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Abstract: A proper graded ideal P of a commutative graded ring R is called graded weakly 1-absorbing primary if
whenever x y z, , are nonunit homogeneous elements of R with ≠ ∈xyz P0 , then either ∈xy P or z is in the
graded radical of P. In this article, we explore more results on graded weakly 1-absorbing primary ideals.
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1 Introduction

In dispersion through this article, G is a group and R is a commutative ring with nonzero unity 1 unless
specified differently. If = ⊕ ∈R Rg G g with the property ⊆R R Rg h gh for all ∈g h G, , where Rg is an additive
subgroup of R for all ∈g G, then R is aforementioned to be a graded ring (gr-R). The aspects of Rg are called
homogeneous of degree g . If ∈s R, then s can be expressed uniquely as∑ ∈ sg G g , where sg is the component of s

in Rg , and =s 0g is represented by the symbol. The set of all homogeneous aspects of R is⋃ ∈ Rg G g and is denoted
by ( )h R . The component Re is a subring of R and ∈ R1 e. Let R be a gr-R and P be an ideal of R. Then, P is
aforementioned to be a graded ideal (gr-I) if ( )= ⊕ ⋂∈P P Rg G g , i.e., for ∈p P, ∈p P

g
for all ∈g G. An ideal of a

gr-R is not necessarily gr-I. For a G-gr-R R and a gr-I P of R, ∕R P is a G-gr-R with ( ) ( )∕ = + ∕R P R P Pg g for all
∈g G. For further phrasing, see [1].
A proper gr-I P of R is aforementioned to be a graded prime ideal (gr-p-I) if ∈xy P implies either ∈x P or

∈y P , for all ( )∈x y h R, [2]. It is clear that if P is a prime ideal of R and it is a gr-I, then P is a gr-p-I of R.
Indeed, the example below demonstrates that a gr-p-I is not necessarily a prime ideal:

Example 1.1. Consider �[ ]=R i and �=G
2
. Then, R is gr-R by �=R

0
and �=R i

1
. Consider the gr-I =P pR of

R, where p is a prime number with = +p c d2 2, for some �∈c d, . We show that P is a gr-p-I of R. Let ∈xy P

for some ( )∈x y h R, .
Case 1 : Assume that ∈x y R,

0
. In this instance, if �∈x y, , where p divides xy, then either p divides x or p

divides y, which implies that ∈x P or ∈y P .
Case 2 : Assume that ∈x y R,

1
. In such a case, =x ia and =y ib for some �∈a b, such that p divides

= −xy ab, and then p divides a or p divides b in� , which suggests that p divides =x ia or p divides =y ib in R.
Then, there is that ∈x P or ∈y P .
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Case 3 : Consider that ∈x R
0
and ∈y R

1
. In this instance, �∈x and =y ib for some �∈b such that p

divides =xy ixb in R, i.e., ( )= +ixb p α iβ for some �∈α β, . Then, we obtain =xb pβ, i.e., p divides xb in � ,
and again p divides x or p divides b, which implies that p divides x or p divides =y ib in R. Thus, ∈x P

or ∈y P .
So, P is a gr-p-I of R. On the other hand, P is not a prime ideal of R since ( )( )− + = + = ∈c id c id c d p P2 2 ,

( )− ∉c id P, and ( )+ ∉c id P.

Allow for P to be a gr-I of R. Then, the graded radical of P is denoted by ( )- PGr rad and is defined as
follows:

�( ) ∑- =
⎧
⎨
⎩

= ∈ ∀ ∈ ∃ ∈ ∈
⎫
⎬
⎭∈

P s s R g G n s PGr rad : , s.t. .

g G

g g g

ng

Recall that Gr-rad(P) is every time a gr-I of R [2].
A proper gr-I P of R is aforementioned to be a graded primary ideal (gr-py-I) if ∈xy P suggests either

∈x P or ( )∈ -y PGr rad , for all ( )∈x y h R, [3]. In this situation, ( )= -Q PGr rad is a gr-p-I of R and P is allegedly
graded Q-primary.

Since gr-p-I’s and gr-py-I’s are vital in commutative graded ring theory, numerous authors have looked
into various generalizations of these gr-Is. Atani [4] proposed the idea of graded weakly prime ideals. A proper
gr-I P of R is called a graded weakly prime ideal (gr-wp-I) whenever ( )∈x y h R, and ≠ ∈xy P0 , then ∈x P or

∈y P . Atani [5] presented the impression of graded weakly primary ideals. A proper gr-I P of R is called a
graded weakly primary ideal (gr-w-py-I) of R if whenever ( )∈x y h R, and ≠ ∈xy P0 , then ∈x P or

( )∈ -y PGr rad . New generalizations of graded primary ideals and graded weakly primary ideals are, accord-
ingly, the notions of graded 1-absorbing primary ideals and graded weakly 1-absorbing primary ideals pro-
posed by Abu-Dawwas and Bataineh [6,7]. A proper gr-I P of R is called a graded 1-absorbing primary ideal
(gr-1-ab-py-I) if whenever nonunit elements ( )∈x y z h R, , and ∈xyz P, then ∈xy P or ( )∈ -z PGr rad . A
proper gr-I P of R is called a graded weakly 1-absorbing primary ideal (gr-w-1-ab-py-I) if whenever nonunit
elements ( )∈x y z h R, , and ≠ ∈xyz P0 , then ∈xy P or ( )∈ -z PGr rad . Certainly, every gr-py-I is gr-1-ab-py-I.
The following example demonstrates that the converse is not true in general:

Example 1.2. [6] Consider [ ]=R K X Y, , where K is a field, and �=G . Then, R is gr-R by = ⊕ + = ≥R KX Yn i j n i j
i j

, , 0

for all �∈n . Recall that ( ) ( )= =X Ydeg deg 1. Consider the gr-I ⟨ ⟩=P X XY,

2 of R. Then, ( ) ⟨ ⟩- =P XGr rad , and
it is obvious that P is a gr-1-ab-py-I of R. On the contrary, P is not gr-py-I of R Example 2.11 in the study by
Soheilnia and Darani [8].

It is recognizable that a gr-1-ab-py-I of R is gr-w-1-ab-py-I. However, since { }0 is always gr-w-1-ab-py-I,
a gr-w-1-ab-py-I of R is not necessarily gr-1-ab-py-I, see Example 1.3.

Example 1.3. [7] Propose � [ ]=R i
6

and �=G
2
. So, R is gr-R by �=R

0 6
and �=R i

1 6
. Now, { }=P 0 is a gr-w-1-

ab-py-I of R. On the other hand, ( )∈ h R2, 3 such that ∈ P2.2.3 with neither ∈ P2.2 nor ( )∈ - P3 Gr rad . Hence,
P is not a gr-1-ab-py-I of R.

Definition 1.4. [6,9] Let R be a G-graded ring and P be a graded ideal of R. Assume that ∈g G, where
≠P Rg g . Then,

• P is supposedly a g -1-absorbing primary ideal (g -1-ab-py-I) of R if whenever nonunit elements ∈x y z R, , g

such that ∈xyz P , then ∈xy P or ( )∈ -z PGr rad .
• P is presumably a g -weakly 1-absorbing primary ideal (g -w-1-ab-py-I) of R, whenever nonunit elements

∈x y z R, , g , where ≠ ∈xyz P0 , then ∈xy P or ( )∈ -z PGr rad .
• P is repeatedly a g -prime ideal (g -p-I) of R if whenever ∈x y R, g , where ∈xy P, then either ∈x P or ∈y P .
• P is presumably a g -primary ideal (g -py-I) of R, if whenever ∈x y R, g , where ∈xy P, then either ∈x P

or ( )∈ -y PGr rad .
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• P is supposedly a g -weakly primary ideal (g -w-py-I) of R if whenever ∈x y R, g , where ≠ ∈xy P0 , then
either ∈x P or ( )∈ -y PGr rad .

In this article, we explore more outcomes on graded weakly 1-absorbing primary ideals. In fact, the study
by Almahdi et al. [10] inspired quite a few of the outcomes. Among a number of outcomes, we proved that if Re

is a nonlocal ring and P is an e-w-1-ab-py-I of R that is not an e-w-py-I, then either =P 0e

3 or ⟨ ⟩=P se

2 with s as an
idempotent such that ⟨ ⟩− s1 is a maximal ideal of Re (Theorem 2.4). In addition, we showed that if every
nonzero gr-py-I of R is a gr-p-I and ( )-Gr rad 0 is a gr-m-I of R, then either ( )- =Gr rad 0 0 or ( )-Gr rad 0 is the
unique nonzero proper gr-I of R (Proposition 2.8). In addition, we proved that if R is a HUN-ring and { }0 is a
gr-py-I of R, then R is a gr-loc-R with gr-m-I ( )-Gr rad 0 (Theorem 2.12). Moreover, a nice characterization was
introduced in Theorem 2.13. In addition, we showed that if R is a finitely generated gr-loc-R with gr-m-I X , R is
a gr-D, and every gr-1-ab-py-I of R is a gr-w-py-I, then R is either HUN-ring or X is the unique nonzero gr-p-I of
R (Theorem 2.14). Furthermore, we proved that if R is a first strongly gr-R, then every e-w-1-ab-py-I of R is an
e-s-py-I if and only if ( )-Gr rad 0 is an e-p-I of R (Proposition 2.16). Finally, we showed that if R is a reduced first
strongly gr-R, then every e-w-1-ab-py-I of R is an e-1-ab-py-I if and only if Re is a domain (Proposition 2.19).

2 Results

Our results are presented in this paragraph.

Proposition 2.1. Let P be a gr-I of R such that ( )- =P PGr rad . If P is a g-w-1-ab-py-I of R, then P is a g-p-I of R or
=r 0

3 for all ∈r Pg .

Proof. Suppose that ∈r Pg exists, where ≠r 0

3 . Let ∈x y R, g in a manner that ∈xy P. We may assume that x

and y are nonunit. If ≠x y 0

2 , then ∈x P2 or ( )∈ -y PGr rad . Hence, ( )∈ - =x P PGr rad or ( )∈ - =y P PGr rad .
Similarly, if ≠xy 0

2 , we arrive at the same result. Now, suppose that = =x y xy 0

2 2 . If ≠x P 0g
2 , then there

exists ∈s Pg such that ≠x s 0

2 , and ( )≠ = + ∈x s x y s P0

2 2 . If +y s is a unit, then ∈x P. Otherwise, ∈x P2 or
+ ∈y s P. Thus, ∈x P or ∈y P . Similarly, if ≠y P 0g

2 , then ∈x P or ∈y P . Suppose that = =x P y P 0g g
2 2 . We

have ( ) ( )+ + = ∈x r y r r P2 2 2 3 . If +x r2 (resp. +y r2 ) is a unit, then ∈y P (resp. ∈x P). Otherwise,
( )+ ∈x r P2 2 or + ∈y r P2 . Thus, ∈x P or ∈y P . Finally, we establish that P is a g -p-I of R. □

Corollary 2.2. Let P be a gr-I of R in such a way that ( )- =P PGr rad . If P is a g-w-1-ab-py-I of R which is not a g-p-I,
then ({ })⊆ -P Gr rad 0g .

Proof. Apply Proposition 2.1. □

Lemma 2.3. Let R be a gr-R. Then, Re holds all homogeneous idempotent elements of R.

Proof. Let ( )∈x h R be an idempotent. Then, ∈x Rg for some ∈g G, and then = = ∈ ⊆x x x x R R R. g g g
2

2. If
=x 0, then it has been completed. Suppose that ≠x 0. Then, ≠ ∈ ⋂x R R0 g g

2, which suggests that =g g2 , i.e.,
=g e. As a deduction, ∈x Re. □

Theorem 2.4. Allow for R to be a gr-R such that Re is a nonlocal ring. If P is an e-w-1-ab-py-I of R that is not an e-
w-py-I, then
• =P 0e

3 , or
• ⟨ ⟩=P se

2 with s as an idempotent such that ⟨ ⟩− s1 is a maximal ideal of Re.
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Proof. Let us say that (2) is not met. Since P is not an e-w-py-I, there exists ∈x y R, e in such a way that
≠ ∈xy P0 , ∉x P, and ( )∉ -y PGr rad . Certainly, x and y are nonunits. Suppose that ∈vx P for all nonunit
∈v Re. Letu be a unit in Re. If +v u is a nonunit, then ( )+ ∈v u x P, and so ∈ux P , a contradiction since ∉x P.

Hence, for each nonunit ∈v Re and each unit ∈u Re, +v u is a unit. Thus, by Lemma 1 in the study by Badawi
and Celikel [11], Re is a local ring, a contradiction. Because of that, there exists a nonunit ∈v Re such that

∉vx P. If ≠vxy 0, then ∈vx P since ( )∉ -y PGr rad and P is an e-w-1-ab-py-I, a contradiction. Hence, =vxy 0.
Presume the existence of ∈p Pe such that ≠vxp 0. Then, ( )≠ = + ∈vxp vx y p P0 . If +y p is a unit, then

∈vx P , a contradiction. Hence, since ∉vx P, we obtain ( )+ ∈ -y p PGr rad . Thus, ( )∈ -y PGr rad , a contra-
diction. Consequently, =vxP 0e . Consider the existence of ∈p Pe in such a way that ≠vyp 0. Then, ≠ =vyp0

( )+ ∈v x p P. If + =x p u is a unit, then = + ∈uy xy py P , and so ∈y P , a contradiction. Hence, +x p is a
nonunit and ( )+ ∈v x p P. So, ∈vx P , a contradiction. Consequently, =vyP 0e . Suppose that there exist

∈p q P, , where ≠vpq 0. Then, ( )( )≠ = + + ∈vpq v x p y q P0 . As above, +x p and +y q are nonunits. Hence,
( )+ ∈v x p P. So, ∈vx P , a contradiction. Therefore, =vP 0e

2 . Assume there exists ∈p Pe, where ≠xyp 0. Then,
( )≠ = + ∈xyp v p xy P0 . Suppose that = +u v p is a unit. Then, =up p2 3. Hence, ( ) ( )=− −pu pu1 3 1 2. Thus,

( )= −s pu 1 2 is an idempotent. For each ∈q t P, e, we have =qtu qtp and =qpu qp2. Thus, ( )= =qtu t qpu tqp2 2.
Hence, =qt qts. Then, ⟨ ⟩⊆ ⊆P s Pe e

2 2. Therefore, ⟨ ⟩=P se

2 . By assumption, ⟨ ⟩− s1 is not a maximal ideal of Re. If
⟨ ⟩s is a maximal ideal of Re, then ⟨ ⟩= =P P se e

2 , a contradiction since P is not an e-w-py-I. Thus, neither ⟨ ⟩− s1

nor ⟨ ⟩s is a maximal ideal of Re. Hence, ⟨ ⟩ ⟨ ⟩≈ ∕ × ∕ −R R s R s1e e e is a product of two nonfield rings. By Theorem
13 of the study by Badawi and Yetkin [12], P is an e-py-I, a contradiction. Subsequently, +v p is a nonunit, and
so ( )+ ∈v p x P. Then, ∈vx P , a contradiction. As a consequence, =xyP 0e . Consider the existence of ∈p q P, e

in such a way that ≠xpq 0. Then, ( )( )≠ = + + ∈xpq x v p y q P0 . As above, +v p and +y q are nonunits.
Hence, ( )+ ∈x v p P. So, ∈vx P , a contradiction. As a consequence, =xP 0e

2 . Suppose that there exist ∈p q P, e

where ≠ypq 0. Consequently, ( )( )≠ = + + ∈ypq v p x q y P0 . As above, +v p and +x q are nonunits. Hence,
( )( )+ + ∈v p x q P. So, ∈vx P, a contradiction. As a consequence, =yP 0e

2 . Let ∈p q t P, , e in such a way
that ≠pqt 0. Afterward, ( )( )( )+ + + = ≠v p x q y t pqt 0. As above, +v p, +x q, and +y t are nonunits.
Then, ( )( )+ + ∈v p x q P or ( )+ ∈ -y t PGr rad . That is, ∈vx P or ( )∈ -y PGr rad , a contradiction. Hence,

=P 0e

3 . □

A gr-R R is said to be strongly graded if ∈ −R R1 g g
1 for all ∈g G, that is equivalent to =R R Rg h gh for all

∈g h G, [1]. A gr-R R is said to be first strongly graded if ∈ −R R1 g g
1 for all ( ) { }∈ = ∈ ≠g R G g G Rsupp , : 0g

[13]. Undoubtedly, if R is strongly graded, then R is first strongly graded. The following example, however,
demonstrates that the converse is not always true.

Example 2.5. Let ( )=R M K
2

(the ring of all ×2 2 matrices with entries from a field K ) and �=G
4
. Then R is

gr-R by

{ }⎜ ⎟ ⎜ ⎟=
⎛
⎝

⎞
⎠

=
⎛
⎝

⎞
⎠

= =R

K

K
R

K

K
R R

0

0

,

0

0

and 0 .
0 2 1 3

R is first strongly graded since ∈I R R
0 0

and ∈I R R
2 2

, but R is not strongly graded since = ≠R R R0
1 3 0

.

Without any doubt, if R is strongly graded, then ( ) =R G Gsupp , . Besides, if R is first strongly graded, then
( )R Gsupp , is a subgroup ofG. Actually, R is first strongly graded on the condition that ( )R Gsupp , is a subgroup

of G and =R R Rg h gh for all ( )∈g h R G, supp , .

Theorem 2.6. Let R be a first strongly gr-R such that Re is a nonlocal reduced ring. Suppose that P is an e-w-1-ab-
py-I of R. If P is not an e-w-py-I, then ( )- =P PGr rad e e.

Proof. If =P 0e

3 , then =P 0e and =Pg ( )( )⋂ = ⋂ = ⋂ = ⋂ ⊆ ⋂ = =− −R P R R R P R R R R P R R R P R R P R P 0g e g e e g g g g e g g e g e
1 1

for all ∈g ( )R Gsupp , . Besides, for ( )∉g R Gsupp , , =R 0g , which implies that = ⋂ =P R P 0g g . Hence, =P 0g for
all ∈g G, i.e., =P 0, which is an e-w-py-I, a contradiction. So, by Theorem 2.4, ⟨ ⟩=P se

2 with s as an idempotent
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such that ⟨ ⟩− s1 is a maximal ideal of Re. We have that ⟨ ⟩ ⟨ ⟩≈ ∕ × ∕ −R R s R s1e e e with the isomorphism
( ) ( ⟨ ⟩ ⟨ ⟩)= + + −f r r s r s, 1 . Let ⟨ ⟩= ∕R R se1

and ⟨ ⟩= ∕ −K R s1e . Then, without any doubt, K is a field and
( ) { }= ×f P K0e

2 . While maintaining generality, set = ×R R Ke 1
and = ×P I Je such that I and J are graded

ideals of R
1
and K , respectively. For that reason, since { }= ×P K0e

2 and R
1
is reduced, we conclude that

{ }= ×P K0e . In addition, ( ) ({ }) { }- = - × = × =P K K PGr rad Gr rad 0 0e e since R
1
is reduced. □

A proper gr-I X of R is allegedly a graded maximal ideal (gr-m-I) of R if whenever I is a gr-I of R with
⊆ ⊆X I R, then =I X or =I R. Assuredly, every gr-m-I is a gr-p-I. A gr-R R is assumed to be a graded local ring

(gr-loc-R) if R has a unique gr-m-I.

Proposition 2.7. Allow for R to be a gr-loc-R with gr-m-I X. Assume that P is a gr-p-I of R such that ⊆P X . Then,
PX is a gr-1-ab-py-I of R.

Proof. Take note of the fact that ( )- =PX PGr rad . Suppose that ∈xyz PX for some nonunit elements
( )∈x y z h R, , . If ∈x P or ∈y P , then without a doubt, ∈xy PX . Assume that neither ∈x P nor ∈y P .

Then, ∉xy P. Since ∈ ⊆xyz PX P and ∉xy P, we ultimately decide that ( )∈ = -z P PXGr rad . Thus, PX is a
gr-1-ab-py-I of R. □

Proposition 2.8. Allow for R to be a gr-R such that every nonzero gr-py-I of R is a gr-p-I. If ( )-Gr rad 0 is a gr-m-I of
R, then either ( )- =Gr rad 0 0 or ( )-Gr rad 0 is the unique nonzero proper gr-I of R.

Proof. If R is a gr-D, then ( )- =Gr rad 0 0. Assume that R is not a gr-D. Allow for J to be a nonzero proper gr-I of
R. Then, ( ) ( )- ⊆ - JGr rad 0 Gr rad , and then as ( )-Gr rad 0 is a gr-m-I of R, ( ) ( )- = - JGr rad 0 Gr rad . So, ( )- JGr rad is
a gr-m-I of R, which implies that J is a gr-py-I of R by Proposition 1.11 of the study by Refai and Al-Zoubi [3], and
then J is a gr-p-I of R, and so ( ) ( )= - = -J JGr rad Gr rad 0 . As a consequence, ( )-Gr rad 0 is the unique nonzero
proper gr-I of R. □

A gr-R R is said to be a graded domain (gr-D) if R has no homogeneous zero divisors, and is said to be a
graded field (gr-F) if every nonzero homogeneous element of R is unit [1]. Assuredly, if R is a domain (field) and
it is graded, then R is a gr-D (gr-F). Nevertheless, Example 2.4 of the study by Abu-Dawwas [14] shows that a gr-
D (gr-F) is not necessarily a domain (field). Recall from [15] and [16, Proposition 2.25], if every element of R is
either nilpotent or unit, or alternatively if all of its nonunit elements are products of unit and nilpotent
elements, then R is said to be a UN-ring. A straightforward UN-ring example is � �∕9 . In fact, we present
the idea of HUN-rings:

Definition 2.9. A gr-R R is presumably a HUN-ring if every homogeneous element of R is either a unit or a
nilpotent.

Absolutely, if R is a UN-ring and it is graded, then R is a HUN-ring. A HUN-ring is not always a UN-ring, as
the example below demonstrates:

Example 2.10. Let K be a field and ∉u K with =u 1

2 . Assume that { }= + ∈R α uβ α β K: , and �=G
2
. Then R

is a gr-R by =R K
0

and =R uK
1

. By Example 2.4 of the study by Abu-Dawwas [14], R is a gr-F, and then R is a
HUN-ring. But R is not a UN-ring since + ∈u R1 is neither a unit nor a nilpotent.

For a gr-R R, the set of all homogeneous zero divisors of R, ( )HZ R , and the set of all zero divisors of R, ( )Z R ,
are not the same. Indeed, ( ) ( )⊆HZ R Z R , but, in Example 2.10, ( )+ ∈u Z R1 as ( )( )+ − =u u1 1 0, while

( )+ ∉u HZ R1 as ( )+ ∉u h R1 . For a gr-R R, ( )HZ R is not necessarily a gr-I of R since it is not necessarily
an ideal; consider � [ ]=R i

6
, �=G

2
, �=R

0 6
, and �=R i

1 6
, Note that ( )∈ HZ R2, 3 with ( )+ = ∉ HZ R2 3 5 .

Nevertheless, if ( )HZ R is a gr-I in some gr-R R, then ( )HZ R should be a gr-p-I of R. To see this, let ( )∈x y h R, ,

Some notes on graded weakly 1-absorbing primary ideals  5



where ( )∈xy HZ R . Then, there exists ( )≠ ∈z h R0 such that =xyz 0. If ≠yz 0, then ( )∈x HZ R . If =yz 0, then
( )∈y HZ R . Indeed, the following lemma exists:

Lemma 2.11. Let R be a gr-R, where ( )HZ R is a gr-I of R. Consequently, { }0 is a gr-py-I of R if and only
if ( ) ( )= -HZ R Gr rad 0 .

Proof. Suppose that { }0 is a gr-py-I of R. Let ( )∈ -x Gr rad 0 . Then, for all ∈g G, there exists a positive integer ng

in such a way that =x 0g

ng , and then ( )∈x HZ Rg , for all ∈g G, and so ( )∈x HZ R as ( )HZ R is an ideal. Hence,
( ) ( )- ⊆ Z RGr rad 0 . Let ( )∈y HZ R . Then, there exists ( )≠ ∈z h R0 , where =zy 0, and then ( )∈ -y Gr rad 0 as

{ }0 is a gr-py-I and ≠z 0. Hence, ( ) ( )= -HZ R Gr rad 0 . Conversely, let ( )∈a b h R, in such a way that =ab 0. If
=a 0, then it is done. If ≠a 0, then ( ) ( )∈ = -b HZ R Gr rad 0 . Thus, { }0 is a gr-py-I of R. □

Theorem 2.12. Let R be a HUN-ring. If { }0 is a gr-py-I of R, then R is a gr-loc-R with gr-m-I ( )-Gr rad 0 .

Proof. Since { }0 is a gr-py-I of R, ( ) ( )= -HZ R Gr rad 0 by Lemma 2.11, and so ( )HZ R is a gr-I of R. Let J be a gr-I of
R in such a way that ( ) ⊆ ⊆HZ R J R and ( ) ≠HZ R J . Then, there is the existence of ∈x J , where ( )∉x HZ R ;
therefore, there exists ∈g G, where ( )∉x HZ Rg . Note that, ∈x Jg as J is a gr-I. Since ( )∉x HZ Rg , xg is not a
nilpotent, so xg is a unit as R is a HUN-ring, and hence =J R. Thus, ( )HZ R is a gr-m-I of R. Allow for K to be a
proper gr-I of R, and suppose that ∈a K . Since ∈a Kg for all ∈g G and K is a proper, ag is a nonunit for all

∈g G, and then ag is a nilpotent for all ∈g G, i.e., ( )∈a HZ Rg for all ∈g G, then ( )∈a HZ R . So, ( )⊆J HZ R ,
and hence ( )HZ R is the only gr-m-I of R. Thus, R is a gr-loc-R with gr-m-I ( ) ( )= -HZ R Gr rad 0 . □

In the following theorem, we give a stronger and better conclusion than Theorem 2.12. Undeniably, we
investigate the notion of graded n-ideals that were appeared in the study by Al-Zoubi et al. [17]. A proper gr-I P

of R is presumably a graded n-ideal (gr-n-I) of R whenever ( )∈x y h R, , where ∈xy P and ( )∉ -x Gr rad 0 ,
then ∈y P .

Theorem 2.13. For any gr-R R, the following are interchangeable:
• R is a HUN-ring.
• ⟨ ⟩x is a gr-n-I of R, for every ( )∈x h R with ⟨ ⟩ ≠x R.
• Every proper gr-I is a gr-n-I.
• R has a unique gr-p-I, which is ( )-Gr rad 0 .
• R is a gr-loc-R with gr-m-I ( )-Gr rad 0 .
• ( ( ))∕ -R Gr rad 0 is a gr-F.

Proof.
( ) ( )⇒1 2 : Let ( )∈x h R with ⟨ ⟩ ≠x R. Consider ( )∈a b h R, in such a way that ⟨ ⟩∈ab x and ∉a ( )-Gr rad 0 .

So, a is a unit, and then ⟨ ⟩∈b x , also ⟨ ⟩x is a gr-n-I of R.
( ) ( )⇒2 3 : Let P be a proper gr-I of R. Presume that ( )∈x y h R, , where ∈xy P and ( )∉ -x Gr rad 0 .

Considering ⟨ ⟩∈xy xy and ⟨ ⟩xy is a gr-n-I, ⟨ ⟩∈ ⊆y xy P. Therefore, P is a gr-n-I of R.
( ) ( )⇒3 4 : Let P be a gr-p-I of R. By equation (3) and [17, Theorem 1], ( )= -P Gr rad 0 .
( ) ( )⇒4 5 : Since R has one gr-p-I, which is ( )-Gr rad 0 , we conclude that R is a gr-loc-R with gr-m-

I ( )-Gr rad 0 .
( ) ( )⇒5 6 : It is obvious to see.
( ) ( )⇒6 1 : Let ( )∈x h R such that x is not a nilpotent. Then, ( )∉ -x Gr rad 0 and ( )+ -x Gr rad 0 is a nonzero

homogeneous element in ( )∕ -R Gr rad 0 , which implies that ( )+ -x Gr rad 0 is a unit, i.e.,
( ( ))( ( ))+ - + - =x yGr rad 0 Gr rad 0 ( )+ -1 Gr rad 0 , for some ( )∈y h R . So, −xy 1 is a nilpotent, and then
( )− + =xy xy1 1 is a unit, which gives that x is a unit. Thus, R is a HUN-ring. □

Theorem 2.14. Let R be a finitely generated gr-loc-R with gr-m-I X. If R is a gr-D and every gr-1-ab-py-I of R is a gr-
w-py-I, then either R is a HUN-ring or X is the unique nonzero gr-p-I of R.
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Proof. Assume that R is not a HUN-ring. Assume that R is a gr-D. Let ≠ P0 be gr-p-I of R that is not a gr-m-I.
Then, PX is a gr-1-ab-py-I of R and ( )- =PX PGr rad by Proposition 2.7. Then, PX is a gr-w-py-I of R.
Let ≠ ∈p P0 and ∈ −x X P. Then, = ∑ ∈p pg G g

, where ∈p P
g

as P is a gr-I, and also, there exists ∈h G

such that ∉x Ph . Note that, ∈x Xh as X is a gr-I. We have ≠ ∈p x PX0
g h for all ∈g G with ≠p 0

g
, and

∉ =x Ph ( )- PXGr rad . Thus, ∈p PX
g

for all ∈g G with ≠p 0
g

, so ∈p PX as = ∈p PX0
g

too. Hence, =P PX .
We obtain =P 0 from the Nakayama’s lemma, a contradiction. Thus, X is the unique nonzero gr-p-I of R. □

Recall from the study by Bataineh and Abu-Dawwas [18] that a proper gr-I P of R is presumably a graded
semi-primary ideal (gr-s-py-I) of R if whenever ( )∈x y h R, , where ∈xy P, consequently ( )∈ -x PGr rad or

( )∈ -y PGr rad , or equivalently, ( )- PGr rad is a gr-p-I of R [19, Proposition 4]. It has been proved in Lemma 2.7
of the study by Abu-Dawwas [14] that every gr-1-ab-py-I of R is a gr-s-py-I. We establish the concept of g -semi-
primary ideals (g -s-py-I’s), and then we present a case where every e-w-1-ab-py-I of R is an e-s-py-I.

Definition 2.15. Allow R to be a gr-R, ∈g G and P be a gr-I of R with ≠P Rg g . Then, P is said to be a g -semi-
primary ideal (g -s-py-I) of R if ( )- PGr rad is a g -p-I of R.

Proposition 2.16. Assume R is a first strongly gr-R. Then, every e-w-1-ab-py-I of R is an e-s-py-I supposing that
( )-Gr rad 0 is an e-p-I of R.

Proof. Presume that ( )-Gr rad 0 is an e-p-I of R. Let P be an e-w-1-ab-py-I of R. Assume that ∈x y R, e with
( )∈ -xy PGr rad and ( )∉ -x PGr rad . We can suppose that x is not a unit. Now, there is the existence of

a positive integer n, where ∈x y Pn n . Accordingly, ∈+x y Pn n1 and + ≥n 1 2. If ≠+x y 0

n n1 , then ∈+x Pn 1

or ∈y Pn . Thus, ( )∈ -y PGr rad since ( )∉ -x PGr rad . Consider =+x y 0

n n1 . If { } ( )= ⊆ -+x P 0 Gr rad 0

n
e

1 ,
then ( )⊆ -P Gr rad 0e since ( )-Gr rad 0 is an e-p-I and ( )∉ -x Gr rad 0 . If ∈g G with ≠P 0g , then = ⊆P R Pg g e

( ( )) ( )- ⊆ -R Gr rad 0 Gr rad 0g . So, ( )⊆ -P Gr rad 0g for all ∈g G. Thus, ( )⊆ -P Gr rad 0 , and then ( )- =PGr rad

( )-Gr rad 0 is an e-p-I. If ≠+x P 0

n
e

1 , then there exists ∈a Pe such that ≠+x a 0

n 1 , and so ( )≠ + ∈+x a y P0

n n1 .
If +a yn is a unit, then ∈+x Pn 1 , a contradiction. Thus, +a yn is a nonunit. Since ∉+x Pn 1 , we obtain

( )+ ∈ -a y PGr rad

n . Thus, ( )∈ -y PGr rad . Consequently, ( )- PGr rad is an e-p-I of R. Conversely, since { }0 is
an e-w-1-ab-py-I of R, { }0 is an e-s-py-I, and hence ( )-Gr rad 0 is an e-p-I of R. □

Proposition 2.17. Let R be a gr-R. Then, every gr-w-1-ab-py-I of R is a gr-1-ab-py-I if and only if { }0 is a gr-1-ab-py-I
ideal of R.

Proof. Speculate that { }0 is a gr-1-ab-py-I ideal of R. Let P be a gr-w-1-ab-py-I of R. Assume that ( )∈x y z h R, ,

are nonunits such that ∈xyz P and ( )∉ -z PGr rad . If ≠xyz 0, then ∈xy P. Now, consider =xyz 0. Hence,
=xy 0 or ( )∈ -z Gr rad 0 since { }0 is a gr-1-ab-py-I. The second case, however, cannot happen since ( )∉ -z PGr rad .

Hence, = ∈xy P0 , in the desired manner. Conversely, since { }0 is a gr-w-1-ab-py-I of R, { }0 is a gr-1-ab-py-I
of R. □

Proposition 2.18. Allow R to be a gr-R in such a way that ( )HZ R is a gr-I of R. If { }0 is a gr-1-ab-py-I ideal of R,
then either ( ) ( )=HZ R Grad 0 or R is a HUN-ring with ( ) ( ) { }= = ∈ =HZ R x a R axAnn : 0R for some ( )∈x h R .

Proof. Suppose that ( ) ( )≠ -HZ R Gr rad 0 . Let ( ) ( ( ))∈ − -a HZ R Gr rad 0 . There is the existence of ( )≠ ∈x h R0 ,
where =ax 0. Suppose that R has a homogeneous nonunit regular element named s. We have =sxa 0 and

( )∉ -a Gr rad 0 . Then, =sx 0, and so =x 0, wholly unattainable. Thus, homogeneous nonunit elements of R

are in ( )HZ R . So, R is a HUN-ring. Let ( )∈y HZ R . We have =yxa 0 and ( )∉ -a Gr rad 0 , and so =yx 0.
Thus, ( ) ( )⊆HZ R xAnnR . Let ( )∈r xAnnR . Then, ( )∈r xAnng R for all ∈g G as ( )xAnnR is a gr-I by ([20],
page 3, line 11), which implies that ( )∈r HZ Rg for all ∈g G, and so ( )∈r HZ R as ( )HZ R is a gr-I. Thus,

( ) ( )=HZ R xAnnR . □
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Proposition 2.19. Let R be a reduced first strongly gr-R. Then, every e-w-1-ab-py-I of R is an e-1-ab-py-I on
the condition that Re is a domain.

Proof. Presume that every e-w-1-ab-py-I of R is an e-1-ab-py-I. Similarly as in Lemma 2.7 of the study by
Abu-Dawwas [14], one can prove that every e-1-ab-py-I of R is an e-s-py-I. So, every e-w-1-ab-py-I of R is
an e-s-py-I. Hence, by Proposition 2.16, { } ( )= -0 Gr rad 0 is an e-p-I of R. Therefore, Re is a domain. Conversely,
let P be an e-w-1-ab-py-I of R. Assume that ∈x y z R, , e are nonunits such that ∈xyz P. If =xyz 0, then =x 0

or =y 0 or =z 0 as Re is a domain, and so it is done. Consider ≠xyz 0. Then, as P is an e-w-1-ab-py-I,
either ∈xy P or ( )∈ -z Gr rad 0 . Therefore, P is an e-1-ab-py-I of R. □

3 Conclusion

In this article, we looked at and explored more outcomes to graded weakly 1-absorbing primary ideals. We
proved that if Re is a nonlocal ring and P is an e-w-1-ab-py-I of R that is not an e-w-py-I, then either =P 0e

3 or
⟨ ⟩=P se

2 with s as an idempotent such that ⟨ ⟩− s1 is a maximal ideal of Re (Theorem 2.4). In addition, we
showed that if every nonzero gr-py-I of R is a gr-p-I and ( )-Gr rad 0 is a gr-m-I of R, then either ( )- =Gr rad 0 0 or

( )-Gr rad 0 is the unique nonzero proper gr-I of R (Proposition 2.8). In addition, we proved that if R is a HUN-
ring and { }0 is a gr-py-I of R, then R is a gr-loc-R with gr-m-I ( )-Gr rad 0 (Theorem 2.12). Moreover, a nice
characterization was introduced in Theorem 2.13. We also showed that if R is a finitely generated gr-loc-R with
gr-m-I X , R is a gr-D, and every gr-1-ab-py-I of R is a gr-w-py-I, then R is either HUN-ring or X is the unique
nonzero gr-p-I of R (Theorem 2.14). Furthermore, we proved that if R is the first strongly gr-R, then every e-w-1-
ab-py-I of R is an e-s-py-I if and only if ( )-Gr rad 0 is an e-p-I of R (Proposition 2.16). Finally, we showed that if R

is a reduced first strongly gr-R, then every e-w-1-ab-py-I of R is an e-1-ab-py-I if and only if Re is a domain
(Proposition 2.19). As a proposal for further work on the topic, we are going to introduce a deep study on the
concept of graded 1-absorbing prime ideals that have been established in the study by Abu-Dawwas et al. [9].
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