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equation.
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1 Introduction

A delay differential equation (DDE) is an equation in which the solution and/or its derivatives at earlier times
influence the time derivatives at the present time. Therefore, it is a better way to model engineering and
physical problems. For example, we find that the neutral DDEs arise in many phenomena including problems
in electrical networks that contain lossless transmission lines (as in high-speed computers where such lines are
used to interconnect switching circuits), see [1].

The aim of this research is to discuss and analyze the asymptotic and oscillatory behavior of solutions of
the neutral differential equation (NDE) of even-order

(@™ D)) + qx"(ew) = 0, u = up, )

where w = x + p-(x ° 7) and (x ¢ 7)(u) = x(t(u)). Throughout this work, we assume that
(A1) r is a ratio of odd positive integer;

(A2) n 2 4 is an even natural number;

(A3) q € C([uo, )) and q(u) = 0;
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(A4) p € CY([ug, «)) and 0 < p(u) < 1;
(A5) ¢ € CY([ug, »)),£(u) > 0, ¢'(u) = 0, and

1
Jarg® =

Uy

(46) 7,0 € Cl([ug, )), 0(u) < u, @'(u) > 0, and lim,.»7(u) = lim,.0(u) = .

By a solution of (1), we mean a real-valued function x € C(*V([T}, )), Uy = uy, which has the property
LW (WD) € CY([Uy, «)), and satisfies (1) on [T, «). We consider only those solutions x of (1) that satisfy
the condition

sup{|x(w)| : u=U}>0, for U= U.

Definition 1.1. [2] A nontrivial solution x of the differential equation is said to be oscillatory if x has arbitrarily
large zeros, that is, there exists an infinite sequence {u,},-, such that x(u,) = 0 and lim,_ U, = . Otherwise, it
is said to be nonoscillatory. A differential equation is said to be oscillatory if all of its solutions are oscillatory.

Notation 1.1. A solution of (1) is said to be oscillatory if it has arbitrarily large zeros on [U, ). Otherwise, it is
said to be nonoscillatory. Equation (1) is said to be oscillatory if all of its solutions are oscillatory.

The highest-order derivative of the unknown function occurs with and without delay in an NDE. The
qualitative study of such equations has a lot of practical use in addition to its theoretical value. NDEs are
employed in a range of applications in economics, biology, medicine, engineering, and physics, such as lossless
transmission lines, bridge vibration, and vibrational motion in flight, as well as the Euler equation in various
variational situations [3,4]. Recently, several studies have appeared which investigated the oscillatory beha-
vior of solutions of NDEs of different orders. The neutral equations of the second order have been greatly
studied in works [5-7]. Even-order equations have also received great attention and remarkable development,
see, for example, [8-10]. While neutral equations of odd order have received less attention compared to
equations of even order [11,12].

Baculikova et al. [13] investigated the asymptotic characteristics and oscillation of the equation

(@ PW)"Y + qf (x(tw) = 0, @
where f(x) is nondecreasing, and
~f(=xy) 2 f(xy) 2 f(Of (y),  for xy > 0.

Moreover, they considered the canonical case

o0

1
Jago==

U

and noncanonical case

[

1
J’mdl) < 00, 3
U
Theorem 1.1. ([13], Theorem 4) Let (3) hold. Assume that, for some § € (0,1) and every u; > u,, both

§ o'
(n - Dt &"(e(w))

Y@ + qf

V()’” "(ew)) =0

and
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S B on-1 B
( )](Q w»ywwmm>=o

Y@+ 4@ | o))

are oscillatory. Assume further that there exists {(u) € C([ug, ®)) such that

1/r

S g G@) M (y(G-a(t()))) = 0

y%w+eﬂwwbﬂmw

L0}
is oscillatory for every uy = uy and
{(u) is nondecreasing, ((w)>u and {,-o(t(w)) <u,
where

G =q), Gaw) = G(¢w),
(W

h@=C -u, @ = [ fb)b,

u

and {(u) € C([ug, ©)). Then, equation (2) is oscillatory.

Zhang et al. [14] studied the equation
(@ D)"Y + qxP(z(w) = 0, @
such that 8 < r, where f is a ratio of odd positive integer.
Theorem 1.2. ([14], Theorem 2.1) Let (3) hold. Assume that the differential equation

ol Y . _
= DGy 70

is oscillatory for some constant Ay € (0,1). If

y @+ Q(u)[

MP7q(b)

[Alr 2(b)] rrt 1

hmsupI 8"(b) - (r+ 1)r+1 6(b)€1/r(b)

u—oo

and

AN G0

Mﬁ—rq(b)€r(b) - (r + ™1 2(b)é%(b)

db =

lim sup I

Uu—o0
Up

hold for some constant A € (0, 1) and for every constant M > 0, where §(u) = I db and

gl/r(b)

J'(b - w)"38(b)db j(b - w)48(b)db

A ey TR

then, (4) is oscillatory.

Zhang et al. [15] used the Riccati technique to establish some new oscillation conditions for all solutions of
the equation

(@ @) + qx(zw) = 0. ©)
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Theorem 1.3. ([15], Theorem 2.1) Let (3) hold. Assume that there exists a positive function p € C'{ug, ©) such
that

2(b) RACAC) A
J l O )P0~ G (apy ydb -
for some constant k € (0, 1). Assume further that there exists a positive function 8 € C'[uy, ) such that
2 9; b 2
j e<b>j X 0)Iq<c)[ “)] s - Qoo =
If
B u . Jewmav
rr+ b _
[la®)| [ [ewyavan| - R db = w
w| — \bb [[ew)dvab
bb
and

r+1

T+ Doy | =

o oy
I[q(b)[fr%b)] o) -

for some constant k, € (0, 1), €(u) = L €1/V(b)db 0/(D) = max{0, 0'(D)}, and p(1) = max{0, p’(1)}, then every solu-
tion of (5) is oscillatory.

For even-order NDEs, Zafer [16], Karpuz et al. [17], Zhang et al. [18], and Li et al. [19] studied the oscillation
of the NDE
w®(w) + qwx(ew)) = 0
The oscillation properties of the even-order quasi-linear NDE
@IV w)@ ) + qlxe)Ix(ew)) = 0

were studied by Meng and Xu [20]. Li and Rogovchenko [21] studied the asymptotic behavior of solutions of
the NDE

(W D@)"y + qxfew) = 0, )
where f <.
Theorem 1.4. ([21], Theorem 8) Let 0 <r =<1 and (3) hold, and there exist three functions n,, n,,
N5 € C([ug, »), R) such that
nsW) 2 e(w),  1y(wW) > T(W).

Suppose also that conditions

1 ((n - DHA(z. + pf)
e

lim sup J' 0, (b)db >

W=y

and
U, w) o\ 8
limsup | QuMAP(n,(b)db > — (( 2)')e (c. + o)

u—o
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hold. If

(W)
n-3)NE(w. + pf
limsup [ Qyb)db > Tl(( ))e( pO),

— 00
u u

then (6) is oscillatory.
Note that

0<spu)sp,<e~ and t(u) =1,

n-1)8
Q) = Q@ WP, Gy = Q| Ik ]

AP, (w)

©

%0 = e [ ® - nyawy—a®)db| and Aw) = |

n3(w) u

1
Alr(b) db.

In this article, we derive new monotonic properties of a class of the positive solutions of (1). Then, we
improve these properties by giving them an iterative nature. Moreover, using these new properties enables us
to create oscillation criteria for all solutions of the studied equation. Finally, we give some examples that
support our results.

2 Auxiliary results
In this section, we will establish some important lemmas that we will use to prove the main results.
Lemma 2.1. ([22], Lemma 2.2.3) Suppose that f € C™([ug, ), €*), f™ (u) is of fixed sign and not identically zero

on[ug, ©) and that there exists uy = ug such that £ (w)f™ u) < 0 for alluy = ug. Iflim,—.f (1) # 0, then, for
every § € (0,1), there exists us € [u, ©) such that

fQw) 2 wm D W),

(m-1)!

for u € [ug, ).

Lemma 2.2. [23] Let A and B be real numbers and A > 0. Then,

rr Br+1

(r+)/r _ > - 0000
Ab Bb2 =

)]

The qualitative study of solutions of NDEs begins with the classification of the signs of the associated
function’s derivatives w®, i = 1,2,..., n. By using (Kneser’s theorem) Lemma 2.2.1 in [22], we can obtain the
following classification of derivatives of w.

Lemma 2.3. Assume that x is a positive solution to equation (1). Then, £(W)(WD(w))" is nonincreasing and w
satisfies one of the following cases:

(N) wOw) >0, fore=0,1,n-1 and w™(u) < 0;
(N) wOw)>0, for ¢=0,1,n-2 and w D) < 0;
(N3) (-D'wODw)>0 for ¢=0,1,2,..,n-1,

eventually.
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Here, we define the class Q as the category of all positive solutions of (1) with w satisfying N,. Further, we
define

Lo(w) = J'gllr(b)

L(u) = ILm_l(b)db, m=12.,n-2
u

Q) = q(w)(1 - p(e(w))),
and

Ln- r
R R )

Lemma 2.4. Assuming x belongs to Q, we obtain the following, eventually
B1,1 x(u) = (1 - p(w)w(w);

B1,2 w(u) = (n 2) u2wd(u), for all y, € (0, 1);
BL3 ()W D))"y < -Qu)w'(e(w));

BL,4 w3(u) = -Lo(w)"(w)wmD(uw);

B1,5 w2(u)/Lo(u) is increasing.

Proof. (B;1): As a result of the facts x € Q and 7(u) < u, we find w’(w) > 0 and x(7(w)) < w(t(w)) < wu).
Consequently, we obtain
x(u) =wu) - pwx(t(u))
2 w(u) - pww(r(w)
2 (1 - pw)H)w(w).

(B12): Using Lemma 2.1 withm = n - 1 and g = w, we have

w(u) = u2w=2(y),

Uy
(n-2)!
for all u, € (0, 1).

(By,3): Equation (1) with (By ;) becomes

(W PW)) = -qwx’ (W)
—q(u)(1 - ple())'w"(e(w)
-Qw"(e(w)).

(By4): Since £w)(w™V(u))" is decreasing, we obtain

IN A

WD) = - [wr-d(p)db
u

_ (D)
i I )PP ®

o1
>~ (uwn D) [~ wdb
(D)

> - Lo(w) " (w)w™D(u).
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(By5): From (By4), we obtain

WO L el w® ) + wtD(w) > 0.
Lo(u) AL (w)
The proof of this lemma is now complete. O

Lemma 2.5. Assuming x belongs to Q and there are § > 0 and w; > u, such that
1
LA L T EWY QW) = ((n - 2’8, ©

we obtain, for u = uy,

B2,1 lim,_w™3(u) = 0;

B2,2 w<"‘2)(u)/Lé3 °(u) is decreasing;
B2,3 limy-.w®2D(w)/Liw) = 0

B2,4 w2w)/La Poqu) is increasing,

for u = ug, where By = u,6"'", u, € (0,1), and r < 1.

Proof. (B1): Since x € Q, we can conclude that (B;;) - (By5) in Lemma 2.4 are satisfied for all u > w, y; large
enough. Now, since w2(u) is a positive decreasing function, we conclude that lim,_ow™2(u) = ¢ = 0. We
claim that ¢ = 0. If not, then w*2(u) = g > 0 eventually, which with (By,) gives

w(u) 2 —lu"‘zw(”‘2>(u)

Uy
(n-2)

Mo P
TR

for all u, € (0,1). Thus, from (B3), we obtain
@)W Dw))") < -Qu)w' (e(u))

s-aﬁ%wﬂwﬂmw
n-2 r
< L o),

" -2y
which with (9) gives

1
WLy (w)

1
_~nTRT
=T LTy

(@™ D)) < -refugs

Integrating the previous inequality from u;, to u, we have
( 1
LW D)) < (U)W D)) - ref Bl | =—————db
WD) < Eu)WrD(1y)) 1°IW%MF@)

“ (10)
1 1

L)  Liw)

< By Clr[
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Since Ly"(u) — w asu — o, there is a uz 2 u, such that Ly" (1) - Ly (up) 2 €Ly "(w) for all € € (0, 1). Hence, (10)

becomes

1

WD) < ~aet"By e

for all u > us. Integrating the last inequality from uz to u, we find

u

1

(n-2) < 1(n-2) — 1/r - -
W) S W) - g8 ﬁou{ Ao L)
L
<wmD(u3) - qell"B, In LO((IS)) — —©asu — o,
0
which is a contradiction. Then, ¢ = 0.
(By,2) From (9), (B12) and (B3), we obtain

@M D))y < —Lor(w("‘z)( W)y

=TT LT @ N

By integrating the last inequality from u; to u and using the fact w»(u) < 0, we obtain

u

1
WD) < Eu)W D)) - rfy I—el/r(b)L oy (@) @D
W 0
. i 0 1
< C@u) WD) ~ rBI (W 2>(u))rj—€1,,(b)L iy O
0
(n-1) r (n 2) r_ (n-2) r
< W)Y + e )( W) = fr sy,

Because w™3(u) - 0 asu — o there is a u; > y; such that

r

(U)W D(uy))" + 7 ( D

— =W PW)" <0,

for u = u,. Therefore, we have

r

_O(W(n—z)(u))r’

WM D)) < - 70

or equivalent
AT w™D(W)Lo(u) + fwA(w) < 0,
and then

W(n—z)(u)
I ﬁO(u)

_ Lo aw D) + pwDw)
AL 1+50(u)

(By3) Since w™~ 2)(u)/LO"(u) is a positive decreasing function,

hm wn= 2)(u)/L0°(u) =¢20.

1

We claim that ¢ = 0. If not, then w‘"‘z)(u)/Lf °(u) = ¢ > 0 eventually. Now, we introduce the function

w®D(u) + Lo(w)e (wyw™ 1)(u)
ﬁO(u)

Yu) =
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In view of (By,4), we note that ¥(u) > 0 and

WD) + Ly ww D) - wrOw)
L)
wA(w) + Ly ww™ O(w)
ALy T
_@raw Py, wPw) w D)
L@ YeraL, w1
(WD) ) (A wyw™ D)t
L§ (u)
wr P L wthw)
Yarwry P T 1w

Y(u) =

0

1
r

From (By3), (B14), (9) and (11), we obtain

(W Py < -

- 02)!9"-2(14)] QWD ()Y

- r_.__- (n-2) r
STy G CON

and
W(n—z)(u)
1/r (n-1) _
T ww "V (u) < -B, Lo()
or equivalently
W(n_z)(u) 1-r
€1/r u W(n—l) u 1-r >
(A" (ww () [ﬁo T

which with (12) and (13), we obtain

, _ ﬁ(; 1 (-2) . W(H—Z)(u) 1-r
R A ST Ao (e

‘3 W(n—z)(u) W(n—l)(u)

Yaraey @ T ehw)

Since w™D(u) < 0, o(u) < u, we obtain w3(p(u)) = w3(u), and then

, By 1 e A, w2w) -
lp(u)S_LéS"_l(u) €”r(u)Lol”(u)(W( ) [BO Lo(w)
W(n—z)(u) .\ W(n—l)(u)
"Ly w7 Lfw
5 w®D(u) .\ w™D(u) . w®D(u)

- L ey Pw T L
wD(u)

= Py

L)

(12)

13
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Using the fact that W("‘Z)(u)/Lf °(u) = ¢, and (11), we obtain
wm ()

LY (u)

1
<B
" L)

W(u) < B,
B P(w)
AT (w)Lo(u)

_W(n_z)(U) Bo
Ll Ar@Lo(w)

< A
AT (W)Lo(u)

The function Y(u) converges to a non-negative constant because it is a positive decreasing function.
Integrating the last inequality from us to o, we obtain

. Lo(us)
-P(uz) < _ﬂOZCZI}LIB lnm,
or equivalently
(u3)
W(us) = Bl lim In 22
(us) 2 B ¢ limIn Lo - o,

which is a contradiction and we obtain that ¢, = 0.
(Bz,4) Now, we have

(A" @w"DWLow) + wAw) = (@ ww @)y Lo(u) - w (W) + w D)
= (" (ww" W)y Lo(u)

- LYY (A W) L),

which with (12) and (13), we obtain

w2y
(WL + WD S~ e (W 2)(Q(u)))r[ﬁ0 ; (()) LW
0
, 1 - A, w2 w)
S arwigaw ™ [ﬁo Lo(w) ]

‘.30

70 (n-2)
S AL W

Integrating the last inequality from u to o, we obtain

©

- W L) - WO <~y

1
= ym-2)
Vronm” O

or equivalently

0

AW Lo(w) + WD) > , [

1
= -2
oL O

wm=2)(y) P

P Ly

2 Bow ™ A(u),

which mean that
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AT @wD(W)Lo(u) + (1 = Bw™D(u) 2 0.
Then,

W(n—z)(u)
ﬁO(u)

Lo(u)ﬁl/ "ww™ D) + (1 - Bw™ 2)(u)
€1/r(u)L BO(M)

If B, < 1/2, we can improve the properties in Lemma 2.5, as in the following lemma.

Lemma 2.6. Assuming x belongs to Q and (9) holds. If

i @)
use  Lo(u)
and there exists an increasing sequence {B,};-, defined as
y

:B ﬁO(l Bé) )1/,-5
withr <1, By = uy8Y", By < 1/2, and B,,, U, € (0, 1). Then, eventually,
B31 W(”‘Z)(u)/Lf ™(u) is decreasing;
B3,2 limy W™ 2w)/LE™ W) = 0.

1"

(14)

(15)

Proof. (Bs 1) Since x € Q, we can conclude that (B; 1) — (By5) in Lemma 2.4 are satisfied for allu > wy, uj is large

enough. Furthermore, from Lemma 2.5, we have that (By;) - (By4) hold.
Now, assume that f, < 1/2, and

— ABO
By = BOW'

Next, we will prove (Bs;) and (Bs,) at m = 1. As in the proof of Lemma 2.5, we obtain

(E@WrD@)) < -1f]

1
_ (n-2), r
ﬁU €1/V(u)L01+r(u) (W (Q(u))) .

Integrating the last inequality from u; to u, and using (B2) and (15), we obtain

u

1
)W D))" < Eu)wD(up)" - By Im
W 0

u

< Cu)W D)y - rpy I

(w2(a(b)))"db

1 rﬁo
31/r(b)L(}+r(b) (26D

(n-2),
W ﬁz(b)] db
Ly°(b)

w2 | ey o) e"ﬁ°(g<b>)

< e(u)(Wm D (w)) - 1By

w | o e
_ (- 2)(u) r+rﬁ0(b)
< @Dy - rBAo| Y db
< o)W W) - By 0 e“"(b)
Bivts(we-oap V[ 1 1
<¢ "D(u)) - )
e N 7oy | e s

1
< €(u1)(W(” 1)(u1))r + ﬁ1 r(l BO)(

u)

w2 | _ r[W("‘Z)(u) '
Lbw 1 Lo(w)
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Using the fact that W("‘Z)(u)/Lf °(u) - 0 as u — o, we have that

1
€(u1)(W(n_1)(u1))r + ﬁ{L r(1-By)
0

w2 (u) yr <0

w)| L)

Therefore, we have

W(n—z)(u) r

QWMWY < —B{[ e

)

or equivalently
A wDW)Lo(w) + fw™D(w) < 0,

and then

7

_ L@ ww D) + pwPw) 0
ALy (w) i

W(n—z)(u)

L)

By repeating the same approach used previously, we can prove that

w=2)(y
lim ﬁ—() =
u=e Lo'(u)

and

-2 |
wrw)| g
Lo P

Similarly, if B,_; < B, < 1/2, then we can prove

ATyw™D(u)Lo(u) + Bw™D(u) < 0 (16)
and
(n-2)
tim 200
u=e Lo*(u)
for k = 2, 3,..., m. The proof of lemma is complete. O

Lemma 2.7. Assume that x is a positive solution of (1) and w satisfies case (N3), then

[ w(u)
Ln—Z(u)

’

> 0. @17

Proof. Assume that x is a positive solution of (1) and w satisfies case ( N3). From (1), we have #(u)(w™ D(u))" is
decreasing, and hence

1
AT (byw™D(b)db
€1/r(b) ( )W ( ) 18)

= lim w3 (u) - w2(u).

u—o

00 1 (o]
€1/r(u)w("‘1)(u)jmdb > [
u u

Since w™2(u) is a positive decreasing function, we have that w2(u) converges to a nonnegative constant
when u—, Thus, (18) becomes

~wD(u) < AW D(U)Lo(w), (19)
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from (19), we find

[w("‘”(u)]' (@ @Lew " D(w) + wrPw)
Liw |~ M WL§ W)

which leads to

“ W(n—Z)(b)

-w<"-3>(u)zj ) L

This implies

_ Liww™I(w) + w” 3>(u)Lo(u)
L{(u)

[ w3
Li(u)

Similarly, we repeat the same previous process (n — 4) times, we obtain

[ ww | _
Ln—3(u) B

Now

w’(b)
Ln-3(b)

A0

n3()

“w(u) < _[ Ly-3(b)db

_[Ln 4(b)db

_ww
B Lp-3(u) Ln-a(t).

This implies

[ w(u) ] _ Lip(w' (W) + w(Ly-3(w)
Lp-(u) Ly 5(u)

3 Conditions for emptying class Q

= 0.

- 13

In the following, we present some theorems that prove that there are no positive solutions which satisfy

case N,.

Theorem 3.1. Assume that (9) holds. If
By > 1/2,

for some u, € (0,1), then the class Q is empty, where B is defined as in Lemma 2.5.

(20)
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Proof. Assume the contrary that x belongs to Q. From Lemma 2.5, we have that the functions w®" 2)(u)/€0°(u)
and w- 2)(u)/LO P %(u) are decreasing and increasing for u > wy, respectively. Then, we obtain

AT W™ D(W)Lo(u) + Bw 2 (u) < 0, 1)
and
AW D(W)Lo(uw) + (1 - B)w™2(u) = 0. (22)
Combining (21) and (22), we obtain

0 < AW D(W)Lo(u) + (1 = BIw™D(u)
= AW DL(W) + B D) + wD(w) ~ 2w D(w)
< (1 - 2B)wmI(u).

Since w™2(u) > 0, we obtain 1 - 2B, 2 0, which means that f; < 1/2, which is a contradiction. The proof is
complete. O

Theorem 3.2. Assume that (9) and (15) hold. If there exists a positive integer number m such that

toBn " Lo(w)
r ((n 207 = Br) Lo " (e(w)

is oscillatory, then the class Q is empty, wherer < 1 and B,, is defined as in Lemma 2.6.

P + (" 2(w)" Q(w)¥(e(u)) = 0, 23)

Proof. Assume the contrary that x € Q. From Lemma 2.6, we have that (Bs;) and (B3 2) hold.
Now, we define the function

W) = AMw)wmDWw)Lo(u) + wrd(w).
It follows from (B;4) that ¥(u) > 0 for u = w;. From (Bs;), we obtain
A w™PWLo(u) < -B,w" 2 (w).
Then, from the definition of ¥(u), we have

W(w) = AW DWLw) + Bw" D) = BwD(w) + wh D) -
<1 - B IwmI(u).
Using Lemma 2.4, we find that (B;;) — (By5) hold. From (B 2) and (B, 3), we obtain
W(w) = (" (wyw™ (W) Lo(w)

< %(€(u)(W("'D(u))r)’(€” "@w™ D))" Lo(u)
s- %Q(u)w’(g(u))(el/ "@w™ D))" Lo(w)

w2
<—%Q(u>wf(g<u>)[ﬁ LaslC) e

" Lo(u)

wm=2)
<—2By ’Q(u)Lo(mwf(g(u))[ o ()“)
__1r n2 (n-2) rW"Z(u)
N e [ Ll

from (Bys) in Lemma 2.4, we note that w2(u)/Lo(u) is increasing, then
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w W)  wP(u)

Lo(low)) —  Lo(w)
and
[W(n—Z)(Q(u)) ]1" . [W(n—z)(u) 1-r
Lo(e(w)) | Lo(w)
then
o < Lpler Hy - ' - | W P(e(w)) "
W(u) < rﬁ’" Q(u)Lo(u)[(n — 2)!9 Z(u)] (w"2(o(u))) IiLo(Q(u))
_1 [)’;;ryor LO(u) n-2 1) (N-2)
< (=2 Q(w) LI (o)) @ (W)'w2((u)),
which, from (24), gives
rpl-r
W) + ~——om Lo o2y ouywioquy) < 0. (25)

r((n -2 - B,) Li"(ew))

Hence, W(u) is a positive solution of the differential inequality (25). Using ([24], Corollary 1), we see that
equation (23) also has a positive solution, which is a contradiction. This contradiction completes the proof
of the theorem. O

Corollary 3.1. If

r n- r r-1c¢1 _ _ r
liming [ LOCOVQ0)y, | T ha)( = 20

1-r
w2y Lo @®) e

(26)

holds, then the class Q is empty.

Proof. From Theorem 2.1.1 in [25], condition (26) guarantees that (23) is oscillatory. This completes the
proof. O

Theorem 3.3. If

u _ r B
: AQ" D) | Lo (e(d)) rrt 1
lim su —— b) - " db = o 27)
e pu{ n-2t) 1 0 T A Lk k)
holds for some constant A € (0, 1), then the class Q is empty.
Proof. Assume the contrary that x € Q and assume that the case N, holds. Define the function ¥ by
v (n-1) r
O A o Ukl CO) IS 28)

(CEU))
Then, ¥(u) < 0 for u = w. Since #(uw)(W™D(u))" is decreasing, we obtain
AT (w™D(b) < AMww™ (),

for b = u = w. By dividing the last inequality by £/7(b) and integrating it from u to I, we obtain

b.

l

1

wrD(1) < whD(y) + el/r(u)w@-l)(u)jmd
u

Putting [ - », we have
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0 < wmAw) + AW D(w)Le(w),
which produces

~ AWy wmD(u)

W(”‘Z)(u) Lo(u) <1.

Therefore, from (28), we see that
-Ww)Li(u) < 1.
From (28), we obtain

@ V@) @ D))

HOS T Wty T )
_ g Q@) ey
w2 () w2yt

L TQw o) _ wrbir
R Ar(u)

From Lemma 2.1, we obtain

w(u) = U 2w 2(y)

(n-2)!

and

w(e(u)) 2 Q" wyw™D(o(w)),

(n-2)!

for every A € (0, 1) and for all sufficiently large u. Then,

, _ A ) Do) i)
P(w) < -Q(w) (n - 2)!9 2(”)] (wm=d(w)) r Alr(w)
Since W(”‘Z)(u)/ég”’(u) is decreasing, then
(n-2)
wird < Lo fuy

Lg"(a(u))

for o(w) < u, thus

L") A

1p(r+1)/r(u)
Ly (- 2)!

tgl/r(u)

W(u) = -Q(u) Q”"Z(u)] -r

Multiplying the last inequality by Lj(w) and integrating it from u; to u, we obtain
u
Li™\(b)
LEW) - L (u)¥(w) + rujmwbmb
1
Lorﬁ’"(Q(b)) AQ"‘Z(b) r b+ j.lp(r+1)/r(b)
Ly Py (n - 2)! &7 (b)

+ fow)

Using inequality (7) with
_ Lo(b) _ Lo
Ty T ey’

and b =-9Y(b),

we have

LE(b)db < .

DE GRUYTER

(29)

(30
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u _ rﬁ
()| Lo (o)) prel 1
I (n-2)! L‘r(l‘ﬁm)(b) Q) - (1 + )" Lo(b)é"(b) db < Lo(u)P(wy) + 1,
Uy 0
due to (29), which contradicts (27). This completes the proof of the theorem. O

Example 3.1. Consider the NDE

W ((x(u) + pox(rou))” )Y + g X" (geuw) =0, u=1, (31
where 0 <p, <1, 7%, g, € (0,1), and g, > 0. By comparing (1) and (31), we see that n =4, ¢(u) = u,
q(u) = qu' L, p(w) = py, 0(w) = guu, and 7(u) = tu. It is easy to find that

LW = o, ) = oy L) = o
and
QW) = qu'™'(1 = py)'".

For (9), we set

1 Q(quo

6= r orgr+l

(1 - po)r~

Form (15), we have A = 1/93. Now, we define the sequence {8}, as

‘B B ﬁ 1 [l 3B;-1
4 0(1 _ Bg—1)1/r QO 4
with

Hy
6r1/r31/r

By = Q(z)qol/r(l = Dp)-

Then, condition (20) reduces to

r3r+1

T — (32)
G Qé (1 - po)r

and condition (26) becomes

Lo(b)(@" (b)) Q(b) db
Ly "(e(d))

u
s
mint |
ow)
1
= liminf [ Z50¥ b3 b0y (L - pyrdb

u—o00
Qol

o 1
0 . .
= 3 @1 - py’ limin jgdb
Qolt
3-r

Q 1
= ——q1 - py)In—,
3 4y Do 0

which leads to

By ‘(1 - By)

e

1
6700 qp(1 - po)rlng— > (33)
0

While condition (27) becomes
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. l(2e2®)) L)) rrel 1
tim sup I (n- 2)!] 1Py O T T LT ) ld”

u—o

o1 1 rrl

1
?QU b2r 3

-1(1 - - 3p3—
3rpsr Qgrﬁm qobr a po)r 1+ r)1+r3b b4

db

u
lim sup j
Uo

u—o0

3rr+1

ro1 . 1
Eggrﬁm—ﬁlr qO(1 - pO) - (1 + r)1+r

b

db

u—oo

u
lim sup I
Uo

. u
limsupln— = oo,
U—w Up

PUBEES | . 3rr+t
& g W G

which is achieved if
A 3rr+l

EW%O - py) > A+ (34)

Using Theorem 3.1, Corollary 3.1, and Theorem 3.3, we note that the class Q is empty if either (32) or (33) or (34)
holds, respectively.

4 Oscillation theorem

In the following theorems, we use the results from the previous sections to obtain new oscillation criteria
for (D).

Theorem 4.1. Let (20) holds. Assume that

[ @) (- DY
hxl}l?fg([)o(b) by P . (35)
and
| U A 7 ()| I
hT_i:lpJ- Q*(b)Ly-5(b) (r + 1)1 Ly_s(b) db = (36)

Uy
hold for some constant A € (0, 1). Then, every solution of (1)is oscillatory.
Proof. Assume that equation (1) has a non-oscillatory solution x. Without loss of generality, we may assume

that x is eventually positive. It follows from equation (1) that there exist three possible cases as in Lemma 2.3.
Assume that case (N;) holds. From Lemma 2.1, we obtain

w(u) 2 utwD(w), 37

(n-1)!
for every A € (0, 1) and for all sufficiently large u. From (1) and (37), we obtain
(@)W DW))") = -qu)x"(e(w))
< -Q(uw(e(uw))

<o @@y

I (n-1), r
(n ~ iy ecoquy TR

Letting W(u) = ¢(w)(w™D(u))", we see that
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A" ()"
((n - DHhre(ew)

This is a contradiction because condition (35) guarantees that (38) has no positive solution according to
Theorem 2.1.1 in [25].

Assume that case (N;) holds. The proof of the case (N) is the same as that of Theorem 2.5.Assume that case
(N3) holds. Since 2(u)(w™Y(u))" is decreasing, we obtain

W) + Q) W(o(w)) <0, (38)

AW D(b) < AM(wWwmD(u),

for b = u = w. By dividing the last inequality by £/7(b) and integrating it from u to I, we obtain

1
1
- - / - i
w1y < wr=2(u) + A (wyw® 1>(u>{ )
Putting | - «, we have
0 < wmd(w) + Ar(wWywmDw)Lo(w),
which leads to
wD(w) 2 A WwD(w)Lo(w). (39)

Integrating (39) from u to * yields

— W) > - J’ AT (BYWD(b)Lo(b)db

> —€1/r(u)w<"‘1)(u)IL0(b)db

> - A (w)wm D)L, (w).
Similarly, integrating the previous inequality from u to ®, a total of (n - 4) times, we obtain
-w'(u) = - Wywr W)L, -3(u). (40)
Integrating (40) from u to ® provides
wu) = - Ww (W)L ,-o (). 4D
Define the function ¥ by

o™ D))
- w(u)

P(u) LU U (42)

Then, Y(u) < 0 for u < u. Differentiating (42), we obtain

@ D@)ry oW Dw)) w’(u)

Y(u) = w(u) W”l(u)
It follows from (1) and (42) that

X(ew)  @wDw)" Arwwr D)
w'(u) wr(u) w(w)

W(u) < -q(uw) Lp_a(u). (43)

Since
w(w) = x(u) + px(t(w)),
then
x(u) = wu) - px(t(w)) 2 wu) - p)w(r(w)), (44)
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from (17) in Lemma 2.7 we see that w(u)/L,-,(u) is increasing, consequently

ww) _ w(t(w)
Lyo(m) — Lpo(t(w)’

for 7(u) < u. From (44), we find

x(u) 2

1 - pw) €n-z(f(u))]w(u)

En—o(U)
and
-
EOE [1 - p(g(u))%]w(g(u»,
also

bua(tle)) |

o) | @)

q()x™(e(w)) = q(u)[l - p(e(w))
= Q"(ww"(e(w)).

Now, we see that (43) becomes

wiew)) e Pw)” A wywn V(u)
w'(w) w'(u) w(u)

W(u) < -Q*(w) Ln-3(u).

Multiplying the last inequality by L,_,(u) and integrating it from u; to u, we obtain
u
L)) = L_y(u)¥(uw) + 1 [Li3b) Ly 5(b)¥(b)db

L5

u u
+ [Q ML D)db + 1 [Lu s BILL_,BY¥TDI(bYD < 0.
w i

Using the inequality (7) with
A= Lyy(b)Ly o(b), B =Ly 3(b)Ly-3(b) and b =-%(b),

we have
p 1 Lya(b)
* r _ — r
uj[o DLia®) = i Loy 20 S a2 @) + 1,
1
due to (41), which contradicts (36). Therefore, every solution of (1) is oscillatory. O

Theorem 4.2. Let (9) and (15) hold. Assume that (26), (35), and (36) hold for some constant A € (0, 1). Then,
every solution of (1) is oscillatory.

Theorem 4.3. Let (9) and (15) hold. Assume that (27), (35), and (36) hold for some constant A € (0, 1), then,
every solution of (1) is oscillatory.

Example 4.1. Consider the NDE

1
—u

4/3
u
3

x(u) + %x —u =0, (45)

2 u?3

]///

where p(u) = i, q(u) = # and 7(u) = %u. It is easy to see that

1/3)
5
+ —=X
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3) 5
Q) = [Z] e

For (9), we set § = 1.20187, and f; = 1.73609y,. Therefore, 8, > 1/2 for all u, € (0.3,1) and then condition (20)
holds. Conditions (35) and (36) reduce to

o @) 1 (325 3% 1
hruriglf T 1)|)r JQ(b) 200)) db = 61/3 mf-[22/3 PEE 3db 41> .
and
r Pl Lo _a(b)
; * r el A
e I N

u
. 1 1 1
= hmsup I FW—GUSI)US - W@Gb]db
U g,
. u
= 2.03limsup|In—| = o,
u—wo U

respectively. Thus, from Theorem 4.1, we conclude that every solution of (45) is oscillatory.

Example 4.2. Consider the NDE (31). Condition (35) becomes

o (Qn 1(b))r 1 3rb3r
hi‘llf‘fm I Oy o Imnt QI b b b
[]
1 1
=$qo( rpo) ml,
Q Qp
which leads to
1 1- r 1 1
1&A-p) 1,1 (46)
6 0 Q e
While condition (36) is abbreviated to
h rr (b)
. n 3
* -— db
msup [l L0 T )
1
u r
. po 1 rr+l 1
= -—|=-——==|<db
hIIl_,S‘:lp ;!. q()[l TO] 6 (I" n 1)r+1 b
1
po) 1 rrt u
= lqo[l - T_o] . 40 Ty lim sup In— " = oo,
which is achieved when
2 S
q [l 6r TS 47

From Theorem 4.1, we see that every solution of (31) is oscillatory if (32), (46), and (34) hold.
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5 Conclusion

The higher-order NDEs have not received much attention compared to the delay equations or the second-order
equations in general. In particular, the equations of higher-order NDEs in the noncanonical case receive
almost no attention. In this study, we create new oscillation conditions for solutions of (1). The new criteria
were created based on finding new monotonic properties of a class of positive solutions to (1). Moreover, we
provided some examples that support our research and illustrate the significance of the results.
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