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1 Introduction

In recent years, discrete special functions have been studied by a variety of authors in different contexts. The
type of discrete analogue we focus on here is described in [1,2] as a “shadow” of its classical counterpart. By
this, it is meant that the discrete analogue of a continuous (i.e., defined on the real line) function
f : A CR - R with Laplace transform F(z) = Lg{f}(z) is a function f: B C Z - R whose “discrete Laplace
transform” is also F.

The original set of elementary shadow functions were defined for arbitrary time scales, which introduced
notation such as e, for the dynamic exponential and sin, for the dynamic sine. The recent study of further
special functions in integers or natural numbers (both often referred to as “discrete” time scales) started with
the discrete Bessel function [3], which, e.g., was later applied to understand qualitative properties of solutions
of discrete wave equations [4]. The discrete Bessel functions were then later greatly generalized to discrete
hypergeometric functions [5,6], which are relevant to our work here. Generalization of the elementary special
functions on time scales to a broader framework appears in [7].

Many classical special functions are defined as an indefinite integral, but this has not carried through to
discrete special functions. We shall investigate later the discrete analogues of two common special functions
often defined in terms of integrals and observe some of the difficulties that arise when attempting to find the
integral formulation of a discrete special function.

The sine integral and complementary exponential integral functions are well studied special functions.
We will focus on the discrete analogues of these functions in particular, because they are defined as anti-
derivatives of elementary functions. While the theory of discrete special functions has been quite successful in
finding analogues of functions from their power series, analogues of functions classically defined by indefinite
integrals have not been as simple to find. This article will reveal some of the difficulty — we shall show that the
discrete analogue of the sine integral does retain its definition as an antiderivative in the discrete analogue,
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but the discrete complementary exponential integral fails to retain it. Moreover, the other related special
functions such as the cosine integral and the broader class of exponential integrals do not appear to have
straightforward discrete analogues at all, likely due to their use of complex analysis that has no current
discrete analogue in resolving integrals across singularities.

2 Preliminaries and definitions

We make significant use of the forward difference operator Af(t) = f(t + 1) — f(t), which can be rearranged to
obtain

fE+1) = 5f(6) + f(O. @

We bhorrow the notation from the time scales calculus [8], most significantly
b b-1
[r@ne= 3 @0,
a k=a

The falling powers t¥ are the discrete analogue of the power functions and are defined by the formula

tk = F(z(_lz?l). The t¥ obey a power rule of the form At¥ = kt*=! and an analogue of the integral for monomials
bk+1 ak+1
It"At =T )
The shift lemma for discrete calculus is
ti(t — n) = (um 3)

We will use the notation % for the classical Laplace transform, and the discrete Laplace transform is given by

Lp{fH2) = Yreo SO which is a scaled and shifted Z-transform (see [9,10] for a thorough investigation). If

1+ z)k+1>

X(t) = I:X(T)AT, then [10, Theorem 6.4]

1
LX)z 8) = Lz 9). @)
It is well known [8, Theorem 3.90] that
K k!
L2z ) = g )

The discrete exponential e, is the unique solution of the initial value problem Ay(t) = ay(t) and y(0) = 1.
By the discrete Taylor’s theorem,

o aktk
e (t,0)= ) —. 6
‘ K=o K!

ei(t) - e-i(t)

The discrete sme functlon sin is defined by siny(t) = 5
o (D2l

fur , and it is straightforward to show from (6) that
sing(t) = Y=o (2k+1), , 0 in particular,

sig(t +1) ~ « (=DkeZk

= . 7
t+1 oo 2k + 1)! @
The ,# , generalized hypergeometric series is defined by:
o (a)k--(ap)k z¥
F @, .., Qp; by, ...,by; 2) = > ! P ®

k:omﬂ’
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r(?(;)k) is called a Pochhammer symbol. The discrete analogue of (8) is [5,

where (a)y = a(a+ 1..(a+ k-1) =
(23)] as follows:
o (@)x...(ap)k Ektnk

F (ay, ...,ap; by, ...hby; t, N, 8) = ) ———— )
vFol@ P o1 1 2 kgo(bl)k---(bq)k k!

and it is related to the classical ,%, [5, Proposition 2] by:
qu(a; b’ ty na E) = p+n7:q(ay ty ba E(_n)n)’ (9)
where t = [—% _HTH]

The classical sine integral function is defined by the integral
[sin(®)
sin
i(x) = |——= 10
Si(x) { e, (10)

and it follows that it obeys the series

s (_Dk—lxzk—l

(X)= ) . 11
Si(x) ké 2k - D2k - )| (Wh))]
It has a classical hypergeometric representation:
133 2z
SN = 2235, 7 12
Si(2) 219’2[2, Y 4] 12)
It solves the third-order differential equation
zy” +2y" +zy'=0, 13)
and it has the Laplace transform [11, 3.5.1]:
, 1 1
LiSiNz) = p arctan 2| (14)
The related complementary exponential function &in is defined by:
t 1- —r
gin(t) = _[ At. (15)
0
Another function, called the exponential integral &i, is related to Ein by [12, 37:0:1]
&in(t) =y + In(Jt]) - &i(-1), (16)
where y is the Euler-Mascheroni constant. Its Laplace transform is given by [13, p. 1160]:
. 1 1
S{€in}(z) = Elog 1+ E] 17

Mathematica reports that the general solution of the polynomial coefficient third-order linear differential
equation

() + (¢ + 50" (8) + Bt + 4)y'(O) + y(6) = 0 (18)
is y(t) = ngi(_t) + 94 631?([). By (16), the specific solution of (18) for ¢ > 0 with parameters ¢ = -1, ¢ = y, and
6=1 is

yo = 2O, 19)

t
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3 Discrete sine integral

We define the discrete analogue of (10) by:

t

. ‘1
Si(t) = I%Ar. 20)
0
The following theorem is an analogue of (11).
Proposition 3.1. The following formula holds:
. N G Vil
= . 21
Sie) ,ZO (2k + 1)(2k + D)1 @)
Proof. Using (7) and (2) to integrate from 0 to t, we obtain
t
_[§ (D
Si(t) = {go 2+ D)
t
s (DX I 2%
= Z AT
im0 2k + 1) .
s Dk
- ,ZO (2k + 1)k + DI
which completes the proof. O

We now represent the discrete sine integral in terms of discrete hypergeometric functions, analogous
to (12).

Theorem 3.2. The discrete sine integral has the following hypergeometric representations:

. 1 33 1
Sl(t)_tlFZ[zy 21 th 1:21 4]_1’37:2[25 2 ) 2 ) 2: 2) 1

and its defining series exists for Re(t) > -1.

Proof. Compute

[ e
BN Y

r[%]@k -1)!

Since T PR-D

and T we obtain

3 1 1
s

L
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G
|

sl

T (2k + 1)? r[§ . k]

_ 2k (k-1 |2k
@k + 1| 2k - D! |2k
22k

T2k + D2k + 1)

Since t(t — 1)% = t2*1 the proof of the relation to 1F; is complete. The relationship to ;7 follows from (9).
As a consequence of (9) and the well known convergence properties of , F, [6, Corollary 4], it converges

1 3 3

whenever Re(t - 1) > % + 5 =5 — 5, which simplifies to Re(t) > -1, and the proof is completed O

We now prove the discrete analogue of (14), which demonstrates that Si is the shadow function associated
with Si (Figure 1).

Theorem 3.3. The following formula holds:

. 1 1
F{Si}(z) = , arctan p,

Proof. By (7) and (5), we compute

siny(: +1)] < (-DK 2k o (DK [1]2k+1 1
_ = _ ot . = — = — 22
Ly 1 (2) IZO K+ 1)!4,$,ﬂ{t Nz; 0) gﬂ 2K+ Dz arctan p (22)
Using (4) and (22), compute
. _1 siny(- +1) _1 1
F{Si}(z) = Ziﬂz 1 ’(z) =3 arctan .
which completes the proof. O
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Figure 1: Plot of Si on the real line and its domain coloring in the complex plane.
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We derive the difference equation analogue of (13) by manipulating (21) directly.

Theorem 3.4. If y(t) = Si(¢t), then
tBy(t — 1) + 24%y(t) + tAy(t - 1) = 0. (23)

. o (_1)ktﬁ
Proof. First, compute Ay(t) = Zk=0(2k—+l)!’

2 (DR@RR S (DR + ek
ByO=2 o T T gkea)

and

i (-Dk@k)(2k - D=2 _i (-D*(2k + 2)(2k + 1)t
= (2k + 1)! B (2k + 3)!

My(t) =

Now, substituting these into the left-hand side of (23) and taking (3) into account yield

o (—DkeZk+1 _@k+2)@2k+1) 22k + 2) +1
w0 CQk+ DN 2k +2)2k +3)  (2k + 2)(2k + 3)
_ ¢ DRk +2) _ _
= kgo—(Zk + 3 [-Qk+1) -2+ 2k +3)]=0,
which completes the proof. O

Using (1) repeatedly in (23), we are able to remove the delay from all terms (see Corollary 4.5 below where
we provide some details on how this is done).
Corollary 3.5. If y(t) = Si(t), then
(t + 3)Ay() + 24%y(0) + (¢ + DAY(D) = 0.

4 Discrete complementary exponential integral

Define

N
ém(o) = 20 k+ Dk + D!

Remark 4.1. The integral (15) has no singularity at the origin since the power series for 1 — e contains a factor
of 7 which cancels the 7 in the denominator. It is natural to assume that &in would have a representation as an
integral similar to (20), but this does not seem possible. The start of such a derivation of might look like this:

t t t

. 2 (CDXfjTRaT L& (aykek 2 (-1)kgkt
&in(t) = go—(k P ‘(|)'k=0 0+ 1)!AT = —IZ

The series being integrated is almost (6), except the missing k = 0 term and the power on 7. This can be

corrected for by multiplying the series by T;l and adding and subtracting 1 to obtain

&in(t) = - I‘ (1)k(T Dt

t
-1+ e4(7,0
I e((T )AT

-1 ’
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which superficially appears to be an analogue of (15). However, there are two problems that have arisen: first
is that the numerator equals -1 except when 7 = 0 since e_4(7, 0) = 0 for any 7 # 0 and e_,(7, 7) = 1 [14, p. 1384].
Second, when computing the integral, a division by zero will occur when 7 = 1, which is also unavoidable in
this case. A similar situation is handled at the origin in the classic theory by the Cauchy principal value, but we
do not have an analogue for that in discrete calculus at this time. This suggests that there is no integral
formulation for the &in function on this time scale.

We now find the representation of Ein as a discrete hypergeometric series.

Lemma 4.2.
&in(t) = t,F,(1,1; 2,2; t,1,-1). (24)
Proof. Compute
1 _ klk! (e
(k+Dk+1D!  (k+DIk+DK Qxk!
Hence
. o (Mrr(-D¥(t - D¥
&in(t) =t =t F,1,1;2,2; t-1,1,-1),
O=2 " oy )
which completes the proof. O

By combining (9) with (24), we obtain the the relationship with ;7. Also by [6, Corollary 4], the analogue of
(19), we will use to prove an analogue of (18).

Corollary 4.3. The following formula holds:

&Sin(t + 1)

= 1,1,-t2,2; 1).
i1 3 Fo )

We now derive a difference equation for &in, analogous to (18).

; _ &in(t+1) . .
Theorem 4.4. The function y(t) = — _— solves the difference equation
t2A3y(t - 2) + t2A%y(t - 2) + 5tA%y(t — 1) + 3tAy(t — 1) + 4Ay(t) + y(t) = 0. (25)

Proof. Let 6 = tpA, where (pf )(t) = f(t - 1) is called the shift operator. By [5, Theorem 7] and (24),
[tpA(tpA + D)(tpA + 1) + tp(tpA + 1)(tpA + 1)]y(¢t) = 0.
Now, factoring inside the brackets, dividing by ¢, and dropping the shift operator on the left reveal
(A + D(tpA + D(tpA + Dy(t) = 0.
Performing the first step of this calculation yields
(A + 1)(tpA + (tAy(t - 1) + y()) = 0.
Since A(tAy(t - 1)) = Ay(t) + tA>y(t - 1), we have
(4 + D([tAy(t - 1) + e2A%y(t - 2) + thy(t = D] + [thy(t - D + y(O)]) = 0,
which simplifies to:

(A + D(t22y(t - 2) + 3tAy(t - 1) + y(t)) = 0. (26)
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Figure 2: Plot of both &in(t) and and the domain coloring of &in.

Finally, since A(t2A%y(t — 2)) = 2tA*y(t — 1) + t2A3y(t — 2), substituting A + ¢ into (26) yields
2t0%y(t — 1) + t283y(t - 2) + 3Ay(t) + 3tA%y(t — 1) + Ay(t) + 2A2y(t - 2) + 3tAy(t — 1) + y(t) = 0,

which simplifies to (25), and the proof is completed O

Equation (25) can be rearranged by the repeated use of (1) to obtain the following result.

&in(t+1)

Corollary 4.5. The function y(t) = —

solves the difference equation:

(t + 4)%83y(t) + (2 + 11t + 27)A%y(t) + 3(t + H)Ay(t) + y(t) = 0. 27
Proof. Replace t with ¢ + 2 in (25) to obtain
(t + 2)2M3y(t) + (t + 2)20%y(t) + 5(t + 2)A2y(t + 1) + 3(t + 2)Ay(t + 1) + 4Ay(t + 2) + y(t + 2) = 0.
Repeated use of (1) on A2y(t + 1), Ay(t + 1), and y(t + 2) leads to:

(t+ 228y (t) + (t + 222(1) + 5(t + D[LY(D) + Ly(0)] + 3(t + [Ay(D) + Ay(0)] + 4[Ay(D) + 24%y(1)
+ Ay(D] + [A2y(D) + 28y(6) + y(D)] = 0,

which simplifies to (27), and the proof is completed O

We now derive the discrete analogue of (17), which shows that &in is the shadow function associated with
&in (Figure 2).

Theorem 4.6. The following formula holds:

F7{EIn}(z; 0) = élog[l + %]
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Proof. Using (5), calculate

g 0= ol 3 D
L7{€in}(z; 0) = & [ :Zo (k + D(k + 1)!
5 (DF
) ko (K + 1)j‘(k + D!

](z; 0)

th+1

l(z; 0)

Tz 5 (k + 12k

—110 [1+1]
Tz g z/

which completes the proof. O

5 Conclusion

We have introduced the discrete analogues of the sine integral and complementary exponential integral
functions. For each, we have expressed it as a series, found its relationship to hypergeometric functions,
and computed its Laplace transform. Analytic continuation is likely a way to extend the domains of existence
of Si and &in beyond Re(t) > -1, but doing so is beyond the scope of this article.

We have argued in Remark 4.1 that an integral form for &in like (15) seems unattainable, but this might
merely be a consequence of the discrete exponential e-; vanishing. This suggests a future direction for research
into generalizations of Si and &in to time scales where e_; does not vanish.

There are other related functions that were not considered here, of most importance would be analogues
of the exponential integrals &i and &, as well as the cosine integral Ci. All of these functions are defined by an
integral that is computed via the Cauchy principal value; the theory needed to do similar work for discrete
special functions does not exist, so developing it is of interest. Some possible directions might include con-
temporary theories of discrete complex analysis [15-17]. Another approach to understand &i might also be to
investigate what the other independent solutions of (25) are.
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