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Abstract: In this article, we introduce a new family of real hypersurfaces in the complex hyperbolic quadric
= ∕∗Q SO SO SOn

n
o

n2, 2 , namely, the ruled real hypersurfaces foliated by complex hypersurfaces. Berndt described
an example of such a real hypersurface in ∗Qn as a homogeneous real hypersurface generated by aA-principal
horocycle in a real form �H n. So, in this article, we compute a detailed expression of the shape operator for
ruled real hypersurfaces in ∗Qn and investigate their characterizations in terms of the shape operator and the
integrable distribution � { ∣ }= ∈ ⊥X TM X ξ . Then, by using these observations, we give two kinds of classifi-
cations of real hypersurfaces in ∗Qn satisfying η-parallelism under either η-commutativity of the shape
operator or integrability of the distribution � . Moreover, we prove that the unit normal vector field of a
real hypersurface with η-parallel shape operator in ∗Qn is A-principal. On the other hand, it is known that all
contact real hypersurfaces in ∗Qn have a A-principal normal vector field. Motivated by these results, we give a
characterization of contact real hypersurfaces in ∗Qn in terms of η-parallel shape operator.

Keywords: ruled real hypersurface, η-parallel shape operator, η-commuting shape operator, singular vector
fields, complex hyperbolic quadric
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1 Introduction

In the class of Hermitian symmetric spaces with rank 2 of noncompact type, we can consider the example of
complex hyperbolic quadric = ∕∗Q SO SO SOn

n
o

n2, 2 , which is a simply connected Riemannian manifold whose
curvature tensor is the negative of the curvature tensor of the complex quadric = ∕+Q SO SO SOn

n n2 2 (see [1–5]).
The complex hyperbolic quadric ∗Qn can be regarded as a kind of real Grassmann manifold of noncompact
type with rank 2. Accordingly, ∗Qn admits two important geometric structures, a complex conjugation (or real
structure) C , and a Kähler structure (or complex structure) J , which anti-commute with each other, i.e.,
= −CJ JC . Then, for ≥n 2, the triple ( )∗Q J g, ,n is a Hermitian symmetric space of noncompact type, and its

minimal sectional curvature is equal to −4 (see [6–8]).
In particular, Kimura-Ortega [9] and Montiel-Romero [10] proved that ∗Qn can be immersed in the inde-

finite complex hyperbolic space� ( )−+H cn
1

1 , >c 0, by interchanging the Kähler metric with its opposite. Indeed,
if we change the Kähler metric of � −

+Pn s
n 1 by its opposite, we have that −Q

n s
n endowed with its opposite metric

′ = −g g is also an Einstein hypersurface of � ( )−+
+H cs

n
1

1 . In the case of =s 0, ( ′ = −Q g g,
n
n ) can be regarded as

= ∕∗Q SO SO SOn
n

o
n2, 2 , which is immersed in the indefinite complex hyperbolic space � ( )−+H cn

1

1 , >c 0 as
a complex Einstein hypersurface.
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Apart from the complex structure J , there is another distinguished geometric structure on ∗Qn , namely
a parallel rank 2 vector bundle A, which contains an S1-bundle of real structures on the tangent spaces
of ∗Qn , i.e., A { ∣ }= ∈λC λ S1 . This geometric structure determines a maximal A-invariant subbundle � of
the tangent bundle TM of a real hypersurface M in ∗Qn .

In this article, we consider a classification problem of real hypersurfaces in the complex hyperbolic
quadric ∗Qn , ≥n 3. Let ζ be a unit normal vector field of a real hypersurface M in ∗Qn . As a typical classification
of real hypersurfaces in ∗Qn , we introduce the following result, which was given by Suh [11].

Theorem A. Let M be a complete real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3,with commuting
shape operator. Then, M is locally congruent to a tube over a complex hyperbolic space �Hk in ∗Q k2 , =n k2 or
a horosphere.

Here, if the structure tensor ϕ commutes with the shape operator A of M , i.e., =Aϕ ϕA, we say that M has
the commuting shape operator (i.e., M has isometric Reeb flow). This result motivates us to study the weaker
notion of η-commuting property of the shape operator. So, we define η-commuting property and η-parallelism
of the shape operator A of M as follows:

Definition. If the shape operator A of M satisfies

(( ) )− =g Aϕ ϕA X Y, 0

for any �∈X Y, , we say that A is η-commuting. Here, ϕ is the structure tensor of M , which is given as
the tangential part of ( )= +JX ϕX g X ξ ζ, for any ∈X TM . Moreover, the shape operator A of M is said to
be η-parallel if it satisfies

(( ) )∇ =g A Y Z, 0X

for any �∈X Y Z, , , where � denotes the orthogonal complement of the Reeb vector field = −ξ Jζ of M in TM .

A complete classification of real hypersurfaces in the complex quadricQn with such two notions for shape
operator was given in Kimura et al. [12]. By virtue of this classification, a new characterization of ruled real
hypersurfaces foliated by complex totally geodesic hyperplanes −Qn 1 in Qn was given in the same article. For
the complex projective space �Pn, Kimura [13] and Loknherr and Reckziegel [14] gave some examples of ruled
real hypersurfaces. The characterizations of ruled real hypersurfaces in �Pn were investigated in [15–18] and
so on. Recently, the ruled real hypersurfaces in the indefinite complex projective space �Pp

n have been
introduced by Moruz et al. [19]. Moreover, they gave a classification of all minimal ruled real hypersurfaces
in �Pp

n.
Motivated by these results, in this article, we will give a classification of real hypersurfaces in the complex

hyperbolic quadric ∗Qn regarding η-parallel and η-commuting shape operator. When the Reeb vector field ξ of
M in ∗Qn is principal, a real hypersurface M is said to be Hopf. As another kind of real hypersurfaces in ∗Qn , we
deal with a family of ruled real hypersurfaces in ∗Qn , which are not Hopf. Indeed, a ruled real hypersurface is
foliated by totally geodesic complex hypersurfaces − ∗Qn 1 in ∗Qn . More details on this family are given in Section
4. Then, by virtue of Theorems A, 4.2, and 6.4, we assert the following theorem:

Theorem 1.1. Let M be a real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3, with η-parallel and
η-commuting shape operator. Then, M is locally congruent to a ruled real hypersurface in ∗Qn .

Remark 1.2. In Section 5, we prove that the unit normal vector field ζ on a real hypersurface with η-parallel
shape operator in ∗Qn , ≥n 3, is A-principal (see Lemmas 5.1 and 5.2). Lemma 5.5 shows that the shape operator
of a ruled real hypersurface in ∗Qn , ≥n 3, is η-parallel. Consequently, we can assert that the unit normal vector
field of a ruled real hypersurface is A-principal (see Proposition 5.6).
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Now, let us consider the notion of integrability of the holomorphic distribution � of a real hypersurface M

in the complex hyperbolic quadric ∗Qn , where � is given by � { ∣ }= ∈ ⊥X TM X ξ . Kimura and Maeda [15]
considered this notion for a real hypersurface in the complex projective space �Pn. They gave a characteriza-
tion of ruled real hypersurface in �Pn. Motivated by such a result, for ∗Qn , we obtain the following theorem:

Theorem 1.3. Let M be a real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3. Then, the shape
operator of M is η-parallel and the holomorphic distribution � { ∣ }= ∈ ⊥X TM X ξ is integrable if and only if
M is locally congruent to a ruled real hypersurface in ∗Qn .

As will be discussed in detail in Section 6, we know that if the shape operator of a real hypersurface M in
∗Qn satisfies the conditions of η-commutativity and η-parallelism, then M is either Hopf or ruled (see Lemma

6.2). Now, let us focus our attention on the case that M is Hopf. Then, the η-commuting property is equivalent to
the Reeb flow being isometric. By using this fact, we obtain a characterization of ruled real hypersurfaces in

∗Qn (see Theorem 1.1). From this point of view, it is necessary to consider Hopf real hypersurfaces with
η-parallel shape operator. So, as a final result, we want to give a complete classification of Hopf real hyper-
surfaces in ∗Qn with η-parallel shape operator as follows:

Theorem 1.4. Let M be a Hopf real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3. Then, the shape
operator of M is η-parallel if and only if M is locally congruent to an open part of one of the following contact real
hypersurfaces in ∗Qn :
(TB1

∗ ) a tube of radius >r 0 around the complex hyperbolic quadric − ∗Qn 1 , which is embedded in ∗Qn as a totally
geodesic complex hypersurface,

(TB2

∗ ) a tube of radius >r 0 around the k-dimensional real hyperbolic space �Hk , which is embedded in ∗Qn as
a real space form of ∗Qn , =n k2 ,

(ℋB
∗ ) a horosphere in ∗Qn whose center at infinity is the equivalence class of a A-principal geodesic in ∗Qn .

Remark 1.5. For a Hopf real hypersurface in the complex hyperbolic space�H n with η-parallel shape operator,
Suh [20] proved that such a real hypersurface in�H n is locally congruent to one of types A0, A1, A2 or of type B

in�H n. From this and our result, Theorem 1.4, there is a difference between the theory of real hypersurfaces in
�H n and that of real hypersurfaces in ∗Qn .

2 The complex hyperbolic quadric

In this section, we introduce the complex hyperbolic quadric ∗Qn . This section is due to Klein and Suh
(see [11,21]).

The n-dimensional complex hyperbolic quadric ∗Qn is the noncompact dual of the n-dimensional complex
quadric Qn, i.e., the simply connected Riemannian symmetric space whose curvature tensor is the negative of
the curvature tensor of Qn. It cannot be realized as a homogeneous complex hypersurface of the complex
hyperbolic space � +H n 1. In fact, Smyth [3, Theorem 3(ii)] has shown that every homogeneous complex hyper-
surface in � +H n 1 is totally geodesic. This is in marked contrast to the situation for the complex quadric Qn,
which can be realized as a homogeneous complex hypersurface of the complex projective space � +Pn 1 in such
a way that the shape operator for any unit normal vector to Qn has a real structure on the corresponding
tangent space of Qn (see [8,21,22]). Another related result by Smyth, [4, Theorem 1], which states that any
complex hypersurface in � +H n 1 for which the square of the shape operator has constant eigenvalues (counted
with multiplicity) is totally geodesic, also precludes the possibility of a model of ∗Qn as a complex hypersurface
of � +H n 1 with the analogous property for the shape operator. Therefore, we realize the complex hyperbolic
quadric ∗Qn as the quotient manifold ∕SO SO SOn

o
n2, 2 .
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As ∗Q1 is isomorphic to the real hyperbolic space � = ∕H SO SOo2
2,1 2, and ∗Q2 is isomorphic to the Hermitian

product of complex hyperbolic spaces � �×H H1 1, we suppose ≥n 3 in the sequel and throughout this article.
Let ≔G SO n2, be the transvection group of ∗Qn and ≔K SO SOn2 be the isotropy group of ∗Qn at the “origin”
≔ ∈ ∗p eK Qn

0
. Then,

→ ↦ ≔

⎛

⎝

⎜
⎜
⎜
⎜

−
−

⋱

⎞

⎠

⎟
⎟
⎟
⎟

−σ G G g sgs s: , with

1

1

1

1

1

1

is an involutive Lie group automorphism of G with ( ) =σ KFix 0 , and therefore, = ∕∗Q G Kn is a Riemannian
symmetric space. The center of the isotropy group K is isomorphic to SO2, and therefore, ∗Qn is in fact a
Hermitian symmetric space.

The Lie algebra g so≔ n2, of G is given as follows:

g gl �{ ( )∣ }= ∈ + = −X n X s sX2, t

(see [23, p. 59]). In the sequel, we will write members of g as block matrices with respect to the decomposition
� � �= ⊕+n n2 2 , i.e., in the form

⎜ ⎟= ⎛⎝
⎞
⎠X

X X

X X
,

11 12

21 22

where X11, X12, X21, and X22 are real matrices of dimension ×2 2, × n2 , ×n 2, and ×n n, respectively. Then,

g ⎜ ⎟=
⎧
⎨
⎩
⎛
⎝

⎞
⎠ = − = = −

⎫
⎬
⎭

X X

X X
X X X X X X, , .

t t t11 12

21 22
11 11 12 21 22 22

The linearization g g( )= →σ sAd :L of the involutive Lie group automorphism σ induces the Cartan decom-
position g k m= ⊕ , where the Lie subalgebra

k g

so so

( ) { ∣ }

⎟⎜

= = ∈ =

=
⎧
⎨
⎩
⎛
⎝

⎞
⎠ = − = −

⎫
⎬
⎭

≅ ⊕

∗
−σ X sXs X

X

X
X X X X

Eig , 1

0

0
,

t t

n

1

11

22
11 11 22 22

2

is the Lie algebra of the isotropy group K , and the n2 -dimensional linear subspace

m g( ) { ∣ } ⎟⎜= − = ∈ = − =
⎧
⎨
⎩
⎛
⎝

⎞
⎠ =

⎫
⎬
⎭

∗
−σ X sXs X

X

X
X XEig , 1

0

0

t1
12

21
12 21

is canonically isomorphic to the tangent space ∗T Qp
n

0
. Under the identification n≅∗T Qp

n
0

, the Riemannian
metric g of ∗Qn (where the constant factor of the metric is chosen so that the formulae become as simple as
possible) is given as follows:

m( ) ( ) ( )= = ∈g X Y Y X Y X X Y,
1

2
tr tr for , ,t

12 21

where g is clearly ( )KAd -invariant and therefore corresponds to an ( )GAd -invariant Riemannian metric on
∗Qn . The complex structure J of the Hermitian symmetric space is given as follows:

m( )= ∈ ≔

⎛

⎝

⎜
⎜
⎜
⎜

−

⋱

⎞

⎠

⎟
⎟
⎟
⎟

∈JX j X X j KAd for , where

0 1

1 0

1

1

1

.
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As j is in the center of K , the orthogonal linear map J is ( )KAd -invariant and thus defines an ( )GAd -invariant
Hermitian structure on ∗Qn . By identifying the multiplication by the unit complex number i with the applica-
tion of the linear map J , the tangent spaces of ∗Qn thus become n-dimensional complex linear spaces, and we
will adopt this point of view in the sequel.

As for the complex quadric (again compare [8] with [21] and [11]), there is another important structure on
the tangent bundle of the complex quadric besides the Riemannian metric and the complex structure, namely
an S1-bundle A of real structures. The situation in this case is distinct from that of the complex quadric, as the
real structures in A cannot be construed as the shape operator of a complex hypersurface in a complex space
form, but as the following considerations will show, A still plays a fundamental role in the description of the
geometry of ∗Qn .

Let

≔

⎛

⎝

⎜
⎜
⎜
⎜

−

⋱

⎞

⎠

⎟
⎟
⎟
⎟

a

1

1

1

1

1

.0

Note that we have ∉a K0 , but only ∈a O SOn0 2 . However, ( )aAd 0 still leaves m invariant and therefore
defines an � -linear map C0 on the tangent space m ≅ ∗T Qp

n
0

. C0 turns out to be an involutive orthogonal
map with ∘ = − ∘C J J C0 0 (i.e., C0 is anti-linear with respect to the complex structure of ∗T Qp

n
0

), and hence

a real structure on ∗T Qp
n

0
. But C0 commutes with ( )gAd not for all ∈g K , but only for ∈ ⊂g SO Kn . More

specifically, for ( )= ∈g g g K,
1 2

with ∈g SO
1 2 and ∈g SOn2

, say
( ) ( )

( ) ( )
⎜ ⎟= ⎛
⎝

− ⎞
⎠

g
t t

t t

cos sin

sin cos
1

with �∈t (so that

( )gAd
1
corresponds to multiplication with the complex number ≔μ eit), we have

( ) ( )∘ = ∘−C g μ g CAd Ad .0
2

0

This equation shows that the object that is ( )KAd -invariant and therefore geometrically relevant is not the real
structure C0 by itself but rather the “circle of real structures”

A { ∣ }≔ ∈λC λ S .p 0
1

0

Ap
0
is ( )KAd -invariant and therefore generates an ( )GAd -invariant S1-subbundle A of the endomorphism

bundle ( )∗TQEnd n , consisting of real structures on the tangent spaces of ∗Qn . For any A∈CV , the tangent line
to the fiber of A through C is spanned by JC .

For any ∈ ∗p Qn and A∈C p, the complex conjugation (real structure) C induces a splitting

( ) ( )= ⊕∗T Q V C JV Cp
n

into two orthogonal, maximal totally real subspaces of the tangent space ∗T Qp
n . Here, ( )V C respectively ( )JV C

are the ( )+1 -eigenspace respectively the ( )−1 -eigenspace of C . For every unit vector ∈ ∗Z T Qp
n , there exist

[ ]∈t 0,
π

4
, A∈C p, and orthonormal vectors ( )∈X Y V C, so that

( ) ( )= +Z t X t JYcos sin

holds (see [8, Proposition 3]). Here, t is uniquely determined by Z . The vector Z is singular, i.e., contained in
more than one maximal flat in ∗Qn if and only if either =t 0 or =t

π

4
holds. The vectors with =t 0 are called

A-principal, whereas the vectors with =t
π

4
are called A-isotropic. If Z is regular, i.e., < <t0

π

4
holds, then also

C , X , and Y are also uniquely determined by Z .
The Riemannian curvature tensor R̄ of ∗Qn can be fully described in terms of the “fundamental geometric

structures” g , J , and A as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

= − + − + + − +

− +

R X Y Z g Y Z X g X Z Y g JY Z JX g JX Z JY g JX Y JZ g CY Z CX g CX Z CY

g JCY Z JCX g JCX Z JCY

¯ , , , , , 2 , , ,

, ,

(2.1)
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for arbitrary A∈C . Therefore, the curvature of ∗Qn is the negative sign of that of the complex quadric Qn,
compare [8, Theorem 1]. This confirms that the symmetric space ∗Qn , which we have constructed here, is
indeed the noncompact dual of the complex quadric.

It is well known that ∗Qn becomes a Kähler manifold, i.e., the complex structure J is parallel, ∇ =J¯ 0, where
∇̄ is the Levi-Civita connection of ∗Qn . Finally, because the S1-subbundle A of the endomorphism bundle

( )∗TQEnd m is ( )GAd -invariant, it is also parallel with respect to the same covariant derivative ∇̄ induced
by ∇̄ on ( )∗TQEnd n . Because the tangent line of the fiber of A through some A∈Cp is spanned by JCp, this
means precisely that, for any section C of A, there exists a real-valued 1-form �→∗q TQ: n so that

( )∇ = ∈ ∈∗ ∗C q X JC p Q X T Q¯ holds for , .X p
n

p
n (2.2)

3 Some general equations

Let M be a real hypersurface in the complex hyperbolic quadric ∗Qn and ζ be a local unit normal vector field of
M . Any vector field X tangent to M satisfies

( )= +JX ϕX η X ζ . (3.1)

The tangential component of equation (3.1) defines on M as a skew-symmetric tensor field ϕ of type (1,1),
named the structure tensor. The structure vector field ξ is defined by = −ξ Jζ and is called the Reeb vector
field. The 1-form η is given by ( ) ( )=η X g ξ X, for any vector field X tangent to M . So, on M , an almost contact
metric structure ( )ϕ ξ η g, , , is defined. The tangent bundle TM of M splits orthogonally into ��= ⊕TM ξ ,
where � ( )= ηker is the maximal complex subbundle of TM . The structure tensor field ϕ restricted to �

coincides with the complex structure J restricted to � , and =ϕξ 0.
We assume that M is a Hopf hypersurface. Then, the Reeb vector field = −ξ Jζ satisfies the following:

=Aξ αξ ,

where A denotes the shape operator of the real hypersurface M for a smooth function ( )=α g Aξ ξ, on M . Now,
we consider the equation of Codazzi:

(( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

∇ − ∇ = − + + −

+ − +

g A Y A X Z η X g ϕY Z η Y g ϕX Z η Z g ϕX Y g X Cζ g CY Z

g Y Cζ g CX Z g X Cξ g JCY Z g Y Cξ g JCX Z

, , , 2 , , ,

, , , , , , .

X Y (3.2)

Putting =Z ξ in equation (3.2), we obtain

(( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

∇ − ∇ = − + +

−

g A Y A X ξ g ϕX Y g X Cζ g Y Cξ g Y Cζ g X Cξ g X Cξ g JY Cξ

g Y Cξ g JX Cξ

, 2 , , , , , , ,

, , .

X Y

On the other hand, we have

(( ) ( ) ) (( ) ) (( ) )

( ) ( ) ( ) ( ) (( ) ) ( )

∇ − ∇ = ∇ − ∇
= − + + −

g A Y A X ξ g A ξ Y g A ξ X

Xα η Y Yα η X αg Aϕ ϕA X Y g AϕAX Y

, , ,

, 2 , .

X Y X Y

Comparing the previous two equations and putting =X ξ yield

( ) ( ) ( ) ( ) ( ) ( )= − −Yα ξα η Y g ξ Cζ g Y Cξ g Y Cζ g ξ Cξ2 , , 2 , , .

Reinserting this into the previous equation yields

(( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

(( ) ) ( )

∇ − ∇ = −
− +
+ + −

g A Y A X ξ g ξ Cζ g X Cξ η Y g X Cζ g ξ Cξ η Y

g ξ Cζ g Y Cξ η X g Y Cζ g ξ Cξ η X

αg ϕA Aϕ X Y g AϕAX Y

, 2 , , 2 , ,

2 , , 2 , ,

, 2 , .

X Y

Altogether, this implies
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( ) (( ) ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= − + +
− +
+ −
− +
+ −

g AϕAX Y αg ϕA Aϕ X Y g ϕX Y

g X Cζ g Y Cξ g Y Cζ g X Cξ

g X Cξ g JY Cξ g Y Cξ g JX Cξ

g ξ Cζ g X Cξ η Y g X Cζ g ξ Cξ η Y

g ξ Cζ g Y Cξ η X g Y Cζ g ξ Cξ η X

0 2 , , 2 ,

, , , ,

, , , ,

2 , , 2 , ,

2 , , 2 , , .

At each point ∈z M , we can choose A∈C z such that

( ) ( )= +ζ t Z t JZcos sin1 2

for some orthonormal vectors ( )∈Z Z V C,1 2 and ≤ ≤t0
π

4
(see Proposition 3 in [8]). Note that t is a function on

M . First of all, since = −ξ Jζ , we have

( ) ( )

( ) ( )

( ) ( )

= −
= −
= +

Cζ t Z t JZ

ξ t Z t JZ

Cξ t Z t JZ

cos sin ,

sin cos ,

sin cos .

1 2

2 1

2 1

(3.3)

This implies ( ) =g ξ Cζ, 0 and hence

( ) (( ) ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= − + +
− +
+ −
+ −

g AϕAX Y αg ϕA Aϕ X Y g ϕX Y

g X Cζ g Y Cξ g Y Cζ g X Cξ

g X Cξ g JY Cξ g Y Cξ g JX Cξ

g X Cζ g ξ Cξ η Y g Y Cζ g ξ Cξ η X

0 2 , , 2 ,

, , , ,

, , , ,

2 , , 2 , , .

4 Ruled real hypersurfaces

In this section, we define a ruled real hypersurface in the complex hyperbolic quadric ∗Qn and give the form of
its shape operator. From this fact, we give some characterizations of ruled real hypersurfaces M in ∗Qn .
Moreover, we will introduce the example due to Berndt [24].

Let M be a real hypersurface in the complex hyperbolic quadric ∗Qn . If the Reeb vector field = −ξ Jζ of M is
principal, M is said to be Hopf. Now, let us introduce another kind of real hypersurfaces, ruled real hyper-
surfaces in the complex hyperbolic quadric ∗Qn , which are not Hopf, as follows:

Definition 4.1.
(a) Let � be the distribution given by � { ∣ }= ∈ ⊥X TM X ξ . It is called the holomorphic distribution of M .
(b) If �[ ] ∈X Y, for any vector fields X , �∈Y , then � is said to be integrable.
(c) A real hypersurface M is said to be ruled if the holomorphic distribution � is integrable and each of its

leaves is locally congruent to a totally geodesic complex hyperplane − ∗Qn 1 in ∗Qn .

Note. The above (c) can be rewritten as follows: when M is foliated by the integrable totally geodesic
complex hyperplane − ∗Qn 1 in ∗Qn , then M can be given by { ( ) ∣ }= ∈ ∈− ∗M p Q t t In 1 . In such a case, we say that
M is a ruled real hypersurface in ∗Qn .

Theorem 4.2. Let M be a real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3. Then, M is locally
congruent to a ruled real hypersurface in ∗Qn if and only if the shape operator A satisfies ( ) =g AX Y, 0 for any
vector fields X and �∈Y .

Proof. Assume that M is ruled. Let L be a totally geodesic leaf of � in ∗Qn , that is, L is an integral manifold of � .
For any L, we call ∇L its Levi-Civita connection. Then, we obtain ∇ = ∇Y Y¯X X

L for any vector fields ∈X Y TL, ,
which implies ∇ ∈Y TL¯X . As �=T Lp p for any point p of L, we obtain

( )∇ =g Y ζ¯ , 0X (4.1)

Ruled real hypersurfaces  7



for any ∈X Y TL, . On the other hand, the Gauss formula of M in ∗Qn is given as follows:

( )∇ = ∇ +Y Y g AX Y ζ¯ , ,X X (4.2)

where ∇ YX denotes the tangential part of ∇ Y¯X . By taking the inner product of equation (4.2) with the unit
normal vector field ζ and using equation (4.1), it follows that ( ) =g AX Y, 0 for any �∈X Y, .

Conversely, suppose that the shape operator A of M satisfies ( ) =g AX Y, 0 for any X , �∈Y . Let us show
that the holomorphic distribution � of M is integrable. In order to do this, we first show that ∇ Y¯X is tangent to
M and is orthogonal to ξ , i.e., �∇ ∈Y¯X for any �∈X Y, . In fact, by virtue of the Weingarten formula
∇ = −ζ AX¯X , our assumption assures

( ) ( ) ( )= = − ∇ = ∇g AX Y g ζ Y g ζ Y0 , ¯ , , ¯X X

for any �∈X Y, . It means that ∇ Y¯X is tangent to M . On the other hand, it is known that �∈ϕY for any
∈Y TM , because =ϕξ 0. So, our assumption ( ) =g AX Y, 0 for any �∈X Y, gives ( ) =g AX ϕY, 0 for any

�∈X Y, . From this, together with the Gauss formula and the formula ∇ =ξ ϕAXX , we obtain

( ) ( ) ( ) ( ) ( ) ( ) ( )∇ = − ∇ = − ∇ − = − = =g Y ξ g Y ξ g Y ξ g AX ξ g Y ζ g Y ϕAX g ϕY AX¯ , , ¯ , , , , , 0.X X X

It means that the tangent vector field ∇ Y¯X of M is orthogonal to the Reeb vector field ξ , i.e., �∇ ∈Y¯X . Similarly,
we obtain that �∇ ∈X¯Y . Thus, for any �∈X Y, ,

�[ ] = ∇ − ∇ ∈X Y Y X, ¯ ¯ .X Y

Hence, we can assert that the distribution � of M is integrable.
Next, let us see that the leaves of � are totally geodesic. Take L as one leaf of them, i.e., L is a submanifold

of ∗Qn such that �=T Lp p for any point ∈p L. Let ∇L and σ be the Levi-Civita connection on L and the second
fundamental form of L in ∗Qn , respectively. Then, we may write the Gauss equation of L in ∗Qn as follows:

( )∇ = ∇ +Y Y σ X Y¯ ,X X
L (4.3)

for any ∈X Y T L, p , ∈p L. As the result was proven above, it holds that �∇ ∈Y¯X . Also, it holds ∇ ∈Y TLX
L for any

∈X Y TL, . From these facts and � = TL, equation (4.3) gives ( ) =σ X Y, 0. It follows that

∇ = ∇Y Y¯X X
L

for any �∈X Y, . Hence, we assert that the leaf L of � is totally geodesic. □

From this result, we can compute a detailed description of the shape operator A of a ruled real hypersur-
face M in ∗Qn . In fact, it can be seen that this property is also true on ruled real hypersurfaces of nonflat
complex space forms and complex quadric Qn (see [12,13,25]). So, as a characterization of ruled real hyper-
surfaces in ∗Qn , we have:

Theorem 4.3. The expression of the shape operator A of a ruled real hypersurface M in ∗Qn is given as follows:

= + = =Aξ αξ βU AU βξ AX, , 0

for any vector field ⊥X ξ , andU ,where U is a unit vector field in � ,which is orthogonal to the Reeb vector field ξ .
Here, the functions ( )=α g Aξ ξ, and ( )=β g Aξ U, are smooth and the function β does not vanish on a neighbor-
hood of a point ∈p M .

Proof. As mentioned above, the assumption of M being ruled means that M is not Hopf. So, we may write

= +Aξ αξ βU ,

where the unit vector field �∈U is orthogonal to the Reeb vector field ξ and the smooth function ( )=β g Aξ U,

is nonvanishing on a neighborhood of a point ∈p M .

8  Hyunjin Lee et al.



Now, we take

  �

�

{ }= = = = = ⋯ =− − −

∈

e ξ e U e ϕU e e ϕe e e ϕe, , , , , , ,n n n1 2 3 4 5 4 2 2 2 1 2 2

as a basis of TM . Then, by virtue of Theorem 4.2, we obtain ( ) =g AU e, 0i for any = −i n2, 3,…, 2 1. Therefore,
it gives

( ) ( ) ( ) ( )∑ ∑= = + =
=

−

=

−

AU g AU e e g AU e e g AU e e g AU ξ ξ, , , , .

i

n

i i

i

n

i i

1

2 1

1 1

2

2 1

Moreover, by using the facts = +Aξ αξ βU and ⊥ξ U , it becomes
( )= =AU g U Aξ ξ βξ, .

Let us consider AX for any tangent vector field X which is orthogonal to ξ andU . In fact, by using Theorem
4.2, ( ) =g AX Y, 0 for any X , �∈Y , and the expression of � , we obtain

( ) ( )= = + =AX g AX ξ ξ g X αξ βU ξ, , 0

for any �∈X orthogonal to the unit vector field U , finishing the proof. □

It holds that ( ) ( ) ( ) ( )∇ = − ∇ = − =g Y ξ g Y ξ g Y ϕAX g ϕY AX, , , ,X X for any �∈X Y, . By virtue of Theorem
4.2, it implies that �∇ ∈YX . From this, we assert that the shape operator A of a ruled real hypersurface M is
η-parallel, i.e., (( ) )∇ =g A Y Z, 0X for any �∈X Y Z, , . By linearization, it becomes (( ) )∇ =g A X X, 0X for any

�∈X . Then, this is equivalent to the constancy of ( ) ( )′ ′ = ∇ ′ ∇ ′′ ′g Aγ γ g γ γ, ¯ ¯ , ¯γ γ
2 , where γ is a geodesic on M . Here,

ḡ and ∇̄ denote, respectively, the Riemannian metric and the Riemannian connection of the complex hyper-
bolic quadric ∗Qn . This means that every geodesic γ: →I M in ∗Qn , which is orthogonal to the Reeb vector field
ξ , i.e., ( )′ ⊥γ ξ0 p, and ( ) =γ p0 , has constant first curvature.

Remark 4.4. Let M be a ruled real hypersurface in the complex hyperbolic quadric ∗Qn . Of course, the shape
operator A is η-parallel. Moreover, by Theorem 4.3, we obtain =AϕU 0. If the Reeb function ( )= =α g Aξ ξ, 0,
the function ( )=β g Aξ U, is a nonvanishing constant, and the vector fieldU is parallel, i.e., ∇ =U 0ξ , along the
integral curve (horocycle) of the Reeb vector field ξ , respectively, then the unit normal vector field =ζ Jξ

becomes singular.
In fact, let us use the equation of Codazzi for = +Aξ αξ βU , =AU βξ . Then, it follows that

( ( ) ) (( ) ( ) )

(( ) ) (( ) )

( ) ( ) ( ) ( ) (( ) ) ( ) ( ) ( )

( ) ( ) { ( ) ( )}

= ∇ − ∇
= ∇ − ∇

= − + + − +

− + ∇ − ∇

g R X Y ξ ζ g A Y A X ξ

g A ξ Y g A ξ X

α X η Y α Y η X αg Aϕ ϕA X Y g AϕAX Y Xβ g U Y

Yβ g U X β g U Y g U X

¯ , , ,

, ,

d d , 2 , ,

, , , .

X Y

X Y

X Y

(4.4)

By putting =X ξ into equation (4.4) and using the assumption for ruled hypersurfaces in ∗Qn , we have

( ( ) ) ( ( ) ) ( ( ) )

( ) ( ) ( ) ( ) ( ) ( ) ( )

= =
= − + + + ∇ =

g R ξ ζ ζ JY g R JY Jξ ζ ξ g R ξ Y ξ ζ

α ξ η Y α Y αβg ϕU Y ξβ g U Y βg U Y

¯ , , ¯ , , ¯ , ,

d d , , , 0,ξ

(4.5)

where we have used =AϕU 0 in the third equality. This implies that the normal Jacobi operator R̄ζ satisfies

( )= =R ξ R ξ ζ ζ cξ¯ ¯ ,ζ

for �∈c . Then, by a result due to Berndt and Suh (see Proposition 3.1, [26]), we know that the unit normal vector
field ζ isA-principal orA-isotropic. But, in Lemma 5.2, we will see that there does not exist any real hypersurface
in ∗Qn with η-parallel shape operator and A-isotropic unit normal vector field. Accordingly, among these two
types of singular normal vector fields, Remark 1.2 gives us that the normal vector field ζ is A-principal.

Example 4.5. (The minimal homogeneous ruled real hypersurface in ∗Qn ) According to Berndt’s research [24]
and Remark 4.4, it is known that the unit normal vector field ζ of a ruled real hypersurface in ∗Qn is
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A-principal. So, there exists a real structure C on ∗Qn so that =Cζ ζ . The real structure C is unique up to sign.
Let ( )V C be the ( )+1 -eigenspace of the real structure. Then, ( )JV C is the ( )−1 -eigenspace of the real structure.
Since ( )∈ζ V C , we have ( )∈ξ JV C . There exists a real hyperbolic space �H n, embedded in ∗Qn as a real form
(i.e., an n-dimensional totally geodesic totally real submanifold) with �∈o H n and � ( )=T H JV Co

n . Then,
�∈ξ T Ho

n determines a horocycle γ in �H n. The orthogonal complement of �ξ in �T Ho
n determines a totally

geodesic � �⊂−H Hn n1 . This � �⊂−H Hn n1 determines a totally geodesic ⊂− ∗ ∗Q Qn n1 by complexification such
that ( ) ∈ − ∗X JX T Q, o

n 1 for �∈ −X T Ho
n 1. By parallel translation of − ∗T Qo

n 1 along the horocycle γ, we obtain a
one-parameter family of totally geodesic complex hyperbolic hyperplanes, which is the ruling of the real
hypersurface M in ∗Qn .

This example explains how the homogeneous real hypersurface = ⋅M S o in the complex hyperbolic quadric
∗Qn can be viewed as a ruled hypersurface. Here, the Iwasawa decomposition g k a n= ⊕ ⊕ of the Lie algebra g

of the complex hyperbolic quadric ∗Qn is used, where S denotes the Lie group corresponding to the Lie algebra s.
The Lie algebra s is defined as s a n �( )= ⊕ ⊖ ζ for each unit vector g∈ζ α2

, where a denotes the maximal
abelian subspace of p and n denotes a nilpotent subalgebra of g given by n g g g g= ⊕ ⊕ ⊕+ +α α α α α α21 2 1 2 1 2

.
The shape operator Aζ of M in ∗Qn can be defined as follows:

s[ ( ) ]= −A X ζ θ ζ X
1

2
, ,ζ

where s[ ]⋅ is the orthogonal projection onto s and g( )∈θ Aut denotes the Cartan involution on g. Then, by
a calculation due to Berndt [24], we have

= =A ξ
n

U A U
n

ξ
1

2
and

1

2
.ζ ζ

Here, the Reeb vector field ξ is defined as follows:

g=

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⋯
⋯
⋯
⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
⋯

− ⋯

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

∈ +ξ
n

1

2

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 1 0 0 0 0

α α1 2

and the orthogonal unit vector field U is defined as follows:

g g=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

− ⋯
− ⋯

− ⋯
⋯
⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
⋯
⋯

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

∈ ⊕ ⊕U
n

1

2

0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

.α α α21 1 2

Berndt [24] has proved the following fact: the homogeneous ruled real hypersurface M in ∗Qn , i.e.,
generated by an A-principal horocycle in ∗Qn , has three distinct constant principal curvatures 0, 2 , and
− 2 with multiplicities −n2 3, 1, and 1, respectively. In particular, M is a minimal real hypersurface
in ( )∗Q g,n .
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5 η-parallel shape operator and key results

In this section, we will show that the unit normal vector field ζ of a ruled real hypersurface in the complex
hyperbolic quadric ∗Qn is A-principal. In order to do this, we will use the notion of η-parallelism, i.e.,

(( ) )∇ =g A Y Z, 0X for any �∈X Y Z, , , where � { ∣ }= ∈ ⊥X TM X ξ denotes the orthogonal complement of
the Reeb vector field ξ on M in ∗Qn .

By the Gauss equation of a real hypersurface M in ∗Qn , the curvature tensor ( )R X Y Z, on M induced from
the curvature tensor R̄ of ∗Qn can be described in terms of the complex structure J and the complex conjuga-
tion A∈C as follows:

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

( )( ) ( ) ( )

= − + − + +
− + −
+ + −

⊤ ⊤ ⊤

⊤

R X Y Z g Y Z X g X Z Y g ϕY Z ϕX g ϕX Z ϕY g ϕX Y ϕZ

g CY Z CX g CX Z CY g JCY Z JCX

g JCX Z JCY g AY Z AX g AX Z AY

, , , , , 2 ,

, , ,

, , ,

for any ∈X Y Z TM, , . Here, ( )⋅ ⊤ denotes the tangential component of ( )⋅ .
Now let us put

( ) ( ) ( )= + =CX BX ρ X ζ ρ X g CX ζand , ,

for any vector field ∈X TM , where BX and ( )ρ X ζ denote the tangential and normal components of the vector
field ∈ ∗CX TQn , respectively. Then, together with ( ) ( )= =ρ ξ g Cξ ζ, 0, it follows that

( )= + =Cξ Bξ ρ ξ ζ Bξ (5.1)

and

( ( ) ) ( ) ( )= = − = − + = − − = − −Cζ CJξ JCξ J Bξ ρ ξ ζ ϕBξ η Bξ ζ ϕCξ η Cξ ζ . (5.2)

Indeed, equation (5.1) means that the vector field Cξ is tangent to M , i.e., ∈Cξ TM . Taking the covariant
derivative of Cξ , together with the Gauss formula and equation (2.2), it follows

( ) ( ) ( )

( ) ( ) ( )

( ) ( ( ) ) ( )

( )( ( ) ) ( ) ( )

( )( ( ) ) ( )

( ) ( ) ( ) ( )

∇ = ∇ −
= ∇ + ∇ −
= + ∇ + −
= + + + −
= + + +
− − −

Cξ Cξ g AX Cξ ζ

C ξ C ξ g AX Cξ ζ

q X JCξ C ξ g AX ξ ζ g AX Cξ ζ

q X ϕCξ g Cξ ξ ζ CϕAX g AX ξ Cζ g AX Cξ ζ

q X ϕCξ g Cξ ξ ζ BϕAX g CϕAX ζ ζ

g AX ξ ϕCξ g AX ξ g Cξ ξ ζ g AX Cξ ζ

¯ ,

¯ ¯ ,

, ,

, , ,

, ,

, , , , ,

X X

X X

X

where ∇̄ denotes the Levi-Civita connection of ∗Qn . Then, by comparing the tangential and the normal compo-
nents of the above equation, together with equation (5.2) and ( )= − +ϕ X ϕX η X ξ2 , we obtain

( ) ( ) ( )∇ = + −Cξ q X ϕCξ BϕAX g AX ξ ϕCξ,X (5.3)

and

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

= − + +
= + +
=

q X g Aξ ξ g CϕAX ζ g AX ξ g Cξ ξ g AX Cξ

g ϕAX ϕCξ g AX ξ g Cξ ξ g AX Cξ

g AX Cξ

, , , , ,

, , , ,

2 , .

(5.4)

Moreover, it is well known that the complex structure J and the real structure C of ∗Qn satisfy the anti-
commuting property, which is given by = −JC CJ . From this and = −Jζ ξ , we have

( ( ) ) ( ) ( ) ( ) ( )= + = + + = + −JCX J BX ρ X ζ ϕBX η BX ζ ρ X Jζ ϕBX η BX ζ ρ X ξ . (5.5)

In addition, from the property of =C I2 and (5.2), we obtain

( ) ( )= − =B X X g ϕCξ X ϕCξ BϕCξ g Cξ ξ ϕCξ, , ,2 (5.6)

for any tangent vector field X on M . Then, we assert the following:
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Lemma 5.1. Let M be a real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3. If the shape operator A of
M is η-parallel, then the unit normal vector field ζ of M in ∗Qn is singular. That is, ζ is either A-isotropic or
A-principal.

Proof. By using equations (3.2), (5.2), and (5.5), our assumption of the shape operator A being η-parallel yields

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − − +g X ϕCξ g BY Z g Y ϕCξ g BX Z g X Cξ g ϕBY Z g Y Cξ g ϕBX Z0 , , , , , , , ,

for any tangent vector fields X , Y , and Z belonging to the distribution � { ∣ }= ∈ ⊥X TM X ξ . It can be rear-
ranged as follows:

( ( ) ( ) ( ) ( ) )− − + =g g X ϕCξ BY g Y ϕCξ BX g X Cξ ϕBY g Y Cξ ϕBX Z, , , , , 0 (5.7)

for any tangent vector fields X , Y , �∈Z .
Now, let us consider that for any X , �∈Y ,

( ) ( ) ( ) ( )= − − +W g X ϕCξ BY g Y ϕCξ BX g X Cξ ϕBY g Y Cξ ϕBX, , , , .X Y, (5.8)

As ∈W TMX Y, , without loss of generality, it can be expressed as follows:

( ) ( ) ( )∑ ∑= = +
=

−

=

−

W g W e e g W e e g W ξ ξ, , ,X Y

i

n

X Y i i

i

n

i i,

1

2 1

,

1

2 2

for any basis   
�

{ }⋯ =−

∈

−e e e ξ, , ,n n1 2 2 2 1 of TM .

On the other hand, since WX Y, satisfies equation (5.7), it consequently becomes

( )=W g W ξ ξ, .X Y X Y, ,

Its inner product with Cξ implies

( ) ( ) ( )=g W Cξ g W ξ g ξ Cξ, , , .X Y X Y, , (5.9)

By using equations (5.1) and (5.6), we obtain

( ) ( ){ ( ) ( ) ( ) ( )}= −g W Cξ g Cξ ξ g X Cξ g ϕCξ Y g Y Cξ g ϕCξ X, , , , , ,X Y,

and

( ) ( ) ( ) ( ) ( )= −g W ξ g X ϕCξ g Y Cξ g Y ϕCξ g X Cξ, , , , ,X Y,

for any X , �∈Y . From these two equations, equation (5.9) gives

( ){ ( ) ( ) ( ) ( )}− =g Cξ ξ g X Cξ g ϕCξ Y g Y Cξ g ϕCξ X, , , , , 0 (5.10)

for any X , �∈Y . So, we consider the following two cases.
Case 1. ( ) =g Cξ ξ, 0

From equation (3.3), we obtain ( ) ( )= −g Cξ ξ t, cos 2 , [ ]∈t 0,
π

4
. Thus, the assumption ( ) =g Cξ ξ, 0 provides

=t
π

4
. From this, the unit vector field ζ can be expressed as follows:

( )= ⎛
⎝
⎞
⎠ + ⎛

⎝
⎞
⎠ = +ζ

π
Z

π
JZ Z JZcos

4
sin

4

1

2
1 2 1 2

for some ( )∈Z Z V C,1 2 . Here, ( )V C is the (+1)-eigenspace of C , i.e., ( ) { ∣ }= ∈ =∗V C Z TQ CZ Zn . It means that
the unit normal vector field ζ of M in ∗Qn is A-isotropic.

Case 2. ( ) ≠g Cξ ξ, 0

With regard to equation (5.10), the assumption ( ) ≠g Cξ ξ, 0 indicates that

�( ( ) ( ) )− = ∈g g X Cξ ϕCξ g X ϕCξ Cξ Y X Y, , , 0 for any , . (5.11)

From this, the tangent vector field ( ) ( )≔ −U g X Cξ ϕCξ g X ϕCξ Cξ, ,X of M is expressed as follows:
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( ) ( ) ( )∑= + =
=

−

U g U e e g U ξ ξ g U ξ ξ, , ,X

i

n

X i i X X

1

2 2

(5.12)

for any �∈X . Taking the inner product of equation (5.12) with Cξ gives

( ) ( ) ( )=g U Cξ g U ξ g ξ Cξ, , , .X X (5.13)

By a straight calculation, together with =C I2 , the vector field UX satisfies

( ) ( ) ( ) ( ) ( )= − = −g U Cξ g X ϕCξ g U ξ g X ϕCξ g Cξ ξ, , and , , , .X X

From these equations, equation (5.13) becomes

�{ ( ) } ( )− = ∈g Cξ ξ g X ϕCξ X1 , , 0 for any .2 (5.14)

Taking �∈ϕCξ instead of X in equation (5.14), together with ( ) ( )= −g ϕCξ ϕCξ g Cξ ξ, 1 , 2, it yields

{ ( ) }− =g Cξ ξ1 , 0,2 2

which implies ( )− =g Cξ ξ1 , 02 . From this, we have ( ) = ±g Cξ ξ, 1. Since ( ) ( )= −g Cξ ξ t, cos 2 , ∈ ⎡
⎣

⎞
⎠t2 0,

π

2
, con-

sequently, we have =t 0. From this, the unit normal vector field ζ satisfies

( ) ( ) ( )= + = ∈ζ Z JZ Z V Ccos 0 sin 0 .1 2 1

It implies that ζ is A-principal.
Combining the above two cases, Cases 1 and 2, we can assert that the unit normal vector field ζ of M is

singular. □

By virtue of Lemma 5.1, let us consider the case of ζ being A-isotropic. Then, we have the following:

Lemma 5.2. There does not exist any real hypersurface in ∗Qn , ≥n 3, with η-parallel shape operator and
A-isotropic normal vector field ζ .

Proof. Let us assume that M is a real hypersurface with η-parallel shape operator in ∗Qn , ≥n 3. That is, the
shape operator A of M satisfies the following condition:

(( ) )∇ =g A Y Z, 0X (*)

for any tangent vector field �∈X Y Z, , , where � denotes the orthogonal complement of the Reeb vector field
ξ on M in ∗Qn . From this, together with the equation of Codazzi (3.2) and (5.8), it yields the following for any X ,

�∈Y ,

( )=W g W ξ ξ, ,X Y, (*)

where WX Y, is as above.
Now, since ζ is A-isotropic, equations (3.3) and (5.2) imply that

�( ) ( )= − = = − ∈g Cζ ζ g Cξ ξ Cζ ϕCξ, , 0 and .

Taking = −Cζ ϕCξ instead of Y in (*) and using ( ) =g Cξ ξ, 0 and ( )= =BϕCξ g Cξ ξ ϕCξ, 0, we have

( ) ( ) ( ) ( )= = = = =BX g ϕCξ ϕCξ BX W g W ξ ξ g BX ξ ξ g X Cξ ξ, , , ,X Cζ X Cζ, ,

for any tangent vector field �∈X . From this, applying the symmetric operator B, together with equations (5.1)
and (5.6), it follows that

( ) ( ) ( )− = = =X g ϕCξ X ϕCξ B X g X Cξ Bξ g X Cξ Cξ, , , ,2

which implies

�( ) ( )= + ∈X g X ϕCξ ϕCξ g X Cξ Cξ, , .

This means � � =dim 2. But, in fact, any vector field �∈X is expressed as:
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( )∑=
=

−

X g X e e,

k

n

k k

1

2 2

with respect to the basis { }= − ⋯ −Cζ ϕCξ Cξ e e e, , , , , n1 2 2 4 of the distribution � . So, we obtain � � = −ndim 2 2,
≥n 3, which gives a contradiction. From this, we give a complete proof of our lemma. □

Consequently, summing up Lemmas 5.1 and 5.2, we obtain the following proposition:

Proposition 5.3. Let M be a real hypersurface in ∗Qn , ≥n 3. If the shape operator A of M is η-parallel, then the
unit normal vector field ζ of M in ∗Qn is A-principal.

On the other hand, as introduced in Theorem A, a tube �( )∗A and a horosphere �( )∗A are given as the
model spaces of real hypersurfaces with A-isotropic normal vector field in ∗Qn , ≥n 3. Here, �( )∗A and �( )∗A ,
respectively, denote a tube over a complex hyperbolic space �Hk in ∗Q k2 and a horosphere whose center at
infinity is the equivalence class of A-isotropic singular geodesics in ∗Qn . We will give a proof of Theorem 1.1 in
Section 6. In order to do this, we need the following proposition:

Proposition 5.4. The shape operators of type �( )∗A and �( )∗A real hypersurfaces in ∗Qn are not η-parallel.

Proof. Let a tube �( )∗A and a horosphere �( )∗A in the complex hyperbolic quadric ∗Qn be denoted as MA. Then,
the unit normal vector field ζ of MA is A-isotropic, and the shape operator A of MA commutes with the
structure tensor ϕ (see Suh [11]).

Now, let us assume that the shape operator A of MA is η-parallel, i.e., A satisfies

�(( ) )∇ = ∈g A Y Z X Y Z, 0 for any , , .X

From this, for the case X , � ( { } )∈ = ⊖ ⊕Z TM ξ TspanA β and ∈Y Tβ, where { ∣ }= ∈ = = =T Y TM AY βY 0β A

{ }Cξ ϕCξspan , , we know that =AY 0 for ∈Y Tβ, which implies ( ) ( )∇ = − ∇A Y A YX X . Then, the inner product
with �∈Z gives

(( ) ) ( ( ) ) ( ) ( )∇ = − ∇ = − ∇ = − ∇g A Y Z g A Y Z g Y AZ σg Y Z, , , , ,X X X X (5.16)

where the constant principal curvature σ is given by

�

� � �

�

( ) ( ) ( { } )

( ) ( ) ( )

( ) ( { } )

=

⎧

⎨
⎪

⎩⎪

= ∈ = ⊖ ⊕
= ∈ = ⊖

∈ ⊖ ⊕

∗

∗
σ

λ r Z T T H ξ T

μ r Z T ν H ν

Z T ξ T

tanh for span ,

coth for ,

1 for span ,

λ
k

β

μ
k

A

A β

(5.17)

respectively.
On the other hand, we may put

( ) ( ) ( ) ( )∇ = ∇ + ∇ + ∇ + ∇Y g Y ξ ξ g Y Cξ Cξ g Y ϕCξ ϕCξ g Y W W, , , ,X X X X X (5.18)

for some vector field �∈W . Since MA satisfies =Aϕ ϕA, we obtain = =AϕY ϕAY 0 for any ∈Y Tβ. Also, MA

has a A-isotropic unit normal vector field ζ , which means that ( ) ( )= =η Cξ g Cξ ξ, 0. From these facts, together
with equation (5.3) and ( )= − + = −ϕ Cξ Cξ η Cξ ξ Cξ2 , we obtain

( ) ( ) ( ) ( )

( ) ( ) ( ( ) )

( ) ( ) ( )

∇ = − ∇ = − = =
∇ = − ∇ = − +

= − −

g Y ξ g Y ξ g Y ϕAX g AϕY X

g Y Cξ g Y Cξ g Y q X ϕCξ BϕAX

q X g Y ϕCξ g Y BϕAX

, , , , 0,

, , ,

, , ,

X X

X X

and

( ) ( ( )) ( ( ) ) ( ( ))

( ( ) ( ) ) ( ( ) )

( ) ( ) ( )

∇ = − ∇ = − ∇ − ∇
= − − + +
= +

g Y ϕCξ g Y ϕCξ g Y ϕ Cξ g Y ϕ Cξ

g Y η Cξ AX g AX Cξ ξ g ϕY q X ϕCξ BϕAX

q X g Y Cξ g ϕY BϕAX

, , , ,

, , ,

, ,

X X X X
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for �∈X and ∈Y Tβ. From the above three equations, equation (5.18) can be arranged as follows:

{ ( ) ( ) ( )} { ( ) ( ) ( )} ( )∇ = − − + + + ∇Y q X g Y ϕCξ g Y BϕAX Cξ q X g Y Cξ g ϕY BϕAX ϕCξ g Y W W, , , , , ,X X (5.19)

which gives

( ) ( ) ( )∇ = ∇g Y Z g Y W g W Z, , ,X X

for X , �∈Z and ∈Y Tβ. From this, (5.16) becomes

�(( ) ) ( ) ( )∇ = − ∇ ∀ ∈ ∈g A Y Z σg Y W g W Z X Z Y T, , , , , .X X β (5.20)

• On the tube (� ∗
A)

Since � �( )= ⊕ ⊂ ∗T T Tλ μ A , we put = +W W W1 2 for some two vectors W1 and W2 such that ∈W Tλ1 and
∈W Tμ2 . So, equation (5.20) is rearranged as follows:

(( ) ) { ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}∇ = − ∇ + ∇ + ∇ + ∇g A Y Z σ g Y W g W Z g Y W g W Z g Y W g W Z g Y W g W Z, , , , , , , , , ,X X X X X1 1 2 1 1 2 2 2

and our assumption of A being η-parallel implies

{ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}− ∇ + ∇ + ∇ + ∇ =σ g Y W g W Z g Y W g W Z g Y W g W Z g Y W g W Z, , , , , , , , 0X X X X1 1 2 1 1 2 2 2 (5.21)

for any �∈X Z, and ∈Y Tβ.
On the other hand, from equation (5.17), we see that ( )= ≠λ rtanh 0 and ( )= ≠μ rcoth 0 for �∈ +r .

Hence, equation (5.21) yields that for any �∈X Z, and ∈Y Tβ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∇ + ∇ + ∇ + ∇ =g Y W g W Z g Y W g W Z g Y W g W Z g Y W g W Z, , , , , , , , 0,X X X X1 1 2 1 1 2 2 2

which gives a contradiction. So, we claim that �( )∗A does not have η-parallel shape operator.
• On the horosphere (� ∗

A)
On � �( )⊂ ∗T A , the principal curvature σ is given by 1 in equation (5.17). So, by equation (5.20) and the

assumption of A being η-parallel, we obtain ( ) ( )∇ =g Y W g W Z, , 0X for any �∈Z . So, putting =Z W follows
( )∇ =g Y W, 0X . From this fact and equation (5.19), we obtain

{ ( ) ( ) ( )} { ( ) ( ) ( )}∇ = − − + +Y q X g Y ϕCξ g Y BϕAX Cξ q X g Y Cξ g ϕY BϕAX ϕCξ, , , , .X

Taking = ∈Y Cξ Tβ, together with =BCξ ξ and ( )= =BϕCξ g Cξ ξ ϕCξ, 0, becomes

( )∇ =Cξ q X ϕCξ .X

Combining this formula and equation (5.3) and using =AX X for �∈X , we obtain =BϕX 0. Applying the
symmetric operator B to this formula and using equation (5.6), together with = − + ⊗ϕ I η ξ2 , we obtain

=ϕX 0, which means that =X 0 for any �∈X . It means that the dimension of � is 0, i.e., � =dim 0. But,
by virtue of Proposition A in [27], we obtain � = −ndim 2 4. It makes a contradiction for ≥n 3. So the shape
operator A of the horosphere �( )∗A is not η-parallel. It gives a complete proof of our proposition. □

Now, as a characterization of a ruled real hypersurface in ∗Qn , ≥n 3, we can assert the following lemma:

Lemma 5.5. Let M be a ruled real hypersurface in ∗Qn , ≥n 3. Then, the shape operator A of M is η-parallel.

Proof. As mentioned in Introduction, the expression of the shape operator A of M in ∗Qn is given as follows:

⎪

⎪
⎧
⎨
⎩

= +
=
= ⊥

Aξ αξ βU

AU βξ

AX X ξ U

,

,

0 for any , ,

(5.22)

whereU is some unit vector field in � { ∣ }= ∈ ⊥X TM X ξ and ( )≔β g Aξ U, is a nonzero function on M . From
this, we obtain

�( ) = ∈g AX Y X Y, 0 for any , . (5.23)
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LetY be any tangent vector field of M such that �∈Y , i.e., ( ) =g Y ξ, 0. Taking the covariant derivative of
this formula with �∈X and using equation (5.23), we obtain

( ) ( ) ( ) ( )∇ = − ∇ = − = =g Y ξ g Y ξ g Y ϕAX g ϕY AX, , , , 0,X X (5.24)

i.e., it assures that �∇ ∈YX for any �∈X Y, .
On the other hand, taking the covariant derivative of equation (5.23) with �∈Z and using equation (5.24),

it follows that

(( ) ) ( ) ( ) (( ) )= ∇ + ∇ + ∇ = ∇g A X Y g A X Y g AX Y g A X Y0 , , , ,Z Z Z Z

for any �∈X Y Z, , . Hence, we can assert that the shape operator A of M is η-parallel. □

By virtue of Proposition 5.3 and Lemma 5.5, we obtain the following proposition:

Proposition 5.6. The unit normal vector field ζ of a ruled real hypersurface in ∗Qn , ≥n 3, is A-principal.

6 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 from the Introduction. By the notions of η-parallel and η-commuting
shape operator, we give a complete classification of real hypersurfaces in the complex hyperbolic quadric ∗Qn

with these properties. To do so, unless otherwise specified, we assume that M is a real hypersurface in the
complex hyperbolic quadric ∗Qn for ≥n 3, and the shape operator A of M satisfies η-parallelism and η-com-
mutativity. Since in Proposition 5.6 we have proved that the unit normal vector field ζ of a ruled real
hypersurface in ∗Qn is A-principal, we remarked in Theorem 1.1 that the unit normal ζ of ruled real hyper-
surfaces in the complex hyperbolic quadric ∗Qn is A-principal.

Lemma 6.1. Let M be a real hypersurface in ∗Qn , ≥n 3, with η-parallel and η-commuting shape operator. Then,
for any �∈X Y Z, , , we have

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

= + −
+ − + +
g Y Cζ g CX Z g ϕZ Cζ g CX ϕY g Y Cξ g CX ϕZ

g ϕZ Cξ g CX Y η AϕZ g Y AX g X V g Y AZ g Y V g X AZ

0 , , , , , ,

, , , , , , , .

where � denotes the orthogonal complement of the Reeb vector field ξ and V is given by ϕAξ .

Proof. The notion of η-commuting shape operator gives

(( ) )− =g Aϕ ϕA Y Z, 0

for any �∈Y Z, . By differentiating this, we have

(( ) ) (( ) ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

∇ + ∇ = + +

+

g A Y ϕZ g A Z ϕY η AY g X AZ η AZ g Y AX g X AϕY g Z V

g X AϕZ g Y V

, , , , , ,

, , .

X X (6.1)

Then, let us consider cyclic formulas with respect X , Y , and Z as follows:

(( ) ) (( ) ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

∇ + ∇ = + +

+

g A Z ϕX g A X ϕZ η AZ g Y AX η AX g Z AY g Y AϕZ g X V

g Y AϕX g Z V

, , , , , ,

, ,

Y Y (6.2)

and

(( ) ) (( ) ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

∇ + ∇ = + +

+

g A X ϕY g A Y ϕX η AX g Z AY η AY g X AZ g Z AϕX g Y V

g Z AϕY g X V

, , , , , ,

, , .

Z Z (6.3)
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Then, let us subtract equation (6.3) from the summing up of equations (6.1) and (6.2). From this, by using the
equation of Codazzi (3.2), it follows that

(( ) ) (( ) ) (( ) ( ) ) (( ) ( ) )

( ) ( ) ( ) ( ) ( ) ( )

(( ) ) { ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )} { ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )} { ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )}

∇ + ∇ + ∇ − ∇ + ∇ − ∇
= + +
= ∇ + − +

− − − +

− − −

+ −

g A Y ϕZ g A X ϕZ g A Z A X ϕY g A Z A Y ϕX

η AZ g Y AX g X V g Y AϕZ g Y V g X AϕZ

g A Y ϕZ g X Cζ g CY ϕZ g Y Cζ g CX ϕZ g X Cξ g JCY ϕZ

g Y Cξ g JCX ϕZ g X Cζ g CZ ϕY g Z Cζ g CX ϕY g X Cξ g JCZ ϕY

g Z Cξ g JCX ϕY g Y Cζ g CZ ϕX g Z Cζ g CY ϕX

g Y Cξ g JCZ ϕX g Z Cξ g JCY ϕX

, , , ,

2 , 2 , , 2 , ,

2 , , , , , , ,

, , , , , , , ,

, , , , , ,

, , , , .

X Y X Z Y Z

X

(6.4)

Then, by using the η-commuting property in equation (6.4) and using the following:

( ) ( ) ( )= − =g JCY ϕZ g CY JϕZ g CY Z, , , ,

we have

(( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

∇ − + − +
= + +

g A Y ϕZ g Y Cζ g CX ϕZ g Z Cζ g CX ϕY g Y Cξ g CX Z g Z Cξ g CX Y

η AZ g Y AX g X V g Y AϕZ g Y V g X AϕZ

, , , , , , , , ,

, , , , ,

X (6.5)

for any �∈X Y Z, , . Then, by replacing Z with ϕZ in equation (6.5), we have

(( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

∇ = + − +
− + +

g A Y Z g Y Cζ g CX Z g ϕZ Cζ g CX ϕY g Y Cξ g CX ϕZ g ϕZ Cξ g CX Y

η AϕZ g Y AX g X V g Y AZ g Y V g X AZ

, , , , , , , , ,

, , , , , .

X (6.6)

This gives a complete proof of our Lemma. □

By virtue of Proposition 5.3, we see that the unit normal vector field ζ of M in ∗Qn isA-principal, i.e., =Cζ ζ

and = −Cξ ξ . Thus, by using =V ϕAξ , Lemma 6.1 gives

( ) ( ) ( ) ( ) ( ) ( )+ + =g X V g Y AZ g Y V g Z AX g Z V g X AY, , , , , , 0 (6.7)

for any vector fields X Y, , and �∈Z . Now, let us put = +Aξ αξ βU in equation (6.7). Then, we assert the
following lemma:

Lemma 6.2. Let M be a complete real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3, with η-parallel
and η-commuting shape operator. Then,

( )= =β or g AY Z0 , 0

for any vector fields �∈Y Z, , where � denotes the orthogonal distribution of the Reeb vector field ξ .

Proof. Let us put = =Z V ϕAξ in equation (6.7) and use = +Aξ αξ βU for some �∈U . Then, it follows that

( )‖ ‖ ( ) ( ) ( ) ( )

( )‖ ‖ ( ) ( ) ( ) ( )

= + +
= + +

g AX Y V g AY V g X V g AV X g Y V

g AX Y V β g AY ϕU g X ϕU β g AϕU X g Y ϕU

0 , , , , ,

, , , , , .

2

2 2 2
(6.8)

Then, for any �∈X Y, , which are orthogonal to ϕU , the formula (6.8) gives ( ) =g AX Y, 0. Now, we put
= =X Y ϕU in equation (6.8). Then, it follows that

( )‖ ‖ ( ) ( )= + =g AϕU ϕU V β g AϕU ϕU β g AϕU ϕU0 , 2 , 3 , ,2 2 2 (6.9)

where we have used ‖ ‖ ( )= =V g ϕAξ ϕAξ β,2 2. Then, (6.9) gives that the function =β 0 or ( ) =g AϕU ϕU, 0.
Now, let us consider the case that ≠β 0 on the open subset � in M , i.e., � { ∣ ( ) }= ∈ ≠p M β p 0 . Then,

( ) =g AϕU ϕU, 0 on � . From this, together with putting =Y ϕU in equation (6.8), we have, for any �∈X ,

( )‖ ‖ ( ) ( )= + =g AϕU X V β g AϕU X β g AϕU X0 , , 2 , .2 2 2 (6.10)
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Hence, it follows that ( ) =g AϕU X, 0 on � for any �∈X . From this, together with ( ) =g AX Y, 0 for any
�∈X Y, orthogonal to ϕU , we can assert the latter part of Lemma 6.2. From this, we give a complete proof of

Lemma 6.2. □

If M is Hopf, i.e., the Reeb vector field ξ is principal for the shape operator A of a real hypersurface M in ∗Qn ,
then we obtain = =ϕAξ Aϕξ0 . From this, together with the η-commuting shape operator, (( ) )− =g Aϕ ϕA X Y, 0

for any �∈X Y, , it naturally gives that the structure tensorϕ commutes with the shape operator A, i.e., =Aϕ ϕA.
Then, by Theorem A we assert the following proposition:

Proposition 6.3. Let M be a Hopf real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3, with η-parallel
and η-commuting shape operator. Then, M is locally congruent to a tube of radius r over a totally geodesic
complex submanifold �Hk in ∗Q k2 , =n k2 , or a horosphere.

Moreover, in Proposition 5.4, we have mentioned that the shape operator of a tube over �Hk in ∗Q k2 or a
horosphere does not satisfy η-parallelism. Then, combining Propositions 6.3 and 5.4, we assert the following
theorem:

Theorem 6.4. There does not exist any Hopf real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3, with
η-parallel and η-commuting shape operator.

Then, by Lemma 6.2 and Theorem 6.4, we have only the case ( ) =g AY Z, 0 for any vector fieldsY and Z in
the distribution � . Hence, by Theorem 4.2, we can assert Theorem 1.1. Moreover, by virtue of Proposition 5.6,
the unit normal vector field of a ruled real hypersurface in ∗Qn is A-principal. This completes the proof of
Theorem 1.1.

7 Proof of Theorem 1.3

Let M be a real hypersurface with η-parallel shape operator in the complex hyperbolic quadric ∗Qn , ≥n 3. In
this section, we give a complete classification of such real hypersurfaces in ∗Qn with integrable holomorphic
distribution � { ∣ }= ∈ ⊥X TM X ξ . To do so, let us study the geometric property of � being integrable as
follows:

Lemma 7.1. Let M be a real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3. The following assertions
are equivalent:
(i) The holomorphic distribution � { ∣ }= ∈ ⊥X TM X ξ is integrable.
(ii) The shape operator A is η-anticommuting, i.e., (( ) )+ =g ϕA Aϕ X Y, 0 for any �∈X Y, .

Proof. (i) ⇒ (ii): Assume that the holomorphic distribution � is integrable. Then, we obtain

�[ ] ∈X Y, , (7.1)

which implies ([ ] ) =g X Y ξ, , 0 for any �∈X Y, . Since the Levi-Civita connection ∇ of M is torsion-free, it
follows that [ ] = ∇ − ∇X Y Y X, X Y . So, equation (7.1) yields

( ) ( )∇ − ∇ =g Y ξ g X ξ, , 0.X Y (7.2)

By the differentiation of ( ) =g Y ξ, 0 on M , we obtain ( ) ( ) ( )∇ = − ∇ = −g Y ξ g Y ξ g Y ϕAX, , ,X X . From this, equa-
tion (7.2) is rewritten as follows:

( ) ( )− + =g Y ϕAX g X ϕAY, , 0.

Since the operator ϕA is skew-symmetric, it becomes
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(( ) )+ =g ϕA Aϕ X Y, 0

for any X , �∈Y . It means that the shape operator A of M is η-anticommuting.
(ii) ⇒ (i): By virtue of the contents above, it is clear (vice versa). □

With regard to Theorem 4.2 and Lemma 5.5, we give some characterizations of a ruled real hypersurface in
∗Qn as follows:

Proposition 7.2. Let M be a ruled real hypersurface in ∗Qn , ≥n 3. Then, the following statements hold:
(a) The holomorphic distribution � of M is integrable.
(b) The shape operator A of M is η-parallel.

Proof. (b) As shown in Lemma 5.5, the shape operator A of a ruled real hypersurface M in ∗Qn is η-parallel. So,
in the remaining part of this proof, we will show that the holomorphic distribution � of M is integrable.

(a) By virtue of Theorem 4.2, the shape operator A of M satisfies ( ) =g AX Y, 0 for any X , �∈Y . Since the
tangent vector fields ϕX and ϕY belong to � , this property provides

(( ) ) ( ) ( )+ = − + =g ϕA Aϕ X Y g AX ϕY g AY ϕX, , , 0

for any �∈X Y, . That is, M has η-anticommuting shape operator. Hence, by Lemma 7.1, we can assure that the
holomorphic distribution � of M is integrable. □

Now, as the converse of Proposition 7.2, we prove:

Proposition 7.3. Let M be a real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3. If the shape operator
of M is η-parallel and the holomorphic distribution � { ∣ }= ∈ ⊥X TM X ξ is integrable, then the shape operator
A of M satisfies ( ) =g AX Y, 0 for any vector fields �∈X Y, . Furthermore, M is locally congruent to a ruled real
hypersurface in ∗Qn .

Proof. From Lemma 7.1, the assumption of � being integrable gives

�(( ) )+ = ∈g ϕA Aϕ X Y X Y, 0 for , . (7.3)

Taking the covariant derivative of equation (7.3) with �∈Z , we obtain

(( ) ) ( ( ) ) ( ( ) ) ( )

(( ) ) ( ( ) ) ( ( ) ) ( )

∇ + ∇ + ∇ + ∇
+ ∇ + ∇ + ∇ + ∇ =

g ϕ AX Y g ϕ A X Y g ϕA X Y g ϕAX Y

g A ϕX Y g A ϕ X Y g Aϕ X Y g AϕX Y

, , , ,

, , , , 0.

Z Z Z Z

Z Z Z Z

(7.4)

Because of �{ }= ⊕T M ξspanp for any point p of M , we may put �( ) ( )∇ = ∇ + ∇ ∈X X g X ξ ξ TM,Z Z Z , where �( )⋅
denotes the �-component of any tangent vector field ( )⋅ of M . From this, equation (7.4) can be rearranged as
follows:

�

�

�

�

(( ) ) ( ( ) ) ( ( ) )

( ) ( ) ( ( ) )

(( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ) ( )

∇ + ∇ + ∇
+ ∇ + ∇
+ ∇ + ∇ + ∇
+ ∇ + ∇ =

g ϕ AX Y g ϕ A X Y g ϕA X Y

g X ξ g ϕAξ Y g ϕAX Y

g A ϕX Y g A ϕ X Y g Aϕ X Y

g AϕX Y g AϕX ξ g Y ξ

, , ,

, , ,

, , ,

, , , 0.

Z Z Z

Z Z

Z Z Z

Z Z

By our assumption of A being η-parallel and equation (7.3), the previous equation becomes

(( ) ) ( ) ( ) ( ( ) ) ( ) ( )= ∇ + ∇ + ∇ + ∇g ϕ AX Y g X ξ g ϕAξ Y g A ϕ X Y g Y ξ g AϕX ξ0 , , , , , ,Z Z Z Z (7.5)

for any �∈X Y Z, , . By the formula ( ) ( ) ( )∇ = −ϕ Y η Y AX g AX Y ξ,X , we obtain

(( ) ) ( ) ( ) ( ) ( ) ( ) ( )∇ = − =g ϕ AX Y η AX g AZ Y g AZ AX η Y g AX ξ g AZ Y, , , , ,Z (7.6)

and

( ( ) ) (( ) ) ( ) ( ) ( ) ( ) ( ) ( )∇ = ∇ = − = −g A ϕ X Y g ϕ X AY η X g AZ AY g AZ X g AY ξ g AZ X g AY ξ, , , , , , , .Z Z (7.7)
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Substituting equations (7.6) and (7.7) in equation (7.5) yields

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )− − − =g Aξ X g AY Z g X ϕAZ g ϕAξ Y g Aξ Y g AX Z g Y ϕAZ g AϕX ξ, , , , , , , , 0, (7.8)

where we have used ( ) ( ) ( )∇ = ∇ =g X ξ g X ξ g X ϕAZ, , ,Z Z for any �∈X Y Z, , .
In Lemma 7.4, we prove that there does not exist any Hopf real hypersurface in the complex hyperbolic

quadric ∗Qn , ≥n 3, satisfying all assumptions given in Proposition 7.3. By virtue of this assertion, we may put
= +Aξ αξ βU , where β is a nonvanishing smooth function on a neighborhood of a point ∈p M andU is a unit

vector field in � . From this, equation (7.8) becomes

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + − −βg U X g AY Z βg X ϕAZ g U ϕY βg U Y g AX Z βg Y ϕAZ g ϕX U0 , , , , , , , , . (7.9)

Putting �= ∈X ϕU and �= ∈Y U in equation (7.9) we obtain ( ) =βg AϕU Z, 0. Since ≠β 0, it implies
( ) =g AϕU Z, 0 for any �∈Z . So, we obtain

( ) ( ) ( )= = + =AϕU g AϕU ξ ξ αg ϕU ξ ξ βg ϕU U ξ, , , 0. (7.10)

Substituting =Y U in equation (7.9) and using equation (7.10), together with ≠β 0, provide

( ) ( ) ( )− =g U X g AU Z g AX Z, , , 0. (7.11)

Take �= ∈X W , where W is any tangent vector field satisfying ⊥W U . Then, equation (7.11) gives
( ) =g AW Z, 0 for any �∈Z . So, we obtain

( ) ( ) ( )= = + =AW g W Aξ ξ αg W ξ ξ βg W U U, , , 0. (7.12)

Now, putting =X U and =Y ϕU in equation (7.3) and using equation (7.10) yield

( ) ( ) ( ) ( ) ( )= = − =g ϕAU ϕU g AU U η U g AU ξ g AU U0 , , , , .

From this fact and = +Aξ αξ βU , together with equations (7.10) and (7.12), the tangent vector field AU is
expressed as follows:

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∑

∑

∑

=

= + + +

= + + + =

=

−

=

−

=

−

AU g AU e e

g AU e e g AU U U g AU ϕU ϕU g AU ξ ξ

g U Ae e g AU U U g U AϕU ϕU g U Aξ ξ βξ

,

, , , ,

, , , ,

i

n

i i

i

n

i i

i

n

i i

1

2 1

1

2 4

1

2 4

for any basis { }⋯ = = =− − − −e e e e U e ϕU e ξ, , , , , ,n n n n1 2 2 4 2 3 2 2 2 1 of TM .
Summing up the above facts, we obtain

� { }

⎪

⎪
=
⎧
⎨
⎩

=
=
∈ ⊖

AX

βξ X U

X ϕU

X U ϕU

if

0 if

0 if span , ,

which means that ( ) =g AX Y, 0 for any �∈X Y, . By virtue of Theorem 4.2, we can assert that M is locally
congruent to a ruled real hypersurface in ∗Qn . □

Finally, let us consider the case of =β 0, which means that M is Hopf, in Proposition 7.3 as follows. By
means of Proposition 5.3, we obtain the following lemma:

Lemma 7.4. There does not exist any Hopf real hypersurface M in the complex hyperbolic quadric ∗Qn , ≥n 3,with
η-parallel shape operator and integrable holomorphic distribution � .

Proof. Since M is Hopf, we may put =Aξ αξ . From this fact and our assumption of � being integrable, Lemma
7.1 assures + =ϕAX AϕX 0 for all ∈X TM . That is, we obtain
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= −AϕX ϕAX (7.13)

for any ∈X TM . In this case, the shape operator A of M in ∗Qn is said to be anti-commuting.
Now, by the assumption of η-parallelism and Proposition 5.3, the unit normal vector field ζ of M in ∗Qn is

A-principal. By using this fact and our assumption, we obtain

( ) ( ) (( ) ( ) ) (( ) ( ) )

(( ) ( ) )

{ (( ) ) (( ) )}

{( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ ( ) ( ) ( ) ( )}

{ (( ) ) ( )}

∑∇ − ∇ = ∇ − ∇ + ∇ − ∇

= ∇ − ∇
= ∇ − ∇
= + − − − +
= − − +
= + −

=

−

A Y A X g A Y A X e e g A Y A X ξ ξ

g A Y A X ξ ξ

g A ξ Y g A ξ X ξ

Xα η Y αg ϕAX Y g AϕAX Y Yα η X αg ϕAY X g AϕAY X ξ

αg ϕAX Y g AϕAX Y αg ϕAY X g AϕAY X ξ

αg ϕA Aϕ X Y g AϕAX Y ξ

, ,

,

, ,

, , , ,

, , , ,

, 2 ,

X Y

i

n

X Y i i X Y

X Y

X Y

1

2 2

for any basis   
�

{ }⋯ =− −e e e e ξ, , , ,n n1 2 2 2 2 1 of T Mp , ∈p M . Then, from equation (7.13), it becomes

�( ) ( ) ( )∇ − ∇ = − ∈A Y A X g AϕAX Y ξ X Y2 , for any , .X Y (7.14)

On the other hand, the fact of ζ being A-principal gives = −Cξ ξ and =Cζ ζ . From these formulas and
equation (3.2), we obtain

�( ) ( ) ( )∇ − ∇ = ∈A Y A X g ϕX Y ξ X Y2 , for any , .X Y (7.15)

Combining with equations (7.14) and (7.15) yields

�( )+ = ∈g AϕAX ϕX Y X Y, 0 for any , .

It follows that ( )+ = + =AϕAX ϕX g AϕAX ϕX ξ ξ, 0, i.e.,

�= − ∈AϕAX ϕX Xfor any . (7.16)

By equations (7.13) and (7.16), we obtain =ϕA X ϕX2 for any �∈X . Applying the structure tensor ϕ to this
equation and using = − + ⊗ϕ I η ξ2 , we obtain

�= ∈A X X Xfor any .2 (7.17)

Take �∈X0 with =AX λX0 0. Then, from equation (7.17), we obtain =λ 12 , i.e., = ±λ 1. It implies that
= ±AX X0 0. Besides, by virtue of equation (7.13), we obtain = ∓AϕX ϕX0 0. By such relations, the expression

of the shape operator A of M is given as follows:

  
     

�

( )= − − −
−

A αdiag , 1, 1, …,1 , 1, 1, …, 1 ,

T T1 1

where T1 and −T 1 are the eigenspaces given by �{ ∣ }= ∈ =T X AX X1 and �{ ∣ }= ∈ = −−T X AX X1 , respectively.
Their corresponding multiplicities satisfy ( ) ( )= = −−m T m T n 11 1 .

In general, if the unit normal vector field ζ of a Hopf real hypersurface in ∗Qn is A-principal, then we
obtain

( ) ( )= − = −CAX AX g AX ξ ξ AX αη X ξ2 , 2

for any tangent vector field X on M (see Lemma 5.1 in [28]). From this fact, we obtain

�= ∈CAX AX Xfor any . (7.18)

By the above expression of A, the holomorphic distribution � is given by � = ⊕ −T T1 1. Thus, equation (7.18)
yields

−
⎫
⎬
⎭
= = = ⎧⎨⎩

∈
− ∈ −

CX

CX
CAX AX

X X T

X X T

for

for ,

1

1
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i.e., =CX X for all �∈X . So, we have

�

⎪

⎪
=
⎧
⎨
⎩

=
− =

∈
CX

ζ X ζ

ξ X ξ

X X

for

for

for .

From this, let us calculate the trace CTr of C . Then, we obtain for any basis { }= =− −e e e e ξ e ζ, , …, , ,n n n1 2 2 2 2 1 2

of ∗TQn

( ) ( ) ( ) ( )∑ ∑= = + + = −
= =

−

C g Ce e g Ce e g Cξ ξ g Cζ ζ nTr , , , , 2 2,

i

n

i i

i

n

i i

1

2

1

2 2

(7.19)

which gives a contradiction. In fact, it is well known that the trace of C in ∗Qn satisfies =CTr 0. From this,
equation (7.19) implies =n 1. But, in this lemma, we only consider the case of ≥n 3. So, it completes this
proof. □

Hence, by using Propositions 7.2 and 7.3, we give a complete proof of Theorem 1.3.

8 Proof of Theorem 1.4

In Section 5, we have focused on the notion of η-parallel shape operator on a real hypersurface in the complex
hyperbolic quadric ∗Qn , ≥n 3. Under this observation, in this section, we will give a classification of Hopf real
hypersurfaces with η-parallel shape operator in ∗Qn , ≥n 3.

Let M be a Hopf real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3. By virtue of Proposition
5.3, the unit normal vector field ζ of any real hypersurface in ∗Qn with η-parallel shape operator isA-principal.
On the other hand, it is known that a Hopf real hypersurface M has A-principal ζ in ∗Qn if and only if M is
contact with constant mean curvature (see Proposition 5.3 in [28]). Consequently, by virtue of these results and
the classification of contact hypersurfaces in ∗Qn due to Klein and Suh [21], we can assert the following lemma;

Lemma 8.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric ∗Qn , ≥n 3. If the shape
operator A of M is η-parallel, then M is locally congruent to an open part of one of the following contact
hypersurfaces in ∗Qn :
(TB1

∗ ) a tube of radius >r 0 around the complex hyperbolic quadric − ∗Qn 1 , which is embedded in ∗Qn as a totally
geodesic complex hypersurface,

(TB2

∗ ) a tube of radius >r 0 around the k-dimensional real hyperbolic space�Hk ,which is embedded in ∗Qn as a
real space form of ∗Qn ,

(ℋB
∗ ) a horosphere in ∗Qn whose center at infinity is the equivalence class of a A-principal geodesic in ∗Qn .

For the model spaces mentioned in Lemma 8.1, we give its geometric structures in detail as follows (see
also Klein and Suh [21]).

Proposition A. Let MB be the tubes �( )∗B1
, �( )∗B2

and the horosphere �( )∗B in ∗Qn , ≥n 3. For MB, the following
statements hold:
(1) Every unit normal vector ζ of MB is A-principal.
(2) MB is a Hopf hypersurface.
(3) The shape operator A and the structure tensor field ϕ satisfy + =Aϕ ϕA μϕ. In particular, MB is a contact

real hypersurface.
(4) MB has constant principal curvatures and, in particular, constant mean curvature. Then, the principal

curvatures of MB with respect to the unit normal vector field ζ and the corresponding principal curvature
spaces are given as follows.
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Now, by using Proposition A, let us check the converse of Lemma 8.1, whether they satisfy η-parallelism,
i.e.,

�(( ) )∇ = ∈g A Y Z X Y Z, 0 for any , , .X (*)

Let { ∣ }= ∈ = − ⊥T X TM CX X X ξ,λ B and { ∣ }= ∈ = ⊥T X TM CX X X ξ,μ B . Then, by Table 1, the holo-
morphic distribution � in TMB is given by � = ⊕T Tλ μ. In order to show that the shape operator A of MB is
η-parallel, we consider the following four cases, respectively:

• Case 1. ∈X Y Z T, , μ (or ∈X Y Z T, , λ)
Since ∈ ⊂Y T TMμ B, we have =AY μY ( �∈μ ), where

�

�

�

�

( )

( )

( )

{ }

( )
( )=

⎧

⎨
⎪

⎩
⎪

− ∈ ⊂

− ∈ ⊂

− ∈ ⊂

∈

∗

∗

∗

μ

r Y T T

r Y T T

Y T T

2 tanh 2 for

2 coth 2 for

2 for

\ 0 .

μ B

μ B

μ B

1

2

It gives that ( ) ( )∇ = ∇ − ∇A Y μ Y A YX X X for any ∈X Y T, μ. Its inner product of ∈Z Tμ becomes

(( ) ) ( ) ( ) ( ) ( )∇ = ∇ − ∇ = − ∇ =g A Y Z μg Y Z g Y AZ μ μ g Y Z, , , , 0.X X X X

So, we assert that the shape operator A of MB satisfies (( ) )∇ =g A Y Z, 0X for ∈X Y Z T, , μ (or for ∈X Y Z T, , λ).
• Case 2. ∈X Tμ and ∈Y Z T, λ (or ∈X Tλ and ∈Y Z T, μ)
By using the symmetric property of A, it holds that

(( ) ) (( ) )∇ = ∇ ∈g A Y Z g A Z Y X Y Z TM, , for any , , .X X B (8.1)

This fact leads to

(( ) ) (( ) )

( ( ) ( ) )

( ) ( ) ( ) ( )

∇ = ∇
= ∇ − ∇
= ∇ − ∇ = − ∇ =

g A Y Z g A Z Y

g λ Z A Z Y

λg Z Y g Z AY λ λ g Z Y

, ,

,

, , , 0,

X X

X X

X X X

where =AY λY and =AZ λZ . From this, we conclude that MB has η-parallel shape operator for this case.
• Case 3. ∈X Z T, μ and ∈Y Tλ (or ∈X Z T, λ and ∈Y Tμ)
From the fact of ζ being A-principal, we obtain = −Cξ ξ . Then, the equation of Codazzi (3.2) gives

�(( ) ) (( ) )∇ = ∇ ∈g A Y Z g A X Z X Y Z, , for any , , .X Y (8.2)

Since =AX μX and =AZ μZ , equation (8.2) gives

(( ) ) (( ) )

( ( ) )

( ) ( )

( ) ( )

∇ = ∇
= ∇ − ∇
= ∇ − ∇
= − ∇ =

g A Y Z g A X Z

g μ X A X Z

μg X Z g X AZ

μ μ g X Z

, ,

,

, ,

, 0,

X Y

Y Y

Y Y

Y

Table 1: Principal curvatures of model spaces of MB

Type Eigenvalues Eigenspace Multiplicity

�( )∗B1
( )=α r‒ 2 coth 2 �Jζ 1

=λ 0 � �( ) { ∣ }∩ = ∈ =JV C X CX X‒ n‒1

( )=μ r‒ 2 tanh 2 � �( ) { ∣ }∩ = ∈ =V C X CX X n‒1

�( )∗B2
( )=α r‒ 2 tanh 2 �Jζ 1

=λ 0 � �( ) { ∣ }∩ = ∈ =JV C X CX X‒ n‒1

( )=μ r‒ 2 coth 2 � �( ) { ∣ }∩ = ∈ =V C X CX X n‒1

�( )∗B = =α μ ‒ 2 ��( ( ) )∩ ⊕V C Jζ n

=λ 0 �( ) ∩JV C n‒1
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which implies that (ast) holds for this case.
• Case 4. ∈X Y T, μ and ∈Z Tλ (or ∈X Y T, λ and ∈Z Tμ)
Using the above two formulas, equations (8.1) and (8.2), with respect to �∈X Y Z, , provides

(( ) ) (( ) ) (( ) )

(( ) ) (( ) ) (( ) )

∇ = ∇ = ∇

= ∇ = ∇ = ∇
( ) ( )

g A Y Z g A Z Y g A X Y

g A Y X g A Z X g A X Z

, , ,

, , ,

X X Z

Z Y Y

by 8.1 by 8.2 (8.3)

for any �∈X Y Z, , .
Now, from ∈X Y T, μ we know that =AX μX and =AY μY . With regard to equation (8.3), these facts yield

(( ) ) (( ) )

( ( ) )

( ) ( )

( ) ( )

∇ = ∇
= ∇ − ∇
= ∇ − ∇
= − ∇ =

g A Y Z g A Y X

g μ Y A Y X

μg Y X g Y AX

μ μ g Y X

, ,

,

, ,

, 0.

X Z

Z Z

Z Z

Z

Summing up the above four cases, we can assert that the shape operator of MB is η-parallel. From this and
(1) and (2) in Proposition A, we conclude with the following lemma:

Lemma 8.2. The model spaces of types �( )∗B1
, �( )∗B2

, and �( )∗B in ∗Qn , ≥n 3, are Hopf real hypersurfaces with
A-principal normal vector field. Furthermore, the shape operators of the above model spaces are η-parallel.

Then, by virtue of Lemmas 8.1 and 8.2, we give a complete proof of Theorem 1.4 in the Introduction.
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