Review Article

Norah Saud Almutairi*, Awatef Shahen, and Hanan Darwish

Differential sandwich theorems for *p*-valent analytic functions associated with a generalization of the integral operator

https://doi.org/10.1515/dema-2024-0051 received January 14, 2024; accepted August 6, 2024

Abstract: In this study, subordination, superordination, and sandwich theorems are established for a class of *p*-valent analytic functions involving a generalized integral operator that has as a special case *p*-valent Sălăgean integral operator. Relevant connections of the new results with several well-known ones are given as a conclusion for this investigation.

Keywords: multivalent function, differintegral operator, differential subordination, differential superordination, sandwich theorem, *p*-valent Sălăgean integral operator

MSC 2020: 30C45

1 Introduction and definitions

Let ${\mathcal H}$ be the class of functions analytic in the open unit disk

$$\mathbb{U} = \{ \mathfrak{z} : \mathfrak{z} \in \mathbb{C} \text{ and } |\mathfrak{z}| < 1 \}$$

and $\mathcal{H}[a, p]$ ($a \in \mathbb{C}$, $p \in \mathbb{N} = 1, 2, 3, ...$) be the subclass of \mathcal{H} consisting of functions of the following form:

$$f(\mathfrak{z}) = a + a_p \mathfrak{z}^p + a_{p+1} \mathfrak{z}^{p+1} + \dots \quad (\mathfrak{z} \in \mathbb{U}).$$

Suppose that $\mathfrak f$ and $\mathfrak g$ are in $\mathcal H$. We say that $\mathfrak f$ is subordinate to $\mathfrak g$ (or $\mathfrak g$ is superordinate to $\mathfrak f$), which can be written as

$$\mathfrak{f} < g$$
 in \mathbb{U} or $\mathfrak{f}(\mathfrak{z}) < g(\mathfrak{z})$ $(\mathfrak{z} \in \mathbb{U})$,

if there exists a function $\omega \in \mathcal{H}$, satisfying the conditions of the Schwarz lemma (i.e., $\omega(0) = 0$ and $|\omega(\mathfrak{z})| < 1$) such that

$$f(\mathfrak{z}) = g(\omega(\mathfrak{z})) \quad (\mathfrak{z} \in \mathbb{U}).$$

It follows that

$$f(\mathfrak{z}) < g(\mathfrak{z}) \ (\mathfrak{z} \in \mathbb{U}) \Rightarrow f(0) = g(0) \quad \text{and} \quad f(\mathbb{U}) \subset g(\mathbb{U}).$$

In particular, if g is univalent in \mathbb{U} , then the reverse implication also holds (cf. [1]).

We recall here some more definitions and terminologies from the theory of differential subordination and differential superordination developed by Miller and Mocanu (cf. [1,2]).

^{*} Corresponding author: Norah Saud Almutairi, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, e-mail: norah.s.almutairi@gmail.com

Awatef Shahen, Hanan Darwish: Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt ORCID: Norah Saud Almutairi 0009-0009-0444-9423

Let $\phi(r, s; \mathfrak{z}) : \mathbb{C}^2 \times \mathbb{U} \to \mathbb{C}$ and $\mathfrak{L}(\mathfrak{z})$ be univalent in \mathbb{U} . If $p \in \mathcal{H}$ satisfies

$$\phi(p(\mathfrak{z}),\mathfrak{z}p'(\mathfrak{z});\mathfrak{z})<\mathfrak{L}(\mathfrak{z})\quad (\mathfrak{z}\in\mathbb{U}),\tag{1}$$

then $p(\mathfrak{z})$ is called a solution of the first-order differential subordination (1). A univalent function q is called a dominant of the solutions of the differential subordination, or more precisely a dominant if p < q, for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} < q$, for all dominant q of (1) is called the best dominant of (1). The best dominant is unique up to rotations of \mathbb{U} .

Similarly, let $\varphi(r,s;\mathfrak{z}):\mathbb{C}^2\times\mathbb{U}\to\mathbb{C}$ and $\mathfrak{L}\in\mathcal{H}$. Let $p\in\mathcal{H}$ be such that $p(\mathfrak{z})$ and $\varphi(p(\mathfrak{z}),\mathfrak{z}p'(\mathfrak{z});\mathfrak{z})$ are univalent in \mathbb{U} . If $p(\mathfrak{z})$ satisfies

$$\mathfrak{L}(\mathfrak{z}) < \varphi(p(\mathfrak{z}), \mathfrak{z}p'(\mathfrak{z}); \mathfrak{z}) \quad (\mathfrak{z} \in \mathbb{U}), \tag{2}$$

then p(3) is called a solution of the first-order differential superordination (2).

An analytic function q is called a subordinant of the solutions of the differential superordination, or more precisely a subordinant, if q < p, for all p satisfying (2). A univalent subordinant \tilde{q} that satisfies $q < \tilde{q}$, for all subordinants q of (2) is said to be the best subordinant. The best subordinant is unique up to rotations of \mathbb{U} . The well-known monograph of Miller and Mocanu [1] and the more recent work of Bulboacă [3] provide detailed expositions on the theory of differential subordination and superordination.

Miller and Mocanu [1,2] obtained sufficient conditions on certain broad class of functions \mathfrak{L}_1 , q_1 , \mathfrak{L}_2 , q_2 , φ_1 and φ_2 for which the following implications hold true:

$$\varphi_1(p(\mathfrak{z}), \mathfrak{z}p'(\mathfrak{z}), \mathfrak{z}^2p''(\mathfrak{z}); \mathfrak{z}) < \mathfrak{L}_1(\mathfrak{z}) \Rightarrow p(\mathfrak{z}) < q_1(\mathfrak{z}) \quad (\mathfrak{z} \in \mathbb{U})$$

and

$$\mathfrak{L}_2(\mathfrak{z}) < \varphi_2(p(\mathfrak{z}), \mathfrak{z}p'(\mathfrak{z}), \mathfrak{z}^2p''(\mathfrak{z}); \mathfrak{z}) \Rightarrow q_2(\mathfrak{z}) < p(\mathfrak{z}) \quad (\mathfrak{z} \in \mathbb{U}).$$

Bulboacă [4,5], Ali et al. [6], and Shanmugam et al. [7,8] found adequate conditions on the normalized analytic function f in a series of follow-up studies such that sandwich subordinations of the following kind are true:

$$q_1(\mathfrak{z}) < \frac{z\mathfrak{f}'(\mathfrak{z})}{\mathfrak{f}(\mathfrak{z})} < q_2(\mathfrak{z}) \quad (\mathfrak{z} \in \mathbb{U}),$$

where q_1 , q_2 are univalent in $\mathbb U$ and I is a suitable operator. Refer [9–18] for sandwich results from more recent studies.

Studies with intriguing results were recently inspired by *p*-valent analytic classes of functions. Recent publications have provided information on the following topics: the properties of *p*-valent analytic functions related to cosine and exponential functions [19], results of subordination and superordination obtained by applying operators on *p*-valent analytic functions [20,21], and the introduction of new classes through the application of operators on *p*-valent analytic functions [22].

The following studies, also recently published, served as further inspiration and motivation for the study's findings. Two new classes of *p*-valent functions were introduced using generalized differential operators [23,24]. Geometric features of a newly developed operator involving *p*-valent functions were studied and a subclass of multivalent functions was introduced in [25]. A new generalized integral operator is presented and analyzed considering numerous subordination and coefficient properties in [26].

In view of the recent investigation listed above, the subclass \mathcal{H}_p of $\mathcal{H}[0,p]$ consists of functions of the following form:

$$\mathfrak{f}(\mathfrak{z}) = \mathfrak{z}^p + \sum_{k=p+1}^{\infty} a_k \mathfrak{z}^k \quad (\mathfrak{z} \in \mathbb{U}), \tag{3}$$

which will be investigated using a new generalized integral operator [27] defined for $p \in N$, $n \in \mathbb{N}_0 = \mathbb{N}_0$ $\mathbb{N} \cup \{0\}, \lambda > 0$ and $\mathfrak{f} \in \mathcal{H}_p$, defined as follows:

$$\begin{split} I_{p,\lambda}^{0} f(\mathfrak{z}) &= \mathfrak{f}(\mathfrak{z}) \\ I_{p,\lambda}^{1} f(\mathfrak{z}) &= \frac{p}{\lambda} \mathfrak{z}^{p - \frac{p}{\lambda}} \int_{0}^{\mathfrak{z}} t^{\frac{p}{\lambda} - p - 1} \mathfrak{f}(t) \mathrm{d}t = \mathfrak{z}^{p} + \sum_{k=p+1}^{\infty} \left[\frac{p}{p + \lambda(k-p)} \right] a_{k} \mathfrak{z}^{k} \\ I_{p,\lambda}^{2} f(\mathfrak{z}) &= \frac{p}{\lambda} \mathfrak{z}^{p - \frac{p}{\lambda}} \int_{0}^{\mathfrak{z}} t^{\frac{p}{\lambda} - p - 1} I_{p,\lambda}^{1} \mathfrak{f}(t) \mathrm{d}t = \mathfrak{z}^{p} + \sum_{k=p+1}^{\infty} \left[\frac{p}{p + \lambda(k-p)} \right]^{2} a_{k} \mathfrak{z}^{k} \end{split}$$

and (in general)

$$I_{p,\lambda}^{n}f(\mathfrak{Z}) = \frac{p}{\lambda}\mathfrak{Z}^{p-\frac{p}{\lambda}}\int_{0}^{\mathfrak{Z}} t^{\frac{p}{\lambda}-p-1}I_{p,\lambda}^{n-1}f(t)dt = \mathfrak{Z}^{p} + \sum_{k=p+1}^{\infty} \left[\frac{p}{p+\lambda(k-p)}\right]^{n}a_{k}\mathfrak{Z}^{k}$$

$$= \underbrace{I_{p,\lambda}^{1}\left(\frac{\mathfrak{Z}^{p}}{1-\mathfrak{Z}}\right)*I_{p,\lambda}^{1}\left(\frac{\mathfrak{Z}^{p}}{1-\mathfrak{Z}}\right)*...*I_{p,\lambda}^{1}\left(\frac{\mathfrak{Z}^{p}}{1-\mathfrak{Z}}\right)*f(\mathfrak{Z})}_{p,\lambda} + \underbrace{f(\mathfrak{Z}^{p})}_{p,\lambda}\left[\frac{\mathfrak{Z}^{p}}{1-\mathfrak{Z}}\right)*f(\mathfrak{Z}^{p})}_{p,\lambda},$$
(4)

then from (4), we can easily deduce that

$$\frac{\lambda}{p}\mathfrak{Z}(I_{p,\lambda}^n\mathfrak{f}(\mathfrak{Z}))' = I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{Z}) - (1-\lambda)I_{p,\lambda}^n\mathfrak{f}(\mathfrak{Z}) \quad (p,n\in\mathbb{N};\lambda>0). \tag{5}$$

We note that

$$\begin{split} (i) \quad & I_{1,\lambda}^n f(\mathfrak{z}) = I_{\lambda}^{-n} \mathfrak{f}(\mathfrak{z}) \quad (\text{see } [28]) \\ & = \left\{ \mathfrak{f}(\mathfrak{z}) \in \mathcal{H} : I_{\lambda}^{-n} \mathfrak{f}(\mathfrak{z}) = \mathfrak{z} + \sum_{k=2}^{\infty} [1 + \lambda (k-1)]^{-n} a_k \mathfrak{z}^k \quad (n \in \mathbb{N}_0) \right\}, \\ (ii) \quad & I_{1,1}^n \mathfrak{f}(\mathfrak{z}) = I^n \mathfrak{f}(\mathfrak{z}) \quad (\text{see } [28]) \\ & = \left\{ \mathfrak{f}(\mathfrak{z}) \in \mathcal{H} : I^n \mathfrak{f}(\mathfrak{z}) = \mathfrak{z} + \sum_{k=2}^{\infty} k^{-n} a_k \mathfrak{z}^k \quad (n \in \mathbb{N}_0) \right\}. \end{aligned}$$

Also, we note that $I_{p,1}^n f(\mathfrak{z}) = I_p^n f(\mathfrak{z})$, where I_p^n is p-valent Sălăgean integral operator

$$I_p^n \mathfrak{f}(\mathfrak{z}) = \left\{ \mathfrak{f}(\mathfrak{z}) \in \mathcal{H}_p : I_p^n \mathfrak{f}(\mathfrak{z}) = \mathfrak{z}^p + \sum_{k=p+1}^{\infty} \left(\frac{p}{k} \right)^n a_k \mathfrak{z}^k \quad (p \in \mathbb{N}, n \in \mathbb{N}_0) \right\}. \tag{6}$$

In the sequel to earlier investigations, in the present study, we find interesting sufficient conditions on the functions $\mathfrak{f} \in \mathcal{H}_p$ and $q_1, q_2 \in \mathcal{H}$ such that sandwich relation of the form [29]

$$q_1(\mathfrak{z}) < \frac{I_{p,\lambda}^n\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p} < q_2(\mathfrak{z})$$

or

$$q_1(\mathfrak{z}) < \left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p}\right]^{\eta} < q_2(\mathfrak{z})$$

holds. For particular values of the parameters λ and p, our results obtained here include several classical as well as recent results. We will derive several subordination results, superordination results, and sandwich results involving the operator $I_{p,\lambda}^n$.

2 Preliminaries

To establish our results, we need the following:

Definition 1. ([2], Definition 2, p. 817; also see [1], Definition 2.2b, p. 21) Let Q be the set of functions \mathfrak{f} that are analytic and injective on $\overline{\mathbb{U}}\setminus\mathbb{E}(\mathfrak{f})$, where

$$\mathbb{E}(\mathfrak{f}) \coloneqq \left\{ \zeta : \zeta \in \partial \mathbb{U} \quad \text{and} \quad \lim_{\mathfrak{z} \to \zeta} \mathfrak{f}(\mathfrak{z}) = \infty \right\}$$

and such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{U} \setminus \mathbb{E}(\mathfrak{f})$.

Lemma 1. ([1], Theorem 3.4h, p. 132) Let q be univalent in the open unit disk \mathbb{U} and θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{U})$ with $\phi(w) \neq 0$ when $w \in q(\mathbb{U})$. Set $\Phi(\mathfrak{z}) = \mathfrak{z}q'(\mathfrak{z})\phi(q(\mathfrak{z}))$ and $\mathfrak{L}(\mathfrak{z}) = \theta(q(\mathfrak{z})) + \Phi(\mathfrak{z})$. Suppose that

(1) Φ is starlike in \mathbb{U}

(2)
$$\Re\left(\frac{z\mathfrak{L}'(\mathfrak{z})}{\Phi(\mathfrak{z})}\right) > 0 \quad (\mathfrak{z} \in \mathbb{U}).$$

If $p \in \mathcal{H}[q(0), n]$ for some $n \in \mathbb{N}$ with $p(\mathbb{U}) \subset \mathbb{D}$ and

$$\theta(p(\mathfrak{z})) + \mathfrak{z}p'(\mathfrak{z})\phi(p(\mathfrak{z})) < \theta(q(\mathfrak{z})) + \mathfrak{z}q'(\mathfrak{z})\phi(q(\mathfrak{z})), \tag{7}$$

then p < q and q is the best dominant.

Lemma 2. [7] Let q be univalent convex in the open unit disk \mathbb{U} and $\psi, \gamma \in \mathbb{C}$ with $\Re\left[1 + \frac{3q''(\mathfrak{z})}{q'(\mathfrak{z})}\right] > \max\{0, -\Re(\psi \setminus \gamma)\}$. If $p(\mathfrak{z})$ is analytic and

$$\psi(p(3)) + \gamma_3 p'(3) < \psi(q(3)) + \gamma_3 q'(3),$$

then p < q and q is the best dominant.

Lemma 3. [30] Let q be univalent in the open unit disk $\mathbb U$ and θ and ϕ be analytic in a domain $\mathbb D$ containing $q(\mathbb U)$. Set $\Phi(\mathfrak z) = \mathfrak z q'(\mathfrak z) \phi(q(\mathfrak z))$. Suppose that

(1) Φ is univalent starlike in \mathbb{U} and

$$(2) \ \Re\left[\frac{\theta'(q(\mathfrak{z}))}{\phi(q(\mathfrak{z}))}\right] > 0 \quad (\mathfrak{z} \in \mathbb{U}).$$

If $p \in \mathcal{H}[q(0), 1] \cap Q$ with $p(\mathbb{U}) \subseteq \mathbb{D}$; $\theta(p(\mathfrak{z})) + \mathfrak{z}p'(\mathfrak{z})\phi(p(\mathfrak{z}))$ is univalent in \mathbb{U} and

$$\theta(q(3)) + 3q'(3)\phi(q(3)) < \theta(p(3)) + 3p'(3)\phi(p(3)) \quad (3 \in \mathbb{U}),$$

then q < p and q is the best dominant.

Lemma 4. ([2], Theorem 8, p. 822) Let q be univalent convex in the open unit $disk \mathbb{U}$ and $y \in \mathbb{C}$, with $\Re(y) > 0$. If $p \in \mathcal{H}[q(0), 1] \cap \mathbb{Q}$, $p(\mathfrak{z}) + y\mathfrak{z}p'(\mathfrak{z})$ is univalent in \mathbb{U} and

$$q(3) + \gamma_3 q'(3) < p(3) + \gamma_3 p'(3) \quad (3 \in \mathbb{U}),$$

then q < p and q is the best subordinant.

3 Subordination and superordination results

We state and prove the following subordination and superordination results.

Theorem 1. Let $q \in \mathcal{H}$ be a convex univalent function in \mathbb{U} with q(0) = 1. Let the function $\mathfrak{f} \in \mathcal{H}_p$ satisfy the following subordination condition:

$$\tau \frac{I_{p,\lambda}^{n-1}f(\mathfrak{Z})}{\mathfrak{Z}^p} + (1-\tau)\frac{I_{p,\lambda}^nf(\mathfrak{Z})}{\mathfrak{Z}^p} < q(\mathfrak{Z}) + \frac{\tau\lambda}{p}\mathfrak{Z}q'(\mathfrak{Z}) \quad (\mathfrak{Z} \in \mathbb{U}; \, p, n \in \mathbb{N}, \, \tau, \, \lambda > 0), \tag{8}$$

where $I_{p,\lambda}^n$ is defined by (4). Then,

$$\frac{I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} < q(\mathfrak{z}) \quad (\mathfrak{z} \in \mathbb{U})$$

$$\tag{9}$$

and q is the best dominant.

Proof. Let the function *p* be defined by

$$p(\mathfrak{z}) = \frac{I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} \quad (\mathfrak{z} \in \mathbb{U})$$

$$p'(\mathfrak{z}) = \frac{\mathfrak{z}^{p}(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z}))' - p\mathfrak{z}^{p-1}(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z}))}{(\mathfrak{z}^{p})^{2}}$$

$$\mathfrak{z}^{p+1}p'(\mathfrak{z}) = \mathfrak{z}(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z}))' - p(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z}))$$

$$\mathfrak{z}^{p+1}p'(\mathfrak{z}) + p(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})) = \mathfrak{z}(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z}))',$$

$$(10)$$

which, upon differentiation followed by multiplication by 3, gives

$$\mathfrak{z}^{p+1}p'(\mathfrak{z}) + p\mathfrak{z}^p p(\mathfrak{z}) = \mathfrak{z}(I_{p,\lambda}^n \mathfrak{f}(\mathfrak{z}))'. \tag{11}$$

By using (5) we obtain the following, after a routine simplification:

$$\begin{split} & 3^{p+1}p'(\mathfrak{Z}) + p\mathfrak{Z}^{p}p(\mathfrak{Z}) = \frac{p}{\lambda}(I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{Z}) - (1-\lambda)I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{Z})) \\ & 3^{p+1}p'(\mathfrak{Z}) + p\mathfrak{Z}^{p}p(\mathfrak{Z}) + \frac{p}{\lambda}(1-\lambda)I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{Z}) = \frac{p}{\lambda}(I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{Z})) \\ & 3^{p+1}p'(\mathfrak{Z}) + \left(p + \frac{p}{\lambda}(1-\lambda)\right)\mathfrak{Z}^{p}p(\mathfrak{Z}) = \frac{p}{\lambda}(I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{Z})) \\ & 3^{p+1}p'(\mathfrak{Z}) + \left(p + \frac{p}{\lambda} - p\right)\mathfrak{Z}^{p}p(\mathfrak{Z}) = \frac{p}{\lambda}(I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{Z})), \\ & \frac{\lambda}{p}\mathfrak{Z}p'(\mathfrak{Z}) + p(\mathfrak{Z}) = \frac{I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{Z})}{\mathfrak{Z}^{p}}. \end{split}$$

This further gives that

$$\begin{split} \frac{\lambda}{p} & _{3}p'(_{3}) = \frac{I_{p,\lambda}^{n-1} f(_{3})}{3^{p}} - p(_{3}) \\ \frac{\lambda}{p} & _{3}p'(_{3}) = \frac{I_{p,\lambda}^{n-1} f(_{3}) - _{3}^{p} p(_{3})}{3^{p}} \\ & _{7}\left[\frac{\lambda}{p}\right]_{3}p'(_{3}) = \frac{\tau(I_{p,\lambda}^{n-1} f(_{3}) - I_{p,\lambda}^{n} f(_{3}))}{3^{p}} \\ & _{9}(_{3}) + \tau \frac{\lambda}{p} _{3}p'(_{3}) = \frac{\tau(I_{p,\lambda}^{n-1} f(_{3}) - I_{p,\lambda}^{n} f(_{3}))}{3^{p}} + \frac{I_{p,\lambda}^{n} f(_{3})}{3^{p}} \\ & _{9}(_{3}) + \tau \frac{\lambda}{p} _{3}p'(_{3}) = \frac{\tau I_{p,\lambda}^{n-1} f(_{3})}{3^{p}} + (1 - \tau) \frac{I_{p,\lambda}^{n} f(_{3})}{3^{p}}. \end{split}$$

Therefore, in the light of the hypothesis (9), we have

$$p(\mathfrak{z}) + \frac{\tau\lambda}{p}\mathfrak{z}p'(\mathfrak{z}) < q(\mathfrak{z}) + \frac{\tau\lambda}{p}\mathfrak{z}q'(\mathfrak{z}).$$

Now, an application of Lemma 2 with

$$\gamma = \frac{\tau \lambda}{p}$$
 and $\psi = 1$

gives the assertion in (10). This completes the proof of Theorem 1.

Theorem 2. Let $q \in \mathcal{H}$ be a univalent convex function in \mathbb{U} with q(0) = 1. Also, let the function $\mathfrak{f} \in \mathcal{H}_p$, be such that

$$\frac{I_{p,\lambda}^n\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p}\in H[1,1]\cap Q$$

and for $\tau > 0$, the function $\tau^{\frac{I_{p,\lambda}^{n-1}f(\mathfrak{z})}{\mathfrak{z}^p}} + (1-\tau)^{\frac{I_{p,\lambda}^nf(\mathfrak{z})}{\mathfrak{z}^p}}$ be univalent in \mathbb{U} , where $I_{p,\lambda}^n$ is defined by (4). If

$$q(\mathfrak{z}) + \frac{\tau \lambda}{p} \mathfrak{z} q'(\mathfrak{z}) < \tau \frac{I_{p,\lambda}^{n-1} \mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p} + (1-\tau) \frac{I_{p,\lambda}^n \mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p} \quad (\mathfrak{z} \in \mathbb{U}; \, p, n \in \mathbb{N}, \tau, \lambda > 0),$$
 (12)

then

$$q(\mathfrak{z})<\frac{I^n_{p,\lambda}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p}\quad (\mathfrak{z}\in\mathbb{U})$$

and q is the best subordinant.

Proof. As in the proof of our Theorem 1, let the function $p(\mathfrak{z})$ be defined by (10). Then,

$$\tau \frac{I_{p,\lambda}^{n-1}f(\mathfrak{z})}{\mathfrak{z}^{p}} + (1-\tau)\frac{I_{p,\lambda}^{n}f(\mathfrak{z})}{\mathfrak{z}^{p}} = p(\mathfrak{z}) + \tau \frac{\lambda}{p}\mathfrak{z}p'(\mathfrak{z}).$$

Therefore, the hypothesis (12) is equivalent to

$$q(\mathfrak{z}) + \frac{\tau\lambda}{p}\mathfrak{z}q'(\mathfrak{z}) < p(\mathfrak{z}) + \frac{\tau\lambda}{p}\mathfrak{z}p'(\mathfrak{z}).$$

Now, an application of Lemma 4 yields

$$q(\mathfrak{z}) < p(\mathfrak{z}) = \frac{I_{p,\lambda}^n \mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p},$$

and q is the best subordinant. The proof of Theorem 2 is completed.

Theorem 3. Let the function $q \in \mathcal{H}$ be nonzero univalent in \mathbb{U} with q(0) = 1 and

$$\Re\left\{1 + \frac{3q''(\mathfrak{z})}{q'(\mathfrak{z})} - \frac{3q'(\mathfrak{z})}{q(\mathfrak{z})}\right\} > 0 \quad (\mathfrak{z} \in \mathbb{U}).$$
(13)

Let $0 \le \rho \le 1, \lambda, p \in \mathbb{N}, p > 0$, and $\eta \in \mathbb{C}$. If $\mathfrak{f} \in \mathcal{H}_p$ satisfies the following:

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]\neq0\quad(\mathfrak{z}\in\mathbb{U})$$

and

$$\eta \left[\frac{(1-\rho)_{\mathfrak{J}}(I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{J}))' + \rho_{\mathfrak{J}}(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{J}))'}{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{J}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{J})} - p \right] < \frac{\mathfrak{J}q'(\mathfrak{J})}{q(\mathfrak{J})},$$
(14)

then

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]^{\eta} < q(\mathfrak{z})$$
(15)

and q is the best dominant in (15).

Proof. Let the function $p(\mathfrak{z})$ be defined on \mathbb{U} by

$$p(\mathfrak{z}) = \left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} \right]^{\eta}.$$
 (16)

Then, p is analytic in \mathbb{U} . The logarithmic differentiation of (16) yields

$$\frac{3p'(\mathfrak{z})}{p(\mathfrak{z})} = \eta \left[\frac{(1-\rho)\mathfrak{z}(I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}))' + \rho\mathfrak{z}(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z}))'}{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})} - p \right]. \tag{17}$$

In order to apply Lemma 1, we set

$$\theta(\mathfrak{z}) = 1, \phi(w) = \frac{1}{w} \quad (w \in \mathbb{C} \setminus \{0\}),$$

$$\Phi(\mathfrak{z}) = \mathfrak{z}q'(\mathfrak{z})\phi(q(\mathfrak{z})) = \frac{\mathfrak{z}q'(\mathfrak{z})}{q(\mathfrak{z})} \quad (\mathfrak{z} \in \mathbb{U}),$$

and

$$\mathfrak{L}(\mathfrak{z}) = \theta(q(\mathfrak{z})) + \Phi(\mathfrak{z}) = 1 + \frac{\mathfrak{z}q'(\mathfrak{z})}{q(\mathfrak{z})}.$$

By making use of hypothesis (13), we see that $\Phi(\mathfrak{z})$ is univalent starlike in U. Since $\mathfrak{L}(\mathfrak{z}) = 1 + \Phi(\mathfrak{z})$, we further obtain that

$$\Re\left(\frac{\mathfrak{Z}'(\mathfrak{Z})}{\Phi(\mathfrak{Z})}\right) > 0.$$

By a routine calculation using (16) and (17), we have

$$\theta(p(\mathfrak{Z})) + \mathfrak{Z}p'(\mathfrak{Z})\phi(p(\mathfrak{Z})) = 1 + \eta \left[\frac{(1-\rho)\mathfrak{Z}(I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{Z}))' + \rho\mathfrak{Z}(I_{p,\lambda}^n\mathfrak{f}(\mathfrak{Z}))'}{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{Z}) + \rho I_{p,\lambda}^n\mathfrak{f}(\mathfrak{Z})} - p \right].$$

Therefore, hypothesis (14) is equivalently written as follows:

$$\theta(p(\mathfrak{z})) + \mathfrak{z}p'(\mathfrak{z})\phi(p(\mathfrak{z})) < 1 + \frac{\mathfrak{z}q'(\mathfrak{z})}{q(\mathfrak{z})} = \theta(q(\mathfrak{z})) + \mathfrak{z}q'(\mathfrak{z})\phi(q(\mathfrak{z})).$$

We see that condition (7) is also satisfied. Now, by an application of Lemma 1, we have

We, thus, obtain the assertions in (15). This completes the proof of Theorem 3.

Theorem 4. Let $q \in \mathcal{H}$ be a univalent mapping of U into the right half plane with q(0) = 1 and

$$\Re\left\{1 + \frac{3q''(3)}{q'(3)} - \frac{3q'(3)}{q(3)}\right\} > 0 \quad (3 \in \mathbb{U}).$$
 (18)

Let $0 \le \rho \le 1, \lambda, p \in \mathbb{N}, p > 0$, and $\eta \in \mathbb{C}$. Suppose that the function $\mathfrak{f} \in \mathcal{H}_p$ satisfies the following:

$$\left\lceil \frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right\rceil\neq 0\quad (\mathfrak{z}\in\mathbb{U}).$$

Set

$$\Delta(\mathfrak{z}) = \left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} \right]^{\eta} + \eta \left[\frac{(1-\rho)\mathfrak{z}(I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}))' + \rho\mathfrak{z}(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z}))'}{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})} - p \right] \quad (\mathfrak{z} \in \mathbb{U}). \tag{19}$$

Ιf

$$\Delta(\mathfrak{z}) < q(\mathfrak{z}) + \frac{\mathfrak{z}q'(\mathfrak{z})}{q(\mathfrak{z})},\tag{20}$$

then

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]^{\eta} < q(\mathfrak{z})$$
(21)

and q is the best dominant in (21).

Proof. We follow the lines of proof of Theorem 3. Let the function $p(\mathfrak{z})$ be defined as in (16). We set

$$\theta(w) = w, \quad \phi(w) = \frac{1}{w} \quad (w \in \mathbb{C} \setminus \{0\}),$$

$$\Phi(\mathfrak{z}) = \mathfrak{z}q'(\mathfrak{z})\phi(q(\mathfrak{z})) = \frac{\mathfrak{z}q'(\mathfrak{z})}{q(\mathfrak{z})} \quad (\mathfrak{z} \in \mathbb{U}),$$

and

$$\mathfrak{L}(\mathfrak{z}) = \theta(q(\mathfrak{z})) + \Phi(\mathfrak{z}) = q(\mathfrak{z}) + \Phi(\mathfrak{z}).$$

In this case,

$$\Re\left\{\frac{\mathfrak{Z}'(\mathfrak{z})}{\Phi(\mathfrak{z})}\right\}=\Re\left\{q(\mathfrak{z})+1+\frac{\mathfrak{z}q''(\mathfrak{z})}{q'(\mathfrak{z})}-\frac{\mathfrak{z}q'(\mathfrak{z})}{q(\mathfrak{z})}\right\}>0\quad (\mathfrak{z}\in\mathbb{U}).$$

By making use of (17), hypothesis (20) can be equivalently written as

$$\theta(p(x)) + xp'(x)\phi(x) < \theta(q(x)) + xq'(x)\phi(q(x)).$$

Therefore, by applying Lemma 1, we obtain

$$p(\mathfrak{z}) < q(\mathfrak{z}) \quad (\mathfrak{z} \in \mathbb{U}).$$

We obtain the assertion in (21). The proof of Theorem 4 is completed.

Theorem 5. Let $q \in \mathcal{H}$ be a univalent mapping of \mathbb{U} into the right half plane with q(0) = 1 and satisfy

$$\Re\left\{1 + \frac{3q''(\mathfrak{z})}{q'(\mathfrak{z})} - \frac{3q'(\mathfrak{z})}{q(\mathfrak{z})}\right\} > 0 \quad (\mathfrak{z} \in \mathbb{U}). \tag{22}$$

Let $0 \le \rho \le 1$ and $\eta \in \mathbb{C}$. Let the function $\mathfrak{f} \in \mathcal{H}_p$ be such that

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]^{\eta}\in\mathcal{H}[1,1]\cap Q.$$

Suppose that the function $\Delta(\mathfrak{z})$ is also univalent in \mathbb{U} , where $\Delta(\mathfrak{z})$ is defined by (19). If

$$q(\mathfrak{z}) + \frac{\mathfrak{z}q'(\mathfrak{z})}{q(\mathfrak{z})} < \Delta(\mathfrak{z}),\tag{23}$$

then

$$q(\mathfrak{z}) < \left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} \right]^{n} \tag{24}$$

and q is the best subordinant in (24).

Proof. In order to apply Lemma 3, we set

$$\theta(w) = w, \phi(w) = \frac{1}{w} \quad (w \in \mathbb{C} \setminus \{0\})$$

and

$$\Phi(\mathfrak{z}) = \mathfrak{z}q'(\mathfrak{z})\phi(q(\mathfrak{z})) = \frac{\mathfrak{z}q'(\mathfrak{z})}{q(\mathfrak{z})} \quad (\mathfrak{z} \in \mathbb{U}).$$

We first observe that Φ is starlike in \mathbb{U} . Furthermore,

$$\Re\left\{\frac{\theta'(q(\mathfrak{z}))}{\phi(\mathfrak{z})}\right\}=\Re\{q(\mathfrak{z})\}>0\quad (\mathfrak{z}\in\mathbb{U}).$$

Now, let the function p be defined on \mathbb{U} as in (16). By a routine calculation using (17), we have

$$\theta(p(\mathfrak{z})) + \mathfrak{z}p'(\mathfrak{z})\phi(p(\mathfrak{z})) = \Delta(\mathfrak{z}).$$

Hence, condition (23) is equivalent to the following:

$$\theta(q(\mathfrak{z})) + \mathfrak{z}q'(\mathfrak{z})\phi(q(\mathfrak{z})) < \theta(p(\mathfrak{z})) + \mathfrak{z}p'(\mathfrak{z})\phi(p(\mathfrak{z})).$$

Therefore, by using Lemma 3, we have

$$q(\mathfrak{z}) < p(\mathfrak{z}) \quad (\mathfrak{z} \in \mathbb{U}),$$

and q is the best subordinant. This is precisely the assertion of (24). The proof of Theorem 5 is completed. \Box

Theorem 6. Let $0 \le \rho \le 1$ and $\alpha, \eta \in \mathbb{C}$. Let the function $q \in \mathcal{H}$ be univalent in \mathbb{U} and

$$\Re\left[1+\frac{3q''(\mathfrak{z})}{q'(\mathfrak{z})}\right] > \max\{0,-\Re(\alpha)\}. \tag{25}$$

Suppose that $\mathfrak{f} \in \mathcal{H}_p$ satisfies the following:

$$\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\neq 0 \quad (\mathfrak{z}\in\mathbb{U}).$$

Set

$$\Omega(\mathfrak{z}) = \left\{ \frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} \right\}^{\eta} \left\{ \alpha + \eta \left[\frac{(1-\rho)\mathfrak{z}(I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}))' + \rho\mathfrak{z}(I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z}))'}{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})} - p \right] \quad (\mathfrak{z} \in \mathbb{U})$$

if

$$\Omega(\mathfrak{z}) < \alpha q(\mathfrak{z}) + \mathfrak{z} q'(\mathfrak{z}),\tag{27}$$

then

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]^{\eta} < q(\mathfrak{z})$$
(28)

and q is the best dominant.

Proof. The proof of this theorem is similar to the proof of Theorem 4. Therefore, we sketch only the main steps. Let the function $p(\mathfrak{z})$ be defined on \mathbb{U} by (16). By using (17), we write:

$$\frac{3p'(3)}{p(3)} = \eta \left[\frac{(1-\rho)_{3}(I_{p,\lambda}^{n-1}f(3))' + \rho_{3}(I_{p,\lambda}^{n}f(3))'}{(1-\rho)I_{p,\lambda}^{n-1}f(3) + \rho I_{p,\lambda}^{n}f(3)} - p \right]
3p'(3) = \eta p(3) \left[\frac{(1-\rho)_{3}(I_{p,\lambda}^{n-1}f(3))' + \rho_{3}(I_{p,\lambda}^{n}f(3))'}{(1-\rho)I_{p,\lambda}^{n-1}f(3) + \rho I_{p,\lambda}^{n}f(3)} - p \right].$$
(29)

In this case setting,

$$\theta(w) = \alpha w, \phi(w) = 1 \quad (w \in \mathbb{C}),$$

$$\Phi(\mathfrak{z}) = \mathfrak{z}q'(\mathfrak{z})\phi(q(\mathfrak{z})) = \mathfrak{z}q'(\mathfrak{z}),$$

and

$$\mathfrak{L}(\mathfrak{z}) = \theta(q(\mathfrak{z})) + \Phi(\mathfrak{z}) = \alpha q(\mathfrak{z}) + \mathfrak{z}q'(\mathfrak{z}),$$

we see that, by (25), Φ is starlike in \mathbb{U} and

$$\Re\left[\frac{\mathfrak{z}\mathfrak{L}'(\mathfrak{z})}{\Phi(\mathfrak{z})}\right]=\Re\left\{\alpha+1+\frac{\mathfrak{z}q''(\mathfrak{z})}{q'(\mathfrak{z})}\right\}>0.$$

Furthermore, by substituting the expression for $p(\mathfrak{z})$ from (16) and the expression for $\mathfrak{z}p'(\mathfrak{z})$ from (29), we have

$$\theta(p(x)) + xp'(x)\phi(p(x)) = \alpha p(x) + xp'(x) = \Omega(x),$$

where $\Omega(\mathfrak{z})$ is defined by (26). The hypothesis (27) is now equivalently written as

$$\theta(p(\mathfrak{z})) + \mathfrak{z}p'(\mathfrak{z})\phi(p(\mathfrak{z})) < \theta(q(\mathfrak{z})) + \mathfrak{z}q'\phi(q(\mathfrak{z})).$$

An application of Lemma 1 yields

$$p(\mathfrak{z}) < q(\mathfrak{z}).$$

This last statement gives the assertion in (28). The proof of Theorem 6 is completed.

Theorem 7. Let $0 \le \rho \le 1$, $\eta \in \mathbb{C}$, $\alpha \in \mathbb{C} \setminus \{0\}$, and $\Re(\alpha) > 0$. Let the function q be univalent convex in \mathbb{U} with q(0) = 1. Suppose that the function $\mathfrak{f} \in \mathcal{H}_p$ is such that

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]\neq0\quad(\mathfrak{z}\in\mathbb{U})$$

and

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]^{\eta}\in\mathcal{H}[1,1]\cap Q.$$

If $\Omega(\mathfrak{z})$ defined by (26) is univalent and satisfies the following:

$$\alpha q(\mathfrak{z}) + \mathfrak{z} q'(\mathfrak{z}) < \Omega(\mathfrak{z}), \tag{30}$$

then

$$q(\mathfrak{z}) < \left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} \right]^{\eta}. \tag{31}$$

The function q is the best subordinant in (31).

Proof. Let the function p(3) be defined as in (17). Then, by making use of (18), we write

$$\Omega(\mathfrak{z}) = \alpha p(\mathfrak{z}) + \mathfrak{z} p'(\mathfrak{z}).$$

The hypothesis (31) is now equivalently written as

$$q(\mathfrak{z}) + \left(\frac{1}{\alpha}\right)\mathfrak{z}q'(\mathfrak{z}) < p(\mathfrak{z}) + \left(\frac{1}{\alpha}\right)\mathfrak{z}p'(\mathfrak{z}).$$

Therefore, an application of Lemma 4 with $\gamma = \frac{1}{a}$ yields (32). The proof of Theorem 7 is completed.

4 Sandwich theorems

By combining Theorem 1 with Theorem 2, we obtain the following differential sandwich theorem:

Theorem 8. Let the functions q_1 and q_2 be univalent convex in $\mathbb U$ with $q_1(0) = q_2(0) = 1$. Let $\mathfrak f \in \mathcal H_p$ be such that

$$\frac{I_{p,\lambda}^n\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p}\in\mathcal{H}[1,1]\cap Q$$

and for $\tau > 0$, the function

$$\tau \frac{I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p} + (1-\tau) \frac{I_{p,\lambda}^n\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^p}$$

is univalent in \mathbb{U} , where $I_{p,\lambda}^n$ is defined by (4). If

$$q_{1}(\mathfrak{z}) + \frac{\tau\lambda}{p}\mathfrak{z}q_{1}'(\mathfrak{z}) < \tau\frac{I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} + (1-\tau)\frac{I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} < q_{2}(\mathfrak{z}) + \frac{\tau\lambda}{p}\mathfrak{z}q_{2}'(\mathfrak{z}),$$

then

$$q_1(\mathfrak{z}) < \tau \frac{I_{p,\lambda}^n f(\mathfrak{z})}{\mathfrak{z}^p} < q_2(\mathfrak{z}).$$
 (32)

The functions q_1 and q_2 are, respectively, the best subordinant and the best dominant in (32).

By combining Theorems 4 and 5, we obtain following.

Theorem 9. Let the functions $q_1, q_2 \in \mathcal{H}$ be univalent mappings of \mathbb{U} into the right half plane and further satisfy the following conditions:

$$q_1(0) = q_2(0) = 1$$

and

$$\Re\left\{1+\frac{3q_j''(\mathfrak{z})}{q_j'(\mathfrak{z})}-\frac{3q_j'(\mathfrak{z})}{q_j(\mathfrak{z})}\right\}>0\quad (j=1,2;\,\mathfrak{z}\in\mathbb{U}).$$

Let $0 \le \rho \le 1$ and $\eta \in \mathbb{C}$. Let $\mathfrak{f} \in \mathcal{H}_p$ be such that the following conditions hold true:

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]\neq0\quad(\mathfrak{z}\in\mathbb{U})$$

and

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]^{\eta}\in\mathcal{H}[1,1]\cap Q.$$

Let the function $\Delta(\mathfrak{z})$ be defined on \mathbb{U} as in (19). If

$$q_1(\mathfrak{z}) + \frac{\mathfrak{z}q_1'(\mathfrak{z})}{q_1(\mathfrak{z})} < \Delta(\mathfrak{z}) < q_2 + \frac{\mathfrak{z}q_2'(\mathfrak{z})}{q_2(\mathfrak{z})},$$

then

$$q_{1}(\mathfrak{z}) < \left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} \right]^{\eta} < q_{2}(\mathfrak{z}), \tag{33}$$

where q_1 and q_2 are, respectively, the best subordinant and the best dominant in (33).

By combining Theorems 6 and 7, we obtain following.

Theorem 10. Let $0 \le \rho \le 1$, $\eta \in \mathbb{C}$, and $\alpha \in \mathbb{C}\setminus\{0\}$ with $\Re(\alpha) > 0$. Let the functions q_1 and q_2 be univalent convex in \mathbb{U} with $q_1(0) = q_2(0) = 1$. Suppose that $\mathfrak{f} \in \mathcal{H}_p$ is such that

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]\neq0\quad(\mathfrak{z}\in\mathbb{U})$$

and

$$\left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z})+\rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}}\right]^{\eta}\in\mathcal{H}[1,1]\cap Q.$$

Let the function $\Omega(\mathfrak{z})$ be defined by (27). If

$$\alpha q_1(3) + 3q_1'(3) < \Omega(3) < \alpha q_2(3) + 3q_2'(3)$$

then

$$q_{1}(\mathfrak{z}) < \left[\frac{(1-\rho)I_{p,\lambda}^{n-1}\mathfrak{f}(\mathfrak{z}) + \rho I_{p,\lambda}^{n}\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}^{p}} \right]^{\eta} < q_{2}(\mathfrak{z}), \tag{34}$$

where q_1 and q_2 are, respectively, the best subordinant and the best dominant in (34).

5 Concluding remarks

By taking particular values for the parameters λ , p, n, and choosing different dominant functions $q(\mathfrak{z})$ in our results of Section 3, we obtain several interesting consequences. As the first example, let Ω_k $(0, \le k < \infty)$ be the convex conic region in the w-plane defined by the following:

$$\Omega_k = \{ w = u + iv \in \mathbb{C} : u^2 > k^2(u - 1)^2 + k^2v^2, u > 0 \}.$$

Also, let R_k be the Riemann map of $\mathbb U$ onto Ω_k satisfying $R_k(0) = 1$ and $R_k'(0) > 0$. Let the function q_k be defined by

$$q_k(\mathfrak{z}) = \exp \int_0^{\mathfrak{z}} \frac{R_k(s) - 1}{s} \mathrm{d}s \quad (\mathfrak{z} \in \mathbb{U}).$$
 (35)

The region Ω_k ; the functions $R_k(\mathfrak{z})$ and $q_k(\mathfrak{z})$ are widely discussed in the literature in the context of *k*-uniformly convex functions. (See e.g. [31], also see [32].) Moreover, we can readily verify that

$$\Re\left\{1+\frac{3q_k''(\mathfrak{z})}{q_k'(\mathfrak{z})}-\frac{3q_k'(\mathfrak{z})}{q_k(\mathfrak{z})}\right\}=\Re\left\{\frac{R_k'(\mathfrak{z})}{R_k(\mathfrak{z})-1}\right\}>\frac{1}{2}\quad (\mathfrak{z}\in\mathbb{U}).$$

Therefore, condition (13) is satisfied. Now, by choosing p=1, $\rho=1$, n=1, $\lambda=1$, η real, and $q(\mathfrak{z})=q_{\nu}(\mathfrak{z})$ in Theorem 3, where $q_k(\mathfrak{z})$ is defined by (35), we obtain

If the function $\mathfrak{f} \in \mathcal{H}_1$ satisfies the following:

$$\frac{f(\mathfrak{z})}{\mathfrak{z}} \neq 0 \quad (\mathfrak{z} \in \mathbb{U})$$

and

$$\eta \left[\frac{\mathfrak{z} \mathfrak{f}'(\mathfrak{z})}{\mathfrak{f}(\mathfrak{z})} - 1 \right] < (R_k(\mathfrak{z}) - 1) \quad (\eta \in \mathbb{C}, \mathfrak{z} \in \mathbb{U}),$$

then

$$\left(\frac{\mathfrak{f}(\mathfrak{Z})}{\mathfrak{Z}}\right)^{\eta} < q_{k}(\mathfrak{Z}) \tag{36}$$

and $q_k(\mathfrak{z})$ is the best dominant in (36).

For $\eta = 1$, this result is due to Kanas and Wisniowska [33]. (Also see [32,34,35] for generalizations.)

In the second example, we choose $q(\mathfrak{z}) = \frac{1+A\mathfrak{z}}{1+B\mathfrak{z}}(-1 \le B < A \le 1), \rho = 1$ in Theorem 3, obtain the following: If the function $\mathfrak{f} \in \mathcal{H}_p$ satisfies

$$\eta \left| \frac{\mathfrak{z}(I^n_{p,\lambda}\mathfrak{f}(\mathfrak{z}))'}{I^n_{p,\lambda}\mathfrak{f}(\mathfrak{z})} - p \right| < \frac{(A-B)\mathfrak{z}}{(1+A\mathfrak{z})(1+B\mathfrak{z})},$$

then

$$\eta \left| \frac{(I_{p,\lambda}^n \mathfrak{f}(\mathfrak{z}))}{\mathfrak{z}^p} \right|^{\eta} < \frac{1 + A\mathfrak{z}}{(1 + B\mathfrak{z})} \quad (\mathfrak{z} \in \mathbb{U})$$

and $\frac{1+A_3}{1+B_2}$ is the best dominant.

Similarly setting p = 1, $\rho = 1$, n = 1, η real, and $q(\mathfrak{z}) = (1 + B\mathfrak{z})^{\eta(A-B)/B}$, which is univalent if and only if $|(\eta(A-B)/B)-1| \le 1$ or $|(\eta(A-B)/B)+1| \le 1$ [36], Theorem 3 reduces to the following.

Let the real numbers A, B be such that $-1 \le B < A \le 1$ and suppose that the real number η satisfies $1 \le \frac{\eta(A-B)}{R} \le 2$. For $\mathfrak{f} \in \mathcal{H}_1$, if

$$\frac{\mathfrak{z}\mathfrak{f}'(\mathfrak{z})}{\mathfrak{f}(\mathfrak{z})} < \frac{1+A\mathfrak{z}}{1+B\mathfrak{z}} \quad (\mathfrak{z} \in \mathbb{U}),$$

then

$$\left[\frac{\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}}\right]^{\eta} < (1+B\mathfrak{z})^{\eta(A-B)/B}$$

and $(1 + B_3)^{\eta(A-B)/B}$ is the best dominant.

By further specializing $A = 1 - 2\alpha$, $(0 \le \alpha < 1)$, B = -1, and $\eta = 1$, here, we obtain the following wellknown result on univalent starlike functions (see [28], also see [38]):

If $\mathfrak{f} \in \mathcal{H}_1$ is univalent starlike of order $\alpha(0 \le \alpha < 1)$ in \mathbb{U} , then

$$\frac{f(\mathfrak{z})}{\mathfrak{z}} < \frac{1}{(1-\mathfrak{z})^{2(1-a)}} \tag{37}$$

and $\frac{1}{(1-x)^{2(1-\alpha)}}$ is the best dominant.

Again, setting $\rho = 0$, p = 1, $\eta = 1$, and $q(\mathfrak{z}) = \frac{1}{(1-\mathfrak{z})^{2(1-\alpha)}}$ $(0 \le \alpha < 1)$ in Theorem 3, we obtain the following well-known result for univalent convex functions (see [28], also see [37,38]).

If $\mathfrak{f} \in \mathcal{H}_1$ is univalent convex of order $\alpha(0 \le \alpha < 1)$ in \mathbb{U} , then

$$\mathfrak{f}'(\mathfrak{z}) < \frac{1}{(1-\mathfrak{z})^{2(1-\alpha)}}$$

and $\frac{1}{(1-\mathfrak{z})^{2(1-\alpha)}}$ is the best dominant.

Particular cases of our Theorems 1, 4, and 6 also yield interesting consequences. However, we omit the details for the sake of brevity. Finally, we address the following problem:

For $0 \le \alpha < 1$, let the function q be defined on U by

$$q_{(3)} = \begin{cases} \frac{1}{2 - \alpha} \left[\frac{1}{(1 - 3)^{(1 - 2\alpha)}} - 1 \right]; & \alpha \neq \frac{1}{2}, \\ -\log(1 - 3); & \alpha = \frac{1}{2}, \end{cases}$$
(38)

A result analogous to (37) for univalent convex functions of order $\alpha(1/2 \le \alpha < 1)$ is well known, i.e.,

$$\frac{\mathfrak{f}(\mathfrak{z})}{\mathfrak{z}} < q(\mathfrak{z}) \quad (\mathfrak{z} \in \mathbb{U}),$$

where $q(\mathfrak{z})$ is defined by (38). However, a similar result in the range $0 \le \alpha < 1/2$ seems to be an open problem [39].

Acknowledgements: Norah Saud Almutairi would like to thank his father Saud Dhaifallah Almutairi for supporting this work.

Funding information: Authors state no funding involved.

Author contributions: Investigation: N.S.A.; supervision: N.S.A., A.S., and H.D.; writing – original draft: N.S.A; writing – review and editing: N.S.A. and H.D. All authors have read and agreed to the published version of the manuscript.

Conflict of interest: Authors state no conflict of interest.

References

- [1] S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics No. 225, Marcel Dekker, New York, 2000.
- [2] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables 48 (2003), no. 10, 815–826.
- [3] T. Bulboacă, Differential Subordinations and Superordinations. New Results, House Sci. Book Publ., Cluj-Napoca, 2005.
- [4] T. Bulboacă, A class of superordination preserving integral operators, Indag. Math. (N.S.) 13 (2002), no. 3, 301–311.
- [5] T. Bulboacă, Classes of first-order differential superordinations, Demonstr. Math. 35 (2002), no. 2, 287-292.
- [6] R. M. Ali, V. Ravichandran, M. H. Khan, and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004), no. 1, 87–94.
- [7] T. N. Shanmugam, V. Ravichandran, and S. Sivasubramanian, *Differential Sandwich theorem for some subclasses of analytic functions*, Aust. J. Math. Anal. Appl. **3** (2006), no. 1, article no. 8, 11 pages.
- [8] T. N. Shanmugam, S. Sivasubramanian, and H. M. Srivastava, *Differential sandwich theorem for certain subclasses of analytic functions involving multiplier transformation*, Integral Transforms Spec. Funct. **17** (2006), no. 12, 889–899.
- [9] R. M. Ali, V. Ravichandran, and N. Seenivasagan, Differential subordination and superordination of analytic functions defined by multiplier transformation, Math. Inequal. Appl. 12 (2009), no. 1, 123–139.

- [10] M. K. Aouf, A. O. Mostafa, and R. El-Ashwah, Sandwich theorems for p-valent functions defined by certain integral operators, Math. Comput. Modellina 53 (2011), 1647-1653.
- [11] M. K. Aouf and T. M. Seoudy, On differential sandwich theorems for analytic functions defined by generalized Sălăgean operator, Appl. Math. Lett. 24 (2011), 1364-1368.
- [12] M. K. Aouf, A. Shamandy, A. O. Mostafa, and F. Z. El-Emam, On sandwich theorems for multivalent functions involving a generalized differential operator, Comput. Math. Appl. 61 (2011), 2578-2587.
- [13] R. M. El-Ashwah and M. K. Aouf, Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput. Modellina 51 (2010), 349-360.
- [14] N. E. Cho and H. M. Srivastava, A class of nonlinear integral operator preserving subordination and superordination, Integral Transforms Spec. Funct. 18 (2007), no. 2, 95-107.
- [15] A. K. Mishra and P. Gochhayat, Invariance of some subclasses of multivalent functions under differintegral operator, Complex Var. Elliptic Equ. 55 (2010), no. 7, 677-689.
- [16] T. N. Shanmuqam, C. Ramachandran, M. Darus, and S. Sivasubramainan, Differential sandwich theorems for some subclasses of analytic functions involving a linear operator, Acta Math. Univ. Comenian (N.S.) 74 (2007), no. 2, 287-294.
- [17] A. A. Lupas and G. I. Oros, Differential sandwich theorems involving Riemann-Liouville fractional integral of g-hypergeometric function, AIMS Math. 8 (2023), no. 2, 4930-4943.
- [18] N. S. Almutairi, A. Shahen, and H. Darwish, Differential subordination and superordination using an integral operator for certain subclasses of p-valent functions, Symmetry 16 (2024), no. 4, 501.
- [19] Q. Khan, J. Dziok, M. Raza, and M. Arif, Sufficient conditions for p-valent functions. Math. Slovaca 71 (2021), 1089–1102.
- [20] N. E. Cho, M. K. Aouf, and R. Srivastava, The principle of differential subordination and its application to analytic and p-valent functions defined by a generalized fractional differintegral operator, Symmetry 11 (2019), 1083.
- [21] W. G. Atshan and R. A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, J. Phys. Conf. Ser. 1664 (2020), no. 1, 012043.
- [22] S. Owa and H.O. Güney, New Applications of the Bernardi Integral Operator Mathematics 8 (2020), 1180.
- [23] A. T. Yousef, Z. Salleh, and T. Hawary, On a class of p-valent functions involving generalized differential operator, Afr. Mat. 32 (2021),
- [24] A. T. Yousef, Z. Salleh, and T. Hawary, Some properties on a class of p-valent functions involving generalized differential operator, Aust. J. Math. Anal. Appl. 18 (2021), 6.
- [25] H. F. Al-Janaby and F. Ghanim, A subclass of Noor-type harmonic p-valent functions based on hypergeometric functions, Kragujevac J. Math. 45 (2021), 499-519.
- [26] E. E. Ali, M. K. Aouf, and R. M. El-Ashwah, Some properties of p-valent analytic functions defined by Dziok-Srivastava operator, Asian-Eur. J. Math. 14 (2021), 2150084.
- [27] M. K. Aouf and T. M. Seoudy, On differential sandwich theorems of p-valent analytic functions defined by the integral operator, Arab. J. Math. 2 (2013), 147-158.
- [28] J. Patel, Inclusion relations and convolution properties of certain subclasses of analytic functions defined by generalized Sălăgean operator. Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 1, 33-47.
- [29] A. K. Mishra and P. Gochhayat, Differential sandwich theorems for multivalent functions associated with a generalization of Srivastava-Attiya operator, Panamer. Math. J. 23 (2013), no. 1, 25-43.
- [30] S. S. Miller and P. T. Mocanu, Briot-Bouquet differential superordinations and sandwich theorems, J. Math. Anal. Appl. 329 (2007), no. 1,
- [31] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.
- [32] A. K. Mishra and P. Gochhayat, Applications of the Owa-Srivastava operator to the class of k-uniformly convex functions, Fract. Calc. Appl. Anal. 9 (2006), no. 3, 323-331.
- [33] S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647-658.
- [34] A. K. Mishra and P. Gochhayat, A coefficient inequality for a subclasses of Caratheodory functions defined by conical domain, Comput. Math. Appl. 61 (2011), 2816-2828.
- [35] H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl. 39 (2000), no. 3/4, 57-69.
- [36] M. Obradovič and S. Owa, On certain properties for some classes of starlike functions, J. Math. Anal. Appl. 145 (1990), no. 2, 357–364.
- [37] D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191–195.
- [38] H. M. Srivastava and A. Y. Lasin, Some applications of Briot-Bouquet differential subordination, J. Inequal. Pure Appl. Math. 6 (2005), no. 2, 41.
- [39] L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413-428.