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Abstract: In this article, we introduce a novel block preconditioner for block two-by-two linear equations by
expanding the dimension of the coefficient matrix. Theoretical results on the eigenvalues distribution of the
preconditioned matrix are obtained, and a feasible implementation is discussed. Some numerical examples,
including the solution of the Navier-Stokes equations, are presented to support the theoretical findings and
demonstrate the preconditioner’s efficiency.
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1 Introduction

In this article, we focus on solving the block two-by-two system of linear equations of the form
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where � � �∈ ∈ ∈× × ×A B C, ,

m m m n n m, and �∈ ×D n n are sparse matrices with ≥m n, A is nonsingular,
� �∈ ∈× ×
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1. Many engineering problems are discretized into linear systems of form (1.1) using
numerical methods such as finite difference methods (FDMs), finite element methods (FEMs), and spectral
methods. Using FEMs to solve the Navier-Stokes equations, for instance, yields (1.1), where A and D are
symmetric positive definite (SPD) and symmetric positive semi-definite (SPSD), respectively, and = −C BT

[1,2]. The discretization of some electromagnetic scattering and quantum mechanics problems [3,4] results
in a complex symmetric indefinite linear system

� �( )+ = = − ∈ ∈×W iT b i W T bx x, 1 , , , , ,

n n n (1.2)

which can be transformed into a special case of (1.1) (see [5,6]), namely,
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Further examples of (1.1) with ≠ ±B CT and ≠ ±B C can be found in the fields of Economics, Computational
Fluid Dynamics, and so on. Table 1 contains some examples taken from the University of Florida Sparse Matrix
Collection (URL: https://sparse.tamu.edu/, see, [7,8]).

When m and n are large enough, researchers are more likely to adopt iterative approaches to solve (1.1),
since they can alleviate the high memory and computing costs of direct methods, assuming some effective
preconditioners are available to lower the number of iterations. For some special cases of problem (1.1), many
excellent preconditioning techniques have been proposed so far. For example, Benzi and Golub [9] presented a
Hermitian and skew-Hermitian splitting (HSS) preconditioner based on the Hermitian and skew-Hermitian
splitting iterative method for the case of SPD A, SPSD D, and = ±C BT (also known as a generalized saddle point
problem). Bai and Cao et al. [10,11] investigated a simplified HSS preconditioner (SHSS) that approximates the
coefficient matrix more closely than HSS. Also, Cao et al. [12,13] successively presented a modified dimensional
split (MDS) preconditioner and relaxed splitting preconditioner, which can be seen as excellent generaliza-
tions of the preconditioners from [14,15]. Especially, in [12] a complete convergence theorem of the corre-
sponding MDS stationary iteration method was proved. Zhang [16] presented an efficient variant of HSS
(EVHSS) preconditioner by combining it with the relaxation preconditioning technique. Other strategies can
be found in [17,18] for constraint preconditioners, [19] for splitting preconditioner, [20] for incomplete LU (ILU)
preconditioner, and so on. Zhang and Dai [5,21] and Shen and Shi [22] designed a block preconditioner, a
splitting preconditioner, and a variant HSS preconditioner for cases (1.2) or (1.3). Many more results about
preconditioning methods have been explored for the case of = = ±D B C0,

T (called a saddle problem),
including but not limited to dimensional split (DS) [14], relaxed dimensional factorization [15], relaxed physical
factorization [23], dimension-wise splitting iteration with selective relaxation [24], HSS-types [9,25], and the
references therein. Bai [26] studied a class of structured preconditioners through matrix transformation and
matrix approximations for the general case (1.1). Other methods include product (PS) preconditioner [27],
alternating splitting preconditioner [28,29], extended positive-definite and skew-Hermitian splitting (EPSS)
preconditioner [30], block positive semi-definite splitting (BPS) preconditioner [31], and so on.

It is not difficult to find that almost all of the aforementioned results require the solution of a subproblem
that includes at least a Schur complement structure. In [11,16,21], for example,
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need to be computed, respectively. In [26,27], the subsystems

( ) ( )− ⋅ = − =−I C B u v D CG B u v,

1 (1.5)

should be dealt with, respectively, where G is an approximation of A, and

= =− − − −
B L BR C L CR, ,A D D A

1 1 1 1

where L R L, ,A A D, and RD satisfy
= =A L J R D L J R, ,A A A D D D

with J
A
and J

D
two matrices approximating the identity matrices of � ×m m and � ×n n, respectively. Solving the

systems (1.4) or (1.5) may be costly in terms of computer memory and CPU time when the density of B and C is
relatively high and m and n are sufficiently large.

Table 1: Features of matrices in Example 3

Name Background m n nnz Condition number

dw256A Electromagnetics problem 400 112 2,480 ×3.7165 10

4

ck656 2D/3D problem 500 156 3,884 ×1.1802 10

7

poli Economic problem 3,000 1,008 8,188 ×6.3993 10

1

polilarge Economic problem 13,575 2,000 33,033 48.0022
venkat25 Computational fluid dynamics problem 40,000 22,424 1,717,763 ×1.2165 10

8

poisson3Db Computational fluid dynamics problem 45,000 40,623 2,374,949 ×1.6555 10
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In this article, we present a novel preconditioner inspired by the idea of [32]. The key idea of this technique
is to expand the dimension of the coefficient matrix and transform it into an augmented equivalent system.
Implementing this dimension expanding (DE) preconditioner saves us the trouble of solving the aforemen-
tioned subproblems that are similar to (1.4) or (1.5); instead, we only need to solve the subsystems

[( ) ]= − − =Au v α I αD u v, 1 .
1 1 2 2

(1.6)

The rest of this article is structured as follows. Section 2 describes in detail the novel preconditioner and
discusses its practical implementation. The eigenvalue distributions of the preconditioned matrix is theore-
tically examined. Later, in Section 3, some practical numerical examples, including the Navier-Stokes equa-
tions, are provided to demonstrate the efficiency of the novel preconditioner when compared to other existing
techniques. Finally, Section 4 draws conclusions.

2 Description of the dimension expanded preconditioner
(shortly, PDE)

To begin, we transform (1.1) into an equivalent system of the form
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Second, we augment (2.1) into a ×3 3 block system of the form
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by taking = −
−α

α

α1
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, where α
2
is a chosen parameter close to 1.

It is worth noting here that the goal of performing an equivalent transformation from (1.1) into (2.1) and
augmenting (2.1) into (2.2) is only to obtain the following preconditioner (abbreviated as P

DE
), for which we will

see that solving =P u v
DE

can be easily and cheaply implemented.
The preconditioner P

DE
can then be taken as follows:
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for the system (2.2). The difference between H and P
DE

is clearly
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Furthermore, the following results apply to the distributions of the eigenvalues of the preconditioned
matrix −

P H
DE

1 .

Theorem 1. The preconditioned matrix −
P H

DE

1 has an eigenvalue of 1 with a multiplicity of at least +n m, and all
of the remaining eigenvalues λ’s are eigenvalues of ( )−− −V CA B D1 1 , where ( )= − −V α I α D1

2 2
.

Proof. By using some simple computations, and noting that + − − =α α α α 2 0
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From the expression of V , we deduce that − + = −− − −α V V α V D I
2

1 1

2
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holds, and we know that the remaining eigenvalues λ’s are all the eigenvalues of ( )−− −V CA B D1 1 . This com-
pletes the proof of Theorem 1. □

Remark 1. System (1.1) becomes a generalized saddle problem when A and D are all SPD and = −B CT .
Let ( )SP W denote the spectrum of a matrix W , and suppose ( ) [ ] ( ) [ ]∈ − ∈−SP D μ μ SP CA B σ σ, , ,
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1
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from Theorem 1, we can easily obtain that the remaining eigenvalues λ’s of −
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When D is an indefinite matrix, we can ensure the invertibility of V by using

a positive and small enough α
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Figures 1–3 depict the eigenvalue distributions of −
P H

DE

1 , where H are, respectively, taken from Examples
1–3 in the following section. From these figures, we can see relatively clustered distribution of the eigenvalues
of the preconditioned matrix −

P H
DE

1 , and this can be especially noticed in Figure 2.
When using exact arithmetic in P

DE
, the following theorem demonstrates that the iterative solution of

linear system (2.2) preconditioned by P
DE

lies in the ( )+n 1 -dimensional space �( )− −
rP H P,

DE

1

DE

1 , allowing for fast
generalized minimal residual method (GMRES) convergence.

Theorem 2. The degree of the minimal polynomial of preconditioned matrix −
P H

DE

1 is at most +n 1, and thus, the
dimension of the Krylov subspace �( )−

bP H ,
DE

1 is at most +n 1 for any given vector b.
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Proof. Because we know from (2.5) that the characteristic polynomial ( )f λ of −
P H

DE

1 is
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with =∗
λ i n, 1, 2,…,i the eigenvalues of ( )−− −V CA B D1 1 , ( ) =f λ 0 has at most +n 1 distinct roots =λi

= =∗
+λ i n λ, 1, 2,…, , 1i n 1

, and the degree of the corresponding minimal polynomial of the preconditioned
matrix is at most +n 1. We can deduce from [33] that the dimension of the Krylov subspace �( )−

bP H ,
DE

1 is
therefore at most +n 1. This completes the proof of Theorem 2. □

We provide Algorithm 1 for practically implementing −
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1 , which is obtained by considering the following
factorization:
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Algorithm 1. Preconditioning operation =P u v
DE

Step 1. Compute an incomplete LU or a Cholesky factorization of reordered matrices A and V using tech-
niques such as approximate minimum degree permutation (amd).

Step 2. Calculate [ ] [ ]
( ) ( ) ( ) =⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

u u u v v vP, , , ,
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1

2

1

3
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1 1 2 3
.

Step 3. Solve ( )=u uA *
2 2

1 for u*
2
using the factorization of A obtained in Step 1 as a preconditioner.

Step 4. Calculate [ ] [ ]
( ) ( ) ( ) ( ) ( )=⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

u u u u u uP, , , * ,
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Step 5. Solve ( ) ( )= =u u u uV V* , *
1 1

2

3 3

2 for u u*, *
1 3

using the factorization of V obtained in Step 1 as a precondi-

tioner, and calculate [ ] [ ]
( )= − −⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

u u u u u uα α, , * , , *
1 2 3 2 1 2
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Remark 2. From (2.6), we can understand the relationship between α
1
and α

2
in Eqs. (2.2) is crucial. Evidently,

without the equality = −
−α

α

α1

2

1

2

2

, we would be unable to obtain the factorization of P
DE

and hence, −
P

DE

1 in (2.6).

Remark 3. We can see from Algorithm 1 that implementing P
DE

can avoid solving linear subsystems like
(1.4)–(1.5), which can significantly reduce the average cost of the entire iterative solution when using a Krylov
iterative method.

3 Numerical results

In this section, we give three numerical examples to investigate the practical efficiency of the P
DE

method
(denoted by “DE”) using Matlab R2016a on a PC equipped with an Intel(R)Core(TM)i5-8265U processor
(CPU@1.60GHz). We compare our method to four existing techniques, denoted by the letters “SHSS” (taken
from [11]), “BS” (taken from paper [5]), “PS” (taken from [27]), and “BPS” (taken from [31]).

3.1 Characteristics of the model problems

The matrices in Example 1 are obtained by discretizing the well-known Navier-Stokes equations employing the
mixed finite element of the bilinear pressure −Q P

1
0
pair with local stabilization. All matrices are generated by

the IFISS software package provided by Davis and Hu [8]. When generating the required matrices, we run the
driver “navier-testproblem” and select the problem “Lid driven cavity.” The viscosity parameter is set to

=ν 1, 0.01, 0.0001, the mesh steps are set to = ∕ ∕ ∕ ∕h 1 16, 1 32, 1 64, 1 128, and all other parameters are set auto-
matically by selecting the “default” option. Because the obtained sub-matrix B is rank deficient, we replace B

with ( ) ( )= + ×B n n B n n I1 : , 1 : 1 : , 1 : 0.0001 n n to ensure that the resulting matrix ⎡
⎣

⎤
⎦

A B

C D
is nonsingular. In
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this example, the sub-matrix A is SPD, the sub-matrix D is SPSD, and = −B CT . To compensate for the influence
of the small viscosity ν, we scale the sub-matrices A and D into ∕γA D γ, while maintaining equivalence
between the scaled and original systems.

Example 2 is the complex symmetric linear system (from [5])

[( ( ) ) ( ( ) )]− − + + + =K ω I i K τ I x b3 3 3 3 ,

2 2 (3.1)

in which ω and τ are two positive parameters and K is the five-point centered difference matrix approxi-
mating the negative Laplacian operator with homogeneous Dirichlet boundary conditions, namely,

�( )= ⊗ + ⊗ =
+

= − − ∈− ×K I V V I h
p

V h,

1

1

, tridiag 1, 2, 1 .p p p p p
p p2

If we denote ( )= − −W K ω I3 3

2 and ( )= + +T K τ I3 3

2 , then (3.1) is easily transformed into (1.3).
The matrices in Example 3 are taken from the University of Florida Sparse Matrix Collection (URL: https://

sparse.tamu.edu/, see [7,8]), and they all represent the case of ≠ ±B CT and A D, are all nonsymmetric. The
details of these tested matrices are shown in Table 1.

3.2 Experimental design

In all of these examples, the exact solution x
exa

is ( )= +x n mones , 1 . All of the subsystems =u vM involved in
our numerical experiments are inexactly solved by GMRES or PCG; concretely, we first use the Matlab code
“symamd” to obtain an approximate minimum degree permutation for M . Then, if M is not SPD, we compute
an incomplete LU factorization with “droptol=1e-5” for M . Alternatively, if M is SPD, we compute an incom-
plete Cholesky factorization with “droptol=1e-5.” Then, we solve =u vM using either the GMRES method
preconditioned by the triangular factors L and U (when M is not SPD) or the PCG method preconditioned
by the triangular factors L L,

T (when M is SPD). The convergence tolerance to terminate the iterations is set
equal to “tol=1e-5.”We use the flexible GMRES (FGMRES) for Example 1 and GMRES for Examples 2 and 3 as the
outer iteration, with a convergence tolerance of × −

1 10

8 and a maximum number of iterations of 1,000. Both
relative errors between the exact and numerical solutions of these two iterative methods are reported.

In the following tables, we denote by “iter” the number of iterations required by the FGMRES and GMRES
methods, and by “time” the elapsed CPU time in seconds, which includes the time for computing the “ilu”/
“ichol” factorization as well as the time for iteratively solving the global preconditioned linear system. The
symbol “∗” indicates that the FGMRES or GMRES method fails to converge. Furthermore, we report on the
average cost of the five methods, denoted by “aver” in the tables and calculated as “time/iter.”

3.3 Analyses of the numerical results

The results presented in Tables 2–8 show that the proposed method is feasible.

Table 2: Numerical results of Example 1 ( = =ν γ1, 0.001)

DE (( == ))α 1.32
SHSS BPS

h iter errors time (s) aver iter errors time (s) aver iter errors time (s) aver

1/16 60 ×2.2 10

‒7 0.12 0.00 15 ×3.5 10

‒6 0.02 0.00 39 ×3.0 10

‒1 1.61 0.04
1/32 50 ×1.7 10

‒6 0.19 0.00 26 ×2.2 10

‒6 0.12 0.00 54 ×3.0 10

‒1 4.44 0.08
1/64 33 ×6.3 10

‒7 0.38 0.01 41 ×5.9 10

‒6 0.95 0.02 69 ×3.2 10

‒1 28.59 0.41
1/128 30 ×4.9 10

‒7 1.19 0.04 66 ×3.4 10

‒6 8.63 0.13 143 ×5.1 10

‒2 148.54 1.03
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• When the dimension of H is large enough, “DE” is expected to outperform the other four methods in terms of
iterations. This is reflected in Example 1 (Tables 2–4) and Example 2 (Tables 5–7).

• When looking at the increasing rate of iterations, “DE” is relatively stable when compared to “SHSS,” “BS,”
“PS,” and “BPS.” This is demonstrated in Examples 1 (Tables 2–4), 2 (Tables 5–7), and 3 (Table 8).

• From the perspective of relative errors, “DE” is relative stable and accurate, similar to “SHSS,” “BS,” and “PS.”
• In the case of high dimensional H , “DE” requires less CPU time than “SHSS,” “BS,” “PS,” and “BPS.” This is
particularly evident in Examples 1 (Tables 2–4) and 2 (Tables 5–7).

• “DE” is feasible and efficient for all = ±B CT (Example 1), =B C (Example 2), and ≠ ±B CT (Example 3) cases.

Table 3: Numerical results of Example 1 ( = =ν γ0.01, 0.2)

DE (( == ))α 1.32
SHSS BPS

h iter errors time (s) aver iter errors time (s) aver iter errors time (s) aver

1/16 55 ×1.0 10

‒6 0.11 0.00 19 ×6.5 10

‒8 0.04 0.00 29 ×1.1 10

‒6 0.11 0.00
1/32 40 ×7.8 10

‒6 0.15 0.00 32 ×7.9 10

‒8 0.12 0.00 49 ×2.1 10

‒6 0.80 0.02

1/64 30 ×3.2 10

‒6 0.36 0.01 53 ×6.8 10

‒8 1.12 0.02 87 ×5.1 10

‒8 29.45 0.33

1/128 31 ×7.7 10

‒7 1.24 0.04 87 ×5.1 10

‒8 10.40 0.12 126 ×1.4 10

‒7 72.81 0.57

Table 4: Numerical results of Example 1 ( = =ν γ0.0001, 20)

DE (( == ))α 1.32
SHSS BPS

h iter errors time (s) aver iter errors time (s) aver iter errors time (s) aver

1/16 55 ×1.0 10

‒6 0.12 0.00 19 ×3.1 10

‒7 0.03 0.00 210 ×2.0 10

‒6 2.35 0.01
1/32 40 ×7.8 10

‒6 0.15 0.00 32 ×1.7 10

‒7 0.12 0.00 576 ×2.8 10

‒6 16.69 0.02

1/64 30 ×3.2 10

‒6 0.36 0.01 54 ×1.3 10

‒7 1.12 0.02 636 ×4.2 10

‒6 52.15 0.08
1/128 31 ×8.0 10

‒7 1.30 0.04 90 ×2.4 10

‒8 11.73 0.13 ∗ ∗ ∗ ∗

Table 5: Numerical results of Example 2 ( = =ω π τ5 , 10)

DE (( == ))α 1.012
BS

h iter errors time (s) aver iter errors time (s) aver

1/32 10 ×2.5 10

‒9 0.04 0.00 22 ×1.5 10

‒8 0.06 0.00
1/64 11 ×1.7 10

‒9 0.12 0.01 43 ×8.4 10

‒8 0.51 0.01

1/128 11 ×3.4 10

‒9 0.42 0.03 87 ×5.6 10

‒7 3.35 0.03
1/256 11 ×4.2 10

‒9 1.64 0.14 189 ×3.3 10

‒6 34.74 0.18

Table 6: Numerical results of Example 2 ( = =ω π τ10 , 10)

DE (( == ))α 1.012
BS

h iter errors time (s) aver iter errors time (s) aver

1/32 12 ×3.2 10

‒8 0.05 0.00 13 ×4.3 10

‒9 0.04 0.00
1/64 13 ×2.4 10

‒8 0.12 0.01 28 ×6.9 10

‒8 0.28 0.01
1/128 14 ×2.3 10

‒8 0.52 0.03 54 ×3.3 10

‒7 2.40 0.04
1/256 14 ×3.0 10

‒8 2.51 0.17 112 ×1.9 10

‒6 28.59 0.25
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4 Conclusion

In this article, we constructed a preconditioner for a general block two-by-two linear system (1.1) by expanding
the dimension of the coefficient matrix. Theoretical analyses show that the presented preconditioner can
result in a relatively well clustered distribution of the eigenvalues of the preconditioned matrix. For the inner
subproblems, a concrete implementation scheme and an inexact solver are provided. To investigate the
efficiency of the proposed preconditioner, numerical examples are provided. Theoretical results and numer-
ical examples demonstrate that the preconditioner presented here is applicable for both = ±B CT and ≠ ±B CT .
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