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Abstract: In this study, we obtained the stability of the multi-variable bi-Jensen-type functional equation:
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1 Introduction

In 1940, Ulam [1] suggested the stability problem of functional equations concerning the stability of group
homomorphisms:

Let � be a group and let � be a metric group with the metric ( )⋅ ⋅d , . Given >ε 0, does there exist a >δ 0 such that if a mapping
� �→h : satisfies the inequality ( ( ) ( ) ( )) <d h xy h x h y δ, for all �∈x y, then there is a homomorphism � �→H : with

( ( ) ( )) <d h x H x ε, for all �∈x ?

Hyers-Ulam stability is a mathematical result that deals with the variation of approximations of a function
under small perturbations. Research on the stability of functional equations has been continuously conducted,
and rich results are coming out [2–8].

Throughout this article, let � and � be the vector spaces.

Definition 1. A mapping � � �× →f : is called a bi-Jensen mapping if f satisfies the system of equations:

( ) ( ) ( ) ( )⎛
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, , . (1)

Let � � �× →f : be a mapping. In 2006, Bae and Park [9] obtained the general solution of the bi-Jensen
functional equation
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f x z f x w f y z f y w4

2

,

2

, , , , (2)

and proved its stability. Subsequent articles have been published since 2008 by several authors [10–13].
For an integer n greater than 1, consider the multi-variable bi-Jensen-type functional equation:
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Equation (2) is a special case of equation (3).
In 2011, Park [14] investigated the approximate additive, Jensen, and quadratic mappings in 2-Banach

spaces. In 2018, EL-Fassi [15] investigated the generalized hyperstability of bi-Jensen functional equation in (2,
β)-Banach spaces.

In this study, we solved the solution and investigated the stability of the multi-variable bi-Jensen-type
functional equation (3) in 2-Banach spaces and quasi-Banach spaces.

2 Main results

We introduce some definitions on 2-Banach spaces [16,17].

Definition 2. Let � be a real vector space with � ≥dim 2 and ��‖ ‖⋅ ⋅ →, :

2 be a function. Then, �( ‖ ‖)⋅ ⋅, , is
called a linear 2-normed space if the following conditions hold:
(a) ‖ ‖ =x y, 0 if and only if x and y are linearly dependent,
(b) ‖ ‖ ‖ ‖=x y y x, , ,
(c) ‖ ‖ ∣ ∣‖ ‖=αx y α x y, , ,
(d) ‖ ‖ ‖ ‖ ‖ ‖+ ≤ +x y z x y x z, , , ,

for all �∈α and �∈x y z, , . In this case, the function ‖ ‖⋅ ⋅, is called a 2-norm on �.

Definition 3. Let { }xn be a sequence in a linear 2-normed space �. The sequence { }xn is said to be convergent in
� if there exists an element �∈x such that

‖ ‖− =
→∞

x x ylim , 0

n

n

for all �∈y . In this case, we say that the sequence { }xn converges to the limit x , simply, denoted
by =→∞x xlimn n .

Definition 4. A sequence { }xn in a linear 2-normed space � is called a Cauchy sequence if there are two linearly
independent points �∈y z, such that for any >ε 0, there exists �∈N such that for all ≥m n N, ,
‖ ‖− <x x y ε,m n and ‖ ‖− <x x z ε,m n . A 2-Banach space is defined to be a linear 2-normed space in which
every Cauchy sequence is convergent.

In the following lemma, we obtain some basic properties in a linear 2-normed space, which will be used to
prove the stability results.

Lemma 1. [14] Let �( ‖ ‖)⋅ ⋅, , be a linear 2-normed space and �∈x .
(a) If ‖ ‖ =x y, 0 for all ∈y X , then =x 0.
(b) ∣‖ ‖ ‖ ‖∣ ‖ ‖− ≤ −x z y z x y z, , , for all �∈x y z, , .
(c) If a sequence { }xn is convergent in �, then ‖ ‖ ‖ ‖=→∞ →∞x y x ylim , lim ,n n n n for all �∈y .

Let � be a normed space and � be a 2-Banach space.

Lemma 2. Let � � �× →f : satisfy (3). And let � �′ →g g, :
x y

be given by ( ) ( ) ( )≔ −g y f x y f x, , 0
x

and ( )′ ≔g x
y

( ) ( )−f x y f y, 0, for all �∈x y, . Then, g
x
is additive for all �∈x and ′g

y
is additive for all �∈y .
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Proof. Letting = = ⋯= =x x x xn1 2
, =y y

1

, and = ⋯= =y y 0
n2

in (3), we have
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y

n

f x y n f x, , 1 , 0

for all �∈x y, . So, we have
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x x

(4)

for all �∈x y, . Putting = = ⋯= =x x x xn1 2
and = ⋯= =y y 0

n3

in (3), we have
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. So, we have
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. By equation (4) and the aforementioned equation, we know that g
x
is additive for all

�∈x . Similarly, we also know that ′g
y
is additive for all �∈y . □

Theorem 1. A mapping � � �× →f : satisfies (1) if and only if it satisfies (3).

Proof. First, we assume that f satisfies (1). By [9], there exist a bi-additive mapping � � �× →B : and two
additive mappings � �′ →A A, : such that ( ) ( ) ( ) ( ) ( )= + + ′ +f x y B x y A x A y f, , 0, 0 for all �∈x y, . Thus, we
have
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for all �∈x x y y,…, , ,…,n n1
1

, i.e., f satisfies (3).
Conversely, assume that f satisfies (3). Define � �′ →g g, :

x y
by ( ) ( ) ( )≔ −g y f x y f x, , 0

x
and ( )′ ≔g x

y

( ) ( )−f x y f y, 0, for all �∈x y, . By Lemma 2, g
x
is additive for all �∈x and ′g

y
is additive for all �∈y .

Thus, we obtain

( ) ( )⎛
⎝

+ ⎞
⎠ = +g

y z

g y g z2

2

x x x

and

( ) ( ) ( )⎛
⎝

+ ⎞
⎠ = ⎛

⎝
+ ⎞

⎠ + = +f x

y z

g

y z

f x f x y f x z2 ,

2

2

2
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for all �∈x y z, , . Similarly, we obtain
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z f x z f y z2

2

, , ,

for all �∈x y z, , , i.e., f satisfies (1). □
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The following theorem proves the stability of equation (3) in 2-Banach spaces.

Theorem 2. Let ( )∈r 0, 2 , >ε 0, ≥δ η, 0, and let � � �× →f : be a surjection satisfying ( ) =f x , 0 0 such that
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for all �∈x x x y y s t, ,…, , ,…, , ,n n1
1

. Then, there exists a unique bi-additive mapping � � �× →F : such that
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for all �∈x y s t, , , .

Proof. Let ( ) ( ) ( )≔ −g x y f x y f y, , 0, for all �∈x y, . Then, ( ) =g y0, 0 for all �∈y . By (5), g satisfies
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for all �∈x y s t, , , and all k . Thus, we have
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for all integers ( )≤ <l m l m, 0 and all �∈x y s t, , , . By (9), the sequence { ( )}g n x n y,

n

k k
1

k2
is a Cauchy sequence

for each �∈x y, . Since � is complete, the sequence { ( )}g n x n y,

n

k k
1

k2

converges for each �∈x y, .

Define � � �× →F : by:
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for all �∈x x y y s t,…, , ,…, , ,n n1
1

and all k . Letting → ∞k in the aforementioned inequality, we obtain that F

satisfies (3). By Theorem 1, F is a bi-Jensen mapping. Setting =l 0 and taking → ∞m in (9), one can obtain
inequality (6).

Define � �′ →G G, :x y
by ( ) ( ) ( )≔ −G y F x y F x, , 0x and ( ) ( ) ( )′ ≔ −G x F x y F y, 0,

y
for all �∈x y, . By

Lemma 2, Gx is additive for all �∈x and ′G
y
is additive for all �∈y . Since ( ) ( )= =F x F y, 0 0, 0 for all

�∈x y, , we have ( ) ( ) ( )= ′ =G y G x F x y,x y
for all �∈x y, . Hence, F is bi-additive.

Let � � �× →G : be another bi-additive mapping satisfying (6). Then, we have
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for all �∈x y s t, , , . So =F G. □
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In [18–20], one can find the concept of quasi-Banach spaces.

Definition 5. Let � be a real vector space. A quasi-norm is a real-valued function on � satisfying the following:
(i) ‖ ‖ ≥x 0 for all �∈x and ‖ ‖ =x 0 if and only if =x 0.
(ii) ‖ ‖ ∣ ∣‖ ‖=λx λ x for all �∈λ and all �∈x .
(iii) There is a constant ≥K 1 such that ‖ ‖ (‖ ‖ ‖ ‖)+ ≤ +x y K x y for all �∈x y, .

The pair �( ‖ ‖)⋅, is called a quasi-normed space if ‖ ‖⋅ is a quasi-norm on �. The smallest possible K is called
the modulus of concavity of ‖ ‖⋅ . A quasi-Banach space is a complete quasi-normed space. A quasi-norm ‖ ‖⋅ is
called a p-norm ( < ≤p0 1) if

‖ ‖ ‖ ‖ ‖ ‖+ ≤ +x y x y
p p p

for all �∈x y, . In this case, a quasi-Banach space is called a p-Banach space.

From now on, assume that � is a quasi-normed space with quasi-norm‖ ‖⋅ and that � is a p-Banach space
with p-norm �‖ ‖⋅ . Let K be the modulus of concavity of �‖ ‖⋅ .

We will use the following lemma in the proof of the next theorem.

Lemma 3. [21] Let ≤ ≤p0 1 and let x x x, ,…, n1 2
be non-negative real numbers. Then,

( )+ + ⋯+ ≤ + + ⋯+x x x x x x .n

p
p p

n

p

1 2 1 2

The following theorem proves the stability of equation (3) in quasi-Banach spaces.

Theorem 3. Let ( )∈r 0, 2 , >ε 0, ≥δ 0 and let � � �× →f : be a mapping satisfying ( ) =f x , 0 0 such that

�
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⎝
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⎠
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for all �∈x x x y y, ,…, , ,…,n n1
1

. Then, there exists a unique bi-additive mapping � � �× →F : such that
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for all �∈x y, and all k . Putting =x 0 in the aforementioned inequality, we obtain
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for all �∈y and all k . By the aforementioned two inequalities, we have
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for all �∈x y, and all k . Thus, we have

�
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for all integers ( )≤ <l m l m, 0 and all �∈x y, . By (14), the sequence { [ ( ) ( )]}−f n x n y f n y, 0,
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for all �∈x x y y,…, , ,…,n n1
1

and all k . Letting → ∞k in the aforementioned inequality, we obtain that F

satisfies (3).
Define � �′ →G G, :x y

by ( ) ( ) ( )≔ −G y F x y F x, , 0x and ( ) ( ) ( )′ ≔ −G x F x y F y, 0,
y

for all �∈x y, . By
Lemma 2, Gx is additive for all �∈x and ′G

y
is additive for all �∈y . Since ( ) ( )= =F x F y, 0 0, 0 for all

�∈x y, , we have ( ) ( ) ( )= ′ =G y G x F x y,x y
for all �∈x y, . Hence, F is bi-additive. Setting =l 0 and taking

→ ∞m in (14), one can obtain inequality (12).
To prove the uniqueness of F , let � � �× →G : be another bi-additive mapping satisfying (12). Then, we

have
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p pr

pr pr

2

2 2

1

2
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1

for all �∈x y, . So =F G. □

Taking =n 2 and =δ 0 in Theorem 3, we obtain the following corollary. The result coincides with the one
of Corollary 4 in [22].

Corollary 1. Let >ε 0 be fixed. Suppose that � � �× →f : be a mapping satisfying ( ) =f x , 0 0 such that

�

( ) ( ) ( ) ( )⎛
⎝

+ + ⎞
⎠ − − − − ≤f

x y z w

f x z f x w f y z f y w ε4

2

,

2

, , , ,
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for all �∈x y z w, , , . Then, there exists a unique bi-additive mapping � � �× →F : satisfying

�‖ ( ) ( ) ( )‖− − ≤ ⎛
⎝ −

⎞
⎠f x y f y F x y ε, 0, ,

2

4 1

p

p

1

for all �∈x y, .

3 Conclusion

We demonstrated the stability of the multi-variable bi-Jensen functional equation (3) as the duplicative fusion
equation of the multi-variable Jensen functional equation:

( ) ( )⎛
⎝

+ ⋯+ ⎞
⎠ = + ⋯+nf

x x

n

f x f x .

n

n

1

1
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