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Abstract: This article is devoted to constructing sequences of integral operators with the same Voronovskaja
formula as the generalized Baskakov operators, but having different behavior in other respects. For them, we
investigate the eigenstructure, the inverses, and the corresponding Voronovskaja type formulas. A general
result of Voronovskaja type for composition of operators is given and applied to the new operators. The
asymptotic behavior of differences between the operators is investigated, and as an application, we obtain
a formula involving Euler’s gamma function.
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1 Introduction

Let ∈c � , ∈n � , >n c for ≥c 0 and− ∕ ∈n c � for <c 0. Furthermore, let = ∞I 0,c [ ) for ≥c 0 and = − ∕I c0, 1c [ ]

for <c 0. Take ⟶f I: c � given in such a way that the corresponding integrals and series are convergent.
The Baskakov-type operators are defined by [1]
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In case <c 0, the sum in (1.1) is finite. For = −c 1, we recover the Bernstein operators, <c 0 leads to the
Szász-Mirakjan operators, and for =c 1, we obtain the classical Baskakov operators. Therefore, the family
B

n

c( )[ ] generalizes the important sequences of the classical Bernstein, Szász-Mirakjan, and Baskakov operators.
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Studying the properties of the operators B
n

c[ ] provides an unified vision of the properties of the three classical
mentioned operators and suggests new properties of the individual classical operators. In this sense, see [2–5].

The Baskakov-type operators are discrete operators and satisfy the following Voronovskaja type formula
(for details and extensions, see [3]).

Theorem 1.1. Let ≥c 0 and ∈ ∞f C 0,[ ) with < ∞≥ +sup
t
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t0 1 2
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In this article, we construct sequences of integral operators with the same Voronovskaja formula, but
having different behavior in other respects. For these integral operators, it is easy to obtain explicit expres-
sions of the moments and central moments. Moreover, the eigenstructure can be described in detail, which
enables us to obtain properties of the inverse operators on the polynomials. This is not the case with the
Baskakov type operators, for which in turn it is easy to give explicit expressions of the images of the expo-
nential functions. With these images, it is possible to investigate the characteristic functions of the random
variables associated to the operators and furthermore to obtain convergence results in the spirit of [2,6,7].
The operators that will be introduced and investigated are compositions of the following three operators,
the Rathore operator
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In [8], the following operator was introduced
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Section 2 is devoted to the eigenstructure of the operator n c,� . The results are connected to those pre-
sented in [9]. In Section 3, we present Voronovskaja type formulas for the operators n c,� and −

n c,

1
� . Section 4 is

concerned with a general Voronovskaja type result for operators obtained as composition of two positive
linear operators. It can be applied to the compositions previously presented. The asymptotic behavior of the
differences between the operators n c,� , n c,� , and B

n

c[ ] is investigated in Section 5. As a byproduct we get a new
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proof of a relation concerning Euler’s gamma function. Moreover, in this section, we give examples of func-
tions for which one of these operators provides a better approximation than another one. Conclusions
and further work are discussed in Section 6.

2 Eigenstructure of n c,�

Denote =e t tk

k( ) , ≥t 0, =k 0, 1,… . By an elementary computation, we find that
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Let Πn be the space of polynomial functions of degree at most n. From (2.1), it follows that the eigenvalues
of the operator →: Π Πn k n n,� are the numbers
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be the associated monic eigenpolynomials. This means that
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From the definition of the Stirling numbers of the first kind s j i,( ), we obtain
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Combining (2.6) and (2.7), we obtain
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Solving for a n k i c, , ,( ), we obtain
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Since v
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( ) is a monic polynomial, we have
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From (2.8) and (2.9), we can determine recurrently the coefficients a n k i c, , ,( ), = − −i k k1, 2,…, 0.
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Moreover, (2.9) shows that
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Lemma 2.1. For ≥k 2 and =j k0,…, , one has
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Proof.We prove (2.11) by induction. It is true for =j k according to (2.10). Suppose that it is true for all ≥ +j i 1,
and let us prove it for =j i.

Formula (2.8) can be written as follows:
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Passing to the limit when → ∞n , we obtain after some calculations
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Consequently, using (2.11) for = +j i 1, it follows that
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and so the proof by induction is complete. □

Remark 2.1. Using (2.3), we obtain
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where c i k* ,( ) are the coefficients from [9, Theorem 4.1].
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Here, P
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1,1( ) are the Jacobi polynomials, orthogonal with respect to the weight − +t t1 1( )( ) on the interval −1, 1[ ].

3 Voronovskaja type results

By using a general result from [3], we prove a Voronovskaja type formula for the operators n c,� . The eigenstructure
of n c,� restricted to polynomials is used to obtain a Voronovskaja type formula for the sequence −
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Thus, (3.4) is verified and the proof is complete. □

Remark 3.1. Voronovskaja type results for the inverses of Bernstein, Durrmeyer, Kantorovich, genuine-
Bernstein-Durrmeyer, n� , and Bernstein-Schnabl operators acting on polynomials were obtained in [10].
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In all these cases, the differential operators from the right-hand side of the Voronovskaja formulas for
the operators, and their inverses have the sum equal to zero. For a general result, in this sense, see [10].

4 A Voronovskaja type result for composition of operators

We provide a general result concerning the Voronovskaja type formula for composition of operators. Consider
two sequences of positive linear operators R Q,n n

satisfying the hypotheses of Theorem 3.1 with =φ t t( ) ,
∈ ∞t 0,[ ). In particular, suppose that

= = ≥R e Q e e n, 1,n n0 0 0 (4.1)

⊂ ⊂ ≥R Q n mΠ Π , Π Π , , 1,n m m n m m( ) ( ) (4.2)

− =
→∞

nR e xe x b xlim ,
n

n 1 0 1( )( ) ( ) (4.3)

− =
→∞

nQ e xe x b xlim ,
n

n 1 0 2( )( ) ( ) (4.4)

− =
→∞

nR e xe x a xlim 2 ,
n

n 1 0
2

1( ) ( ) ( ) (4.5)

− =
→∞

nQ e xe x a xlim 2 ,
n

n 1 0
2

2( ) ( ) ( ) (4.6)

− = − =
→∞ →∞

nR e xe x nQ e xe xlim lim 0.
n

n

n
n1 0

4
1 0

4( ) ( ) ( ) ( ) (4.7)

Theorem 4.1. Under the aforementioned assumptions, it holds that

− = − = + ″ + + ′ >
→∞ →∞

n Q R f x f x n R Q f x f x a x a x f x b x b x f x xlim lim , 0.
n

n n

n

n n 1 2 1 2( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ) ( ( ) ( )) ( ) (4.8)

Proof. Formulas (4.1)–(4.7) show that the hypotheses of Theorem 3.1 are satisfied with =φ t t( ) , ∈ ∞t 0,[ ).
Consequently,

− = ″ + ′

− = ″ + ′
→∞

→∞

n R f x f x a x f x b x f x

n Q f x f x a x f x b x f x

lim ,

lim .

n

n

n
n

1 1

2 2

( ( ) ( )) ( ) ( ) ( ) ( )

( ( ) ( )) ( ) ( ) ( ) ( )

Denote

≔ − ≔ −

≔ − ≥ ∈ ∞

U x

j

R e xe x V x

i

Q e xe x

M x

m

R Q e xe x m i j x

1

!
,

1

!
,

1

!
, , 0, 0, .

n j n

j

n i

i

n m n n

m

, 1 0 , 1 0

, 1 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) [ )

According to [11],

∑ ∑= ⎛
⎝
⎞
⎠≥

+ =
=

−
M

j

k

U V .n m

i k

i k m

j k

m

n j n i

j k

,

, 0

, ,

( )

In particular,

= + +M U V U V U V ,n n n n n n n,1 ,1 ,0 ,0 ,1 ,1 ,1

1( ) (4.9)

= + + + + +M U V U V U V U V U V U V2n n n n n n n n n n n n n,2 ,2 ,0 ,1 ,1 ,2 ,1

1

,0 ,2 ,1 ,2

1

,2 ,2

2( ) ( ) ( ) (4.10)
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and

= + + + +

+ + + + +

+ + + + +

M U V U V U V U V U V

U V U V U V U V U V

U V U V U V U V U V

4 3

6 2 3 4

.

n n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

,4 ,4 ,0 ,3 ,1 ,4 ,1

1

,2 ,2 ,3 ,2

1

,4 ,2

2

,1 ,3 ,2 ,3

1

,3 ,3

2

,4 ,3

3

,0 ,4 ,1 ,4

1

,2 ,4

2

,3 ,4

3

,4 ,4

4

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(4.11)

We have =R Q e en n 0 0, ≥n 1. From (4.9), (4.3), and (4.4), we obtain after some calculation

− = +
→∞

nR Q e xe x b x b xlim .
n

n n 1 0 1 2( )( ) ( ) ( ) (4.12)

Similarly, from (4.10), (4.5), and (4.6), we obtain

− = +
→∞

nR Q e xe x a x a xlim 2 2 ,
n

n n 1 0
2

1 2( ) ( ) ( ) ( ) (4.13)

while (4.11) and (4.7) lead to

− =
→∞

nR Q e xe xlim 0.
n

n n 1 0
4( ) ( ) (4.14)

Now Theorem 3.1 shows that

− = + ″ + + ′
→∞

n R Q f x f x a x a x f x b x b x f xlim .
n

n n 1 2 1 2( ( ) ( )) ( ( ) ( )) ( ) ( ( ) ( )) ( ) (4.15)

Clearly, the same arguments produce

− = + ″ + + ′
→∞

n Q R f x f x a x a x f x b x b x f xlim .
n

n n 1 2 1 2( ( ) ( )) ( ( ) ( )) ( ) ( ( ) ( )) ( ) (4.16)
□

Remark 4.1. By direct calculation, it can be proved that under the hypotheses (4.1)–(4.2), conditions (4.3)–(4.7)
are equivalent to

− = ″ + ′
→∞

n R f x f x a x f x b x f xlim ; ,
n

n 1 1( ( ) ( )) ( ) ( ) ( ) ( ) (4.17)

− = ″ + ′
→∞

n Q f x f x a x f x b x f xlim ; .
n

n 2 2( ( ) ( )) ( ) ( ) ( ) ( ) (4.18)

In other words, (4.1), (4.2), (4.17), and (4.18) imply (4.15) and (4.16).

Remark 4.2. It is not difficult to establish the Voronovskaja type results for Post-Widder and for Rathore
operators [12]. By using them in conjunction with Theorem 4.1, we obtain another proof of Theorem 3.2
expressing the Voronovskaja formula for the operators n c,� . Starting with the Voronovskaja formulas for
Rathore and Gamma operators and using again Theorem 4.1, we obtain the Voronovskaja formula for the
sequence n c,�( ). It was obtained in [13] with a different approach. The Voronovskaja formula for the sequence

n�( ) was established in [14].

5 Differences of operators and their asymptotic behavior

Differences of operators were investigated from various points of view in [15–18] and the references therein.
One method is based on Voronovskaja type formulas. Let us describe it briefly.
Let ≥Hn n 1( ) and ≥Kn n 1( ) be two sequences of positive linear operators for which we know Voronovskaja

formulas of the following form:
− =

→∞
n H f x f x V f xlim ,

n

n 1( ( ) ( )) ( ) (5.1)

− =
→∞

n K f x f x V f xlim ,
n

n 2( ( ) ( )) ( ) (5.2)

− − =
→∞

n n H f x f x V f x V f xlim ,
n

n 1 3[ ( ( ) ( )) ( )] ( ) (5.3)

− − =
→∞

n n K f x f x V f x V f xlim ,
n

n 2 4[ ( ( ) ( )) ( )] ( ) (5.4)
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− − − =
→∞

n n n H f x f x V f x V f x V f xlim ,
n

n 1 3 5{ [ ( ( ) ( )) ( )] ( )} ( ) (5.5)

− − − =
→∞

n n n K f x f x V f x V f x V f xlim .
n

n 2 4 6{ [ ( ( ) ( )) ( )] ( )} ( ) (5.6)

From (5.1) and (5.2), we obtain

− = −
→∞

n H f x K f x V f x V f xlim ,
n

n n 1 2( ( ) ( )) ( ) ( )

and this gives us an information about how close are the operators Hn and Kn.
If =V V1 2, we obtain

− = −
→∞

n H f x K f x V f x V f xlim ,
n

n n

2
3 4( ( ) ( )) ( ) ( ) (5.7)

which shows that Hn and Kn are closer than in the previous case. Pairs H K,n n( ) with =V V1 2 can be constructed
directly, as in the previous sections. In Subsection 5.1, we consider the pairs ,n c n c, ,� �( ), B,n c n

c

,�( )[ ] , B,n c n

c

,�( )[ ]

and illustrate (5.7).
If in addition =V V3 4, then

− = −
→∞

n H f x K f x V f x V f xlim .
n

n n

3
5 6( ( ) ( )) ( ) ( ) (5.8)

In Subsection 5.2, we present another approach, illustrating (5.8). Namely, we consider operators
= ∘H P Qn n n

and = ∘K Q Pn n n for suitable Pn, Q
n
. In this context, Theorem 4.1 guarantees that =V V1 2.

5.1 Comparison based on asymptotic behavior

In this subsection, we investigate the asymptotic behavior of the differences −n c n c, ,� � , − Bn c n

c

,�
[ ],

and − Bn c n

c

,�
[ ]. This enables us to construct functions for which the approximation provided by one of

the operators n c,� , n c,� , B
n

c[ ] is better than the approximation furnished by another one.

Theorem 5.1. Let f be in the domains of n c,� and n c,� and ∈ ∞x 0,[ ) such that f x
4 ( )( ) exists and is finite. Then

− = ″ + ‴
→∞

n f x f x c x f x c x f xlim
1

2

1

3
.

n

n c n c

2
, ,

2 2 2 3� �( ( ) ( )) ( ) ( ) (5.9)

Proof. Let ≔ −μ x e xe x
n j n c

j

, , 1 0�( ) ( ) ( ), ≔ −ν x e xe xn j n c

j

, , 1 0�( ) ( ) ( ). It is not difficult to prove that

= = = =μ x ν x μ x ν x1, 0,
n n n n,0 ,0 ,1 ,1( ) ( ) ( ) ( ) (5.10)

− =
→∞

n μ x ν x c xlim ,
n

n n

2

,2 ,2
2 2( ( ) ( )) (5.11)

− =
→∞

n μ x ν x c xlim 2 ,
n

n n

2

,3 ,3
2 3( ( ) ( )) (5.12)

− =
→∞

n μ x ν xlim 0,
n

n n

2

,4 ,4( ( ) ( )) (5.13)

= =
→∞ →∞

n μ x n μ xlim lim 0,
n

n
n

n

2

,5

2

,6
( ) ( ) (5.14)

= =
→∞ →∞

n ν x n ν xlim lim 0.
n

n

n

n

2
,5

2
,6( ) ( ) (5.15)

Now according to a classical result of Sikkema [19], one has

⎧
⎨
⎩

− − ′ − ″ − ‴ −
⎫
⎬
⎭
=

→∞
n f x f x μ x f x μ x f x μ x f x μ x f xlim

1

2!

1

3!

1

4!
0,

n

n c n n n n

2
, ,1 ,2 ,3 ,4

4� ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) (5.16)
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⎧
⎨
⎩

− − ′ − ″ − ‴ −
⎫
⎬
⎭
=

→∞
n f x f x ν x f x ν x f x ν x f x ν x f xlim

1

2!

1

3!

1

4!
0.

n

n c n n n n

2
, ,1 ,2 ,3 ,4

4� ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) (5.17)

By using (5.10)–(5.17), we obtain (5.9), and this concludes the proof. □

Remark 5.1. In a similar way, one can prove that

− =
+

″ + + ‴
→∞

n f x B f x

x cx

cf x cx f xlim
1

6
3 1 2 ,

n

n c n

c2
,�( ( ) ( ))

( )
( ( ) ( ) ( ))[ ] (5.18)

− = ″ + + ‴
→∞

n f x B f x

x

cf x cx f xlim
6

3 1 3 .
n

n c n

c2
,�( ( ) ( )) ( ( ) ( ) ( ))[ ] (5.19)

Remark 5.2. Let >x 0 be fixed such that ″ >f x 0( ) and ‴ >f x 0( ) . Then (5.18) shows that for sufficiently large
n we have

≥f x B f x .n c n

c

,� ( ) ( )[ ] (5.20)

Moreover, if f is convex, then (5.20) can be completed as follows:

≥ ≥f x B f x f x .n c n

c

,� ( ) ( ) ( )[ ] (5.21)

Remark 5.3. Let ≔ ″ + + ‴ ≥Uf x cf x cx f x x3 1 2 , 0( ) ( ) ( ) ( ) , >c 0. For ∈α � let ≔ +f x cx1 2
α

α( ) ( ) , ≥x 0. Then
= − − + −

Uf x c α α α cx4 1 2 1 1 2
α

α3 2( ) ( )( )( ) . Taking into account the sign of Uf x
α

( ), (5.18) shows that for suffi-
ciently large n,

≤ ≤ ∈ −∞

≥ ≥ ∈ ⎛
⎝

⎞
⎠

≥ ≥ ∈ ∞

f f B f α

f f B f α

f B f f α

, for , 0 ,

, for 0,
1

2
,

, for 1, .

α n c α n

c

α

α n c α n

c

α

n c α n

c

α α

,

,

,

�

�

�

( )

( )

[ ]

[ ]

[ ]

This shows that for ∈ −∞ ∪ ⎛
⎝

⎞
⎠α , 0 0,

1

2
( ) , the approximation of f

α
furnished by n c,� is better that the approx-

imation furnished by B
n

c[ ].

Remark 5.4. Similar inequalities as in Remark 5.2 and Remark 5.3 involving n c,� and n c,� , respectively,

n c,� and B
n

c[ ], can be obtained by using (5.9), respectively (5.19).

Table 1: Approximation by the operators n,1� and B
n

1[ ]

x 1 1.1 1.2 1.3 1.4

f 5.0000 5.929 6.912 7.943 9.016

fn,1� 5.117346939 6.049999999 7.033673469 8.061989797 9.128571427

B f
n

1[ ] 5.117600000 6.050783200 7.035129600 8.064274400 9.131852800

x 1.5 1.6 1.7 1.8 1.9

f 10.125 11.264 12.427 13.608 14.801

fn,1� 10.22704081 11.35102040 12.49413265 13.65000000 14.81224490

B f
n

1[ ] 10.23150000 11.35685120 12.50154160 13.65920640 14.82348080
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Example 5.1. Let = −f x x x6 2 3( ) . Then, we have

= −
+ − +
− −

= −
− + − + − + +

f x

x nx nx n

n n

B f x

x n x n x nx nx x n x

n

1 6 14

2 1
,

6 3 3 2 6 3 1
.

n

n

,1

1

2 2 2 2 2

2

� ( )
( )( )

( )( )

( )
( )[ ]

Table 1 presents numerical values for =n 50. We can remark that for this specific example the approximation
provided by the operator n,1� is better than that provided by B

n

1[ ].

Remark 5.5. As an application of Theorem 5.1, we give an alternative proof of the following known result
concerning Euler’s Gamma function,

⎜ ⎟
⎛
⎝

+ −
−

+ ⎞
⎠
=

− −
∈

→∞ −n

n λ

n n

n λ

n n

λ λ λ

λlim
Γ 1

Γ

Γ

Γ

1 2 1

6
, .

n
λ λ

2

1
�

( )

( )

( )

( )

( )( ) (5.22)

To prove (5.22), let =e t tλ

λ( ) , >t 0. For ∈n � such that + >n λ 0 and + − >n λ1 0, we have

=
+

+ −e

n

n λ

n

n λ1
1

!

Γ

Γ
Γ 1 ,n λ,1� ( )

( )

( )
( ) (5.23)

=
+ +

−e

n

n λ

n

n λ

n

1
1

!

Γ

Γ

Γ
.n λ

λ
,1 2 1

� ( )
( )

( )

( )
(5.24)

According to Theorem 5.1,

− =
− −

→∞
n e e

λ λ λ

lim 1 1
1 2 1

6
.

n

n λ n λ

2
,1 ,1� �( ( ) ( ))

( )( ) (5.25)

From (5.23), (5.24), and (5.25), we deduce

⎜ ⎟− =
+ ⎛

⎝
+ −

−
+ ⎞

⎠→∞ →∞ −n e e n

n λ

n n

n λ

n n

n λ

n n

lim 1 1 lim
Γ

Γ

Γ 1

Γ

Γ

Γ
.

n

n λ n λ

n
λ λ λ

2
,1 ,1

2

1
� �( ( ) ( ))

( )

( )

( )

( )

( )

( )
(5.26)

Since =→∞
+

lim 1n

n λ

n n

Γ

Γλ

( )

( )
from (5.25) and (5.26), we obtain (5.22).

5.2 Lupas operators and Phillips operators

In this subsection, we consider the Lupaş operators [20]

∑= ⎛
⎝

⎞
⎠ ≥−

=

∞

U f x

nx

k

f

k

n

x2
2 !

, 0,
n

nx

k

k

k

1

0

1,

( )
( )

and the Phillips operators [21]

∫∑= + = ≥
=

∞ ∞

−
− −

S f x n s x s t f t t e f s x

nx

k

e x˜ d 0 ,
!

, 0.n

k

n k n k

nx

n k

k

nx

1

,

0

, 1 ,( ) ( ) ( ) ( ) ( ) ( )
( )

Recall the Szasz-Mirakjan operators

∑= ⎛
⎝

⎞
⎠ ≥

=

∞

S f x s x f

k

n

x, 0.n

k

n k

0

,( ) ( )

Then = ∘U W S
n n n

1 and = ∘S S W˜
n n n. This means that the sequences U

n

1( ) and S̃n( ) have the same Voronovskaja
operator of order one (Theorem 4.1). In the language of equations (5.1) and (5.2), we have an example
with =V V1 2. We have also =V V3 4. For related results, see [10] and [22].
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Theorem 5.2. Let f be in the domains of U
n

1 and S̃n and ∈ ∞x 0,[ ) such that f x
6 ( )( ) exists and is finite. Then

− =
→∞

n U f x S f x

x

f xlim ˜

12
.

n

n n

3 1 4( ( ) ( )) ( )( ) (5.27)

Proof. Let ≔ −ω x U e xe xn j n

j

,
1

1 0( ) ( ) ( ), ≔ −θ x S e xe x˜
n j n

j

, 1 0( ) ( ) ( ). It is not difficult to prove that

= = = =ω x θ x ω x θ x1, 0,n n n n,0 ,0 ,1 ,1( ) ( ) ( ) ( ) (5.28)

− = ∈
→∞

n ω x θ x jlim 0, 2, 3, 5, 6
n

n j n j

3
, ,( ( ) ( )) { } (5.29)

− =
→∞

n ω x θ x xlim 2 ,
n

n n

3
,4 ,4( ( ) ( )) (5.30)

= =
→∞ →∞

n ω x n ω xlim lim 0,
n

n

n

n

3
,7

3
,8( ) ( ) (5.31)

= =
→∞ →∞

n θ x n θ xlim lim 0.
n

n

n

n

3
,7

3
,8( ) ( ) (5.32)

By Sikkema’s theorem [19],

⎧
⎨
⎩

− − ′ − ″ − ‴ −

− −
⎫
⎬
⎭
=

→∞
n U f x f x ω x f x ω x f x ω x f x ω x f x

ω x f x ω x f x

lim
1

2!

1

3!

1

4!

1

5!

1

6!
0,

n

n n n n n

n n

3 1
,1 ,2 ,3 ,4

4

,5
5

,6
6

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

(5.33)

⎧
⎨
⎩

− − ′ − ″ − ‴ −

− −
⎫
⎬
⎭
=

→∞
n S f x f x θ x f x θ x f x θ x f x θ x f x

θ x f x θ x f x

lim ˜
1

2!

1

3!

1

4!

1

5!

1

6!
0.

n

n n n n n

n n

3
,1 ,2 ,3 ,4

4

,5
5

,6
6

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

(5.34)

By using (5.28)–(5.34), we obtain (5.27) and this concludes the proof. □

6 Conclusions and further work

It is well known that with the generalized Baskakov operators, it is possible to give explicit expressions of the
images of exponential functions. This fact is very useful for getting certain results concerning convergence of
sequences of positive linear operators. But in this context, it is not easy to compute the moments of the
operators. In this article, we construct sequences of integral operators having the same Voronovskaja formula
as the generalized Baskakov operators and for which the moments and the central moments can be explicitly
computed. Consequently, it is possible to investigate the eigenstructure and the inverse of such an integral
operator. Indeed, the eigenstructure is completely described. The Voronovskaja type results for the newly
introduced operators and for their inverses are provided. Since our operators are compositions of other
operators, we obtain a general Voronovskaja type result for such compositions. Differences between the
new operators are investigated from the point of view of the asymptotic behavior, and the results are applied
to obtain an alternative proof of a formula involving the Euler’s gamma function.

There is a rich literature concerning the convergence of some special sequences of positive linear opera-
tors towards suitable positive linear operators ([2,7,23,24] and the references therein). In this context,
the following relations are involved:

⎛
⎝
⎛
⎝
⎞
⎠

⎞
⎠ = ≥ > ≥G f

t

ν

νx G f t x m ν t; ; , 1, 0, 0,m m( ( ) ) (6.1)

and

⎛
⎝
⎛
⎝
⎞
⎠

⎞
⎠ = ≥ > ≥P f

t

ν

νx P f t x m ν t; ; , 1, 0, 0.m m( ( ) ) (6.2)
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See also [23, Example 3].
By using (6.1) and (6.2), we obtain for ≥m 1, >ν 0, ≥t 0,

⎛
⎝
⎛
⎝
⎞
⎠

⎞
⎠ =f

t

ν

νx f t x; ;m c m c, ,� � ( ( ) )

and

⎛
⎝
⎛
⎝
⎞
⎠

⎞
⎠ =f

t

ν

νx f t x; ; .m c m c, ,� � ( ( ) )

On the other hand,

⎛
⎝

⎞
⎠ =W f νt

x

ν

W f t x; ; .mν m( ) ( ( ) ) (6.3)

The relations (6.1), (6.2), and (6.3) can be used to establish properties of type (C1) and (C2) from [23, Definition 1].
This will be the subject of a forthcoming paper.
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