of Theorem 3.1. □

Next we state the blowup result when the initial energy is nonnegative and small enough. In this case,
we make the following assumptions:
[K2] ∈ × ∞K K C, Ω 0,t ( [ )) such that

(i) ⩽ ⩽K x t K0 ,
2

( ) for all ∈ × ∞x t, Ω 0,( ) [ ) with K
2
being a positive constant;

(ii) ⩾K x t, 0t( ) for all ∈ × ∞x t, Ω 0,( ) [ ).
[F2] ∈f C

1 �( ) and there exist constants > > > >d d p q p0, 2,
i2 2

for all ∈i N1, …,{ } such that

(i) ∫⩾ = ⩾uf u p f z z pF ud 0

u

0

( ) ( ) ( ) for all ∈u � ;

(ii) ⩽ ⩽ ⎛
⎝ + ∑ ⎞

⎠=uf u d F u d d u u
p

i

N
q

2 2 2 1

i( ) ( ) ∣ ∣ ∣ ∣ for all ∈u � .

First, we put

= − + ⋆ ∀ ∈ ∞y t a t u t u t G t u t g u t t T; , , 0, .
b1

2( ) ( ( ) ( )) ( )∥ ( )∥ ( )( ) [ )

and note that if [G
1
] holds, then

⩾ ∀ ∈ ∞y t u t t T, 0, ,b( ) ℓ ∥ ( )∥ [ )

where

= − >
−

−
− ⩾∞ ∞

μ

μ

G

p p

p

μ

μ

G

2

1

0.

1

2

2

1

2

ℓ
( )

( )

On the other hand, we have

∫

∑

∑

⎜ ⎟

⎜ ⎟

= − +
⋆

−

⩾ −
⎛
⎝

+
⎞
⎠

⩾ −
⎛
⎝

+
⎞
⎠

=

=

−

=

−

E t a t u t u t

G t

u t

g u t

K x t F u x t x

y t K d u t u t

y t K d S y t S y t

y t

1

2

; ,

2 2

, , d

1

2

1

2

,

b

p

p

i

N

q

q

p

p p

i

N

q

q
q

1

2

0

1

2

2 2

1

2

2 2

1

i

i

p

i

i

q
i

i2 2

H

( ) ( ( ) ( ))
( )

∥ ( )∥
( )( )

( ) ( ( ))

( ) ∥ ( )∥ ∥ ( )∥

( ) ℓ ( ) ℓ ( )

( ( ))
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where = ∈S supθ v H

v

v\ 0

θ

b

1 { }

∥ ∥

∥ ∥
for all ∈ ∞θ 1,[ ] and ∞ ⟶: 0,H �[ ) is the function defined by

∑⎜ ⎟= −
⎛
⎝

+
⎞
⎠

−

=

−
λ

λ

K d S λ S λ

2

.
p

p p

i

N

q

q
q

2

2 2

1

p

i

i

q
i

i2 2H( ) ℓ ℓ

Before stating our main results, we give a useful lemma as follows. The proof of this lemma is not difficult,
so we omit it.

Lemma 3.4. Let

∑⎜ ⎟= −
⎛
⎝

+
⎞
⎠

−

=

−
λ

λ

K d S λ S λ

2

.
p

p p

i

N

q

q
q

2

2 2

1

p

i

i

q
i

i2 2H( ) ℓ ℓ

Then, we have
(i) The equation ′ =λ 0H ( ) has a unique positive solution λ

0
satisfying

∑⎜ ⎟−
⎛
⎝

+
⎞
⎠

=− −

=

− −
K d pS λ q S λ1 0;

p

p p

i

N

i
q

q q

2 2 0

2

1

0

2
p

i

i

q
i

i
2 2ℓ ℓ

(ii) =0 0H( ) and = −∞→∞ λlimλ H( ) ;
(iii) ′ >λ 0H ( ) if and only if ∈λ λ0,

0
( ), and ′ <λ 0H ( ) if and only if ∈ ∞λ λ ,

0
( ).

The following lemma will play an essential role in this study, and it is similar to the lemma used first
by Vitillaro in [12].

Lemma 3.5. Suppose that the assumptions [A
1
], [ ′A

2
], [ ′A

3
], [K

2
], [F

2
], [G

1
] hold and

∑< =
⎡
⎣⎢
⎛
⎝ − ⎞

⎠ + ⎛
⎝ − ⎞

⎠
⎤
⎦⎥

−

=

−
E λ K d

p

S

q

S0

2

1

2

1 .
p

p

i

N

i

q

q

0 2 2

1

p

i

i

q
i

2 2H( ) ( ) ℓ ℓ

We have
(i) If <a u u λ0; ,

1 0 0 0

2( ) , then there exists ∈λ λ0,
1 0

[ ) such that

⩽ ∀ ∈ ∞y t λ t T, 0, .
1

( ) [ )

(ii) If >a u u λ0; ,
1 0 0 0

2( ) and ⩾E 0 0( ) , then there exists ∈ ∞λ λ ,
2 0

[ ) such that

⩾ ∀ ∈ ∞y t λ t T, 0, .
2

( ) [ )

Proof of Lemma 3.5. Since ⩽ <E0 0 0H( ) ( ), there exist two constants ∈λ λ0,
1 0

[ ) and ∈ ∞λ λ ,
2 0

( ) such that

= =E λ λ0 .
1 2

H H( ) ( ) ( )

First, we assume that <a u u λ0; ,
1 0 0 0

2( ) . We have

= ⩾ =λ E y a u u0 0 0; , .
1 1 0 0

H H H( ) ( ) ( ( )) ( ( ) ) (3.19)

By Lemma 3.5, (3.19) leads to ⩽a u u λ0; ,
1 0 0 1

2( ) . We claim that ⩽y t λ
1

( ) for all ∈ ∞t T0,[ ). Suppose, by contra-
diction, there exists ∈ ∞t T0,

0
( ) such that >y t λ

0 1
( ) . By the continuity of y, without loss of generality, we may

assume that ∈y t λ λ,
0 1 0

( ) ( ). By Lemmas 3.1 and 3.4, we obtain

⩾ > =E t y t λ E 0 ,
0 0 1

H H( ) ( ( )) ( ) ( )

which is a contradiction, because of ⩽E t E 0
0

( ) ( ) for all ∈ ∞t T0,[ ). Using the same argument as above we
obtain the second statement. This completes the proof of Lemma 3.5. □

Nonlinear heat equation with viscoelastic term  9



Theorem 3.2. Assume that the assumptions [A
1
], [ ′A

2
], [ ′A

3
], [K

2
], [F

2
], and [G

1
] hold. For any initial conditions

∈u H
0

1 such that >a u u λ0; ,
1 0 0 0

2( ) and

⩽ <
⎧
⎨
⎩

− ⎫
⎬
⎭

E

p δ λ

p

0 0 min 0 ,
*

2

,

2

2

H( ) ( )
( )

where ∈δ p
*

2,( ) is a unique solution of equation =−
− ∞G

μ

μ

δ δ

δ

2

1

1

2

2

( )

( )
, then the weak solution of problem (1.1)–(1.3)

blows up at finite time.

Proof of Theorem 3.2.We will assume that the weak solution of problem (1.1)–(1.3) exists in the whole interval
∞0,[ ). By Lemma 3.5, we have

⎛
⎝ − ⎞

⎠ − + ⋆ ⩾ ⎛
⎝ − ⎞

⎠ ∀ ∈ ∞
p δ

a t u t u t G t u t g u t

p δ

λ t T

2 2

; ,

2 2

, 0, .
b1

2

2

2( ( ( ) ( )) ( )∥ ( )∥ ( )( )) [ )

With the same notation and calculation in the proof of Theorem 3.1, estimate (3.16) holds. Since = −
−φ x

μ

μ

x x

x

2

1

1

2

2
( )

( )

( )

is continuous and strictly increasing in p2,[ ], so that

= < < =
−

−∞φ G φ p

μ

μ

p p

p

0 2

2

1

,

1

2

2

( ) ( )
( )

( )

it follows that there exists a unique constant ∈δ p
*

2,( ) such that = ∞φ δ G
*

( ) .

Choose =δ δ
*

and ∈ ⎛
⎝

⎤
⎦

− −
−β 0,

p δ λ pE

p

2 0

2 1

*
2

2( ) ( )

( )
, we deduce from (3.16) that

″ − ′ ⩾ ∀ ∈ ∞M t M t

p

M t t

2

0, 0, .

2( ) ( ) [ ( )] [ )

This is also a contradiction, hence the solution blows up at finite time. Theorem 3.2 is proved completely. □

4 Global solution and decay estimates

First, we make the following assumptions:
[G2] ∈ ∞g σ C, 0,

1([ )) with the following properties:
(i) >g t 0( ) for all ∈ ∞t 0,[ );
(ii) ′ ⩽g t 0( ) for all ∈ ∞t 0,[ );
(iii) > 0ℓ .

According to (3.1), we have

⎜ ⎟= ⎛
⎝

− ⎞
⎠

− + ⋆ +E t

p

a t u t u t G t u t g u t

I t

p

1

2

1

; , ,
b1

2( ) ( ( ( ) ( )) ( )∥ ( )∥ ( )( ))
( ) (4.1)

where

∫= − + ⋆ −I t a t u t u t G t u t g u t p K x t F u x t x; , , , d .
b1

2

0

1

( ) ( ( ) ( )) ( )∥ ( )∥ ( )( ) ( ) ( ( )) (4.2)

We are now in a position to prove the global existence of solutions starting with suitable initial data.

Theorem 4.1. Assume that [A
1
], [ ′A

2
], [ ′A

3
], [K

2
], [F

2
], and [G

2
] hold. For any initial condition ∈u H

0

1 such that
<a u u λ0; ,

1 0 0 0

2( ) and <E λ0
0

H( ) ( ), the weak solution of problem (1.1)–(1.3) is global.
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Proof of Theorem 4.1. First, we have

∫

∑

∑

∑

⎜ ⎟

⎜ ⎟

⎜ ⎟

= − + ⋆ −

⩾ −
⎛
⎝

+
⎞
⎠

⩾
⎡

⎣⎢
−

⎛
⎝

+
⎞
⎠

⎤

⎦⎥

⩾
⎡

⎣⎢
−

⎛
⎝

+
⎞
⎠

⎤

⎦⎥

−

=

−

− −

=

− −

− −

=

− −

I t a t u t u t G t u t g u t p K x t F u x t x

y t pK d S y t S y t

pK d S λ S λ y t

pK d S λ S λ u t

; , , , d

1

1 .

b

p

p p

i

N

q

q
q

p

p p

i

N

q

q q

p

p p

i

N

q

q q

b

1

2

0

1

2

2 2

1

2 2 1

2

1

1

2

2

2 2 1

2

1

1

2
2

p

i

i

q
i

i

p

i

i

q
i

i

p

i

i

q
i

i

2 2

2 2

2 2

( ) ( ( ) ( )) ( )∥ ( )∥ ( )( ) ( ) ( ( ))

( ) ℓ ( ) ℓ ( )

ℓ ℓ ( )

ℓ ℓ ℓ ∥ ( )∥

(4.3)

We note that ⎡
⎣⎢ − ⎛

⎝ + ∑ ⎞
⎠
⎤
⎦⎥ >− −

=
− −

pK d S λ S λ1 0
p

p p

i

N

q

q q

2 2 1

2

1 1

2
p

i

i

q
i

i
2 2ℓ ℓ ℓ . It follows from (4.1) and (4.3) that

−
⩾

−
⩾ ⩾ ∀ ∈ ∞

p

p

E

p

p

E t y t u t t T

2

2

0

2

2

, 0, .
b

2 2( ) ( ) ( ) ℓ ∥ ( )∥ [ ) (4.4)

By the last statement in Theorem 2.1, the solution has to be globally defined. The proof of Theorem 4.1 is now
complete. □

We provide the decay results of solution of problem (1.1)–(1.3) with conditions
[G2′] ∈ ∞g σ C, 0,

1([ )) with the following properties:

(i) >g t 0( ) ;

(ii) ′ ⩽g t 0( ) for all ∈ ∞t 0,[ );

(iii) > 0ℓ ;

(iv) there exists a function ∞ ⟶ ∞ξ : 0, 0,[ ) ( ) such that

∫′ ⩽ − ′ ⩽ ∀ ∈ ∞ = ∞
∞

g t ξ t g t ξ t t ξ t t, 0, 0, , d .

0

( ) ( ) ( ) ( ) [ ) ( )

Theorem 4.2. Assume that [A
1
], [ ′A

2
], [ ′A

3
], [K

2
], [F

2
], and [ ′G

2
] hold. For any initial condition ∈u H

0

1 such that
< <a u u λ E λ0; , , 0

1 0 0 0

2

0
H( ) ( ) ( ), and

∑⎜ ⎟ ⎜ ⎟−
−
−

⎡

⎣
⎢
⎢

⎛
⎝ −

⎞
⎠

+ ⎛
⎝ −

⎞
⎠

⎤

⎦
⎥
⎥

>−

=

−

− −

p d d K

p

S

pE

p

S

pE

p

1

2

2

2 0

2

2 0

2

0,
p

p

i

N

q

q2 2 2

1

p

p

i

i

q
i

q
i

2

2

2

2

2

2( )
ℓ

( )
ℓ

( )
(4.5)

there exists >γ
*

0 such that

∫≲
⎛

⎝
⎜−

⎞

⎠
⎟ ∀ ∈ ∞E t γ ξ s s sexp

*

d , 0, .

t

0

( ) ( ) [ ) (4.6)
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Proof of Theorem 4.2. The global existence result is obtained from Theorem 4.1 directly. We only need to prove
the decay estimate (4.6). Multiplying equation (1.1) by ξ t u( ) and then integrating it over the spatial-time
cylinder × t tΩ ,

1 2
( ), we obtain

∫ ∫

∫ ∫ ∫

′ +

= − +

ξ t u t u t t ξ t a t u t u t t

ξ t g t s b u s u t s t ξ t K t f u t u t t

, d ; , d

, d d , d .

t

t

t

t

t

t t

t

t

1

0

1

2

1

2

1

2

1

2

( )⟨ ( ) ( )⟩ ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( )) ( )⟨ ( ) ( ( )) ( )⟩

(4.7)

We have

∫ ∫

∫ ∫ ∫

−

= − − +

ξ t g t s b u s u t s t

ξ t g t s b u s u t u t s t ξ t G t u t t

, d d

, d d d .

t

t t

t

t t

t

t

b

0

0

2

1

2

1

2

1

2

( ) ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( ) ( )) ( ) ( )∥ ( )∥

(4.8)

Combining (4.7), (4.8), and (3.1), we obtain

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

= − ′ + − −

+ ⋆ + −

ξ t E t t ξ t u t u t t ξ t g t s b u s u t u t s t

ξ t g u t t ξ t K t f u t u t t ξ t K x t F u x t x t

2 d , d , d d

d , d 2 , , d d .

t

t

t

t

t

t t

t

t

t

t

t

t

0

0

1

1

2

1

2

1

2

1

2

1

2

1

2

( ) ( ) ( )⟨ ( ) ( )⟩ ( ) ( ) ( ( ) ( ) ( ))

( )( )( ) ( )⟨ ( ) ( ( )) ( )⟩ ( ) ( ) ( ( ))

(4.9)

Now, we estimate the terms of right-hand side of (4.9) as follows:

Estimate for ∫= − ′I ξ t u t u t t, d

t

t

1

1

2

( )⟨ ( ) ( )⟩ .

By utilizing Cauchy-Schwarz inequality and (3.4), (4.4), for any positive constant >ε 0, we obtain

∫ ∫ ∫

∫

= − ′ ≲ − ′

≲ +

I ξ t u t u t t ε ξ t E t t C ε ξ t E t t

ε ξ t E t t C ε E t

, d d d

d .

t

t

t

t

t

t

t

t

1

1

1

2

1

2

1

2

1

2

( )⟨ ( ) ( )⟩ ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(4.10)

Estimate for ∫ ∫= − −I ξ t g t s b u s u t u t s t, d d

t

t t

2

0
1

2

( ) ( ) ( ( ) ( ) ( )) .

First, by utilizing Cauchy-Schwarz inequality, we have

∫ ∫

∫

∫

− − ⩽ − −

⩽ +
⎛

⎝
⎜ − −

⎞

⎠
⎟

≲ + − ⋆

≲ + ⋆

g t s b u s u t u t s g t s u s u t s u t

ε u t C ε g t s u s u t s

εE t C ε g t s s g u t

εE t C ε g u t

, d d

d

d

.

t t

b b

b

t

b

t

0 0

2

0

2

0

( ) ( ( ) ( ) ( )) ( )∥ ( ) ( )∥ ∥ ( )∥

∥ ( )∥ ( ) ( )∥ ( ) ( )∥

( ) ( ) ( ) ( )( )

( ) ( )( )( )

Hence, we obtain

∫ ∫ ∫≲ + ⋆ ≲ +I ε ξ t E t t C ε ξ t g u t t ε E t t C ε E td d d .

t

t

t

t

t

t

2 1

1

2

1

2

1

2

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) (4.11)
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Estimate for ∫= ⋆I ξ t g u t td

t

t

3

1

2

( )( )( ) .

By using (3.6), we have

∫= ⋆ ≲I ξ t g u t t E td .

t

t

3 1

1

2

( )( )( ) ( ) (4.12)

Estimate for ∫ ∫ ∫= −I ξ t K t f u t u t t ξ t K x t F u x t x t, d 2 , , d d

t

t

t

t

4

0

1

1

2

1

2

( )⟨ ( ) ( ( )) ( )⟩ ( ) ( ) ( ( ))

First, by [K
2
], we have

∫ ∫

∑ ∑

∑

∑

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

− ⩽ −

⩽ −
⎛
⎝

+
⎞
⎠

⩽ −
⎛
⎝

+
⎞
⎠

= −
⎛
⎝

+
⎞
⎠

⩽
−
−

⎡
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Consequently, we obtain
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Choose >ε 0 sufficiently small, from (4.9)–(4.13), we obtain

∫ ≲ ∀ ∈ ∞ <ξ t E t t E t t t t td , , 0, , .

t

t

1 1 2 1 2

1

2

( ) ( ) ( ) [ )

By letting t
2
go to infinity in the left-hand side in the aforementioned inequality, one can easily deduce that

∫ ≲ ∀ ∞
∞

ξ t E t t E t td , 0, .

t

1 1

1

( ) ( ) ( ) [ )

Thus, by adopting Lemma 2.3, (4.6) holds. Theorem 4.2 is proved. □

Remark 4.1. We provide examples to illustrate our results. Based on the general assumption 4, we derive
various decay rates, where exponential and polynomial rates are specific instances. Here, we consider exam-
ples of the function g with σ is a positive constant function.
(1) = −g t α βtexp( ) ( ), where >α β, 0, then =ξ t β( ) . Consequently, from (4.6), we obtain the following expo-

nential decay

≲ −E t γ texp

*

,( ) ( )

where >γ
*

0.
(2) = − +g t α β texp 1

γ( ) ( ( ) ), where > ∈α β γ, 0, 0, 1( ], then = + −
ξ t βγ t1

γ 1( ) ( ) . Consequently, from (4.6),
we obtain the following exponential decay:

≲ − +E t C texp

*

1 ,

γ( ) ( ( ) )

where >C
*

0.
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(3) = +g t
a

t1

γ
( )

( )
, where >α γ, 0, then = +ξ t

γ

t 1

( ) . Consequently, from (4.6), we obtain the following polynomial
decay:

≲
+

E t

t

1

1

,

κ
( )

( )

where >κ 0.

(4) = − +g t α β texp ln 1

γ( ) ( ( )), where > ∈α β γ, 0, 0, 1( ], then = +
+

−
ξ t

βγ t

t

ln 1

1

γ 1

( )
( ) . Consequently, from (4.6),

we obtain the following decay estimate:

≲ − +E t C texp

*

ln 1 ,

γ( ) ( ( ))

where >C
*

0.

(5) = + +g t
α

t t2 ln 2

γ β
( )

( ) ( )
, where >a 0 and >γ 1 and ∈β � or =γ 1 and >β 1, then = + +

+ +ξ t
γ t β

t t

ln 2

2 ln 2

( )
( )

( ) ( )
.

Consequently, from (4.6), we obtain the following decay estimate:

⩽ + + −
E t t t2 ln 2 .

γ β C
*( ) [( ) ( ) ]

5 Conclusion

In this study, we investigate both finite-time blowup solutions and globally existing solutions of a class of
nonlinear viscoelastic heat equations. Our primary results concentrate on the finite-time blowup and the long-
term behavior of the global solution. Specifically, we demonstrate that, under certain conditions, the solution
can still blow up in finite time even with nonnegative initial energy. Furthermore, for solutions that exist
globally over time, we provide decay estimates for the weak solution. Notably, these decay estimates are
heavily influenced by the behavior of the relaxation function.
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