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Abstract: In this article, we introduce a new family of real hypersurfaces in the complex hyperbolic quadric
Q™ = 803,/50,50,, namely, the ruled real hypersurfaces foliated by complex hypersurfaces. Berndt described
an example of such a real hypersurface in Q** as a homogeneous real hypersurface generated by a 2-principal
horocycle in a real form RH". So, in this article, we compute a detailed expression of the shape operator for
ruled real hypersurfaces in Q"* and investigate their characterizations in terms of the shape operator and the
integrable distribution C = {X € TM|X L ¢}. Then, by using these observations, we give two kinds of classifi-
cations of real hypersurfaces in Q" satisfying n-parallelism under either p-commutativity of the shape
operator or integrability of the distribution C. Moreover, we prove that the unit normal vector field of a
real hypersurface with n-parallel shape operator in Q" is 2-principal. On the other hand, it is known that all
contact real hypersurfaces in Q" have a 2(-principal normal vector field. Motivated by these results, we give a
characterization of contact real hypersurfaces in Q"* in terms of n-parallel shape operator.
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1 Introduction

In the class of Hermitian symmetric spaces with rank 2 of noncompact type, we can consider the example of
complex hyperbolic quadric Q** = S07,/S0,50,, which is a simply connected Riemannian manifold whose
curvature tensor is the negative of the curvature tensor of the complex quadric Q" = §0,.,/S0,50,, (see [1-5]).
The complex hyperbolic quadric Q** can be regarded as a kind of real Grassmann manifold of noncompact
type with rank 2. Accordingly, Q" admits two important geometric structures, a complex conjugation (or real
structure) C, and a Kéhler structure (or complex structure) J, which anti-commute with each other, i.e.,
(] = -JC. Then, for n 2 2, the triple (Q™*, ], g) is a Hermitian symmetric space of noncompact type, and its
minimal sectional curvature is equal to —4 (see [6-8]).

In particular, Kimura-Ortega [9] and Montiel-Romero [10] proved that Q"* can be immersed in the inde-
finite complex hyperbolic space CH**}(-c), ¢ > 0, by interchanging the Kdhler metric with its opposite. Indeed,

if we change the Kahler metric of CP™'! by its opposite, we have that Q. endowed with its opposite metric

g’ = —g is also an Einstein hypersurface of CH (~c). In the case of s = 0, (@', g’ = -g) can be regarded as

Q" = S07,/S0,50,, which is immersed in the indefinite complex hyperbolic space CH**'(-c), ¢ >0 as
a complex Einstein hypersurface.
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Apart from the complex structure ], there is another distinguished geometric structure on Q"*, namely
a parallel rank 2 vector bundle 2, which contains an S!-bundle of real structures on the tangent spaces
of Qm, ie, 2 = {AC|]A € SU}. This geometric structure determines a maximal 2l-invariant subbundle Q of
the tangent bundle TM of a real hypersurface M in Q"".

In this article, we consider a classification problem of real hypersurfaces in the complex hyperbolic
quadric Q*,n = 3. Let { be a unit normal vector field of a real hypersurface M in Qm". As a typical classification
of real hypersurfaces in Q™*, we introduce the following result, which was given by Suh [11].

Theorem A. Let M be a complete real hypersurface in the complex hyperbolic quadric Q"*,n > 3, with commuting
shape operator. Then, M is locally congruent to a tube over a complex hyperbolic space CH¥ in Q%*, n = 2k or
a horosphere.

Here, if the structure tensor ¢ commutes with the shape operator A of M, i.e., Ap = ¢A, we say that M has
the commuting shape operator (i.e., M has isometric Reeb flow). This result motivates us to study the weaker
notion of n-commuting property of the shape operator. So, we define n-commuting property and n-parallelism
of the shape operator A of M as follows:

Definition. If the shape operator A of M satisfies
&((Ap - 9A)X,Y) = 0

for any X,Y € C, we say that A is n-commuting. Here, ¢ is the structure tensor of M, which is given as
the tangential part of JX = ¢X + g(X, &) for any X € TM. Moreover, the shape operator A of M is said to
be n-parallel if it satisfies

8(xA)Y,Z) =0

for any X, Y, Z € C, where C denotes the orthogonal complement of the Reeb vector field £ = —J{ of M in TM.

A complete classification of real hypersurfaces in the complex quadric Q" with such two notions for shape
operator was given in Kimura et al. [12]. By virtue of this classification, a new characterization of ruled real
hypersurfaces foliated by complex totally geodesic hyperplanes Q™! in Q" was given in the same article. For
the complex projective space CP", Kimura [13] and Loknherr and Reckziegel [14] gave some examples of ruled
real hypersurfaces. The characterizations of ruled real hypersurfaces in CP" were investigated in [15-18] and
so on. Recently, the ruled real hypersurfaces in the indefinite complex projective space CP, have been
introduced by Moruz et al. [19]. Moreover, they gave a classification of all minimal ruled real hypersurfaces
in CPy.

Motivated by these results, in this article, we will give a classification of real hypersurfaces in the complex
hyperbolic quadric Q** regarding n-parallel and n-commuting shape operator. When the Reeb vector field & of
M in Q™ is principal, a real hypersurface M is said to be Hopf. As another kind of real hypersurfaces in Q**, we
deal with a family of ruled real hypersurfaces in Q*, which are not Hopf. Indeed, a ruled real hypersurface is
foliated by totally geodesic complex hypersurfaces Q7-1* in Q™*. More details on this family are given in Section
4. Then, by virtue of Theorems A, 4.2, and 6.4, we assert the following theorem:

Theorem 1.1. Let M be a real hypersurface in the complex hyperbolic quadric Q™*, n = 3, with n-parallel and
n-commuting shape operator. Then, M is locally congruent to a ruled real hypersurface in Q™.

Remark 1.2. In Section 5, we prove that the unit normal vector field ¢ on a real hypersurface with n-parallel
shape operator in Q"*, n > 3, is 2-principal (see Lemmas 5.1 and 5.2). Lemma 5.5 shows that the shape operator
of a ruled real hypersurface in Qm*, n > 3, is n-parallel. Consequently, we can assert that the unit normal vector
field of a ruled real hypersurface is 2-principal (see Proposition 5.6).
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Now, let us consider the notion of integrability of the holomorphic distribution C of a real hypersurface M
in the complex hyperbolic quadric Qm*, where C is given by C = {X € TM | X L ¢}. Kimura and Maeda [15]
considered this notion for a real hypersurface in the complex projective space CP". They gave a characteriza-
tion of ruled real hypersurface in CP". Motivated by such a result, for Q**, we obtain the following theorem:

Theorem 1.3. Let M be a real hypersurface in the complex hyperbolic quadric Q"*, n = 3. Then, the shape
operator of M is n-parallel and the holomorphic distribution C = {X € TM | X L &} is integrable if and only if
M is locally congruent to a ruled real hypersurface in Q.

As will be discussed in detail in Section 6, we know that if the shape operator of a real hypersurface M in
Qn* satisfies the conditions of n-commutativity and n-parallelism, then M is either Hopf or ruled (see Lemma
6.2). Now, let us focus our attention on the case that M is Hopf. Then, the n-commuting property is equivalent to
the Reeb flow being isometric. By using this fact, we obtain a characterization of ruled real hypersurfaces in
Q™ (see Theorem 1.1). From this point of view, it is necessary to consider Hopf real hypersurfaces with
n-parallel shape operator. So, as a final result, we want to give a complete classification of Hopf real hyper-
surfaces in Q" with n-parallel shape operator as follows:

Theorem 1.4. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q™*, n = 3. Then, the shape
operator of M is n-parallel if and only if M is locally congruent to an open part of one of the following contact real
hypersurfaces in Q*:
(Ts,) atube of radiusr > 0 around the complex hyperbolic quadric Qn=*, which is embedded in Q™" as a totally
geodesic complex hypersurface,
(T,) atube of radiusr > 0 around the k-dimensional real hyperbolic space RH¥, which is embedded in Q"* as
a real space form of Q"*, n = 2k,
(#8) a horosphere in Qn* whose center at infinity is the equivalence class of a 2-principal geodesic in Q™*.

Remark 1.5. For a Hopf real hypersurface in the complex hyperbolic space CH™ with n-parallel shape operator,
Suh [20] proved that such a real hypersurface in CH" is locally congruent to one of types Ag, 4;, 4; or of type B
in CH™. From this and our result, Theorem 1.4, there is a difference between the theory of real hypersurfaces in
CH™ and that of real hypersurfaces in Q™.

2 The complex hyperbolic quadric

In this section, we introduce the complex hyperbolic quadric Q"*. This section is due to Klein and Suh
(see [11,21]).

The n-dimensional complex hyperbolic quadric Q™ is the noncompact dual of the n-dimensional complex
quadric Q", i.e., the simply connected Riemannian symmetric space whose curvature tensor is the negative of
the curvature tensor of Q". It cannot be realized as a homogeneous complex hypersurface of the complex
hyperbolic space CH™*', In fact, Smyth [3, Theorem 3(ii)] has shown that every homogeneous complex hyper-
surface in CH™! is totally geodesic. This is in marked contrast to the situation for the complex quadric Q",
which can be realized as a homogeneous complex hypersurface of the complex projective space CP™*! in such
a way that the shape operator for any unit normal vector to Q" has a real structure on the corresponding
tangent space of Q" (see [8,21,22]). Another related result by Smyth, [4, Theorem 1], which states that any
complex hypersurface in CH"*! for which the square of the shape operator has constant eigenvalues (counted
with multiplicity) is totally geodesic, also precludes the possibility of a model of Q™" as a complex hypersurface
of CH"*! with the analogous property for the shape operator. Therefore, we realize the complex hyperbolic
quadric Q™" as the quotient manifold SO;,/S0250y.
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As Q" is isomorphic to the real hyperbolic space RH? = S05,/50,, and Q2* is isomorphic to the Hermitian
product of complex hyperbolic spaces CH' x CH, we suppose n = 3 in the sequel and throughout this article.
Let G = SOy, be the transvection group of Q"* and K = SO,SO, be the isotropy group of Q" at the “origin”
p, = eK € Q™. Then,

0:G- G, grsgs with s=

is an involutive Lie group automorphism of G with Fix(o), = K, and therefore, Q"* = G/K is a Riemannian
symmetric space. The center of the isotropy group K is isomorphic to SO,, and therefore, Q™ is in fact a
Hermitian symmetric space.
The Lie algebra g = s0,, of G is given as follows:
g ={X € gl(n + 2,R)|X's = -sX}

(see [23, p. 59]). In the sequel, we will write members of g as block matrices with respect to the decomposition
R™?2 = R2 @ R", ie, in the form

X = [Xn X12],
X1 Xp
where X1, X5, X1, and Xp; are real matrices of dimension 2 x 2,2 x n, n x 2, and n x n, respectively. Then,
Xy Xp
g= [ Xltl = _AX11; Xltz = )(21, thz = _Xzz .
X1 Xy

The linearization o = Ad(s) : g — g of the involutive Lie group automorphism o induces the Cartan decom-
position g = £ & m, where the Lie subalgebra

t=FEig(o,1) ={X<€g|sXs'=X}

Xy O
0 X

=500 ® S0,

] ‘ X1t1 =-Xn, lez =Xy

is the Lie algebra of the isotropy group K, and the 2n-dimensional linear subspace

0 Xu]

m = Eig(o,,-1) ={X € g |sXs!1=-X}= % 0
2

Xltz =Xy

is canonically isomorphic to the tangent space T, Q"*. Under the identification T, Q"" = n, the Riemannian
metric g of Q" (where the constant factor of the metric is chosen so that the formulae become as simple as
possible) is given as follows:

1
gX,Y) = 2 tr(YiX) = tr(YipXp1) for X,YEm,
where g is clearly Ad(K)-invariant and therefore corresponds to an Ad(G)-invariant Riemannian metric on
Qm*. The complex structure J of the Hermitian symmetric space is given as follows:

0 1
-10

JX=Ad(j)X for X€m, wherej:= EK.
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As j is in the center of K, the orthogonal linear map J is Ad(K)-invariant and thus defines an Ad(G)-invariant
Hermitian structure on Q. By identifying the multiplication by the unit complex number i with the applica-
tion of the linear map J, the tangent spaces of Q** thus become n-dimensional complex linear spaces, and we
will adopt this point of view in the sequel.

As for the complex quadric (again compare [8] with [21] and [11]), there is another important structure on
the tangent bundle of the complex quadric besides the Riemannian metric and the complex structure, namely
an S'-bundle 2 of real structures. The situation in this case is distinct from that of the complex quadric, as the
real structures in 2( cannot be construed as the shape operator of a complex hypersurface in a complex space
form, but as the following considerations will show, 2 still plays a fundamental role in the description of the
geometry of Q.

Let

Note that we have aq € K, but only a, € 0, SO,. However, Ad(a,) still leaves m invariant and therefore
defines an R-linear map C, on the tangent space m = T, Q"". (p turns out to be an involutive orthogonal

map with Gy » J = =] » Gy (i.e,, G is anti-linear with respect to the complex structure of T, Q™*), and hence
a real structure on T, Q™. But C, commutes with Ad(g) not for all g € K, but only for g € SO, C K. More
cos(t) -sin(t)

sin(t) cos(t) with t € R (so that

specifically, for g = (g, 8;,) € K with g € SO, and g, € SOy, say g, =

Ad(g,) corresponds to multiplication with the complex number y = e'), we have
Co ° Ad(g) = u~%Ad(g)° Co.

This equation shows that the object that is Ad (K)-invariant and therefore geometrically relevant is not the real
structure C, by itself but rather the “circle of real structures”

A, = 1ACo | A € ST,

2y, is Ad(K)-invariant and therefore generates an Ad(G)-invariant Sl-subbundle 2 of the endomorphism
bundle End(TQ""), consisting of real structures on the tangent spaces of Q**. For any CV € 2, the tangent line
to the fiber of 2 through C is spanned by JC.

For any p € Q" and C € 2, the complex conjugation (real structure) C induces a splitting

T,o" = V(C) ® JV(C)

into two orthogonal, maximal totally real subspaces of the tangent space T,Q™". Here,V(C) respectively jV(C)
are the (+1)-eigenspace respectively the (-1)-eigenspace of C. For every unit vector Z € T,Q™", there exist
t €0, g], C € 2, and orthonormal vectors X, Y € V(C) so that

Z = cos(t)X + sin(t)JY

holds (see [8, Proposition 3]). Here, t is uniquely determined by Z. The vector Z is singular, i.e., contained in
more than one maximal flat in Q™ if and only if eithert =0 or ¢t = % holds. The vectors with ¢ = 0 are called
A-principal, whereas the vectors with ¢t = % are called 2A-isotropic. If Z is regular, i.e.,0 < t < % holds, then also
C, X, and Y are also uniquely determined by Z.

The Riemannian curvature tensor R of Q"* can be fully described in terms of the “fundamental geometric
structures” g, J, and 2 as follows:

RX,Y)Z=-g(Y,2)X + gX, 2)Y - gV, Z)JX + g(JX, Z)JY + 2g(JX, Y)JZ - g(CY, Z)CX + g(CX, Z)CY
- g(JCY, Z)JCX + g(JCX, Z)]CY

2.7
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for arbitrary C € 2. Therefore, the curvature of Q"* is the negative sign of that of the complex quadric Q",
compare [8, Theorem 1]. This confirms that the symmetric space Qm*, which we have constructed here, is
indeed the noncompact dual of the complex quadric.

It is well known that Q™* becomes a Kahler manifold, i.e., the complex structure J is parallel, V] = 0, where
¥V is the Levi-Civita connection of Qn*. Finally, because the S'-subbundle 2 of the endomorphism bundle
End(TQ™*) is Ad(G)-invariant, it is also parallel with respect to the same covariant derivative V induced
by V on End(TQ"™). Because the tangent line of the fiber of 2 through some C, € 2 is spanned by JC,, this
means precisely that, for any section C of 2, there exists a real-valued 1-form q : TQ"™" — R so that

C = q(X)JC, holds for p € Q*, X € T,Q"". 2.2)

3 Some general equations

Let M be a real hypersurface in the complex hyperbolic quadric Q"* and ¢ be a local unit normal vector field of
M. Any vector field X tangent to M satisfies

JX = ¢X + n(X)<. 3.1

The tangential component of equation (3.1) defines on M as a skew-symmetric tensor field ¢ of type (1,1),
named the structure tensor. The structure vector field ¢ is defined by ¢ = -J{ and is called the Reeb vector
field. The 1-form n is given by n(X) = g(¢, X) for any vector field X tangent to M. So, on M, an almost contact
metric structure (¢, &, n, g) is defined. The tangent bundle TM of M splits orthogonally into TM = C & R¢,
where C = ker(n) is the maximal complex subbundle of TM. The structure tensor field ¢ restricted to C
coincides with the complex structure J restricted to C, and ¢¢ = 0.

We assume that M is a Hopf hypersurface. Then, the Reeb vector field ¢ = —J{ satisfies the following:

A¢ = ag,

where A denotes the shape operator of the real hypersurface M for a smooth functiona = g(A4¢, £) on M. Now,
we consider the equation of Codazzi:

&(A)Y - (WA)X, Z) = -n(X)g(9Y, Z) + n(Y)g(9X, Z) + 2n(Z)g(¢X,Y) - g(X, C()g(CY, Z)
+8(Y, CO8(CX, Z) - g(X, COg(CY, Z) + g(Y, CEgJCX, Z).
Putting Z = £ in equation (3.2), we obtain

&((xA)Y - (WA)X, &) = 28(¢X, Y) - (X, CO)g(Y, CE) + g(Y, COg(X, CE) + g(X, CEHE(Y, CF)
- g(Y, COg (X, CO).

(3.2)

On the other hand, we have

g((xA)Y - (WA)X, &) = g((VxA)S, Y) - g((WA)E, X)
= Xa)n(Y) - (Ya)n(X) + ag((Ap + pA)X, Y) - 28(AAX, Y).

Comparing the previous two equations and putting X = ¢ yield
Ya = Ga)n(Y) - 2g(&, COg (Y, C§) — 28(Y, CO)g (¢, CE).
Reinserting this into the previous equation yields

g((xA)Y — (VA)X, §) = 28(&, COIZ(X, CON(Y) - 28(X, CO)g(&, COHN(Y)
= 28(&, CO8 (Y, COHNX) + 28(Y, COIZ(E, CEOHINX)
+ag((pA + AP)X, Y) - 29(APAX, Y).

Altogether, this implies
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0=29(ApAX,Y) - ag((@A + AP)X,Y) + 28(¢X,Y)
- 8(X, COg(Y, C) + g(¥, CO)g(X, C8)
+ g(X, €58y, C§) — g(¥, CE)8(X, C¢)
- 28(8, CO)g(X, CoN(Y) + 28(X, COHE(E, CoHn(Y)
+28(8, CO)g(Y, CoNX) - 28(Y, COHg(E, CEHINX).

At each point z € M, we can choose C € 2, such that
¢ = cos(t)Z, + sin(t)JZ,

for some orthonormal vectors Z;, Z, € V(C) and 0 < ¢t < % (see Proposition 3 in [8]). Note that ¢ is a function on
M. First of all, since ¢ = —J{, we have

C{ = cos(t)Zy — sin(t)]Z,,
& =sin(t)Z, — cos(t)JZ,, 3.3)
C¢ =sin(t)Z; + cos(t)JZ;.

This implies g(¢, C{) = 0 and hence

0=28(A0AX,Y) - ag(($A + AP)X, ) + 28(¢X, Y)
- 8(X, COg(Y, C8) + g(¥, COHE(X, CE)
+ g(X, CE)E(Y, C8) - g(Y, CE)g (X, CE)
+ 28X, COE(E, COHN(Y) - 28(Y, COIE(E, CEHN(X).

4 Ruled real hypersurfaces

In this section, we define a ruled real hypersurface in the complex hyperbolic quadric Q** and give the form of
its shape operator. From this fact, we give some characterizations of ruled real hypersurfaces M in Q.
Moreover, we will introduce the example due to Berndt [24].

Let M be a real hypersurface in the complex hyperbolic quadric Q*. If the Reeb vector field £ = -J{ of M is
principal, M is said to be Hopf. Now, let us introduce another kind of real hypersurfaces, ruled real hyper-
surfaces in the complex hyperbolic quadric Q*, which are not Hopf, as follows:

Definition 4.1.

(@) Let C be the distribution given by C = {X € TM | X L &}. It is called the holomorphic distribution of M.

(b) If[X, Y] € C for any vector fields X, Y € C, then C is said to be integrable.

(c) A real hypersurface M is said to be ruled if the holomorphic distribution C is integrable and each of its
leaves is locally congruent to a totally geodesic complex hyperplane Q-1 in Q™*.

Note. The above (c) can be rewritten as follows: when M is foliated by the integrable totally geodesic
complex hyperplane Qn-1* in Qm*, then M can be given by M = {p € Qn-1*(¢) | t € I}. In such a case, we say that
M is a ruled real hypersurface in Q.

Theorem 4.2. Let M be a real hypersurface in the complex hyperbolic quadric Q"*, n = 3. Then, M is locally
congruent to a ruled real hypersurface in Q™" if and only if the shape operator A satisfies g(AX,Y) = 0 for any
vector fields X and Y € C.

Proof. Assume that M is ruled. Let L be a totally geodesic leaf of C in Q™*, that is, L is an integral manifold of C.
For any L, we call V¥ its Levi-Civita connection. Then, we obtain VyY = V§(Y for any vector fields X, Y € TL,
which implies VxY € TL. As T,L = C, for any point p of L, we obtain

g(WY,{)=0 @1
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for any X, Y € TL. On the other hand, the Gauss formula of M in Q™" is given as follows:
WY = WY + g(AX, Y)(, 4.2)

where VY denotes the tangential part of VxY. By taking the inner product of equation (4.2) with the unit
normal vector field ¢ and using equation (4.1), it follows that g(AX,Y) = 0 for any X, Y € C.

Conversely, suppose that the shape operator A of M satisfies g(AX, Y) = 0 for any X, Y € C. Let us show
that the holomorphic distribution C of M is integrable. In order to do this, we first show that VY is tangent to
M and is orthogonal to &, ie, VY € C for any X, Y € C. In fact, by virtue of the Weingarten formula
Vx({ = —AX, our assumption assures

0= g(AXx Y) = _g(vX(, Y) = g((: vXY)

for any X, Y € C. It means that VY is tangent to M. On the other hand, it is known that ¢Y € C for any
Y € TM, because ¢¢ = 0. So, our assumption g(4X,Y) =0 for any X,Y € C gives g(AX, ¢Y) = 0 for any
X, Y € C. From this, together with the Gauss formula and the formula Vx¢ = ¢AX, we obtain

g(WY, &) = —g(Y, &) = -g(¥, Vxd) - 8(AX, §)g(Y, () = —g(¥, pAX) = g(¢Y, AX) = 0.

It means that the tangent vector field VxY of M is orthogonal to the Reeb vector field &, i.e., VxY € C. Similarly,
we obtain that VyX € C. Thus, for any X, Y € C,

[X, Y] = VXY_ VYX € C.

Hence, we can assert that the distribution C of M is integrable.

Next, let us see that the leaves of C are totally geodesic. Take L as one leaf of them, i.e., L is a submanifold
of Q™" such that T,L = C, for any point p € L. Let V- and o be the Levi-Civita connection on L and the second
fundamental form of L in Qm, respectively. Then, we may write the Gauss equation of L in Qm* as follows:

WY =ViY + o(X,Y) 4.3)

forany X, Y € T,L, p € L. As the result was proven above, it holds that VyY € C. Also, it holds VLY € TL for any
X,Y € TL. From these facts and C = TL, equation (4.3) gives o(X, Y) = 0. It follows that

WY = Vky

for any X, Y € C. Hence, we assert that the leaf L of C is totally geodesic. O

From this result, we can compute a detailed description of the shape operator A of a ruled real hypersur-
face M in Q™. In fact, it can be seen that this property is also true on ruled real hypersurfaces of nonflat
complex space forms and complex quadric Q™" (see [12,13,25]). So, as a characterization of ruled real hyper-
surfaces in Q*, we have:

Theorem 4.3. The expression of the shape operator A of a ruled real hypersurface M in Q" is given as follows:
At=at+ BU, AU=PB¢, AX=0

for any vector field X L &, andU, where U is a unit vector field in C, which is orthogonal to the Reeb vector field ¢ .
Here, the functions a = g(A¢, &) and B = g(A¢, U) are smooth and the function 8 does not vanish on a neighbor-
hood of a point p € M.

Proof. As mentioned above, the assumption of M being ruled means that M is not Hopf. So, we may write
A¢ = ag + pU,

where the unit vector field U € C is orthogonal to the Reeb vector field ¢ and the smooth function § = g(4¢, U)
is nonvanishing on a neighborhood of a point p € M.
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Now, we take

B={e1=¢,e=U,e3= 09U, ey, 5= ey, - 309, €n-1= Peyp2}
ec

as a basis of TM. Then, by virtue of Theorem 4.2, we obtain g(AU, ¢) = 0 for anyi = 2, 3,..., 2n - 1. Therefore,
it gives
2n-1 2n-1

AU =Y g(AU, e)e; = g(AU, er)ey + Y g(AU, e)e; = g(AU, §)E.
i=1 i=2

Moreover, by using the facts A = a& + BU and & L U, it becomes
AU = g(U, Ad)§ = BS.

Let us consider AX for any tangent vector field X which is orthogonal to £ and U. In fact, by using Theorem
42, g(AX,Y) =0 for any X, Y € C, and the expression of 8, we obtain

AX = g(AX, §)¢ = g(X, ad + U)E =0

for any X € C orthogonal to the unit vector field U, finishing the proof. g

It holds that g(WY, &) = —g(Y, %<¢) = —g(Y, 9AX) = g(¢Y, AX) for any X, Y € C. By virtue of Theorem
4.2, it implies that VxY € C. From this, we assert that the shape operator A of a ruled real hypersurface M is
n-parallel, i.e., g((VxA)Y, Z) = 0 for any X, Y, Z € C. By linearization, it becomes g((VxA)X, X) = 0 for any
X € C. Then, this is equivalent to the constancy of g(4y’, y')? = §(V,", V"), where y is a geodesic on M. Here,
g and V denote, respectively, the Riemannian metric and the Riemannian connection of the complex hyper-
bolic quadric Q. This means that every geodesic y: I - M in Q"*, which is orthogonal to the Reeb vector field
¢, ie, y(0) L &, and y(0) = p, has constant first curvature.

Remark 4.4. Let M be a ruled real hypersurface in the complex hyperbolic quadric Q**. Of course, the shape
operator A is n-parallel. Moreover, by Theorem 4.3, we obtain A¢pU = 0. If the Reeb function a = g(4¢, ¢) = 0,
the function B = g(A¢, U) is a nonvanishing constant, and the vector field U is parallel, i.e., V;:U = 0, along the
integral curve (horocycle) of the Reeb vector field ¢, respectively, then the unit normal vector field { = J¢
becomes singular.

In fact, let us use the equation of Codazzi for A = a¢ + pU, AU = B¢. Then, it follows that

ERX,Y)E, )= g(wAY - (WAX, §)
= 8((%A), Y) - g(WA)S, X)
= da(X)n(Y) - da(Y)n(X) + ag((Ad + pA)X,Y) - 28(AAX, Y) + (XB)g(U, Y)

- (YB)g(U, X) + p{g(WU,Y) - g(WU, X)}.
By putting X = ¢ into equation (4.4) and using the assumption for ruled hypersurfaces in Qm*, we have

ERE, O, JY) = gRUY, JE)(, §) = §R(E, Y)E, O)
=da()nY) - da(Y) + aBg(¢U, Y) + (§B)g(U, Y) + pg(VeU, Y) = 0,

44

4.5)

where we have used AU = 0 in the third equality. This implies that the normal Jacobi operator R; satisfies
Ri&=R(E O =c¢

for ¢ € R. Then, by a result due to Berndt and Suh (see Proposition 3.1, [26]), we know that the unit normal vector
field ¢ is A-principal or 2-isotropic. But, in Lemma 5.2, we will see that there does not exist any real hypersurface
in Qm* with n-parallel shape operator and 2-isotropic unit normal vector field. Accordingly, among these two
types of singular normal vector fields, Remark 1.2 gives us that the normal vector field ¢ is 2-principal.

Example 4.5. (The minimal homogeneous ruled real hypersurface in Q"*) According to Berndt’s research [24]
and Remark 4.4, it is known that the unit normal vector field ¢ of a ruled real hypersurface in Q" is
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2A-principal. So, there exists a real structure C on Q™" so that C{ = {. The real structure C is unique up to sign.
Let V(C) be the (+1)-eigenspace of the real structure. Then, JV(C) is the (-1)-eigenspace of the real structure.
Since { € V(C), we have ¢ € JV(C). There exists a real hyperbolic space RH", embedded in Q™" as a real form
(i.e., an n-dimensional totally geodesic totally real submanifold) with 0 € RH™ and T,RH" = JV(C). Then,
¢ € T,RH™ determines a horocycle y in RH". The orthogonal complement of R¢ in T, RH" determines a totally
geodesic RH™ € RH™. ThisRH" C RH" determines a totally geodesic Qn-1* C Q* by complexification such
that (X, JX) € T,Q"1* for X € T,RH". By parallel translation of T,Q"1* along the horocycle y, we obtain a
one-parameter family of totally geodesic complex hyperbolic hyperplanes, which is the ruling of the real
hypersurface M in Q.

This example explains how the homogeneous real hypersurface M = S - 0 in the complex hyperbolic quadric
Q™" can be viewed as a ruled hypersurface. Here, the Iwasawa decomposition g = ¢ @ a @ n of the Lie algebra g
of the complex hyperbolic quadric Q™" is used, where S denotes the Lie group corresponding to the Lie algebra s.
The Lie algebra s is defined as s = a ® (nOR() for each unit vector { € g, , where a denotes the maximal
abelian subspace of p and n denotes a nilpotent subalgebra of g given by n = g, @ g4, ® 9440, © Iap420,

The shape operator A; of M in Q™* can be defined as follows:

1
AcX = S10= 0(0), X1,

where [-], is the orthogonal projection onto s and 6 € Aut(g) denotes the Cartan involution on g. Then, by
a calculation due to Berndt [24], we have

AE-LU and AU-LE
¢ \/ﬁ ¢ m
Here, the Reeb vector field ¢ is defined as follows:
00 0 0O0 - 01
00 0 0O0- 00O
1 00 0 0O0- 01
ALK LT
00 0 00O 00
10-100 00

and the orthogonal unit vector field U is defined as follows:

0-1000- 00
0-1000- 00
1100 000 00
= — E )
v J2nl0 0 0 00 - 00 90, ® 94020,
00 0 0O0- 00
00 000 00

Berndt [24] has proved the following fact: the homogeneous ruled real hypersurface M in Qm, i.e.,
generated by an -principal horocycle in Qm*, has three distinct constant principal curvatures 0, v/2, and

-2 with multiplicities 2n - 3, 1, and 1, respectively. In particular, M is a minimal real hypersurface
in (Q™, &)
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5 n-parallel shape operator and key results

In this section, we will show that the unit normal vector field { of a ruled real hypersurface in the complex
hyperbolic quadric Q" is 2-principal. In order to do this, we will use the notion of n-parallelism, i.e.,
g((VxA)Y,Z) =0 for any X,Y,Z € C, where C={X € TM | X L &} denotes the orthogonal complement of
the Reeb vector field £ on M in Q™.

By the Gauss equation of a real hypersurface M in Qm*, the curvature tensor R(X, Y)Z on M induced from
the curvature tensor R of Qn* can be described in terms of the complex structure J and the complex conjuga-

tion C € 2 as follows:
RX,Y)Z=-8g(Y,Z2)X + 8(X, 2)Y - g(¢Y, 2)pX + g(¢X, Z)PY + 28(¢X, Y)PZ
- g(CY, Z)(CX)T + g(CX, Z)(CY) - g(cCy, Z)(JCx)T
+ g(JCX, Z)(JCY )T + g(AY, Z)AX - g(AX, Z)AY

for any X, Y,Z € TM. Here, ( - ) denotes the tangential component of ( - ).
Now let us put

CX=BX+pX){ and p(X)=g(CX, ),

for any vector field X € TM, where BX and p(X){ denote the tangential and normal components of the vector
field CX € TQ™, respectively. Then, together with p(¢) = g(C¢, {) = 0, it follows that

C¢ = BS + p(§)¢ = BS (5.1

and

C¢=CJ¢ = —JCE = =] (BE + p(§)) = —¢BE = n(BE)E = —pCE - n(CE)S. (5.2)
Indeed, equation (5.1) means that the vector field C¢ is tangent to M, i.e., C¢ € TM. Taking the covariant
derivative of C¢, together with the Gauss formula and equation (2.2), it follows

Vx(CE) = Ux(CE) - g(AX, CE)]

= (W) + C(Vxé) - g(AX, CE)

qX)JCE + C(Vx$ + g(AX, §)¢) - g(AX, C§)¢
qX)(PCE + g(CE, §)0) + CYAX + g(AX, §)CC ~ g(AX, C§)C

= q(X)(PCE + g(CE, §)0) + BYAX + g(CPAX, ()¢
- 8(AX, O)PCE - g(AX, §)g(CE, §)¢ - g(AX, CE)C,

where V denotes the Levi-Civita connection of Q**. Then, by comparing the tangential and the normal compo-
nents of the above equation, together with equation (5.2) and ¢2X = —¢X + n(X)&, we obtain

Vx(CE) = q(X)PCE + BYAX - g(AX, §)¢CE (5.3)

and

q(X)g(AS, &) = —8(CPAX, () + g(AX, §)g(C¢, &) + g(AX, CE)
= 8(PAX, ¢CE) + g(AX, §)g(CE, &) + g(AX, CE) (5.4)
=28(4X, C¢).

Moreover, it is well known that the complex structure J and the real structure C of Q" satisfy the anti-
commuting property, which is given by JC = -CJ. From this and J{ = -¢, we have

JCX = J(BX + p(X){) = ¢BX + n(BX){ + p(X)J¢ = ¢BX + n(BX)( — p(X)¢. G.5)
In addition, from the property of C2 = I and (5.2), we obtain
B?X = X - g(¢CE, X)CE,  BHCE = g(CE, HPCE (5.6)

for any tangent vector field X on M. Then, we assert the following:
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Lemma 5.1. Let M be a real hypersurface in the complex hyperbolic quadric Q"*, n > 3. If the shape operator A of
M is n-parallel, then the unit normal vector field { of M in Q™ is singular. That is, { is either 2-isotropic or
A-principal.

Proof. By using equations (3.2), (5.2), and (5.5), our assumption of the shape operator A being n-parallel yields

0=g(X, ¢C)g(BY, Z) - g(Y, pCE)g(BX, Z) - g(X, CE)g(¢BY, Z) + (Y, CE)g(¢BX, Z)

for any tangent vector fields X, Y, and Z belonging to the distribution C = {X € TM | X L &}. It can be rear-
ranged as follows:

8(g(X, pCEBY — (Y, pCEBX ~ g(X, COHPBY + g(Y, CE)PBX, Z) = 0 6.7

for any tangent vector fields X,Y,Z € C.
Now, let us consider that for any X, Y € C,

Wx,y = g(X, CEBY — g(Y, 9CE)BX — g(X, CE)GBY + g(Y, CE)PBX. (5.8)

As Wy y € TM, without loss of generality, it can be expressed as follows:
2n-1 2n-2
Wyy = ) 8(Wxy,e)e = D g(W,e)e + g(W, E)E
i=1 i=1
for any basis {e;, - ,ean-2, €2n-1 = &} of TM.
NI ot
On the other h%f{d, since Wy y satisfies equation (5.7), it consequently becomes
Wy = §(Wxy, §)S.
Its inner product with C¢ implies
g(Wx,y, C§) = g(Wx,y, §)8(¢, C%). (5.9
By using equations (5.1) and (5.6), we obtain
and
§Wyy, &) = 8(X, ¢CE)E(Y, C) - g(Y, 9CE)8(X, CE)
for any X, Y € C. From these two equations, equation (5.9) gives

8(CE, &){g(X, CO)g(¢C¢, Y) - g(Y, CE)g(9C¢, X)} = 0 (5.10)

for any X, Y € C. So, we consider the following two cases.
Case 1. g(C¢, &) =0
From equation (3.3), we obtain g(C¢, £) = —cos(2t),t € [0, %]. Thus, the assumption g(C¢, &) = 0 provides

t= %. From this, the unit vector field ¢ can be expressed as follows:

r
4

(= cos[%]Zl +sin|—|jZ, = %(21 +JZ3)

for some Z3, Z, € V(C). Here, V(C) is the (+1)-eigenspace of C, i.e., V(C) = {Z € TQ" | CZ = Z}. It means that
the unit normal vector field { of M in Q" is 2-isotropic.

Case 2. g(C¢, &) # 0

With regard to equation (5.10), the assumption g(C¢, ¢) # 0 indicates that

glg(X, C&PCE - g(X, pCE)CE, Y) =0 forany X,Y € C. (5.11)
From this, the tangent vector field Uy = g(X, C)PCE - g(X, ¢CE)CE of M is expressed as follows:
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Uy = Zgg (Uy, ene; + g(Ux, §)¢ = g(U, §)¢ G.12)
for any X € C. Taking the inner product of equation (5.12) with C¢ gives
8(Ux, C) = g(U, §)g(S, C¢). (5.13)
By a straight calculation, together with C? = I, the vector field Uy satisfies
g(Uy, C§) = -g(X, ¢C¢) and  g(Uy, &) = ~g(X, ¢CEg(CE, &).
From these equations, equation (5.13) becomes
{1-g(C¢ &MgX,9pCé) =0 forany X € C. (5.14)
Taking ¢C¢ € C instead of X in equation (5.14), together with g(¢C¢, ¢CE) = 1 - g(C¢, £)?, it yields
{1-g(CE, )% =0,

which implies 1 - g(C¢, &) = 0. From this, we have g(C¢, &) = +1. Since g(C¢, &) = —cos(2t), 2t € lO, g
sequently, we have t = 0. From this, the unit normal vector field { satisfies

¢ = cos(0)Z; + sin(0)JZ, = Z; € V(C).

, con-

It implies that ¢ is 2(-principal.
Combining the above two cases, Cases 1 and 2, we can assert that the unit normal vector field ¢ of M is
singular. O

By virtue of Lemma 5.1, let us consider the case of { being 2(-isotropic. Then, we have the following:

Lemma 5.2. There does not exist any real hypersurface in Qm*, n = 3, with n-parallel shape operator and
2A-isotropic normal vector field (.

Proof. Let us assume that M is a real hypersurface with n-parallel shape operator in Q**, n > 3. That is, the
shape operator A of M satisfies the following condition:

&(xA)Y,Z) =0 ™

for any tangent vector field X, Y, Z € C, where C denotes the orthogonal complement of the Reeb vector field
¢ on M in Q™. From this, together with the equation of Codazzi (3.2) and (5.8), it yields the following for any X,
YEC,

WX,Y = g(W) E)E) (*)

where Wy y is as above.
Now, since ¢ is 2(-isotropic, equations (3.3) and (5.2) imply that

8(C¢,¢)=-g(C5,8)=0 and C(=-¢C5E€C.
Taking C{ = —-¢C¢ instead of Y in (*) and using g(C¢, &) = 0 and B@CE = g(C¢, &)@CE = 0, we have
BX = g(¢C¢, pCEBX = Wy c; = 8(Wx,cr, §)§ = 8(BX, §)¢ = g(X, CE)§

for any tangent vector field X € C. From this, applying the symmetric operator B, together with equations (5.1)
and (5.6), it follows that

X - g(¢CE, X)9CE = B’X = g(X, CE)BE = g(X, COCE,
which implies
X = g(X, pCEHPCE + g(X, CE)CE € C.

This means dimgr C = 2. But, in fact, any vector field X € C is expressed as:
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2n-2

X= ) gX, eex

k=1

with respect to the basis {C{ = —¢C¢, C¢, ey, €, - ,e3,-4} Of the distribution C. So, we obtain dimg C =2n - 2,
n = 3, which gives a contradiction. From this, we give a complete proof of our lemma. O

Consequently, summing up Lemmas 5.1 and 5.2, we obtain the following proposition:

Proposition 5.3. Let M be a real hypersurface in Qn*, n > 3. If the shape operator A of M is n-parallel, then the
unit normal vector field { of M in Q™ is -principal.

On the other hand, as introduced in Theorem A, a tube (7 ) and a horosphere (# }) are given as the
model spaces of real hypersurfaces with 2(-isotropic normal vector field in Q"*, n > 3. Here, (7 3) and (H }),
respectively, denote a tube over a complex hyperbolic space CH* in Q%" and a horosphere whose center at
infinity is the equivalence class of 2(-isotropic singular geodesics in Q"*. We will give a proof of Theorem 1.1 in
Section 6. In order to do this, we need the following proposition:

Proposition 5.4. The shape operators of type (7 ) and (H ) real hypersurfaces in Q"* are not n-parallel.

Proof. Let a tube (7 ) and a horosphere (# ) in the complex hyperbolic quadric Q** be denoted as M. Then,
the unit normal vector field { of M, is 2A-isotropic, and the shape operator A of M, commutes with the
structure tensor ¢ (see Suh [11]).

Now, let us assume that the shape operator A of M, is n-parallel, i.e., A satisfies

g((WxA)Y,Z)=0 forany X,Y,Z € C.

From this, for the case X, Z € Q = TMy;O(span{¢} ® Tz) and Y € T, where Ty = {Y € TM, | AY = BY = 0} =
span{C¢, ¢C¢}, we know that AY = 0 for Y € Tp, which implies (Vx4)Y = ~A(VxY). Then, the inner product
with Z € Q gives

8((WA)Y, Z) = ~g(A(W)Y, Z) = -g(WY, AZ) = ~0g(WY, Z), (5.16)
where the constant principal curvature o is given by

A =tanh(r) for Z € T, = T(CH")O(span{é} & Tp),

o=1{u=coth(r) for Z€ T, = v(CH)NOC(VT ), (5.17)
1 for Z € T(H )S(span{é} @ Tp),
respectively.
On the other hand, we may put
WY = g(WY, )¢ + g(VxY, CE)CE + g(VxY, 9CE)PCE + g(WxY, WHW (5.18)

for some vector field W € Q. Since M, satisfies A¢ = ¢A, we obtain A@Y = ¢AY = 0 for any Y € Tp. Also, M,
has a 2l-isotropic unit normal vector field {, which means that n(C¢) = g(C¢, ¢) = 0. From these facts, together
with equation (5.3) and ¢2C¢ = —CE + n(C¢)E = —C&, we obtain

&Y, ) =-g(Y, W¢) = -g(Y, 9AX) = g(AdY,X) = 0,
&Y, €)= —g(Y, VxC¢) = —g(Y, q(X)PC¢ + BPAX)
=-q(X)g(¥, ¢C¢) - g(Y, BAX),
and
&Y, 9CE) = —g(Y, Vx(9CE)) = —g (Y, (x)CE) - g(¥, ¢(VxCS))
=-g(Y, n(COAX - g(AX, C§)E) + g(9Y, q(X)PCE + BPAX)
=qX)g(Y, C¢) + g(9Y, BPAX)



DE GRUYTER Ruled real hypersurfaces == 15

for X € Q and Y € T3. From the above three equations, equation (5.18) can be arranged as follows:
VxY = {-q(X)g(Y, 9CE) - g(Y, BAX)ICE + {q(X)g(Y, C&) + g(9Y, BOAX}PCE + g(VxY, W)W,  (5.19)
which gives
&Y, Z) = g(WxY, W)g(W, Z)
for X, Z € Q and Y € T. From this, (5.16) becomes
g((A)Y,Z) = ~og(yY, W)g(W,Z) VX,Z€Q, YET; (5.20)
* On the tube (773)

SinceQ = Ty & T, C T(7 ), we put W = W; + W, for some two vectors W; and W, such that W; € T; and
W; € T,,. So, equation (5.20) is rearranged as follows:

g(xA)Y, Z) = -aig(VxY, W)g(W, Z) + g(VxY, Wo)g(Wy, Z) + g(VxY, Wi)g(Wo, Z) + g(VxY, Wa)g(Wa, Z)},
and our assumption of A being n-parallel implies
—o{g(WxY, Wi))g(W, Z) + g(VxY, Wo)g(Wh, Z) + g(VxY, Wi)g(W, Z) + g(VxY, Wo)g(W5, Z2)} = 0 (5.21)
forany X,Z€ Q and Y € Tp.

On the other hand, from equation (5.17), we see that A = tanh(r) # 0 and u = coth(r) # 0 for r € R".
Hence, equation (5.21) yields that for any X,Z€ Q and Y € T3

&Y, W)g(Wy, Z) + g(WxY, Wo)g(Wy, Z) + g(VWxY, Wi)g(Wa, Z) + g(VxY, Wa)g(Wa, Z) = 0,
which gives a contradiction. So, we claim that (7°%) does not have n-parallel shape operator.
* On the horosphere (H )
On Q C T(H ), the principal curvature ¢ is given by 1 in equation (5.17). So, by equation (5.20) and the

assumption of A being n-parallel, we obtain g(VxY, W)g(W, Z) = 0 for any Z € Q. So, putting Z = W follows
g(VxY, W) = 0. From this fact and equation (5.19), we obtain

VY = {-q(X)g(Y, 9CS) - g(Y, BAX)ICE + {q(X)g(Y, CE) + g(9Y, BOAX)}PCS.
Taking Y = C¢ € T, together with BC¢ = & and B¢C¢ = g(C¢, £)¢CE = 0, becomes
k(¢ = q(X)PCE.

Combining this formula and equation (5.3) and using AX = X for X € Q, we obtain B¢X = 0. Applying the
symmetric operator B to this formula and using equation (5.6), together with ¢ = -I + n ® &, we obtain
¢X = 0, which means that X = 0 for any X € Q. It means that the dimension of Q is 0, i.e., dim@Q = 0. But,
by virtue of Proposition A in [27], we obtain dim@Q = 2n - 4. It makes a contradiction for n > 3. So the shape
operator A of the horosphere (#7,) is not n-parallel. It gives a complete proof of our proposition. O

Now, as a characterization of a ruled real hypersurface in Q"*, n > 3, we can assert the following lemma:
Lemma 5.5. Let M be a ruled real hypersurface in Q"*, n > 3. Then, the shape operator A of M is n-parallel.

Proof. As mentioned in Introduction, the expression of the shape operator A of M in Q™" is given as follows:

A& = aé + BU,
AU = BE, (5.22)
AX=0 forany X 1¢&,U,

where U is some unit vector fieldinC = {X € TM | X L ¢} and f = g(A¢, U) is a nonzero function on M. From
this, we obtain

g(AX,Y)=0 forany X,Y€EC. (5.23)
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Let Y be any tangent vector field of M such thatY € C, i.e, g(Y, &) = 0. Taking the covariant derivative of
this formula with X € C and using equation (5.23), we obtain

g(WxY, &) = -g(Y, Wx¢) = —g(¥, pAX) = g(¢Y, AX) = 0, (5.24)

i.e, it assures that VxY € C for any X, Y € C.
On the other hand, taking the covariant derivative of equation (5.23) with Z € C and using equation (5.24),
it follows that

0=g((VzA)X,Y) + g(AV,X,Y) + g(AX, V;Y) = g((VzA)X, Y)

for any X, Y, Z € C. Hence, we can assert that the shape operator A of M is n-parallel. O
By virtue of Proposition 5.3 and Lemma 5.5, we obtain the following proposition:

Proposition 5.6. The unit normal vector field { of a ruled real hypersurface in Q™*, n = 3, is -principal.

6 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 from the Introduction. By the notions of n-parallel and n-commuting
shape operator, we give a complete classification of real hypersurfaces in the complex hyperbolic quadric Q"*
with these properties. To do so, unless otherwise specified, we assume that M is a real hypersurface in the
complex hyperbolic quadric Q™" for n > 3, and the shape operator A of M satisfies n-parallelism and n-com-
mutativity. Since in Proposition 5.6 we have proved that the unit normal vector field { of a ruled real
hypersurface in Qn* is -principal, we remarked in Theorem 1.1 that the unit normal { of ruled real hyper-
surfaces in the complex hyperbolic quadric Q™" is 2-principal.

Lemma 6.1. Let M be a real hypersurface in Q"*, n > 3, with n-parallel and n-commuting shape operator. Then,
for any X,Y,Z € C, we have

0=g(Y,Cg(CX, Z) + g(¢Z, CO)Z(CX, ¢Y) - (Y, CE)g(CX, ¢Z)
+8(9Z, CE)g(CX, Y) - n(ApZ)g(Y, AX) + g(X, V)g(Y, AZ) + g(Y, V)g(X, AZ).

where C denotes the orthogonal complement of the Reeb vector field ¢ and V is given by ¢A¢E.

Proof. The notion of n-commuting shape operator gives
8((A¢ - 9A)Y,Z) =0
for any Y, Z € C. By differentiating this, we have

8(xA)Y, ¢Z) + g((WxA)Z, ¢Y) = n(AY)g(X, AZ) + n(AZ)g(Y, AX) + g(X, ApY)g(Z, V)

(6.1)
+ (X, ApZ)g(Y, V).
Then, let us consider cyclic formulas with respect X, Y, and Z as follows:
g((WA)Z, pX) + g(WA)X, ¢Z) = n(AZ)g(Y, AX) + n(AX)g(Z,AY) + g(Y,ApZ)g(X, V) 62)
+8(Y,ApX)g(Z, V)
and
g((VZA)X, oY) + g(VZA)Y, 9X) = n(AX)g(Z, AY) + n(AY)g(X, AZ) + g(Z, ApX)g(Y, V) 6.3)

+8(Z,ApY)g(X, V).
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Then, let us subtract equation (6.3) from the summing up of equations (6.1) and (6.2). From this, by using the
equation of Codazzi (3.2), it follows that

8((A)Y, ¢Z) + g(WA)X, ¢Z) + g((A)Z - (VA)X, ¢Y) + g((VWWA)Z - (VZA)Y, ¢X)
= 2n(AZ)g(Y, AX) + 28(X, V)g(Y, A9Z) + 28(Y, V)g(X, A9Z)
= 28(wAYY, ¢Z) + {8(X, CO)g(CY, ¢Z) - g(Y, CO)Z(CX, ¢Z) + g(X, C§)g(JCY, ¢Z)
- 8(Y, CE)8UCX, ¢Z)} - {8(X, CO)8(CZ, 9Y) - 8(Z, COHE(CX, 9Y) + g(X, CE)g(CZ, ¢Y)
- 8(Z, C)g(JCX, oY)} - {8(Y, COg(CZ, ¢X) - g(Z, C{)g(CY, ¢pX)
+8(Y, CE)Z(JCZ, 9X) - 8(Z, CHE(CY, pX)}.

Then, by using the n-commuting property in equation (6.4) and using the following:

g(Jcy, ¢z) = -g(CY, J¢Z) = g(CY, Z),

(6.4)

we have

g((xA)Y, ¢Z) - g(Y, C)g(CX, ¢Z) + g(Z, CO)g(CX, ¢Y) - (¥, CE)g(CX, Z) + g(Z, CE)g(CX, Y)

6.5
= NAZ)g(Y,AX) + g(X, V)g(Y,ApZ) + g(Y, V)g(X, ApZ) 6

for any X, Y, Z € C. Then, by replacing Z with ¢Z in equation (6.5), we have

8((xA)Y, Z) = g(Y, C()g(CX, Z) + g(¢Z, C)g(CX, ¢Y) - (¥, CE)8(CX, ¢Z) + g(9Z, CE)g(CX, Y)

6.6
— NABZ)G(Y, AX) + g(X, V)g(Y, AZ) + (Y, V)g(X, AZ). (©6)

This gives a complete proof of our Lemma. O
By virtue of Proposition 5.3, we see that the unit normal vector field { of M in Q™" is 2-principal, i.e.,C{ = {

and C¢ = -¢. Thus, by using V = A, Lemma 6.1 gives
8§X,V)g(Y,AZ) + g(Y,V)g(Z,AX) + g(Z,V)g(X,AY) = 0 6.7

for any vector fields X, Y, and Z € C. Now, let us put A¢ = a¢ + BU in equation (6.7). Then, we assert the
following lemma:

Lemma 6.2. Let M be a complete real hypersurface in the complex hyperbolic quadric Q™*, n 2 3, with n-parallel
and n-commuting shape operator. Then,

B=0 or g(AY,Z)=0

for any vector fields Y, Z € C, where C denotes the orthogonal distribution of the Reeb vector field §.

Proof. Let us put Z = V = ¢A¢ in equation (6.7) and use A¢ = a¢ + BU for some U € C. Then, it follows that
0=g(AX, V)||VIF + g(AY, V)g(X, V) + g(AV, X)g(Y, V)
= §(AX, V)||[VI? + B*8(AY, gU)g(X, ¢U) + p°g(ApU, X)g(Y, §U).

Then, for any X, Y € C, which are orthogonal to ¢U, the formula (6.8) gives g(AX,Y) = 0. Now, we put
X =Y = @U in equation (6.8). Then, it follows that

0 = g(AQU, pU)||VIP + 2B°8(A9U, §U) = 3p°g(AgU, $U), (6.9)

where we have used ||V|? = g(@AE, pAE) = B2 Then, (6.9) gives that the function B = 0 or g(A¢U, ¢U) = 0.
Now, let us consider the case that f # 0 on the open subset ¢ in M, i.e, U ={p € M | B(p) # 0}. Then,
g(ApU, ¢U) = 0 on U . From this, together with putting Y = ¢U in equation (6.8), we have, for any X € C,

(6.8)

0 = g(AgU, X)||VI* + B°g(ApU, X) = 2B°g(ApU, X). (6.10)
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Hence, it follows that g(A@U,X) = 0 on U for any X € C. From this, together with g(AX,Y) = 0 for any
X, Y € C orthogonal to ¢U, we can assert the latter part of Lemma 6.2. From this, we give a complete proof of
Lemma 6.2. O

If M is Hopf, i.e., the Reeb vector field ¢ is principal for the shape operator A of a real hypersurface M in Q™*,
then we obtain 0 = pA¢ = A¢g¢. From this, together with the n-commuting shape operator, g((4A¢ - pA)X,Y) =0
for any X, Y € C, it naturally gives that the structure tensor ¢ commutes with the shape operator 4, i.e., Ap = PA.
Then, by Theorem A we assert the following proposition:

Proposition 6.3. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q"*, n > 3, with n-parallel
and n-commuting shape operator. Then, M is locally congruent to a tube of radius r over a totally geodesic
complex submanifold CH¥ in Q%**, n = 2k, or a horosphere.

Moreover, in Proposition 5.4, we have mentioned that the shape operator of a tube over CH¥ in Q2" or a
horosphere does not satisfy n-parallelism. Then, combining Propositions 6.3 and 5.4, we assert the following
theorem:

Theorem 6.4. There does not exist any Hopf real hypersurface in the complex hyperbolic quadric Q™*,n > 3, with
n-parallel and n-commuting shape operator.

Then, by Lemma 6.2 and Theorem 6.4, we have only the case g(AY, Z) = 0 for any vector fields Y and Z in
the distribution C. Hence, by Theorem 4.2, we can assert Theorem 1.1. Moreover, by virtue of Proposition 5.6,
the unit normal vector field of a ruled real hypersurface in Q" is -principal. This completes the proof of
Theorem 1.1.

7 Proof of Theorem 1.3

Let M be a real hypersurface with n-parallel shape operator in the complex hyperbolic quadric Q**, n > 3. In
this section, we give a complete classification of such real hypersurfaces in Q** with integrable holomorphic
distribution C = {X € TM | X L &}. To do so, let us study the geometric property of C being integrable as
follows:

Lemma 7.1. Let M be a real hypersurface in the complex hyperbolic quadric Q"*, n = 3. The following assertions
are equivalent:

(i) The holomorphic distribution C = {X € TM | X L &} is integrable.

(i) The shape operator A is n-anticommuting, i.e., g((pA + A9)X,Y) =0 forany X, Y € C.

Proof. (i) = (ii): Assume that the holomorphic distribution C is integrable. Then, we obtain

[X,Y] €C, (7.1

which implies g([X, Y],¢) = 0 for any X, Y € C. Since the Levi-Civita connection V of M is torsion-free, it
follows that [X, Y] = VxY — VyX. So, equation (7.1) yields

8(WxY, &) - g(WX, &) = 0. (7.2)

By the differentiation of g(Y, £) = 0 on M, we obtain g(VxY, &) = —-g(Y, Vx¢) = —g(Y, pAX). From this, equa-
tion (7.2) is rewritten as follows:

-g(Y, pAX) + g(X, pAY) = 0.

Since the operator ¢A is skew-symmetric, it becomes
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8((9A + AP)X,Y) =0

for any X, Y € C. It means that the shape operator A of M is p-anticommuting.
(ii) = (i): By virtue of the contents above, it is clear (vice versa). ]

With regard to Theorem 4.2 and Lemma 5.5, we give some characterizations of a ruled real hypersurface in
Q™ as follows:

Proposition 7.2. Let M be a ruled real hypersurface in Q"*, n = 3. Then, the following statements hold:
(@) The holomorphic distribution C of M is integrable.
(b) The shape operator A of M is n-parallel.

Proof. (b) As shown in Lemma 5.5, the shape operator A of a ruled real hypersurface M in Q" is n-parallel. So,
in the remaining part of this proof, we will show that the holomorphic distribution C of M is integrable.

(a) By virtue of Theorem 4.2, the shape operator A of M satisfies g(AX, Y) = 0 for any X, Y € C. Since the
tangent vector fields ¢X and ¢Y belong to C, this property provides

8((pA + AP)X,Y) = -g(AX, ¢Y) + g(AY, X) = 0

forany X, Y € C. Thatis, M has n-anticommuting shape operator. Hence, by Lemma 7.1, we can assure that the
holomorphic distribution C of M is integrable. O

Now, as the converse of Proposition 7.2, we prove:

Proposition 7.3. Let M be a real hypersurface in the complex hyperbolic quadric Q"*,n > 3. If the shape operator
of M is n-parallel and the holomorphic distribution C = {X € TM | X L &} is integrable, then the shape operator
A of M satisfies g(AX, Y) = 0 for any vector fields X, Y € C. Furthermore, M is locally congruent to a ruled real
hypersurface in Q.

Proof. From Lemma 7.1, the assumption of C being integrable gives
g(pA + AP)X,Y)=0 for X,YEC. (7.3)

Taking the covariant derivative of equation (7.3) with Z € C, we obtain

8((Vz9)AX, Y) + g(@(VzA)X, V) + g(9A(VZX), Y) + g(9AX, VY)
+ 8((VZA)9X, Y) + g(A(Vz9)X, Y) + g(Ap(VX), Y) + g(A9X, V) = 0.
Because of T,M = span{¢} @ C for any point p of M, we may put VzX = (VzX)¢ + g(VzX, £)¢ € TM, where ()¢

denotes the C-component of any tangent vector field (-) of M. From this, equation (7.4) can be rearranged as
follows:

(7.4)

g((9)AX, Y) + g(@(VZA)X, V) + g(9A(VzX)c, Y)
+ g(VzX, $)g(QAE, Y) + g(PAX, (VzY)c)
+ g(VZA)PX, Y) + g(A(Vz9)X, Y) + g(Ap(VzX)c, V)
+ g(APX, (VzY)c) + g(A9X, §)g(VzY, §) = 0.

By our assumption of A being n-parallel and equation (7.3), the previous equation becomes

0 = g((Vz9)AX,Y) + g(VzX, )g(PAS, Y) + g(A(Vz9)X, V) + g(VzY, §)g(AdX, &) (7.5)
for any X, Y, Z € C. By the formula (Vx@)Y = n(Y)AX - g(4X, Y)¢, we obtain
8((Vz9)AX,Y) = n(AX)g(AZ,Y) - g(AZ, AX)n(Y) = g(AX, §)g(AZ,Y) (7.6)

and

gA)X, Y) = g(Vz9)X, AY) = n(X)g(AZ, AY) - g(AZ, X)g(AY, &) = -g(AZ, X)g(AY,§).  (1.7)
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Substituting equations (7.6) and (7.7) in equation (7.5) yields
8(AS, X)g(AY, Z) - g(X, pAZ)g(PAS, Y) - g(AS, Y)g(AX, Z) - (Y, pAZ)g(A¢X, &) = 0, (7.8)

where we have used g(VzX, ) = g(X, Vz¢) = g(X, 9AZ) for any X, Y, Z € C.

In Lemma 7.4, we prove that there does not exist any Hopf real hypersurface in the complex hyperbolic
quadric Q™*, n > 3, satisfying all assumptions given in Proposition 7.3. By virtue of this assertion, we may put
A¢ = a¢ + BU, where B is a nonvanishing smooth function on a neighborhood of a point p € M and U is a unit
vector field in C. From this, equation (7.8) becomes

0=pg(U,X)g(AY, Z) + Pg(X, pAZ)g(U, ¢Y) - pg(U, Y)g(AX, Z) - pg(Y, pAZ)g(9X, U). (7.9)

Putting X=¢@U € C and Y =U € C in equation (7.9) we obtain Bg(4¢U,Z) = 0. Since B # 0, it implies
g(A@U, Z) = 0 for any Z € C. So, we obtain

ApU = g(AQU, §)¢ = ag(@U, £)¢ + g(pU, U)¢ = 0. (7.10)
Substituting Y = U in equation (7.9) and using equation (7.10), together with B # 0, provide
g(U,X)g(AU,Z) - g(AX,Z) = 0. (7.11)

Take X = W € C, where W is any tangent vector field satisfying W L U. Then, equation (7.11) gives
g(AW, Z) = 0 for any Z € C. So, we obtain

AW = g(W, AD)E = ag(W, §)¢ + pg(W, U)U = 0. (7.12)
Now, putting X = U and Y = ¢U in equation (7.3) and using equation (7.10) yield
0 = g(¢AU, ¢U) = g(AU, U) - n(U)g(AU, &) = g(AU, U).

From this fact and A¢ = a¢ + BU, together with equations (7.10) and (7.12), the tangent vector field AU is
expressed as follows:
2n-1
AU = ) g(AU, e)e;
i=1
2n-4
= 2 (AU, e)e; + (AU, U)U + g(AU, pUIQU + g(AU, §)§
i=1
2n-4
= 2 8(U, Aee; + §(AU, DU + g(U, AQU)PU + g(U, AS)E = B¢
i=1
for any basis {ey, €, *** ,ean-4, €2n-3 = U, €33 = QU, ey-1 = &} of TM.
Summing up the above facts, we obtain

p¢ ifX=U
AX={0 if X=¢U
0 if X € Cospan{lU, ¢U},

which means that g(AX,Y) = 0 for any X, Y € C. By virtue of Theorem 4.2, we can assert that M is locally
congruent to a ruled real hypersurface in Q". O

Finally, let us consider the case of f = 0, which means that M is Hopf, in Proposition 7.3 as follows. By
means of Proposition 5.3, we obtain the following lemma:

Lemma 7.4. There does not exist any Hopfreal hypersurface M in the complex hyperbolic quadric Q™*,n = 3, with
n-parallel shape operator and integrable holomorphic distribution C.

Proof. Since M is Hopf, we may put A¢ = a¢. From this fact and our assumption of C being integrable, Lemma
7.1 assures pAX + AgX = 0 for all X € TM. That is, we obtain
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AQX = -9AX (7.13)

for any X € TM. In this case, the shape operator A of M in Q™" is said to be anti-commuting.
Now, by the assumption of p-parallelism and Proposition 5.3, the unit normal vector field { of M in Q" is
2A-principal. By using this fact and our assumption, we obtain

2n-2

(A - (WAX = ) g(RA)Y ~ (WA)X, ee; + g(AY = (WA)X, )¢
i=1

= g((xA)Y - (WA)X, £)¢
={8((xA), Y) - (WA, X))
={Xa)n(Y) + ag(pAX,Y) - g(APAX, Y) - (Ya)n(X) - ag(9AY, X) + g(APAY, X)}¢
={ag(9AX,Y) - g(APAX,Y) - ag(9AY, X) + g(APAY, X)}&
={ag((pA + AP)X,Y) - 28(AgAX, Y)}
for any basis {ey, ey, - ,ez-2, -1 = &} of T,M, p € M. Then, from equation (7.13), it becomes
NI )
€ (%A - (WA)X = -28(ApAX, Y)E forany X,Y € C. (7.14)
On the other hand, the fact of { being A-principal gives C¢ = -¢ and C{ = {. From these formulas and
equation (3.2), we obtain
(VxA)Y - (WA)X = 2g(¢X, Y)é forany X,Y € C. (7.15)
Combining with equations (7.14) and (7.15) yields
S(APAX + ¢X,Y)=0 forany X,Y € C.
It follows that AQAX + ¢X = g(APAX + ¢X,£)E =0, ie,
APAX = -¢X forany X € C. (7.16)
By equations (7.13) and (7.16), we obtain ¢A’X = ¢X for any X € C. Applying the structure tensor ¢ to this
equation and using ¢ = -I +  ® &, we obtain
AX=X forany X €C. (7.17)
Take X, € C with AX, = AX;. Then, from equation (7.17), we obtain A% =1, ie, A = £1. It implies that

AX, = +X,. Besides, by virtue of equation (7.13), we obtain A¢X, = ¥¢X,. By such relations, the expression
of the shape operator A of M is given as follows:

I T,
A = diag(a, 1,1, ...,1, -1, -1, ...,-1),
C

where T; and T are the eigenspaces given by T} = {X € C | AX = X} and T4 = {X € C | AX = -X}, respectively.
Their corresponding multiplicities satisfy m(T1) = m(T.;) = n - 1.

In general, if the unit normal vector field { of a Hopf real hypersurface in Q" is 2(-principal, then we
obtain

CAX = AX - 2g(AX, §)§ = AX - 2an(X)¢
for any tangent vector field X on M (see Lemma 5.1 in [28]). From this fact, we obtain
CAX =AX forany X € C. (7.18)

By the above expression of 4, the holomorphic distribution C is given by C = T; & T.;. Thus, equation (7.18)
yields

X forXeTm
-X for Xe T,

¢

R
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i.e, CX = X for all X € C. So, we have

( forX=¢
CX=1-¢ for X=¢
X for XecC.

From this, let us calculate the trace Tr C of C. Then, we obtain for any basis {ey, e, ...,€a-2, €2n-1 = &, €2 = (}
of TQ™

2n 2n-2
Tr C= ) g(Cee) = ) g(Cee) + g(CE &) +g(CL,{)=2n-2, (7.19)
i=1 i=1

which gives a contradiction. In fact, it is well known that the trace of C in Q"* satisfies Tr C = 0. From this,
equation (7.19) implies n = 1. But, in this lemma, we only consider the case of n > 3. So, it completes this
proof. O

Hence, by using Propositions 7.2 and 7.3, we give a complete proof of Theorem 1.3.

8 Proof of Theorem 1.4

In Section 5, we have focused on the notion of p-parallel shape operator on a real hypersurface in the complex
hyperbolic quadric Q™*, n > 3. Under this observation, in this section, we will give a classification of Hopf real
hypersurfaces with n-parallel shape operator in Q"*, n > 3.

Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q*, n = 3. By virtue of Proposition
5.3, the unit normal vector field { of any real hypersurface in Q"* with n-parallel shape operator is 2-principal.
On the other hand, it is known that a Hopf real hypersurface M has 2-principal { in Q™" if and only if M is
contact with constant mean curvature (see Proposition 5.3 in [28]). Consequently, by virtue of these results and
the classification of contact hypersurfaces in Q** due to Klein and Suh [21], we can assert the following lemma;

Lemma 8.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q"*, n 2 3. If the shape

operator A of M is n-parallel, then M is locally congruent to an open part of one of the following contact

hypersurfaces in Qn*:

(Ts,) atubeofradiusr > 0 around the complex hyperbolic quadric Qn~'*, which is embedded in Q™" as a totally
geodesic complex hypersurface,

(T,) atubeofradiusr > 0 around the k-dimensional real hyperbolic space RH¥, which is embedded in Q"* as a
real space form of Qm*,

(#’s) a horosphere in Q"* whose center at infinity is the equivalence class of a 2-principal geodesic in Q™*.

For the model spaces mentioned in Lemma 8.1, we give its geometric structures in detail as follows (see
also Klein and Suh [21]).

Proposition A. Let M be the tubes (73 ), (T 3,) and the horosphere (H 3) in Q™, n 2 3. For M, the following

statements hold:

(1) Every unit normal vector { of Mg is -principal.

(2) Mg is a Hopf hypersurface.

(3) The shape operator A and the structure tensor field ¢ satisfy A¢ + ¢A = u¢. In particular, Mg is a contact
real hypersurface.

(4) Mg has constant principal curvatures and, in particular, constant mean curvature. Then, the principal
curvatures of Mg with respect to the unit normal vector field { and the corresponding principal curvature
spaces are given as follows.
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Table 1: Principal curvatures of model spaces of Mp

Type Eigenvalues Eigenspace Multiplicity
(73) a = —/2 coth(~/2r) RJ{ 1
A=0 JV(O)NC={XEC|CX=-X} n-1
i = =2 tanh(+/271) V(C)NC={XEC|CX=X} n-1
(773, a = —/2 tanh(~/2r) RJC 1
A=0 JV(O)NC={XeC|CX=-X} n-1
= —/2 coth(~/21) V() NC={XeC|CX=X} n-1
(Hp a=p=-v2 (V(C)NC) @ RJT n
=0 jveync n-1

Now, by using Proposition A, let us check the converse of Lemma 8.1, whether they satisfy n-parallelism,

ie,
g((%xA)Y,Z)=0 forany X,Y,Z€C. *

LetTi={X€TMp | CX=-X, X1¢&andT,={X€TMp|CX=X, XL ¢} Then,by Table 1, the holo-
morphic distribution C in TMp is given by C = T @ T,. In order to show that the shape operator A of Mjp is
n-parallel, we consider the following four cases, respectively:

*Case 1. X,Y,Z€ T, (or X,Y,Z€ Ty

Since Y € T, C TMp, we have AY = uY (u € R), where

-2 tanh(v2r) for Ye T,c T(T})
i =1-v2 coth(v2r) for YET, C T(T}}Z) € R\{0}.
-J2 for YE T, C T(H}p)
It gives that (VxA)Y = uVxY — A(VxY) for any X, Y € T,,. Its inner product of Z € T, becomes
8(WA)Y,Z) = ug(\xY, Z) - g(WxY, AZ) = (u - )g(%xY, Z) = 0.

So, we assert that the shape operator A of Mg satisfies g((VxA)Y,Z) = 0for X,Y,Z € T, (or for X, Y, Z € T)).
*Case2. XE€ T, andY,ZE T (or XE TyandY,Z € T))
By using the symmetric property of A4, it holds that
g((VxA)Y,Z) = g((VxA)Z,Y) forany X,Y,Z € TMp. 8.1
This fact leads to
8§(WxA)Y, Z) = g(YA)Z, Y)
=g(A(VxZ) - A(Vx2),Y)
=A8(WZ,Y) - g(VxZ,AY) = (A - Dg(WxZ, Y) = 0,
where AY = AY and AZ = AZ. From this, we conclude that Mz has n-parallel shape operator for this case.

*Case3. X,ZET,andYE T (or X,ZE Ty and Y € T))
From the fact of { being 2-principal, we obtain C¢ = -¢. Then, the equation of Codazzi (3.2) gives

g((WxA)Y,Z) = g(WA)X,Z) forany X,Y,Z € C. (8.2)
Since AX = uX and AZ = uZ, equation (8.2) gives
8((A)Y, Z) = g(WA)X, Z)
= g(UWX - A(WX), 2)
=ug(WwX,zZ) - g(WX, AZ)
= - wg(WwX, z) =0,
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which implies that (ast) holds for this case.
*Case4. X, YET,andZET) (or X,YE Ty and Z € T,)
Using the above two formulas, equations (8.1) and (8.2), with respect to X, Y, Z € C provides
gAY, Z) | = g(HWAZY) | = g(LAX,Y) .
= g((VZA)Y,X) = g(WA)Z, X) = g(WA)X, Z)

forany X, Y,Z € C.
Now, from X, Y € T, we know that AX = uX and AY = uY. With regard to equation (8.3), these facts yield

8((xA)Y, Z) = g((VA)Y, X)
= g(uVvzY - A(V;Y), X)
=ug(VzY, X) - g(VzY, AX)
=(u - we(VzY,X) = 0.

Summing up the above four cases, we can assert that the shape operator of M is n-parallel. From this and
(D) and (2) in Proposition A, we conclude with the following lemma:

Lemma 8.2. The model spaces of types (7 ), (T 3,), and (H ) in Q™*, n 2 3, are Hopf real hypersurfaces with
A-principal normal vector field. Furthermore, the shape operators of the above model spaces are n-parallel.

Then, by virtue of Lemmas 8.1 and 8.2, we give a complete proof of Theorem 1.4 in the Introduction.

Acknowledgements: The authors would like to express their sincere gratitude to the reviewers for their
efforts and careful reading of our manuscript. By virtue of their valuable comments, we have improved the
manuscript better than the first one.

Funding information: The first author was supported by grant Proj. No. NRF-2022-R111A1A-01055993, the
second by grant Proj. No. NRF-2018-R1D1A1B-05040381, and the third by NRF-2020-R1A2C1A-01101518 from
the National Research Foundation of Korea.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and
approved its submission.

Conflict of interest: The authors state that there is no conflict of interest.
Ethical approval: The conducted research is not related to either human or animal use.

Data availability statement: Data sharing is not applicable to this article, as no datasets were generated or
analyzed during the current study.

References

[11  P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago,
IL, 1996.

[2] S.Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Reprint of the 1969 original, Wiley Classics Library, A Wiley-
Interscience Publication, John Wiley & Sons, Inc., New York, 1996.

[31 B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246-266, DOI: https://doi.org/10.2307/1970441.

[4] B.Smyth, Homogeneous complex hypersurfaces, ). Math. Soc. Japan 20 (1968), 643-647, DOI: https://doi.org/10.2969/jmsj/02040643.

[5] K. Nomizu, On the rank and curvature of non-singular complex hypersurfaces in a complex projective space, ). Math. Soc. Japan 21 (1969),
no. 2, 266-269, DOL: https://doi.org/10.2969/jms;j/02120266.


https://doi.org/10.2307/1970441
https://doi.org/10.2969/jmsj/02040643
https://doi.org/10.2969/jmsj/02120266

DE GRUYTER Ruled real hypersurfaces = 25

[6]

[7]

[8]

[9

[10]

(1]

2]

(3]

[14]

[13]

[16]

7

[18]
(9]

[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]

S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), 79-96, DOI: https://doi.org/10.1016/
j.difgeo.2007.11.004.

J. D. Pérez, Some real hypersurfaces in complex and complex hyperbolic quadrics, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2,
1709-1718, DOI: https://doi.org/10.1007/s40840-019-00769-x.

H. Reckziegel, On the geometry of the complex quadric, in: Geometry and Topology of Submanifolds VIII (Brussels, 1995/
Nordfjordeid, 1995), World Sci. Publ., River Edge, NJ, 1996, pp. 302-315.

M. Kimura and M. Ortega, Hopf real hypersurfaces in the indefinite complex projective space, Mediterr. J. Math. 16 (2019), no. 2, Paper
No. 27, 16 pp, DOL: https://doi.org/10.1007/s00009-019-1299-9.

S. Montiel and A. Romero, Complex Einstein hypersurfaces of indefinite complex space forms, Math. Proc. Cambridge Philos. Soc. 94
(1983), no. 3, 495-508, DOLI: https://doi.org/10.1017/50305004100000888.

Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow, Commun. Contemp. Math. 20 (2018), no. 2,
1750031 (20 pages), DOL: https://doi.org/10.1142/50219199717500316.

M. Kimura, H. Lee, J. D. Pérez, and Y. J. Suh, Ruled real hypersurfaces in the complex quadric, J. Geom. Anal. 31 (2021), no. 8, 7989-8012,
DOI: https://doi.org/10.1007/512220-020-00564-2.

M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in B,(C), Math. Ann. 276 (1987), no. 3, 487-497,

DOLI: https://doi.org/10.1007/BF01450843.

M. Lohnherr and H. Reckziegel, On ruled real hypersurfaces in complex space forms, Geom. Dedicata 74 (1999), no. 3, 267-286,
DOLI: https://doi.org/10.1023/A:1005000122427.

M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), no. 3, 299-311, DOI: https://doi.
0rg/10.1007/bf01159962.

M. Ortega, Classifications of real hypersurfaces in complex space forms by means of curvature conditions, Bull. Belg. Math. Soc. Simon
Stevin 9 (2002), no. 3, 351-360, DOL: https://doi.org/10.36045/bbms/1102715060.

J. D. Pérez, A new characterization of ruled real hypersurfaces in complex projective spaces, Proceedings of the Tenth International
Workshop on Differential Geometry, Kyungpook National University, Taegu, 2006, pp. 23-30.

Y. J. Suh, A characterization of ruled real hypersurfaces in B,(C), ). Korean Math. Soc. 29 (1992), no. 2, 351-359.

M. Moruz, M. Ortega, and J. D. Pérez, Ruled real hypersurfaces in the indefinite complex projective space, Results Math. 77 (2022), no. 4,
Paper No. 147, 30 pp, DOI: https://doi.org/10.1007/s00025-022-01691-8.

Y. J. Suh, On real hypersurfaces of a complex space form with n-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), no. 1, 27-37,

DOLI: https://doi.org/10.21099/tkbjm/1496161316.

S. Klein and Y. ). Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mat. Pura Appl. 198 (2019), no. 4, 1481-1494,
DOL: https://doi.org/10.1007/510231-019-00827-y.

J. Berndt and Y. ). Suh, Real hypersurfaces in Hermitian symmetric spaces, Advances in Analysis and Geometry, vol. 5, De Gruyter,
Berlin, 2022.

A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Math., Birkhduser, 2002.

J. Berndt, A homogeneous ruled real hypersurface in the complex hyperbolic quadric, Personal communications in preparation.

S.-S. Ahn, S.-B. Lee, and Y. J. Suh, On ruled real hypersurfaces in a complex space form, Tsukuba J. Math. 17 (1993), no. 2, 311-322,
DOLI: https://doi.org/10.21099/tkbjm/1496162264.

J. Berndt and Y. ). Suh, Contact hypersurfaces in Kdhler manifold, Proc. Amer. Math. Soc. 143 (2015), no. 6, 2637-2649, DOTI: https://doi.
0rg/10.1090/s0002-9939-2015-12421-5.

H. Lee and Y. J. Suh, Real hypersurfaces with quadratic Killing normal Jacobi operator in the real Grassmannians of rank two, Results
Math. 76 (2021), no. 3, Paper No. 113, 19 pp, DOL: https://doi.org/10.1007/s00025-021-01416-3.

C. Woo, H. Lee, and Y. J. Suh, Generalized Killing Ricci tensor for real hypersurfaces in the complex hyperbolic quadric, Rev. R. Acad.
Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 115 (2021), no. 3, Paper No. 117, 31 pp, DOL: https://doi.org/10.1007/s13398-021-01055-x.


https://doi.org/10.1016/j.difgeo.2007.11.004
https://doi.org/10.1016/j.difgeo.2007.11.004
https://doi.org/10.1007/s40840-019-00769-x
https://doi.org/10.1007/s00009-019-1299-9
https://doi.org/10.1017/S0305004100000888
https://doi.org/10.1142/S0219199717500316
https://doi.org/10.1007/s12220-020-00564-2
https://doi.org/10.1007/BF01450843
https://doi.org/10.1023/A:1005000122427
https://doi.org/10.1007/bf01159962
https://doi.org/10.1007/bf01159962
https://doi.org/10.36045/bbms/1102715060
https://doi.org/10.1007/s00025-022-01691-8
https://doi.org/10.21099/tkbjm/1496161316
https://doi.org/10.1007/s10231-019-00827-y
https://doi.org/10.21099/tkbjm/1496162264
https://doi.org/10.1090/s0002-9939-2015-12421-5
https://doi.org/10.1090/s0002-9939-2015-12421-5
https://doi.org/10.1007/s00025-021-01416-3
https://doi.org/10.1007/s13398-021-01055-x

	1 Introduction
	2 The complex hyperbolic quadric
	3 Some general equations
	4 Ruled real hypersurfaces
	5 &#x03B7;-parallel shape operator and key results
	6 Proof of Theorem 1.1
	7 Proof of Theorem 1.3
	8 Proof of Theorem 1.4
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


