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1 Introduction

In 1922, Banach [1] achieved a pivotal milestone in fixed-point theory, presenting a result of profound sig-
nificance. Subsequently, notable generalizations, including those by Hardy and Rogers [2], Mustafa et al. [3],
and Khan et al. [4], have significantly advanced the field of fixed-point theory.

Jachymaski [5] also generalized the Banach contraction to Banach G-contraction by defining graph
G =(V,E)inU x U, where V (the set of vertices) coincides with the nonempty set U and E (the set of edges)
contains the diagonal but has no parallel edge. He proved that the conclusion of Banach result remained valid
if the contraction condition holds for those ordered pairs that belong to the set of edges.

Later on, many researchers extended Banach G-contraction and obtained fixed-point results for mappings
defined on complete metric spaces (Samreen and Kamran [6-8], Tiammee and Suantai [9], Nicolae et al. [10],
Bojor [11], Asl et al. [12], Ahmad et al. [13], Petrusel and Petrusel [14], and Jiddah et al. [15]).

The study of gauge spaces was initiated by Dugundji [16], which generalizes metric spaces. Gauge spaces
have the characteristic that the distance between two different points of the space may be zero. This simple
characterization has been fascinating for many researchers around the world. For more definitions and
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results in gauge spaces, we recommend the researchers to refer to Agarwal et al. [17], Frigon [18], Chifu and
Petrusel [19], Chis and Precup [20], Cherichi et al. [21], Cherichi and Samet [22], and Lazar and Petrusel [23].

Given a quasi-gauge space (U, Q), Wlodarczyk and Plebaniak [24] have introduced the notion of left (right)
J -families of generalized quasi-pseudodistances on U. These families generated by quasi-gauge Q determine
a structure on U, which is more general than the structure on U determined by Q, and provide useful tools
to obtain more general results with weaker assumptions, which can be seen in [25-31].

The aim of this article is to introduce the definition of an extended b-gauge space and an extended
Jg;o-family produced by extended b-gauge space (U, Qo). Next, inspired by the idea of Ali et al. [32],
Ali and Din [33], new G-contraction and a-contraction conditions with respect to this new extended family Jy.q
of distances have been defined, and novel fixed and periodic point theorems are proved. Our results do not need
completeness of the spaces (U, Q(p;g). Moreover, they provide information about periodic points as well
and substantially generalize and improve the famous theorems of G-contractions and a-contractions in the pro-
ceeding of fixed points (in particular, see [32,33]). Multiple examples explaining ideas, definitions, and results are
given.

2 Preliminaries

This section aims to recollect the relevant background material needed throughout this article.

Throughout this article, U is a non-void set, 2V symbolizes the power set of the space U excluding
the empty set, and R* indicates the set of nonnegative real numbers. The collection of all fixed points of
a multi-valued mapping T : U — 2V symbolized by F(T) is defined by F(T) = {u € U : u € T(u)}, and the collection
of all periodic points of T symbolized by P(T) is defined by P(T) = {u € U : u € T¥l(u) for some k in N},
where TKl=T o T o To .. o T (k-times).

In 1966, Dugundji [16] initiated the idea of gauge spaces that generalizes metric spaces (or more generally
pseudo-metric spaces). Here, we discuss the topology induced by gauge spaces and the condition in which
these spaces are Hausdorff.

Definition 2.1. Amap q : U x U — [0, «) is a pseudo-metric, if for all e, f, g € U, it satisfies
(@) q(e,e)=0;

() qle, f) = q(f, e); and

© qle, 8) < qle.f) + q(f, &)

The pair (U, q) is said to be pseudo-metric space.

Definition 2.2. Each family Q = {q : B € Q} of pseudo-metrics g : U x U ~ [0, ») for f € Q is said to be gauge
onU.

Definition 2.3. The family Q ={q;:p € Q} of pseudo-metrics q;: U x U~ [0,) for f€Q is called
to be separating if for each pair (e, f) where e # f, there is g5 € Q such that gg(e, ) > 0.

Definition 2.4. Let Q = {q; : B € @} be a family of pseudo-metrics on U. The topology 7(Q) onU whose subbase
is defined by the family 8(Q) = {B(e,&3) : e € U, &> 0, 5 € Q} of all balls B(e, &) ={f€ U: qﬂ(e, f) < &}
is called the induced topology.

Definition 2.5. A topological space (U, 7) is called a gauge space if there exists gauge Q on U with 7 = 7(Q).
The pair (U, 7(Q)) denotes the gauge space and is Hausdorff if Q is separating.

Example 2.6. Let U = R? and let q;, ¢, : U x U — [0, ®) be defined for all (ey, f;), (e, f,) € R? by
ql((elel>y (ez’f2>) = |e2 - ell and qz((el’fl)) (ez’fz)> = lfé - f1|
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Then, ¢, and q, are pseudo-metrics on U.

Note that ¢,((2,3),(2,5)) =12 -2 =0, but (2,3) and (2,5) are distinct points. Also, ¢,((3, 6), (5, 6)) =
|6 — 6] = 0, but (3, 6) and (5, 6) are the distinct points. Therefore, g, and g, are not metrics on U.

Let the family Q = {q,, ¢,} be a gauge on U. We now look for the topology 7(Q) induced by gauge Q
in the following manner.

First, finding balls B(e, &) for q,, where e = (e, f;) € U and & > 0:

B((e1, f1), &) ={(ex, f3) € U: q((e, fy), (€2, 1)) < &1}

={(es,,) EU: ey € (-&1+ ey, & + e}

Thus, B((ey, f;), &) contains all verticle strips in the plane.
Similarly,

B((e1, 1)), &) ={(es, f,) € U: qy((e1, /), (e, f3)) < &}
={les, ) EU f, E(-&+f,a+f}

Thus, B((ey, f;), &) contains all horizontal strips in the plane.

The subbase 8(Q) for induced topology 7(Q) is the collection of all vertical and horizontal infinite open
strips. Their intersections are open rectangles that form the base of induced topology. The induced topology
is thus the usual topology on RZ. Therefore, (U, Q) is a gauge space.

In order to generalize metric spaces, Bakhtin [34] introduced the notion of b-metric spaces in 1989,
which was formally presented by Czerwik [35] in 1993 in the following way.

Definition 2.7. Amapq : U x U — R" is said to be a b-metric, if for eache, f, g € U, there exists s > 1 such that
it satisfies

@ qle.f)=0ee=f;

(b) qle,f) = q(f, e);

(© qle,g) = s{qle,f) + q(f, &)}

The pair (U, q) is said to be a b-metric space.

Recently, Ali et al. [32] introduced the notion of b-gauge spaces and thus extended the idea of gauge spaces
in the locale of b-metric spaces. We note down the following definitions of their work.

Definition 2.8. A map q: U x U -~ [0, ») is a b-pseudo-metric, if there is s > 1 satisfying for all e,f,g € U
the following conditions:

(@ qle,e) = 0;

() qle,f) = q(f, e); and

© qle, &) < s{qle. /) + q(f, &)}

For prescribed b-pseudo-metric g, (U, q) is called the b-pseudo-metric space.
Definition 2.9. Each family Q = {q, : B € Q} of b-pseudo-metrics gz : U x U — [0, «), is called the b-gauge onU.

Definition 2.10. The family Q = {q; : B € Q} is separating if for each pair (e, f), where e # f, there is q; € Q
such that gg(e, f) > 0.

Definition 2.11. Let Q = {q; : B € Q} be the family of b-pseudo-metrics on U. The topology 7(Q) on U whose
subbase is defined by the family B(Q)={B(e,g):e€U,g>0,€Q}, where Ble &)=
{f€ U: qyle f) < g} is called the topology induced by Q. The pair (U, 7(Q)) is called to be a b-gauge space
and is Hausdorff if Q is separating.
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Ali et al. [32] presented the following example to show that b-pseudo-metric space (in fact, b-gauge space)
is the generalization of metric space, pseudo-metric space (in fact, gauge space), and b-metric space.
Example 2.12. [32] Suppose U = C([0, ©), R) and describe q : U x U — [0, ») by

q(u(®), v(®)) = max(u(t) - v(H)*
te[0,1]
Then, d is a b-pseudo-metric, but not a metric, pseudo-metric or b-metric.

In 2017, Kamran et al. [36] enriched the notion of b-metric space by amending the triangular inequality
and presented the following definition of extended b-metric space in view of generalizing b-metric space.

Definition 2.13. Let ¢ : Ux U — [1,). A map q: Ux U — R* is said to be an extended b-metric, if for all
e,f, g € U, it satisfies

@ qle.f)=0ee=f;

(b) qle,f) = q(f, e);

(© qle, g) < pe, &)iqle. ) + q(f, &)}

The pair (U, q) or simply U is called an extended b-metric space.

3 Main results

In order to introduce extended b-gauge spaces, we start here the introduction of the notion of extended
pseudo-b metric.

Definition 3.1. [37] Amap q : U x U » R* is an extended pseudo-b-metric, if for all e, f, g € U, there exists
¢ : U x U — [1, ») satisfying the following conditions:

@ q(e,e) =0;

() q(e.f) = q(f, e); and

© q(e 8) < e, g)qle. f) + q(f, &)}

The pair (U, q) is said to be an extended pseudo-b-metric space.

Example 3.2. Suppose U = [0,1]. Defineq: Ux U~ R*and ¢ : U x U - [1, ) by
qle.f) = (e~ f)

and

ple.f)=e+f+2,
foralle,fe U.

Then, g is an extended pseudo-b-metric on U. Indeed, q(e, e) = 0 and q(e, f) = q(f,e) for all e, f€ U.
Furthermore, for all e, f, g € U, q(e, g) < o(e, g){q(e, f) + q(f, )} holds.
Example 3.3. Let U = {e,f, g}. Defineq: Ux U~ R*and @ : Ux U — [1,») for alle, f, g € U by
q(e,e) =0,
qle.f)=q(f.e) =1,

a8 =98 = 5
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q(g.e) = qle, 8) = 2,
and
ole,f) =lel +|f] + 2.

Furthermore, q(e, g) < ¢(e, g){q(e, f) + q(f, g)} is satisfied. Indeed, g is an extended pseudo-b-metric on U.
Note that q is not a pseudo-metric on U as % =qle,f)+q(f,8) <qle,g) =2.

This example illustrates that an extended pseudo-b-metric serves as a generalization or extension
of a pseudo-metric.

Definition 3.4. The family Q.o = {q; : B € Q} of extended pseudo-b-metrics gz : U x U ~ [0, ®), B € Q, is said
to be an extended b-gauge on U (Q-index set).

Definition 3.5. The family Q.o = {q; : B € Q} of extended pseudo-b-metricsgg : U x U — [0, ), B € Q is called
to be separating if for every pair (e, ), where e # f, there exists gz € Q,. such that gg(e, f) # 0.

Definition 3.6. Let the family @, = {q5 : B € @} be an extended b-gauge on U. The topology 71Q,,,) on U
whose subbase is defined by the family B(Q(D;Q) ={B(e,gp):e € U, >0,p € Q} of all balls B(e, &) =
{f€ U: qyle,f) < &} is called the topology induced by Q. The topological space (U, 7(Q,,q)) is an extended
b-gauge space, denoted by (U, Qo). We note that (U, Q,,q) is Hausdorff if @, is separating.

Remark 3.7. For sg = 1, for each § € Q, each gauge space is a bs-gauge space, and for gg(u, v) = s, for each
B € Q, where s > 1, each b-gauge space is an extended b-gauge space. Hence, extended b-gauge space
is the largest general space.

Next, we establish the idea of extended J,.o-families of generalized extended pseudo-b-distances on U
(which are called extended .,;o-families on U, for short). These extended .7,;o-families generalize extended
b-gauges.

Definition 3.8. The family J,.¢ = {[ﬁ : B € Q}, where ]ﬁ :Ux U~ [0,0), B€EQ, is called an extended
Jg;o-family of generalized extended pseudo-b-distances on (U, Qo) if the following statements hold for all
u,v,w € U and for all p € Q:

G Jp(u w) < @pQt, Wy (1, v) + Jp (v, whk;

(J2) for each sequences (up, : m € N) and (v, : m € N) in U fulfilling

lim ::ln?]ﬁ(um, Up) =0 (31)
and
,}}3}0 ]ﬁ(vm, Up) =0, 3.2)
the following holds:
ryﬂ 4(Vm, Um) = 0. (3.3)

We denote

w00 = 1Tpe  Tpe = 1 B € Q}}.
Also, we denote

Uj,,={u€U: Jp(uuw) =0, forall € Q}
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and

U}q);sl = {u € U:]ﬁ(u) u) >0, for all B (S Q}

Thus, U= Ug U Uy .

Example 3.9. Let U contain at least two distinct elements, and suppose Q.o = {qg : B € Q} is an extended
b-gauge on U. Thus, (U, Q) is an extended b-gauge space.

Let there be at least two distinct but arbitrary and fixed elements in a set F C U. Let ag € (0, ») satisfy
8p(F) < ag, where &p(F) = sup{qﬁ(e,f) :e,fE€F}, for all B € Q. Let Jp:UxU~ [0,00) for all e,fEU
be defined as

qﬁ(e’f)’ lf F n {e)f} = {exf};

h©D =g, it FNief}*{e.f). G4

Then, jgo;Q = {]ﬁ : ﬁ EQ} e .U(U,Q).

Note that Jy(e, 8) < gy(e. ©){p(e. f) + Jy(f. &)} for alle, f, g € U; thus, (Jy) is satisfied. Indeed, (73) will
not satisfied only when there is somee, f, g € U such that Jy(e, &) = ag, Jg(e, f) = qg(e, f), Jo(f, &) = qp(f, &),
and g5(e, £)iqs(e. /) *+ G5/, )} < ap. However, then this gives rise to an element h € {e, g} with h & F, and on

other hand, e, f, g € F, which is impossible.
Next, assume that (3.1) and (3.2) hold by the sequences (u,) and (vy,) in U. Then, (3.2) yields that for all
0 < & < ag, there exists m; = my(B) € N such that

Jp(Wm, um) <& forall m2my, forall g € Q. (3.5)
By (3.5) and (3.4), denoting m, = min{my(B) : B € Q}, we have
F N {vp, U} = {Vin, U}, forall m=m,
and
QgVm, Um) = J(Vm, Um) < €.

Thus, (3.3) is satisfied. Therefore, Jy.q is a Jy;0-family on U.
We now state few trivial characteristics of extended .7,,o-families on U.

Remark 3.10. Let (U, Qo) be an extended b-gauge space. Then, the following hold:
D Cpo € Iw,0,0-
(i) Let Jy0 € Jl(U,QM). If for all € Q and for allu, v € U\ ][j (v,v) = 0 and ]B (u,v) = ]ﬁ(v, u), then for each
B € Q, J; is an extended pseudo-b-metric.
(iii) Several examples of Jy.q € Jw,0,0> which show that the maps J;, f € Q are not the extended pseudo-
b-metrics can be found in the literature (see [37], Example 3).

Proposition 3.11. Let (U, Q) be a Hausdorff extended b-gauge space and the family Jgo ={J; : B € Q}
be an extended [J,,o-family on U. Then, there exists B € Q such that

e*f=Jg(e,f)>0V J(f,e) >0,
for eache, fEe U.
Proof. Let that there be e # f, e, f € U such that Jy(e, f) = 0 = J5(f, e) for all B € Q. Then, J;(e, e) = 0, for all

B € Q; using property (J1) in Definition 3.8, it follows that Js(e, e) < ggle, e){js(e, f) + Jp(f, )} = 0,
for all p € Q.
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Defining sequences (un,) and (vp) in U by u, = f and v, = e, we see that Conditions (3.1) and (3.2)
of property (J2) are satisfied, and therefore, Condition (3.3) holds, which implies that qﬁ(e, f) =0, for all

B € Q. But this denies the fact that (U, Qo) is a Hausdorff extended b-gauge space. Therefore, our supposition
is wrong, and there exists f € Q such that for alle, f € U,

e f>Jy(e.f)> 0V Jp(f.e)>0. 0

We now define extended Jyqo-completeness in an extended b-gauge space (U, @), using extended
Jy;e-families on U.

Definition 3.12. Let Jy;0 = {J; : B € Q} be an extended J;o-family on the extended b-gauge space (U, Qo).
(A) A sequence (vy : m € N) is an extended J,,o-Cauchy sequence in U if
lim sup]ﬁ(vm, vy) =0, forall §€ Q.

m-=opsm

jp'Q
m

(B) The sequence (v, : m € N) is extended J,,o-convergent to v € U if limn%wv,, = v, where

Jo:0
lim vy, = v & m Jy(v, vp) = 0 = lim Jy (v, ), forall B € Q.
o m

m-o

© If S(}(Z’ianN) # @, where

qu ‘Zw;g
Stmemeny = {V € Ut im v, = v},

m—o

then (v, : m € N) in U is an extended .7;o-convergent sequence in U.
(D) The space (U, Q,.o) is called extended J;o-sequentially complete, if every extended J;0-Cauchy sequence

in U, extended Jq-converges in U.

Remark 3.13. There exist examples of extended b-gauge space (U, Qo) and Jy;o-family on U with Jy;0 # Q.0
such that (U, Q,.o) is Jy;0-sequential complete but not Q,.o-sequential complete (see [38], Example 3.10).

Definition 3.14. Let T: U - 2Y be a set-valued map. The map T*! is said to be an extended Q,o-closed map
on U, for some k € N, if for each sequence (wy, : m € N) in TX(U), which is extended @, o-convergent in U,

one has S(%,f:meN) # @ and its subsequences (f,,) and (zy) satisfy
fn € TKl(zy), for allm €N

has the property that there exists w € s&;ﬁmem such that w € TKl(w).

Definition 3.15. Let Jy;0 = {J; : B € Q} be an extended J;o-family on extended b-gauge space (U, Q,,q). A set
Y € 2V is Jyo-closed in U if Y = de ?2(Y), where clUJ ?2(Y) is the Jy,e-closure onY in U, denotes the collection
of allu € U for which there is a sequence (i, : m € N) in Y such that it is J,.q-converges to u.

Define Clo2(U) ={Y € 2V : Y = 0157 “%(Y)}. Thus, Cl9»2(U) indicates the set of all o-closed subsets of U.

Definition 3.16. Let Jy;0 = {J; : B € Q} be an extended J;o-family on extended b-gauge space U, and let for all
ee U, forall F€ 2V, and for all B € Q,

Jp(e, F) = inf{js(e, g) : g € F}.

Define on ClJe2(U) the distance Dl}7 ¢ of Hausdorff type for all § € Q and for all E, F € ClJ»2(U), where

D[;T‘”‘Q : Cl9e2(U) x ClIe2(U) — [0, ®), B € Q is defined as follows:

T maxisup J; (e, F), supJz(f, E)y, if the maximum exists;
Dy "“(E, F) = ocE ¥ feF P

0o, otherwise.
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Throughout this article, Q indicates an index-set and (U, Q,.q) is an extended b-gauge space equipped with

the graph G = (V,E) such that V (the set of vertices) is the set U and E (the set of edges) includes
{(v,v) : v € V}. Also, suppose that G has no parallel edges.

Furthermore, note that for each theorem and corollary, it is assumed that (U, Qq,;g) is extended
Jo:e-sequentially complete.

We first proof the following result.

Lemma 3.17. Let (U, Q(/,;Q) be an extended b-gauge space, and let J .0 = {]ﬁ : B € Q}, where ]B :Ux U~ [0, ),
be an extended J,.q-family on U. Then,
Jp (W, A) < @p(u, A){Jg(u, v) + J5(v, A)},
for allu,v € U, for all B € Q, and for all A C U, where
(pﬁ(u, A) = inf{(pﬁ(u, a):ac€ A}

Proof. From axioms of definition, we can write for all 8 € Q,
]ﬂ(u, a) < q)ﬁ(u, a){]B(u, V) + ]ﬁ(v, a)}, forall u,v,a€U
Jp W, @) < 95w, @y (U, v) + @41, @)y (v, a).
By taking infimum of both sides over A, we obtain for all § € Q,
inf 5 (u, a) < inf gy(u, a)fp(u, v) + Inf gg(u, a)inf Jy(v, a)
Jp (1, A) < g, Ay (1, v) + 95w, A (v, A)
Jp(, A) < 95w, Ay, v) + Jy(v, A}, O

Our main results for set-valued G-contractions are now given below.

Theorem 3.18. Let the set-valued map T : U - ClI»2(U) and @p 2 Ux U~ [1, ) for each p € Q satisfy
To:
Dy *(Tu, Tv) < agly(u, v) + befy(u, Tu) + cgfp (v, Tv) + egfp(u, Tv) + Lyl (v, Tw), (3.6)

for all (u,v) EE, where agbp,cpepLp>0 is such that ag+bp+cg+2epp(z" ", Tz") <1 and
Limy n-w@p(2™, 2"g < 1, for some pg < 1 and each z° € U, here z™ € T(z™ ™), for m €N,
Moreover, let
() thereis z° € U and z!' € Tz such that (z°, z!) € E;
(@) if (u,v) € E and x € Tu and y € Tv such that Jg(x,y) < Jo(u, v), for all B € Q, then (x,y) € E;
(it)) for any {rg : g > 1jgeg and u € U, there exists v € Tu such that

Jp(u,v) < rgfy(u, Tw), for all B € Q.

Then, the following assertions hold:
(D Forany z° € U, (2™ : m € {0} UN) is an extended Q,,,-convergent sequence in U; thus, S((Z)?é‘fme{o}um * Q.

(ID Moreover, suppose that for some k € N, TK] is an extended Qp;q-closed map on U. Then,
(a) F(T¥) # @ and

(ay) there exists z € F(T'K)) such that z € S(g%?mE{O}UN)‘
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Proof. (I) Using supposition (i), there is z% z! € U such that z! € Tz° and (2°, z!) € E. Now, for each B € Q,
applying (3.6), we have

D" (T2°, T2") < agly(2°, 2) + byly(2°, T2°) + cgfy (21, T2Y) + gl (20, T2) + Ly, (2, T20). 3.7

Now as ]ﬁ(zl, TzY) < D/_:;7 ?2(Tz9 Tz') and ]ﬂ(zo, TzY) < (pﬁ(zo, Tzl){]ﬁ(zo, zh + ]ﬁ(zl, TzY)}, therefore (3.7) implies

1
]ﬁ(zlx Tzl) < (_ﬁ]ﬁ(zo’ Zl)r (38)

1~ cg— egp(z°, Tzh)

where (p = ey e ) 1. Now using assumption (iii), we have z € Tz! such that
Jp (@, 2% < Q) (21, T2). (3.9)
Combining (3.8) and (3.9), we can write
Jp(@, 2% < %}B(zo, zY), forall € Q. (3.10)

Assumption (ii)) and (3.10) imply that (z!,z%) € E. Following the same steps, we find a sequence
(z™: m € {0} UN)in U such that (z™, z™"*!) € E and

m

1 Jp(@, 2",  forall g€ Q. (310

B

Jy(@m, 2 <

For convenience, let lg = %—ﬁ for each g € Q.
v
Now, by repeated use of (J1) and (3.11) for all § € Q and for all n > m, where m, n € N, we obtain
]ﬁ (Zm) Zn) < QB(Zm, Zn).uﬁm]ﬁ (ZO: Zl) + (pﬁ(zm’ Zn)(oﬁ(zm+1’ Zn)"ll;n+1]ﬁ (ZOJ Zl)
+ (Pﬁ(zm’ Zn)(PB(Zmﬂ’ Z")(pB(Zm+2, Zn)ngZ]ﬁ (ZO, Zl)
+o a2, Zp(2™ N, 2" e (2 z")y/;}'ljﬁ(zo, zh)
< ]ﬁ (ZO) Zl)[¢ﬁ(zl) Zn)goﬁ(zz) Zn) (pﬁ(zmﬁ Zn)‘uén

+ @p(2", 2pp(2%, 2) .. @p(2™, Z)g(2™ ", 2
+ o+ (2, 2027 27 .. @p(2™, 2" . (2" z")yé“].

Since for some 5 <1, limn,mm(pﬁ(z’””, Z")Ug < 1, by ratio test, the series Zzzlulg"l'lﬂlfpﬁ(zi, z") is convergent.

Let S = zzzlﬂénnﬁlfﬂﬁ(zi, z") and Sy = Z?:lﬂé {:1(Pﬁ(zi, zn).
This gives
Jp@™, 2" < Jp(2° 2)[Sp-1 = Sml-
This implies
lim sup Jp(z™,2") = 0, forall g€ Q. (3.12)

m=>®p>m
Now, since (U, Q,o) is an extended Jyo-sequentially complete b-gauge space, so (z™:m € {0} UN)
is extended Jy,o convergent in U; thus for all z € S(Z'%sne{()}uw): we have
lim Jy(z,z™) = 0, forall B € Q. (3.13)
m—o
Thus, from (3.12) and (3.13), fixing z € S(Z,ff;?nem}um’ taking (um, = z™ : m € {0} UN) and (v, =z : m € {0} UN),
and applying (J2) to these sequences, we obtain

lim qy(z, z™) = lim qg(Vm, Um) = 0, forall g € Q.
m-o m—o
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This implies S(S%?me{o}um * Q.
(II) To show (@), let z° € U be fixed and arbitrary. Since S(gﬂ?me{o}um # @ and
zm*Dk e Tlkl(zmky  for m € {0} UN
thus describing (z,, = z" ¥k : m € N), we obtain

(zm : m €N) C TK(T),

S(gﬁi?me{O}UN) = S(gﬁ?me{O}UN) * O,

also, its subsequences
O = zm*Dky c TIK()
and
(X = 2™ C TIKI(U)

satisfy

YV € TH(x,), forall meN,
and are extended Q,.o-convergent to each point z € S((Z)ﬁ?me{o}um. Thus, applying the fact below

S((z)ﬁ:gmew) c S&;‘?mem and S(g(:?mEN) c S(?(?;S:ZmEN)

and the assumption that TX! is an extended Qpoclosed map on U, for some k €N, there exists
AS S(gﬁ;fsz{O}UN) = s(g?’;'?mE{O}UN) such that z € T¥(z).

Thus, (a;) holds.

The statement (ay) follows from (a;) and the certainty that S(S%?mG{O}UN) * Q. O
Let T: U — U be a single-valued mapping. We have the following result.

Theorem 3.19. Let the single-valued map T : U ~ U and @5 : U x U ~ [1, ®) for each B € Q satisfy
Jp(Tu, Tv) < agfp(u, v) + befp(u, Tu) + cgfp (v, TV) + egfp(u, Tv) + Lgfp (v, Tw), 3.14)

for all (u,v) €E, where ag, bg cg e, Lg=20 1is such that ag+bg+cg+ Zeﬁ(pﬁ(z’"‘l, TzZ™) <1 and
My, n-.w@p(2™, 2t < 1, for some piy < 1 and each z° € U, here z™ = TIml(z%), where m € N.
Moreover,
(i) there exists z° € U such that (z°, Tz°) € E;
(i)) for (u,v) € E, we have (Tu, Tv) € E, given that ]ﬁ(Tu, v) SJﬁ(u, v) forall p € Q;

(iii) if a sequence (z": m €N) in U is such that (z™, z™"') € E and limﬂ“i%oz’" =z, then (z™ z) € E and
(z,z™) €E.
Then, the following assertions hold:
(D Foreachz’ € U, (z™ : m € {0} U N) is an extended Q,,o-convergent sequence in U; thus, S(g?’;‘?mE{O}UN) Q.
(ID Moreover, suppose that T is an extended Qpo-closed map on U, for some k€N and
P52, Tz){cg + e limp, - (2™, Tz)} < 1. Then,
(ay) F(T™) = &; 0
(ay) there exists z € F(T'X]) such that z € S, cyun); and
(a3) for all z € F(TIK), Jp(2 T(2)) = J3(T(2),2) = 0, for all p € Q.
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(I Furthermore, let F(T'X) # &, for some k € N and (U, Qo) is a Hausdorff space. Then,
(by) F(T™)) = F(T); 1-g
(b,) there is z € F(T) such that z € S m ey and
(by) for all z € F(T), ]ﬁ(z, z)=0,forall B € Q.

Proof. In view of Theorem 3.18, it remains to prove assertions (as) and (b;)—(bs) of the aforementioned
theorem.
To prove (az), the contrary, suppose that ]BU(Z, Tz) > 0 for some B, € Q. Using J1, assumption (iii),
and inequality (3.14), we can write
]ﬁo (Z’ TZ) < (pﬁo(z’ TZ){[BO (Z’ Zm+1) +]ﬁo (Zm+1’ TZ)}
= (pﬁo(z’ TZ){[BO (Z’ Zm+1) +]ﬁo(TZm’ TZ)}
< (2, Tz){[ﬁo(z, zmy + agJp, (2", z) + by Jp (2", Tz™) + cpJp (2, T2) + epJp (2™, T2)
+ LﬁJﬁO(Z) sz)}
< 04,2, T2) g (2, zm) + agJp, (2", 2) + by Jg (2", zZm) + ¢, (2, Tz)
+ €504 Ty, (27 2) + J (2, To)} + Ly, (2, 27D},

Letting m — o, since limm,nqw(pﬁ(zm, z")yﬁ <1, for some lg < 1 and for each z™, z" € U, (pﬁ(z"’, z") is finite,
and thus, we obtain

]ﬁ0 (z,Tz) < (pﬁo(z, Tz){cp, + ep, lim ¢ ﬁo(zm, Tz)}]ﬁ0 (z, Tz).

Now, since goﬁ(z, Tz){cg + g limmﬂm(pﬁ(z’", Tz)} < 1, we obtain

]ﬁﬁ(z’ TZ) b (pﬁo(za TZ){CﬁO + eﬁon{ijr; (pﬁo(zm) TZ)}]ﬁO(Z) TZ) < ]BO(Z’ TZ))

which is impossible. Thus, ]ﬂ (z,Tz) = 0, for all B € Q.
Next, we prove that ]ﬁ(Tz, z)=10,forall § € Q.
J5(T2, 2) < 94Tz, 2){J (T2, 2™Y) + [y (2™, 2)}
= 05(T2, 2){J; (T2, Tz™) + Jy(2™, 2)}
< 0(Tz, 2){agls(z, z™) + byJp(z, Tz) + cpfp (2™, Tz™) + egfg(z, Tz™) + LgJp(2™, Tz) + ]B(z””l, z)}
< 0p(Tz, z){agly(z, 2™) + Dgfy(z, Tz) + cgf(2™, 2™) + egf(z, 2™ + Lpp(z™, T2){J (2™, 2) + Jy(z, Tz)}
+ J @™, 2)},
Letting m — o, since limy, n-@5(2"™, z")g < 1, for some p; <1 and for each z™ z" € U, gy(z™, z") is finite,
and thus, we have

]ﬂ(Tz, z) < (oB(Tz, z){bg + Lglim (pﬁ(z’", Tz)}]ﬁ(z, Tz) forall g € Q.
m—oo

Also, since we have proved that Jy(z, Tz) = 0 for all B € Q, we obtain J;(Tz,2) = 0 for all f € Q. Hence,
assertion (as) holds.

(D Since (U, Q) is a Hausdorff space, using Proposition (3.11), assertion (as) suggests that for
z € F(T¥l), we have z = T(z). This gives z € F(T). Hence, (by) is true.

Assertions (a;) and (by) imply (b,).

To prove assertion (bs), consider (J1) and use (a3) and (by), we have for all z € F(T) = F(T¥l) and for
allp € Q

Jp(2,2) < 9(z, 2){Jp (2, T(2)) + Jp(T(2), 2)} = 0. O
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Example 3.20. Suppose that U = [0, 5] and Qo = {q}, where ¢ : U x U —» R" is an extended pseudo-b-metric
on U given by

qle,f)=le-fP, forall e,fe U, (3.15)
and ¢ : U x U — [1, ) is defined by
oe,f) = lel + If] + 2.
Suppose F = [% 1] CUandlet J: Ux U~— [0,») for all e, f € U be defined as
qle.f), if Fnief}={ef}

= 3.16
JeD =1, if Ffe.f} # fe.f), 19
where ¢(e, f) = |e| + |f] + 2.
Let the graph G = (V, E) be such that V= U and
E={(ef):e<ftU{(e,e): e U}
The single-valued map T is defined by
e+1

T(e) = 5 forall e € U. 3.17)

(1) (U, Qo) s an extended b-gauge space (Example 3.2), which is also Hausdorff.
(I.2) The family Jy,0 = {/} is an extended J,;o-family on U (Example 3.9).
€3) (U, Qq,;g) is extended 7,,0-sequential complete.

For this, let {v,, : m € N} is an extended .7,,0-Cauchy sequence. We may suppose, without losing generality

that for all 0 < g < é there exists kg € N such that for all n 2 m > kg where n, m € N, we have

1
JWm, V) < & < a (3.18)

1

Then, using (3.16, (3.15), and (3.18), for all 0 < & < o

n, m € N, we obtain

there exists ko € N such that for all n 2 m 2 kj, where

1
JWm, V) = QW V) = [V = V> < & < o (3.19)

V € F = . (3.20)

1
=1
8

Rewriting (3.19), for all 0 < ¢ < % there exists ko € N such that for all n 2 m = ky, where n, m € N, we have

1
|vm—vn|<e<§, where ¢= /g.

Now, since (R, |.|) is complete, F = [% 1] is closed in R, also by (3.20), {v,, € F = [% 1]} forallmeN, m 2 k,

and {vy, : m € N} is Cauchy with respect to |.|, so there is v € F such that for all 0 < ¢ < % there exists k; € N
such that for all m = k; where m € N, we have

[V = vyl <e.
Hence, {v;, : m € N} is extended J,;0-convergent to v.

This implies (U, Q) is extended J,,0-sequential complete.
(I.4) Next, we show that T satisfies Condition (3.10).

It is obvious that Condition (3.10) holds for a = % andb=c=e=L=0.
(I.5) Assumptions (i), (i), and (iii) of Theorem 3.19 holds.
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For z0=0and z! = T2 = % we have (2%, Tz%) € E. Also for (u, v) € E we have (Tu, Tv) € E, since T is non-

decreasing. Furthermore, if a sequence (z™ : m € N) in U is such that (z™, z™"*') € E and lim‘%ﬂ‘&zm =z, then

(z™,z) € E and (z,z™) € E.
(1.6) Finally, we show that T is an extended @, o-closed map on U.
For this let (z, : m € N) be a sequence in T(x) = [1, g] which is extended Qp,o-convergent to each point of
S((Z)ﬁiflme{o}um # . Let (v, : m €N) and (up, : m € N) be its subsequences satisfying v, = T(up) for allm € N.
Letz € S(%:flmE{O}UN)’ then for all g > 0, there exists k € N such that for all m > k, where m € N, we have
q(z,zp) < &.
As a result, for all € > 0, there exists k € N such that for all m = k, where m € N, we have
[9(z, zm) = 1z = zu| < €] A [q(2, Up) = 12 = Unm| < €] A [q(2, Vi) = 12 = V| < €] A [V = T(un)],
where € = /g;.
We can also write, for all 0 < € < % there exists k € N such that for all m = k, where m € N, we have
[lz=-znl <€lA[lz-unl <€l Az = V| < €] A [V = T(um)]-
This, in particular, implies that for all 0 < ¢ < %, there exists k € N such that for all m > k, where m € N,

we have

<Eg,

1
|z - up| = |z - 5vy, +1| = |5z — 4z — S5v, + 1| = ‘4[2—2]—5(\),”—2)
and we obtain

1
4 Z_Z < g+ 5lv, - z|.

e 1 L Qp, 1
3 < 3 This gives S;"nen = {7},

Now, since |z = vp| = 0, when m — «, we have & - z| < & where & =
and there exists z = i € S(gﬁfmem such thati = T(%).

Hence, T is an extended Q,.o-closed map on U.
(I.7) As all the suppositions of Theorem 3.19 hold, we obtain

1
F(T)=—,
(1) =+
Qw:g 1
limz™ = —,
el T
][11]_0
4’ 4 ’

Before moving ahead to the next results, we first define the family ¥, of mappings ¢ : [0, @) — [0, «) that
are non-decreasing and satisfying the following conditions:
@ »(0) = 0;
(i) ¥(nt) = nyY(t) < nt, for each n,t > 0,
(i) S YOm0 (@™, 2 < o,
wherer 2 1.

Theorem 3.21. Let the set-valued map T : U — ClJ»2(U) and @p:Ux U~ [1, ) for each B € Q and (u,v) € E
satisfy

Dy (Tu, Tv) < P5(J5(w, v)), (3.21)
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where l/)ﬁ E Y,
Moreover, let
(i) there are z° € U and z' € Tz° such that (z°, z!) € E;

@) if (u,v) EE and x € Tu and y € Tv such that %JB(X’ y) < ]B(u, v), for all B € Q, where {rg : 13 > 1}zeg,

then (x,y) € E;
(iii) for each {rg: rg > ljgeg and x € U, there exists y € Tx such that

Jp (6, ) < Tfg(x, Tx),  for all B € Q.

Then, the following assertions hold:

(D For each z° € U, (2 : m € {0} U N) is an extended Q,, ,-convergent sequence in U; thus, Sg?é‘fme{o}w) Q.

(ID Moreover, suppose that T'X! is an extended Qp.o-closed map on U, for some k € N. Then,
(cr) F(TH) = &5;
Q%g

(cp) there exists z € F(T!K) such that z € Sk, e

Proof. (I) Using supposition (i), there is z € U and z! € Tz° such that (z% z') € E. Now for each B € Q,
applying (3.21) we have

Jp(@, T2%) < D "(T2°, T2") < yy(J5 (2", 2Y). (3.22)
Now, using assumption (iii), for z! € U, there is z2 € Tz' such that
]B(zl, 79 < rﬁ]ﬁ(zl, TzY) < r,gl/)ﬁ(]ﬁ(zo, zY), forall B € Q. (3.23)
Applying Y, we obtain
YU (2", 29) < Yrgy(Jp(2°, 21) = rﬁl/zg(]ﬁ (2% zY), forall B € Q.

Using assumption (ii), from (3.23), it follows that (z%, z2) € E. Now again for each B € Q, using (3.21), we can
write

Ja;Q

]ﬁ(zz, Tz%) < Dy "(Tz, Tz%) < wﬁ(]ﬁ(zl, z2)).

Using assumption (iii), for z2 € U, there exists z3 € Tz? such that
Jp (2%, 2%) < 1y (22, T22) < rgi(Jp (2, 2%)) < r[%w;(]ﬁ(zo, zY), forall p € Q.
It is obvious that (2% z3) € E. Proceeding in the similar fashion, we find a sequence (z™: m € {0} UN)
such that (z™, z™*1) € E and
Jp(@™, 2™ < gy (Jp (2%, 21),  forall B € Q. (3:24)
Now, by the repeated use of (J1) and (3.24) for all 8 € Q and for all n > m, where m, n € N, we obtain
]ﬁ(lm; ") < (Dp(zm, Zn)r/gnw;;n(]p(zo, zh) + (/)B(Zm; Zn)(Pp(Zmﬂ; Zn)r/gnﬂl/)/;nﬂ(]ﬁ(zoa z")
+ Qp(2™, ZMPp(2™, 2N Pp(2™ 2, 2 Y (g (20, 2)
+ o a2, ZPp(Z™, 2" e (2 Z")rﬁ_lwg_l(fﬁ(zo, zh)
< @p(2', 2Mpy(2%, 2" ... a2, Zrgg g (2° zY)
+ 0p(2!, 2)9p(2%, 2") .. @p(2™, 2D Pp(2™ ", 2 (20, 2)
+ o+ Qg2 22, 2" . @p(2™, 27 .. (2" Z”)rg’ll/)lg"l(lﬂ (2% zY).

Let Sy, = Z;eréwg(]lg (2", zl))H{=1(pﬁ(zi, z"), and we can write
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]ﬂ(zm; Zn) < (Sn—l - Sm)-
Since S, < o, we can write

lim sup J;(z™, 2") = 0, forall B € Q. (3.25)

m-opsm

Now, consider the proof of Theorem 3.18 and follow the steps ahead from inequality (3.12), we can easily
complete the proof of this theorem. O

Let us consider T : U — U, and we obtain the result given below for a single-valued mapping.

Theorem 3.22. Let themap T : U — U and ¢ : U x U ~ [1, ) for each p € Q satisfy
Jp(Tu, Tv) < Y(Jp(w, v)),  for all (u,v) € E, (3.26)

where Y € ¥,
Moreover, let
(D) there exists z° € U such that (z° Tz%) € E;
(i) for (u,v) € E we have (Tu, Tv) € E, provided ]ﬁ(Tu, 1v) sjﬁ(u, V), for all B € Q;
(iii) if a sequence (z":m€N) in U is such that (z", z"*') € E and limg"fﬁozm =z, then (z™ z) €EE
and (z,z™) € E.
Then, the following statements are satisfied:
(D For any z° € U, (z" : m € {0} UN) is an extended Q,,o-convergent sequence in U, thus, Sg“r’é‘fme{o}w) Q.
(ID Moreover, suppose that X! is an extended Q,,-closed map on U, for some k € N. Then,
(c) F(T™) # @; 0
(cp) there exists z € F(TIX)) such that z € S i, ciquny and
(cs) for all z € F(TIkD), Jp(2, T(2)) = Jg(T(2),2) = 0, for all p € Q.
(II)) Furthermore, let F(T'K) # & for some k € N and (U, Qy.0) is a Hausdorff space. Then,
(dy F(T) = F(T); -0
(dy) there exists z € F(T) such that z € S;n . ny; and
(ds) for all z € F(TK) = F(T), Jp(2,2) = 0, for all B € Q.

Proof. Since every single-valued mapping can be viewed as a multi-valued mapping, it remains to prove
assertion (¢3) and assertions (d;)—(ds) of the aforementioned theorem.
To prove (¢), use g1, assumption (iif) and inequality (3.26), we obtain for all 8 € Q,
]ﬁ(ZJ TZ) < (pﬁ(l; TZ){][?(Z’ Zm+l) + ]’B (Zm+1a TZ)}

< @z, T2){Jp (2, 2™) + Jp(T2™, T2)}

< 9y(2, T2y (2, 2") + Yy (2™, 2)}.
Letting m — o, we have

Jp(z,Tz) = 0, forall B € Q.
Similarly, we can show that ]B(Tz, z)=0VBEQ.

(I1D) Since (U, Q,,q) is a Hausdorff space, using Proposition (3.11), assertion (¢;) suggests that for z € F(TI]),

we have z € T(z). This gives z € F(T). Hence, (d,) is true.
Assertions (¢) and (d;) imply (dy).
To prove assertion (ds), consider (J1) and use (¢;) and (d,); we have for all z € F(Tkl) = F(T),

]B(Z’ z) < ¢o(z, z){]ﬁ (z, T(2)) +]B(T(z), z)} =0, forall B € Q. O
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Remark 3.23.

(@) Our results are novel generalization of the results in [32], which requires the completeness of the space.
Our results provide strong assertions with weak assumptions.

(b) Our results extend and improve the results in [32] as they give information about the periodic points
as well.

4 Consequences

This section consists of important and fascinating consequences of the theorems proved in the previous
section.

We set up some periodic and fixed point results for mappings fulfilling contraction inequalities involving
function a.

Recall that U is a non-void set and the graph G = (V, E) is defined as

V=U and E={ab)eUxU:a(a,b) =1}

wherea : U x U - [0, »).

Corollary 4.1. Let the map T : U — Cl9»2(U) and @p 2 Ux U~ [1, ) for each B € Q satisfy
T
Dy "*(Tu, Tv) < agly(u, v) + bl (u, Tw) + cgly (v, Tv) + egfg(u, Tv) + Lgfy (v, Tw), Y

for all a(u,v)=1, where ag bg,cs e Lpg=0 is such that ag+bg+cg+ Zeﬁq)ﬂ(zm‘l, Tz7™) <1 and
limy n-w@p(2™, Z")g < 1, for some pg < 1 and each z° € U, here, z™ € T(z"™"), where m € N.
Moreover, let
(a) there exists z° € U and z! € Tz° such that a(z% z!) = 1;
(D) ifa(u,v)21and x € Tu and y € Tv such that ]ﬁ(x,y) s]ﬂ(u, v), for all B € Q, then a(x,y) = 1;
(¢) for any {rg : rp > ligeg and u € U, there exists v € Tu such that

Jp(W, v) < 1gfp(u, Tw), for all B € Q.
Then, the following assertions hold:

(D Forany z° € U, (z™: m € {0} U N) is an extended Q,,,-convergent sequence in U; thus, S((z)%?mE{O}UN) Q.

(I Moreover, suppose that T'*! is an extended Q,,o-closed map on U, for some k € N. Then,
(cy) F(TK) # &;

(c,) There exists z € F(T!K)) such that z € Sg%?mew}um-

Proof. Consider the graph G = (V, E) and define the map a : U x U — [0, ) for some p > 1 as:
p, if (u,v) €L,

= 42
au, v) 0, otherwise. @2

Hence, inequality (4.1) can be written as
ng,;g(m, v) < agly(u, v) + befp(u, Tw) + cglp (v, Tv) + egfy (u, Tv) + Lgfp (v, Tw), (4.3)

for all (u, v) € E. This yields that T satisfies inequality (3.6). Also conditions (a), (b), and (c) imply conditions
(i), (ii), and (iii) of Theorem 3.18. The proof now follows from Theorem 3.18. O
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Remark 4.2.

(a) Following the pattern of statement and proof of Corollary 4.1, we can state and prove the corollaries
for Theorems 3.19, 3.21 and 3.22 in the same manner.

(b) The results in an extended b-gauge space are novel generalizations and improved versions of the results
in [33], in which assumptions are weak and assertions are strong.

(c) Observed that in case, a greater than or equal to one is used in any contraction inequality, bringing it back
to the regular contractive inequality without a (see for instance inequality (4.3)). Therefore, it seems that
a-function plays no role in proving that a mapping has a fixed point. Hence, when the underlying space
is enriched with the graph, the fixed-point theorems involving function a can easily be obtained.

(d) Since we have stated a few theorems for contraction inequalities involving function a, some more analo-
gues of the aforementioned results for contraction inequalities involving function a can simply be derived
from results in [6,7,39].
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