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1 Introduction

Quantum calculus (g-calculus) is based on the derivative defined by the difference ratio without limit. It has
essential applications in mathematics, engineering and mathematical physics such as quantum chromody-
namics, quantum theory, the theory of relativity, basic hypergeometric functions, string theory, etc. (see [1-4]).
One type of g-calculus is Hahn calculus (g, w-calculus). Letq € (0,1), w > 0, wy = ﬁ, and I be an interval of R

containing wy. The Hahn difference operator (see [5,6]) of f, which is defined on I, is as follows:
flgx + w) - f0)

Dyof(x)=1 (x+w)-x
[ (o), X = wy.

, X F W,

M

After the definition of ¢, w-integral in the study by Annaby et al. [7], interest in studies on the Hahn calculus
has increased. Many physical and mathematical problems in classical and g-calculus are extended to Hahn
calculus. The theory and applications of g, w-differential equations were examined by Hamza and Ahmed [8,9].
The ¢, w-Sturm-Liouville problem was presented by Annaby et al. [10], and the sampling theory for the same
problem was constructed by Annaby and Hassan [11]. Fractional Hahn calculus was investigated in [12-14],
and Taylor theory based on Hahn’s operator was established by Oraby and Hamza [15]. Hira [16] presented the
q, w-Dirac system.

Different definitions and applications of the g-Laplace transform defined using the g-exponential func-
tions e,(x) and E,(x) can be seen in [5,17-20]. The answer to the question of how to apply the g-Laplace
transform to the g-differential equations was given in [6,21,22]. A few studies on the g-Sumudu transform
associated with the g-Laplace transform can be cited as [23-25] (also cited therein). Researchers can find
studies on fractional calculus on the timescale and its g-analog in [26] and [27], respectively. We also refer to
the study by Sheng and Zhang [28] for solving some fractional g-differential equations, by Hajiseyedazizi et al.
[29] g-integrodifferential equations, by Samei et al. [30] for singular fractional g-differential equations, and by
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Sheng and Zhang [31] for numerical solutions of the g-fractional boundary value problems. As it is known,
there are some relations between the beta and the gamma functions, and some properties of the Laplace
transform are obtained from the gamma function. Similarly, g-analogs of these functions were investigated
in [2,3,32].

This study deals with the g, w-analogs of the Laplace transform, gamma, and beta functions. First, we
define integral representations of ¢, w-gamma function I ,(t) (Definition 1) and ¢, w-beta function By (%, s)
(Definition 2) and obtain some of their properties and relations. Then, we define g, w-Laplace transform F .,(s)
(Definition 3) for suitable function f. As an alternative method, we give g, w-Laplace transform of f function
with the help of q, w-Taylor series expansion (Theorem 2), then obtain the ¢, w-analogs of the basic properties
of the Laplace transform, such as linearity, scaling, shifting, and convolution. Finally, we give some examples
for solving ¢, w-initial value problems via the g, w-Laplace transform.

Basic definitions and features in g-calculus and g, w-calculus mentioned throughout this article can be
found in [3,7,33,34], so we will not repeat them here. Since the Hahn difference operator is a combination of the
gq-difference operator D, and the forward difference operator A,, (see [1,3,4,35,36]), the definitions and proper-
ties given in the following sections for g, w-calculus are reduced to their g-analogs as w — 0, and their classical
equivalents asw — 0 and q — 1.

Shehata et al. [37] investigated the Laplace transform associated with the general quantum difference
operator D (see resources there for details). From the difference operator D, the difference operator D, is
obtained by a special selection of some functions. Therefore, the study may appear to include our study.
However, in both studies, different integral definitions are made, and the proof methods are also different. The
limits of the integral representations for the g, w-gamma function and the g, w-Laplace transform in our study
are consistent with those in the g-calculus for w — 0 and the classical forms for w - 0,q — 1.

2 q, w-gamma and ¢, w-beta functions

In [2,3, 36,38], the g-analogs of beta and gamma functions were introduced as the infinite product and then the
integral representations of them were given in [38-40]. One of them is given as follows (see [39]):
[eo]y
I(0) = jxt-lEq(—qx)dqx, @
0
and

1
B(t,s) = _|'xH(1 ~ @OSdyx, 3)
0
where [a], = %, [nlg=1+q+q*++q" 1 fora=n€N,and[e], = ﬁ for g € (0, 1).
Now, we define q, w-gamma and ¢, w-beta functions based on the g, w-exponential function E, ,,(x). Then,
we obtain ¢, w-analogs of some properties.

Definition 1. For any ¢ > 0,
wo+[°],

Lo = [ (= 00 By o(~(gx + ©))dgox @

Wo

is called the ¢, w-gamma function.

Remark 1. If u = x — wq is changed in equation (4), then [} ,(t) = I(¢) is obtained. This is equivalent to the
reduction of equation (4) to the g-analog in equation (2) for w — 0 (in this case, u = x).

From equation (4) and using the ¢, w-integration by parts, we have
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wo+[°],
Lot + D= [ (- 00YEq-u(-(qx + ©))dg X
Wo
wot[»] 4
=- J (x - wO)th,qu,—w(_X)dq,wX
Wy
wo+[]q
= (0~ 0 Egeo ™+ [ g -@x + 0Dy - w0)dgx
Wo
wo+[]q
=1ty [0 00 Eg (- (gx + @)dgx,
Wo

n(n-1)
© g 2 (x-wo)

where (1 - @)} = (@ @) = e - ag) and (1 - @) = (@ Qo = 1 Equ00) = Teo™ 107 =1+ (1 - @) - )
Eq,—w(_wo) =1, Eqrw(_(wo + [°°]q)) =0, Dq,qu,w(X) = Eq,w(qx + w), [n]q! = [1]q[2]q~~-[n]q: and Dq,w(X - wp)" =

[n]q(x = we)"" 1. Hence, for any t > 0, we obtain

Lot + 1) = [t]gLu(0), (5)
and for t = n € N, we have
rq,w(n +1) = [n]q!: rq,w(l) =1 (6)
Definition 2. For any ¢, s > 0,
wo+1
Bro(t,8) = [ (x - 00 (1 - q0x - wo)j g0 @)
Wo

is called the ¢, w-beta function.

Theorem 1. The two relations between the q, w-gamma and the q, w-beta functions are given as follows:

B ,w(t; 00)
Lu(t) = ﬁ @)
_ Tgu(Olg,u(s)
By u(t, s) = Lt 9

Proof. If we put s =  in Definition 2, use the definition E; ,(x) = (1 + (x(1 - q) - w))°q° and change of variable
X - wo = (1 - q)(u - wp), we obtain

wo+1
Bra(t, )= [ (= o)1 - q(x - wo))fdgx
‘U0+[°°]q
=@-qr [ - w0 Eyu(-(qu + ©)dgut
Wy

=(1- q)trq,w(t):

which proves equation (8).
From equation (7), we obtain the following recurrence relations for By .(t, s):
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wpt+l

Bro(t +1,9)= [ (= wo)(d - q(x - wo))§ " dg.ux
Wy
wo+1

=—— [ (0= 0Dyt - (x - wo)jdgx
sl ;)

wo+1 wo+l
1
= e @ - G- e)| e j (1 - (@x + © = o)} Dgu(X — Wo)'dg,uX 10
1 Wy 1 Wy
+1
[tlg
= ﬁ I (x = wo) 'L = q(x = wo))gdlg.0X
Wo
[,
- [S]q Bq,a)(t’ s+ 1);
and
wo+1
Brot,s + D)= [ (= wo) 1 - qx - wo))idg,ox
Wo
wot+l
= | (0= w0 - qOc- @e)§A - g0 - w0))dgx W
Wo
wo+1 wo+l
= | - w0 - qOc- @)y dgux - ¢ [ (- w0)( - qx - w0)§ g e
Wo Wo
= By u(t, S) = q¢°Bgu(t + 1, 5).
From equations (10) and (11), we obtain
B, o(t +1)—i3 (t,s) (12)
q,w » S _[t+s]q q,w ,S).
By substituting equation (11) in equation (10), we arrive at
Byo(t+1,5)= e _p (t, ) 13)
q,w » S _[t+s]q q,w 3 S).
By comparing equations (5) and (13), we have that equation (9) holds for any ¢, s > 0. O

3 ¢, w-Laplace transform

In the literature, several different definitions have been made for the g-Laplace transform using e,(x) and
E4(x) (see [6,17-21]). In the study by Kobachi [18], the g-Laplace transform of f is defined as follows:

X
N

[o],
1
L(N©) = < [ E-aor| S de, (14)
0

and if the function f has a series expansion of f(x) = Zfzo[a#xn,, then its g-Laplace transform is given
© n q°
by L(f)($) = Tnegars-
Now we define g, w-analog of the Laplace transform and investigate some of its basic properties. Let
V = V([wy, wo + [*]y), C) be the set of g, w-integrable functions compact on the subintervals of [wy, wg + [*],).
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Definition 3. Let f € V. Then,

w0+[°°]q

1 X
Lq,w(f)(s) = I o(s) = s——wo aJ: Eq,—w(_(qx + w))f q dq,wx (15)
0
is called the ¢, w-Laplace transform of f.
Example 1. For f(x) = (x — wp)", n €N, we have
w0+[°°] n
Ly.u(x = wo)") = j Egeo (@ + 0))| T2 | dg X
w0+[°°]q
= 6=t Eq-o(=(qx + w))(X = wp)"dg,eX.
Wo
From equations (4) and (6), we obtain
Lo+ [nly!

(16)

Lq,w((x - w)") = (s - a)o)n+1 = (s - wo)n+1'

The ¢, w-Taylor expansion of a function f defined on I was established in the study by Oraby and Hamza

o ap(x-— wo)

[15]. Therefore, let f(x) = 20~

an+1

= r(<), then f(x) is convergentin|x — wg| < @ That

Iflimy e

is, if s = wq > r, then f| = L. Inspired by the work of Kobachi [18], we can

]15 convergent in |x — wy| <

give the following theorem, which is more useful than Deﬁnmon 3 for calculating the Laplace transform of
functions.

o ap(x-— wo)

Theorem 2. Let f(X) = 2o~ [y,

, X = wo| < —. Then, the q, w-Laplace transform of f is given as follows:

©

Lyo(F)(S) = Epuls) = Y — 2 arn

i (s = wo) !

Proof. From equation (16), we have

L s) = %Ly (X = wo)) = 1 = L 0
26(/)5) = [nlg! aul(i ~ &0)") ,Zo [n]g! (s = wo)™* ,ZO (s = wo)"™*!
Example 2. For the g, w-exponential function ey ,,(x) = Z: O(X[nw‘:) ,1X = wo| < [eo]q (see [7,19]), using Definition
3, we have
wo+[]q o
1 (X = W)
E + —
Lyoleqo)) = j (@ + 0) Y e g
o 1 w0+[°°]q
=) Eq-o(=(gx + w))(x = wo)"dg,eX,
go [nlg!(s = wo)™*! Jﬂ wrol T v

and from equations (4) and (6), we obtain

© ©

L n+1 !
Lyo(egot) = 5 —2* D5 Iy

S nlg!(s - wo)™t 5 [nlg!(s - wo)™?

n

< 1 1 2 1
_,go(s‘wo)"ﬂ_S‘wo,,:()s‘wo
1 11
CSs-wp1- -t s-—wy-1

S—wo
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provided that |s — wo| > 1.
If we use Theorem 2 for a, = 1, similarly we obtain a geometric series with

ad 1 1
Ly w(€g0(X)) = = ,
00(equ00) = 2 o T = T T
which converges as |s — wq| > 1.
Let ) = Ty ™y~ ol < 2, and g(x) = 720y - ] < 2 such that {a,} and (b}
satisfy limp-o D1l = (<o) and limy-e b;: = (<), The g, w-Laplace transform of these functions be

Lgo(f)(8) = Fo(s) and Ly ,(g)(S) = Gy u(s). The following theorem shows that the g, w-Laplace transform
satisfies the linearity property.

Theorem 3. (Linearity property) Let f, g € V and ¢, ¢, be constant. Then,

Lq,w(clf(x) + 0g(x)) = ClE;,w(s) + CZGq,w(s)- (18)
Proof. From ¢ f(x) + ag(x) = ZLoMM, we have
(ca + gby) ad a ad b
Lyu(af(0) + 0g(x) = Z ST PN e DN e T T OB O
n= n=
Theorem 4. (Scaling property) Let f € V. Then,
1 S
Lgo(f(AX)) = }E],w ) Is = wol > |A]. (19)
Proof. From f(Ax) = Y,_ W we have
o an/\” 1 3 1 n+1
(fon=3 T3 24
Law S -w)mt 2,5 " s - wo
1e a 1 s
=EZ nn+1_IEZ¢U[A] 0

oo A(x- n o (-1)"2(x - 2n
Example 3.  From e, ,(00) = Jo ot cos, ,(Ax) = Yoy GO

and  sing;u(Ax) =

( 1)n}2n+1( )2n+1 [Yl]q ! [Zn]q ! ’
00 = X — Wy
Zn 0 [2n+1]q!0 , we have
Lq,w(eq,/\w(/lx)) = s - Is = wol > |A],
S~ Wy
Lg,0(€08¢,20(AX)) = oo+ S—wp> A,
. A
Ly w(sing 2,(Ax)) = S—wo> A

(s~ o + 2

Theorem 5. (Shifting property) Let f€V, {b}, = - yq*b, (a+ {bi" = Mr-o(a + ¢*b) = a®

R = max[r, @’ IfIx = wo| <R, s — wy > R, then

Lq,w(eq,/lw(/lx)f(x)) = Lq,w(f(x))|s=s—{/l}q = E{,w(s - {A}q)- (20)

b
~2 4|, and
n
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Proof. From
c (X - wo)" || « (X = w)*| |« &x = wo)|[ < [n] ,,-
e MOf (X) = - []Anka’
w)f ng() [n]y! go [klq! ngo [n]g! kgo klq ‘
n [n]q!
where [ k]q = W‘Z_k]q, we have
Lg,w(€gro)f (X)) = ié i n] ka
eertee o (s = wo)t (S lkl «
> 1 [ n ]
=y —— Akq
ngo(s_wo)nlkgon_kq «
N
k=0 (S - wo)k+1 n=0 n g\ S — Wo
- i a < @S A Y
o (8 = w1 T (Gn s - wo

A .
S—wo’q

k+1

Qak

i k:om = Fpo(s = {Aly).

Theorem 6. (Differentiation property) Let f€ V. If any n € N, then

Lg oD f (X)) = (s = Wo)'EFyoS) = Y (s = o) "Dl Af (o).
i=1

© (X — n-1 © e - n
Proof. From Dy, f(X) = Yp-1" F,(,,(f]z)! = Ym0 1[(:]q ,wO) , we have

©

_ - QAp+1 (e
Lq,w(Dq,wf(X)) = ,Zo (s - wo)n+1 (s = wo) Z

n=0

an _ @
(s = W)™ s - wy

=(s — wF,u(s) — ag
= (5 = w)Fy u(S) — f(wo).

Therefore, relation (21) is true for n = 1. Assume that relation (21) is true forn = k €N

k
LoDk f00) = (s = wo)Eyu(s) = Y (s = wo) D f (wp).
i=1
Then,

Lg,o(Dgesf (00) = Lg,o(Dgo(Dyff (0)))

= (s = W0)Lqu(Dfof (X)) = Dy'uf (o)
k
= (s = Wo)i(s ~ W) Eyu(s) = D (s = wo) "D Af (wo)} = Df of (o)
i=1
k
= (s = o) *1E(s) = D (s = wo)*1"DEIf (wo) = DF .f (wo)
i=1
k+1
= (s = W) Fyu(s) = (s = wo)* "D f (wp).
i=1

Therefore, relation (21) is true for n = k + 1, and by induction, it is true for any n € N.

—_— 7

21
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Theorem 7. Let fE€ V. Ifany n € N, then

Lol = 00 00) = DI,

AEyofS). 22)

0 n(x = n+l 0 1]qan(x - i+
Proof. For n = 1, from (x - wo)f (x) = Zn:o% =2 %

1yan
Lyol(x - wpf oy = 3 At 1

n=0 (S 0)n+2 .

, we have
(23)

On the other hand, using equation (1), we have

E{,w(q_ls B wq_l) - E{,w(s)
(@'s-wgh)-s

Dq’l,—wq’1 q,w(s) =

Y nm oo e~ L0
q'(1 - q)(s - wo) 24)
& an qt - 1] q
S5 - w™ 1-q J(s - wo)
< [n+1],a,

=-q)

(s = W)™

By comparing equations (23) and (24), equation (22) is true for n =1. Similarly, for n =2, from

o an( i [+ 1q[n + 2]gan(x - wo)"* .
(X = WS (X) = Tpep” X[n]w? =20 neay “—, we obtain
- 4 + 2];a,
Lgo((x = wo)*f (X)) = Z ﬁ (25)

Using equations (1) and (24) and comparing the results,

< [n+1]4a,
quq,_wqﬂ 2w(S) = Dyt gt [ Z (s - wo)"*2

Zw -q[n +1]qa, B z —-q[n+ 1]qa,l
n= O(Sq—l_wq—l_wo)n+2 n=0 (s - wo)"*%
sq' - wg - (26)
qln + 1,an(1 - q"*z] q
S - w)? 1-q )G - wo)
[n + 1y[n + 2]pan
(s = w)™?

By comparing equations (25) and (26), equation (22) is true for n = 2. Continuing this process, we obtain that
equation (22) is true for any n € N. U

Af(x). Let h(x)=

(see [7] for further details). Using these connections, equation

q 1 -wq

Remark 2. It can be easily seen from equation (1) that (Dq,wf)[X?Tw

qx + w,i"(x) = ¢"x + w[n]y and AY(x) = X_wn[n]"

(22) can be written as follows:

D"

Lg,o((x = 00)"f (X)) =

ot (T(S)), 27

which is more convenient when the g, w-Laplace transform is applied to differential equations with variable
coefficients.
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Theorem 8. (Integration property) Let f € V. Then,
0]

[ 1
Lyl [FOqot| =~ -Fyuls) 28)
(@ If f(wo) = 0, then
Low Xf(x) ] J’ Eo(t)dgt. (29)

Proof. (i) From the fundamental theorems of g, w-integral (see [7]) and the g, w-Taylor expansion of f, we have

meﬂzmt@@@
!

wp wnO

wo)”dq,wt

n=0 [n+ 1]q'
Thus, we obtain
[ e 1 & a 1
L t)d, ot = L = E, o(S).
q,w If( ) q,0! Z wo)n+2 s - W Z{) (S _ (’-)O)n+1 S — wp q,w( )

Wo
(i) From f(wq) = 0, we have ag = 0. Thus, we obtain

f00 _ Z Anry(X — wo)"_

X-—wo 5 [n+1]y!

Therefore, we obtain

00 =Y

Z Qap+1 _ Z Qan ' 30)

o[+ 1e(s — we)™ 5 [nle(s — wo)"

f(X)

Lgw

Since we need the improper g, w-integral of f on[w, ), it is defined as follows (similar to g-analog; see [3], p
70):

w H@

me Y | f00dgex = (@ h@) ¥ ¢ (@), a € [wo, ). (3D

k——°°hk+1(a) k=—
From ¢, w-integral and equation (31), we can write
HWWJJ%@%JﬁMMW
wp Wy

=(s — h(s)) Z 4" o(h(s))

k=—c0
= (s = h(s)) Y *E, (WK (s)).
k=0

Using equation (17), we have
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Qn
0] d ot =
J’EI (t) q, t= (S h(s))kzoq [nzo(h k(s)_ 0)n+1]

i an(q )"

n=0 (S - wO)n+1

= (s - h(s)) Z q*

k=0
A== w)2 g [gl(s_wo)m
c < (@ (32)

=1-q)(s-w)Y Y

k=0n= 1(3 - wp)™!

- Z - )n Z N

1
=1-9 Z )n T
g (3 = wo)"
by comparing equations (30) and (32) and thus equation (29) is true. O

Definition 4. The ¢, w-analog of convolution of two functions f and g is defined as follows:

(f* ) = [FOg0x = o - qdgat, (33)

Wy

where g(x = wo = qt) = (x = wp = {q(t = wo)}y).

Theorem 9. (q, w-convolution) Let F .,(s) and G, .,(s) be the q, w-Laplace transform of f and g, respectively. Then,

Lq,w((f* 8)x)) = E{,w(s)Gq,w(s)- (34)

Proof. From equation (33), we have

(f * ) = [0~ w0 -~ gt

Wo

(35)
“ o w

=3 Z[n]“—"I(t—wo)"(x wo ~ {q(t - Wl dqut.

n=0k=0

In equation (35), change of variablet — wy = (x — wg)(U — wy), and using the equality (x — wy - {q(t - wo)}q)" =
(x = wo)*(1 = q(u - wp))k, we obtain

wot+l

© oo _ n+k+1
Anbie(X = o)™ I (U - we)*A - q(u - wo))qu,wu- (36)
Wo

(f*9x) = ,Zogo Il

From equations (7) and (9), we obtain

nb n+k+1
om0 3 ZM

nook=o M+ k+1]!

and then obtain

aib ad a ad b
Lq w((f g)x)) = z Z C:jo)lk+l+2 = LZO (s - a];o)kﬂ ][Z (s - al)o)l+l

k=01= 0 =0

= Ez,w(s)Gq,w(s)- U
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4 Applications to q, w-differential equations

Let Lg,(y(x)) = Yg,4(s) be the g, w-Laplace transform of y function and L, ! be the inverse ¢, w-Laplace
transform, i.e.,, L;1,(¥;(s)) = y(X).
Example 4. Let
D; () + y(x) = 0,y(wo) = 0, Dg ,y(wo) = 1. 37
By applying the ¢, w-Laplace transform of equation (37), we obtain
(s = w0)*Yg,u(8) = (s = We)Y(Wo) = DgY(Wo) + Yq.u(s) = O,

and then, we have

Yp0(8) = (s—wﬁ
Thus,
YOO = Li(Y0(8)) = Lq_,lw[m] = sing,(x)
is the solution of equation (37).
Example 5. Let
D () = 3[2]4Dg,uy(X) + 9gy(x) = 0, y(wo) = 1, Dy uy(wo) = =2. (38)
Taking the ¢, w-Laplace transform of equation (38), we obtain
,.0(5) = S—wy—3q-5 _ 1 _ 5 .
’ (- w)* =30+ q(s-w) +99 s-wy—-3 (5 wo— {3}~
Thus,
-1 -1 1 -1 1
YX) = Ly ,(Yq,0(8)) = Lq,w[m] = SLgw (S-T-B}q)zy
Hence,

yx)=(1-5x- wo))eq,Sw(SX);

is the solution of equation (38).

Example 6. Consider the g, w-diffusion equation

04,0 9.
: ) = —u(x, t), (39)
aq’wtu(x ) By 0
with the initial condition
u(x, wo) = €q,u(X). (40)

Let Ly ,(u(x, t)) = U(x, s). Taking the g, w-Laplace transform of both sides of equation (39) with respect to
t, we obtain

2
q,w

dg,X*

(s = wxU(x,s) — ulx, wy) = U(x, s).
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Rearranging and using equation (40), we write

2
qw

dg,oX?

U(x,s) = (s = wU(X, 5) = —€q,,(X). 41
Solving the ¢q, w-differential equation (41) with the initial condition (40) we have

1
UG s) = ——— e,

Wy — 1
and taking the inverse ¢, w-Laplace transform, we obtain the following solution:

u(x, t) = eqo(Xx)eg,(t).
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