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1 Introduction

In dispersion through this article, G is a group and R is a commutative ring with nonzero unity 1 unless
specified differently. If R = @,ecR, with the property R.R, € Ry for all g, h € G, where R, is an additive
subgroup of R for all g € G, then R is aforementioned to be a graded ring (gr-R). The aspects of R, are called
homogeneous of degree g.If s € R, then s can be expressed uniquely as 2 ,cS;, where s, is the component of s
in R,, and s; = 0 is represented by the symbol. The set of all homogeneous aspects of R is UgeR, and is denoted
by h(R). The component R, is a subring of R and 1 € R,. Let R be a gr-R and P be an ideal of R. Then, P is
aforementioned to be a graded ideal (gr-I) if P = @,ec(P N Ry),1.e,forp € P, P € Pforall g € G.Anideal ofa
gr-R is not necessarily gr-I. For a G-gr-R R and a gr-I P of R, R/P is a G-gr-R with (R/P), = (R, + P)/P for all
g € G. For further phrasing, see [1].

A proper gr-I P of R is aforementioned to be a graded prime ideal (gr-p-I) if xy € P implies either x € P or
y € P, for all x,y € h(R) [2]. It is clear that if P is a prime ideal of R and it is a gr-I, then P is a gr-p-I of R.
Indeed, the example below demonstrates that a gr-p-I is not necessarily a prime ideal:

Example 1.1. Consider R = Z[i] and G = Z,. Then, R is gr-Rby Ry = Z and R, = iZ. Consider the gr-I P = pR of
R, where p is a prime number with p = ¢? + d?, for some ¢, d € Z. We show that P is a gr-p-I of R. Let xy € P
for some x,y € h(R).

Case 1: Assume that x, y € Ry. In this instance, if x, y € Z, where p divides xy, then either p divides x or p
divides y, which implies that x € P or y € P.

Case 2: Assume that x,y € R. In such a case, x = ia and y = ib for some a, b € Z such that p divides
xy = —ab, and then p divides a or p divides b in Z, which suggests that p divides x = ia or p divides y = ibin R.
Then, there is that x E P or y € P.
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Case 3: Consider that x € Ry and y € R;. In this instance, x € Z and y = ib for some b € Z such that p
divides xy = ixb in R, i.e., ixb = p(a + if) for some a, § € Z. Then, we obtain xb = pp, i.e., p divides xb in Z,
and again p divides x or p divides b, which implies that p divides x or p divides y = ib in R. Thus, x € P
oryePp.

So, P is a gr-p-I of R. On the other hand, P is not a prime ideal of R since (¢ — id)(c + id) = c2+ d*=p € P,
(c-id) & P, and (c + id) & P.

Allow for P to be a gr-I of R. Then, the graded radical of P is denoted by Gr-rad(P) and is defined as
follows:

Grrad(P)={s= ) s, ER:VgE G, I, EN st s¢* € PY.
g€G

Recall that Gr-rad(P) is every time a gr-I of R [2].

A proper gr-I P of R is aforementioned to be a graded primary ideal (gr-py-I) if xy € P suggests either
X € Pory € Gr-rad(P), for all x, y € h(R) [3]. In this situation, Q = Gr-rad(P) is a gr-p-I of R and P is allegedly
graded Q-primary.

Since gr-p-I's and gr-py-I's are vital in commutative graded ring theory, numerous authors have looked
into various generalizations of these gr-Is. Atani [4] proposed the idea of graded weakly prime ideals. A proper
gr-1 P of R is called a graded weakly prime ideal (gr-wp-I) whenever x, y € h(R) and 0 # xy € P, then x € P or
y € P. Atani [5] presented the impression of graded weakly primary ideals. A proper gr-I P of R is called a
graded weakly primary ideal (gr-w-py-I) of R if whenever x,y € h(R) and 0 # xy € P, then x €P or
y € Gr-rad(P). New generalizations of graded primary ideals and graded weakly primary ideals are, accord-
ingly, the notions of graded 1-absorbing primary ideals and graded weakly 1-absorbing primary ideals pro-
posed by Abu-Dawwas and Bataineh [6,7]. A proper gr-I P of R is called a graded 1-absorbing primary ideal
(gr-1-ab-py-D) if whenever nonunit elements x,y,z € h(R) and xyz € P, then xy € P or z € Gr-rad(P). A
proper gr-I1 P of R is called a graded weakly 1-absorbing primary ideal (gr-w-1-ab-py-I) if whenever nonunit
elements x, y,z € h(R) and 0 # xyz € P, then xy € P or z € Gr-rad(P). Certainly, every gr-py-I is gr-1-ab-py-I.
The following example demonstrates that the converse is not true in general:

Example 1.2. [6] Consider R = K[X, Y], where K is a field, and G = Z. Then, R is gr-R by R, = ®4j=p i j20KkX'Y/
for alln € Z. Recall that deg(X) = deg(Y) = 1. Consider the gr-I P = (X2, XY) of R. Then, Gr-rad(P) = (X), and
it is obvious that P is a gr-1-ab-py-I of R. On the contrary, P is not gr-py-I of R Example 2.11 in the study by
Soheilnia and Darani [8].

It is recognizable that a gr-1-ab-py-I of R is gr-w-1-ab-py-I. However, since {0} is always gr-w-1-ab-py-I,
a gr-w-1-ab-py-I of R is not necessarily gr-1-ab-py-1, see Example 1.3.

Example 1.3. [7] Propose R = Z¢[i] and G = Z,. So, R is gr-R by Ry = Z¢ and R, = iZ¢. Now, P = {0} is a gr-w-1-
ab-py-I of R. On the other hand, 2, 3 € h(R) such that 2.2.3 € P with neither 2.2 € P nor 3 € Gr-rad (P). Hence,
P is not a gr-1-ab-py-I of R.

Definition 1.4. [6,9] Let R be a G-graded ring and P be a graded ideal of R. Assume that g € G, where

P; # R;. Then,

* P is supposedly a g-1-absorbing primary ideal (g-1-ab-py-I) of R if whenever nonunit elements x, y, z € R,
such that xyz € P, then xy € P or z € Gr-rad(P).

* P is presumably a g-weakly 1-absorbing primary ideal (g-w-1-ab-py-I) of R, whenever nonunit elements
X,Y,Z € Ry, where 0 # xyz € P, then xy € P or z € Gr-rad(P).

* P isrepeatedly a g-prime ideal (g-p-I) of R if whenever x, y € R,, where xy € P, then either x € Por y € P.

* P is presumably a g-primary ideal (g-py-I) of R, if whenever x,y € R;, where xy € P, then either x € P
or y € Gr-rad(P).
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* P is supposedly a g-weakly primary ideal (g-w-py-I) of R if whenever x,y € R,, where 0 # xy € P, then
either x € P or y € Gr-rad(P).

In this article, we explore more outcomes on graded weakly 1-absorbing primary ideals. In fact, the study
by Almahdi et al. [10] inspired quite a few of the outcomes. Among a number of outcomes, we proved that if R,
is a nonlocal ring and P is an e-w-1-ab-py-I of R that is not an e-w-py-I, then either P2 = 0 or P? = (s) with s as an
idempotent such that (1 - s) is a maximal ideal of R, (Theorem 2.4). In addition, we showed that if every
nonzero gr-py-I of R is a gr-p-I and Gr-rad(0) is a gr-m-I of R, then either Gr-rad(0) = 0 or Gr-rad(0) is the
unique nonzero proper gr-I of R (Proposition 2.8). In addition, we proved that if R is a HUN-ring and {0} is a
gr-py-I of R, then R is a gr-loc-R with gr-m-I Gr-rad(0) (Theorem 2.12). Moreover, a nice characterization was
introduced in Theorem 2.13. In addition, we showed that if R is a finitely generated gr-loc-R with gr-m-I X, R is
a gr-D, and every gr-1-ab-py-I of R is a gr-w-py-I, then R is either HUN-ring or X is the unique nonzero gr-p-I of
R (Theorem 2.14). Furthermore, we proved that if R is a first strongly gr-R, then every e-w-1-ab-py-I of R is an
e-s-py-lif and only if Gr-rad(0) is an e-p-I of R (Proposition 2.16). Finally, we showed that if R is a reduced first
strongly gr-R, then every e-w-1-ab-py-I of R is an e-1-ab-py-I if and only if R, is a domain (Proposition 2.19).

2 Results

Our results are presented in this paragraph.

Proposition 2.1. Let P be a gr-I of R such that Gr-rad(P) = P. If P is a g-w-1-ab-py-I of R, then P is a g-p-I of R or
r3=0forallr €F,.

Proof. Suppose that r € P, exists, where r3 # 0. Let x, y € R, in a manner that xy € P. We may assume that x
and y are nonunit. If X%y # 0, then x> € P or y € Gr-rad(P). Hence, x € Gr-rad(P) = P or y € Gr-rad(P) = P.
Similarly, if xy* # 0, we arrive at the same result. Now, suppose that x% = xy? = 0. If x?P, # 0, then there
exists s € P, such that x%s # 0, and 0 # x°s = x*(y + s) € P.If y + s is a unit, then x € P. Otherwise, x? € P or
y + s €P.Thus, x € P or y € P. Similarly, if y?P, # 0, then x € P or y € P. Suppose that x?P, = y*P, = 0. We
have (X® + r)X(y? +r)=r3€P. If x> +r (resp. y*> +r) is a unit, then y € P (resp. x € P). Otherwise,
(x*+r)e€Por y* +reP. Thus, x € P or y € P. Finally, we establish that P is a g-p-I of R. O

Corollary 2.2. Let P be a gr-I of R in such a way that Gr-rad (P) = P. If Pis a g-w-1-ab-py-I of R which is not a g-p-I,
then P; € Gr-rad({0}).

Proof. Apply Proposition 2.1. d
Lemma 2.3. Let R be a gr-R. Then, R, holds all homogeneous idempotent elements of R.

Proof. Let x € h(R) be an idempotent. Then, x € R, for some g € G, and then x = x* = x. X € R;R, C R g If
x = 0, then it has been completed. Suppose that x # 0. Then, 0 # x € R, N R g2, which suggests that grt=g,1ie,
g = e. As a deduction, x € R,. O

Theorem 2.4. Allow for R to be a gr-R such that R, is a nonlocal ring. If P is an e-w-1-ab-py-I of R that is not an e-
w-py-I, then
« P3=0,0r

« P2 = (s) with s as an idempotent such that (1 - s) is a maximal ideal of R,.
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Proof. Let us say that (2) is not met. Since P is not an e-w-py-I, there exists x,y € R, in such a way that
0#xy €P,x¢&P,and y & Gr-rad(P). Certainly, x and y are nonunits. Suppose that vx € P for all nonunit
V € R,. Letu be a unitin R,. If v + u is a nonunit, then (v + u)x € P, and so ux € P, a contradiction since x & P.
Hence, for each nonunitv € R, and each unitu € R,, v + u is a unit. Thus, by Lemma 1 in the study by Badawi
and Celikel [11], R, is a local ring, a contradiction. Because of that, there exists a nonunit v € R, such that
vx & P.If vxy # 0, then vx € P since y € Gr-rad(P) and P is an e-w-1-ab-py-I, a contradiction. Hence, vxy = 0.
Presume the existence of p € P, such that vxp # 0. Then, 0 # vxp = vx(y + p) € P. If y + p is a unit, then
VX € P, a contradiction. Hence, since vx & P, we obtain y + p € Gr-rad(P). Thus, y € Gr-rad(P), a contra-
diction. Consequently, vxP, = 0. Consider the existence of p € B, in such a way that vyp # 0. Then, 0 # vyp =
v(x+p) EP.If x+p=uisaunit thenuy = xy + py € P, and so y € P, a contradiction. Hence, x + p is a
nonunit and v(x + p) € P. So, vx € P, a contradiction. Consequently, vyP, = 0. Suppose that there exist
P, q € P, wherevpq # 0. Then, 0 # vpq = v(x + p)(¥y + q) € P. As above, X + p and y + ¢q are nonunits. Hence,
v(x + p) € P.So, vx € P, a contradiction. Therefore, \)Pe2 = 0. Assume there exists p € B, where xyp # 0. Then,
0 % xyp = (v + p)xy € P. Suppose that u = v + p is a unit. Then, up? = p®. Hence, (pu™)® = (pu™)?% Thus,
s = (pu™)? is an idempotent. For each ¢, t € B, we have qtu = qtp and gpu = qp>. Thus, qtu® = t(qpu) = tqp>.
Hence, gt = qts. Then, P? C (s) C P2 Therefore, P? = (s). By assumption, (1 - s) is not a maximal ideal of R,. If
(s) is a maximal ideal of R,, then P, = P? = (s), a contradiction since P is not an e-w-py-I. Thus, neither (1 - s)
nor (s) is a maximal ideal of R,. Hence, R, = R./{S) % R./(1 - s) is a product of two nonfield rings. By Theorem
13 of the study by Badawi and Yetkin [12], P is an e-py-1, a contradiction. Subsequently, v + p is a nonunit, and
so (v + p)x € P. Then, vx € P, a contradiction. As a consequence, xyR, = 0. Consider the existence of p, q € B,
in such a way that xpq # 0. Then, 0 # xpq = x(v + p)(y + q) € P. As above, v + p and y + ¢ are nonunits.
Hence, x(v + p) € P. So, vx € P, a contradiction. As a consequence, xP? = 0. Suppose that there exist p, ¢ € P,
where ypq # 0. Consequently, 0 # ypg = (v + p)(x + q)y € P. As above, v + p and x + ¢ are nonunits. Hence,
(v+p)x + q) € P. So, vx € P, a contradiction. As a consequence, yP? = 0. Let p,q,t € P, in such a way
that pqt # 0. Afterward, (v + p)(x + q)(y + t) = pqt # 0. As above, v+ p, x+¢q, and y + t are nonunits.
Then, (v + p)(x +q) EP or y +t € Gr-rad(P). That is, vx € P or y € Gr-rad(P), a contradiction. Hence,
P2=0. O

A gr-R R is said to be strongly graded if 1 € RgR .1 for all g € G, that is equivalent to R;R, = Rg, for all
&, h € G [1]. A gr-R R is said to be first strongly graded if 1 € R;R,~ for all g € supp(R, G) = {g € G: Ry # 0}
[13]. Undoubtedly, if R is strongly graded, then R is first strongly graded. The following example, however,
demonstrates that the converse is not always true.

Example 2.5. Let R = My(K) (the ring of all 2 x 2 matrices with entries from a field K) and G = Z,4. Then R is

gr-R by
K 0 0 K
Ro=lo k| R=|Kk 0

R is first strongly graded since I € RyRy and I € R,R;, but R is not strongly graded since RjR; = 0 # Ry.

and R=RR = {0}

Without any doubt, if R is strongly graded, then supp(R, G) = G. Besides, if R is first strongly graded, then
supp(R, G) is a subgroup of G. Actually, R is first strongly graded on the condition that supp(R, G) is a subgroup
of G and RyRy = Ry, for all g, h € supp(R, G).

Theorem 2.6. Let R be a first strongly gr-R such that R, is a nonlocal reduced ring. Suppose that P is an e-w-1-ab-
py-I of R. If P is not an e-w-py-I, then Gr-rad(R) = P.

Proof. If Pe3 =0, then P, = 0 and P; =R;NP = ReR;MReP = ReRgNRgR ;1P = Rg(RenR gflP) C Ry(R.NP) =R;P. =0
for all g Esupp(R, G). Besides, for g & supp(R, G), R, = 0, which implies that P, = R;NP = 0. Hence, P, = 0 for
all g € G, i.e, P = 0, which is an e-w-py-1, a contradiction. So, by Theorem 2.4, Pe2 = (s) with s as an idempotent
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such that (1 - s) is a maximal ideal of R,. We have that R, = R./(s) x R./(1 — s) with the isomorphism
fr)=(@+{s),r+{1-5s)). Let Ry = R,/{s) and K = R./(1 - s). Then, without any doubt, K is a field and
f(P?) = {0} x K. While maintaining generality, set R, = R, x K and P, = I x J such that I and ] are graded
ideals of Ry and K, respectively. For that reason, since Pe2 = {0} x K and R, is reduced, we conclude that
P, = {0} x K. In addition, Gr-rad(B) = Gr-rad({0}) x K = {0} x K = P, since R, is reduced. O

A proper gr-I X of R is allegedly a graded maximal ideal (gr-m-I) of R if whenever I is a gr-I of R with
XCICR,thenl=XorlI=R.Assuredly, every gr-m-I is a gr-p-I. A gr-R R is assumed to be a graded local ring
(gr-loc-R) if R has a unique gr-m-I.

Proposition 2.7. Allow for R to be a gr-loc-R with gr-m-I X. Assume that P is a gr-p-I of R such that P C X. Then,
PX is a gr-1-ab-py-I of R.

Proof. Take note of the fact that Gr-rad(PX) = P. Suppose that xyz € PX for some nonunit elements
X,y,Z€ h(R). If x € P or y € P, then without a doubt, xy € PX. Assume that neither x € P nor y € P.
Then, xy & P. Since xyz € PX C P and xy € P, we ultimately decide that z € P = Gr-rad(PX). Thus, PX is a
gr-1-ab-py-I of R. O

Proposition 2.8. Allow for R to be a gr-R such that every nonzero gr-py-I of R is a gr-p-L If Gr-rad (0) is a gr-m-I of
R, then either Gr-rad(0) = 0 or Gr-rad(0) is the unique nonzero proper gr-I of R.

Proof. If R is a gr-D, then Gr-rad(0) = 0. Assume that R is not a gr-D. Allow for ] to be a nonzero proper gr-I of
R.Then, Gr-rad(0) € Gr-rad(J), and then as Gr-rad(0) is a gr-m-I of R, Gr-rad (0) = Gr-rad(J). So, Gr-rad(J) is
a gr-m-I of R, which implies that ] is a gr-py-I of R by Proposition 1.11 of the study by Refai and Al-Zoubi [3], and
then J is a gr-p-I of R, and so J = Gr-rad(J) = Gr-rad(0). As a consequence, Gr-rad(0) is the unique nonzero
proper gr-1 of R. O

A gr-R R is said to be a graded domain (gr-D) if R has no homogeneous zero divisors, and is said to be a
graded field (gr-F) if every nonzero homogeneous element of R is unit [1]. Assuredly, if R is a domain (field) and
itis graded, then R is a gr-D (gr-F). Nevertheless, Example 2.4 of the study by Abu-Dawwas [14] shows that a gr-
D (gr-F) is not necessarily a domain (field). Recall from [15] and [16, Proposition 2.25], if every element of R is
either nilpotent or unit, or alternatively if all of its nonunit elements are products of unit and nilpotent
elements, then R is said to be a UN-ring. A straightforward UN-ring example is Z/9Z. In fact, we present
the idea of HUN-rings:

Definition 2.9. A gr-R R is presumably a HUN-ring if every homogeneous element of R is either a unit or a
nilpotent.

Absolutely, if R is a UN-ring and it is graded, then R is a HUN-ring. A HUN-ring is not always a UN-ring, as
the example below demonstrates:

Example 2.10. Let K be a field and u € K withu? = 1. Assume thatR = {a + uB : a, B € K} and G = Z,. Then R
is a gr-Rby Ry = K and R, = uK. By Example 2.4 of the study by Abu-Dawwas [14], R is a gr-F, and then R is a
HUN-ring. But R is not a UN-ring since 1 + u € R is neither a unit nor a nilpotent.

For a gr-R R, the set of all homogeneous zero divisors of R, HZ(R), and the set of all zero divisors of R, Z(R),
are not the same. Indeed, HZ(R) € Z(R), but, in Example 2.10, 1 + u € Z(R) as (1 + u)(1 - u) = 0, while
1+u€&HZR) as1+ u € h(R). For a gr-R R, HZ(R) is not necessarily a gr-I of R since it is not necessarily
an ideal; consider R = Zg[i], G = Z,, Ry = Zg, and R, = iZ¢, Note that 2,3 € HZ(R) with 2 + 3 =5 & HZ(R).
Nevertheless, if HZ(R) is a gr-I in some gr-R R, then HZ(R) should be a gr-p-I of R. To see this, let x, y € h(R),
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where xy € HZ(R). Then, there exists 0 # z € h(R) such that xyz = 0.If yz # 0, then x € HZ(R). If yz = 0, then
y € HZ(R). Indeed, the following lemma exists:

Lemma 2.11. Let R be a gr-R, where HZ(R) is a gr-I of R. Consequently, {0} is a gr-py-I of R if and only
if HZ(R) = Gr-rad(0).

Proof. Suppose that {0} is a gr-py-I of R. Let x € Gr-rad(0). Then, for all g € G, there exists a positive integer n,
in such a way that x;‘g = 0, and then x, € HZ(R), for all g € G, and so x € HZ(R) as HZ(R) is an ideal. Hence,
Gr-rad(0) € Z(R). Let y € HZ(R). Then, there exists 0 # z € h(R), where zy = 0, and then y € Gr-rad(0) as
{0} is a gr-py-I and z # 0. Hence, HZ(R) = Gr-rad(0). Conversely, let a, b € h(R) in such a way that ab = 0. If
a = 0, then it is done. If a # 0, then b € HZ(R) = Gr-rad(0). Thus, {0} is a gr-py-I of R. O

Theorem 2.12. Let R be a HUN-ring. If {0} is a gr-py-I of R, then R is a gr-loc-R with gr-m-I Gr-rad(0).

Proof. Since {0} is a gr-py-I of R, HZ(R) = Gr-rad(0) by Lemma 2.11, and so HZ(R) is a gr-I of R. Let | be a gr-I of
R in such a way that HZ(R) C J C R and HZ(R) # ]. Then, there is the existence of x € J, where x & HZ(R);
therefore, there exists g € G, where x, € HZ(R). Note that, x, € J as J is a gr-I. Since x; € HZ(R), X, is not a
nilpotent, S0 X, is a unit as R is a HUN-ring, and hence ] = R. Thus, HZ(R) is a gr-m-I of R. Allow for K to be a
proper gr-I of R, and suppose that a € K. Since a; € K for all g € G and K is a proper, a, is a nonunit for all
g € G, and then a, is a nilpotent for all g € G, i.e,, a, € HZ(R) for all g € G, then a € HZ(R). So, | € HZ(R),
and hence HZ(R) is the only gr-m-I of R. Thus, R is a gr-loc-R with gr-m-I HZ(R) = Gr-rad(0). O

In the following theorem, we give a stronger and better conclusion than Theorem 2.12. Undeniably, we
investigate the notion of graded n-ideals that were appeared in the study by Al-Zoubi et al. [17]. A proper gr-I P
of R is presumably a graded n-ideal (gr-n-I) of R whenever x,y € h(R), where xy € P and x € Gr-rad(0),
then y € P.

Theorem 2.13. For any gr-R R, the following are interchangeable:
* R is a HUN-ring.

* (x) is a gr-n-I of R, for every x € h(R) with (x) # R.

* Every proper gr-1is a gr-n-I.

* R has a unique gr-p-1, which is Gr-rad(0).

* R is a gr-loc-R with gr-m-I Gr-rad(0).

* R/(Gr-rad(0)) is a gr-F.

Proof.

(1) = (2): Let x € h(R) with (x) # R. Consider a, b € h(R) in such a way that ab € (x) and a €Gr-rad(0).
So, a is a unit, and then b € (x), also (x) is a gr-n-I of R.

(2) = (3): Let P be a proper gr-I of R. Presume that x,y € h(R), where xy € P and x & Gr-rad(0).
Considering xy € (xy) and (xy) is a gr-n-I, y € (xy) C P. Therefore, P is a gr-n-I of R.

(3) = (4): Let P be a gr-p-I of R. By equation (3) and [17, Theorem 1], P = Gr-rad(0).

(4) = (5): Since R has one gr-p-I, which is Gr-rad(0), we conclude that R is a gr-loc-R with gr-m-
I Gr-rad(0).

(5) = (6): It is obvious to see.

(6) = (1): Let x € h(R) such that x is not a nilpotent. Then, x € Gr-rad(0) and x + Gr-rad(0) is a nonzero
homogeneous element in R/Gr-rad(0), which implies that x + Gr-rad(0) is a unit, ie,
(x + Gr-rad(0))(y + Gr-rad(0)) =1 + Gr-rad(0), for some y € h(R). So, xy -1 is a nilpotent, and then
(xy = 1) + 1 = xy is a unit, which gives that x is a unit. Thus, R is a HUN-ring. O

Theorem 2.14. Let R be a finitely generated gr-loc-R with gr-m-I1 X. If R is a gr-D and every gr-1-ab-py-I of R is a gr-
w-py-1, then either R is a HUN-ring or X is the unique nonzero gr-p-I of R.
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Proof. Assume that R is not a HUN-ring. Assume that R is a gr-D. Let 0 # P be gr-p-I of R that is not a gr-m-I.
Then, PX is a gr-l1-ab-py-I of R and Gr-rad(PX) = P by Proposition 2.7. Then, PX is a gr-w-py-I of R.
Let0#p €P and x € X - P. Then, p = decpg, where p, € P as P is a gr-I, and also, there exists h € G
such that x, & P. Note that, x, € X as X is a gr-l. We have 0 # p,x, € PX for all g € G with p, # 0, and
Xn & P =Gr-rad(PX). Thus, p, € PX for all g € G with p, # 0, so p € PX as p, = 0 € PX too. Hence, P = PX.
We obtain P = 0 from the Nakayama’s lemma, a contradiction. Thus, X is the unique nonzero gr-p-Iof R. [

Recall from the study by Bataineh and Abu-Dawwas [18] that a proper gr-I P of R is presumably a graded
semi-primary ideal (gr-s-py-I) of R if whenever x,y € h(R), where xy € P, consequently x € Gr-rad(P) or
y € Gr-rad(P), or equivalently, Gr-rad (P) is a gr-p-I of R [19, Proposition 4]. It has been proved in Lemma 2.7
of the study by Abu-Dawwas [14] that every gr-1-ab-py-I of R is a gr-s-py-1. We establish the concept of g-semi-
primary ideals (g-s-py-I’s), and then we present a case where every e-w-1-ab-py-I of R is an e-s-py-L

Definition 2.15. Allow R to be a gr-R, g € G and P be a gr-I of R with P, # R,. Then, P is said to be a g-semi-
primary ideal (g-s-py-I) of R if Gr-rad(P) is a g-p-I of R.

Proposition 2.16. Assume R is a first strongly gr-R. Then, every e-w-1-ab-py-I of R is an e-s-py-I supposing that
Gr-rad(0) is an e-p-I of R.

Proof. Presume that Gr-rad(0) is an e-p-I of R. Let P be an e-w-1-ab-py-I of R. Assume that x,y € R, with
xy € Gr-rad(P) and x € Gr-rad(P). We can suppose that x is not a unit. Now, there is the existence of
a positive integer n, where x"y" € P. Accordingly, x™*y* € P and n + 1 2 2. If x**y" # 0, then x™*' € P
or y" € P. Thus, y € Grrad(P) since x & Gr-rad(P). Consider x"*y" =0, If x™1B, = {0} € Gr-rad(0),
then P, € Gr-rad(0) since Gr-rad(0) is an e-p-I and x & Gr-rad(0). If g € G with P, # 0, then P, = R,RC
R,(Gr-rad(0)) € Gr-rad(0). So, P, € Gr-rad(0) for all g € G. Thus, P C Gr-rad(0), and then Gr-rad(P) =
Gr-rad(0) is an e-p-L. If x™*1B, # 0, then there exists a € B, such that x"*'a # 0, and so 0 # x**1(a + y") € P.
If a +y" is a unit, then x™! € P, a contradiction. Thus, a + y" is a nonunit. Since x"*' &€ P, we obtain
a + y" € Gr-rad(P). Thus, y € Gr-rad(P). Consequently, Gr-rad(P) is an e-p-I of R. Conversely, since {0} is
an e-w-1-ab-py-I of R, {0} is an e-s-py-I, and hence Gr-rad(0) is an e-p-I of R. O

Proposition 2.17. Let R be a gr-R. Then, every gr-w-1-ab-py-I of R is a gr-1-ab-py-I if and only if {0} is a gr-1-ab-py-I
ideal of R.

Proof. Speculate that {0} is a gr-1-ab-py-I ideal of R. Let P be a gr-w-1-ab-py-I of R. Assume that x, y, z € h(R)
are nonunits such that xyz € P and z € Gr-rad(P). If xyz # 0, then xy € P. Now, consider xyz = 0. Hence,
xy = 0 orz € Gr-rad(0) since {0} is a gr-1-ab-py-I. The second case, however, cannot happen since z &€ Gr-rad(P).
Hence, xy = 0 € P, in the desired manner. Conversely, since {0} is a gr-w-1-ab-py-I of R, {0} is a gr-1-ab-py-I
of R. O

Proposition 2.18. Allow R to be a gr-R in such a way that HZ(R) is a gr-I of R. If {0} is a gr-1-ab-py-I ideal of R,
then either HZ(R) = Grad(0) or R is a HUN-ring with HZ(R) = Anng(x) = {a € R : ax = 0} for some x € h(R).

Proof. Suppose that HZ(R) # Gr-rad(0). Let a € HZ(R) - (Gr-rad(0)). There is the existence of 0 # x € h(R),
where ax = 0. Suppose that R has a homogeneous nonunit regular element named s. We have sxa = 0 and
a & Gr-rad(0). Then, sx = 0, and so x = 0, wholly unattainable. Thus, homogeneous nonunit elements of R
are in HZ(R). So, R is a HUN-ring. Let y € HZ(R). We have yxa = 0 and a € Gr-rad(0), and so yx = 0.
Thus, HZ(R) € Anng(x). Let r € Anng(x). Then, r, € Anng(x) for all g € G as Anng(x) is a gr-I by ([20],
page 3, line 11), which implies that r, € HZ(R) for all g € G, and so r € HZ(R) as HZ(R) is a gr-I. Thus,
HZ(R) = Anng(x). O
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Proposition 2.19. Let R be a reduced first strongly gr-R. Then, every e-w-1-ab-py-I of R is an e-1-ab-py-I on
the condition that R, is a domain.

Proof. Presume that every e-w-1-ab-py-I of R is an e-1-ab-py-I. Similarly as in Lemma 2.7 of the study by
Abu-Dawwas [14], one can prove that every e-1-ab-py-I of R is an e-s-py-I. So, every e-w-1-ab-py-I of R is
an e-s-py-1. Hence, by Proposition 2.16, {0} = Gr-rad (0) is an e-p-I of R. Therefore, R, is a domain. Conversely,
let P be an e-w-1-ab-py-I of R. Assume that x, y, z € R, are nonunits such that xyz € P. If xyz = 0, then x = 0
or y=0or z=0 as R, is a domain, and so it is done. Consider xyz # 0. Then, as P is an e-w-1-ab-py-I,
either xy € P or z € Gr-rad(0). Therefore, P is an e-1-ab-py-I of R. O

3 Conclusion

In this article, we looked at and explored more outcomes to graded weakly 1-absorbing primary ideals. We
proved that if R, is a nonlocal ring and P is an e-w-1-ab-py-I of R that is not an e-w-py-I, then either P2 = 0 or
P? = (s) with s as an idempotent such that (1 - s) is a maximal ideal of R, (Theorem 2.4). In addition, we
showed that if every nonzero gr-py-I of R is a gr-p-I and Gr-rad(0) is a gr-m-I of R, then either Gr-rad(0) = 0 or
Gr-rad(0) is the unique nonzero proper gr-I of R (Proposition 2.8). In addition, we proved that if R is a HUN-
ring and {0} is a gr-py-I of R, then R is a gr-loc-R with gr-m-I Gr-rad(0) (Theorem 2.12). Moreover, a nice
characterization was introduced in Theorem 2.13. We also showed that if R is a finitely generated gr-loc-R with
gr-m-I X, R is a gr-D, and every gr-1-ab-py-I of R is a gr-w-py-I, then R is either HUN-ring or X is the unique
nonzero gr-p-I of R (Theorem 2.14). Furthermore, we proved that if R is the first strongly gr-R, then every e-w-1-
ab-py-I of R is an e-s-py-I if and only if Gr-rad(0) is an e-p-I of R (Proposition 2.16). Finally, we showed that if R
is a reduced first strongly gr-R, then every e-w-1-ab-py-I of R is an e-1-ab-py-I if and only if R, is a domain
(Proposition 2.19). As a proposal for further work on the topic, we are going to introduce a deep study on the
concept of graded 1-absorbing prime ideals that have been established in the study by Abu-Dawwas et al. [9].
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