

Research Article

Jae-Hyeong Bae and Won-Gil Park*

Approximate multi-variable bi-Jensen-type mappings

<https://doi.org/10.1515/dema-2023-0105>
received December 8, 2022; accepted July 19, 2023

Abstract: In this study, we obtained the stability of the multi-variable bi-Jensen-type functional equation:

$$n^2 f\left(\frac{x_1 + \dots + x_n}{n}, \frac{y_1 + \dots + y_n}{n}\right) = \sum_{i=1}^n \sum_{j=1}^n f(x_i, y_j).$$

Keywords: linear 2-normed space, quasi-normed space, multi-variable bi-Jensen-type mapping

MSC 2020: 39B52, 39B82

1 Introduction

In 1940, Ulam [1] suggested the stability problem of functional equations concerning the stability of group homomorphisms:

Let \mathcal{G} be a group and let \mathcal{H} be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a mapping $h : \mathcal{G} \rightarrow \mathcal{H}$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in \mathcal{G}$ then there is a homomorphism $H : \mathcal{G} \rightarrow \mathcal{H}$ with $d(h(x), H(x)) < \varepsilon$ for all $x \in \mathcal{G}$?

Hyers-Ulam stability is a mathematical result that deals with the variation of approximations of a function under small perturbations. Research on the stability of functional equations has been continuously conducted, and rich results are coming out [2–8].

Throughout this article, let \mathcal{X} and \mathcal{Y} be the vector spaces.

Definition 1. A mapping $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ is called a *bi-Jensen mapping* if f satisfies the system of equations:

$$2f\left(\frac{x+y}{2}, z\right) = f(x, z) + f(y, z), \quad \text{and} \quad 2f\left(x, \frac{y+z}{2}\right) = f(x, y) + f(x, z). \quad (1)$$

Let $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping. In 2006, Bae and Park [9] obtained the general solution of the bi-Jensen functional equation

$$4f\left(\frac{x+y}{2}, \frac{z+w}{2}\right) = f(x, z) + f(x, w) + f(y, z) + f(y, w) \quad (2)$$

and proved its stability. Subsequent articles have been published since 2008 by several authors [10–13].

For an integer n greater than 1, consider the multi-variable bi-Jensen-type functional equation:

* Corresponding author: Won-Gil Park, Department of Mathematics Education, College of Education, Mokwon University, Daejeon 35349, Republic of Korea, e-mail: wgpark@mokwon.ac.kr

Jae-Hyeong Bae: Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea, e-mail: jhbae@khu.ac.kr

$$n^2 f\left(\frac{x_1 + \dots + x_n}{n}, \frac{y_1 + \dots + y_n}{n}\right) = \sum_{i=1}^n \sum_{j=1}^n f(x_i, y_j). \quad (3)$$

Equation (2) is a special case of equation (3).

In 2011, Park [14] investigated the approximate additive, Jensen, and quadratic mappings in 2-Banach spaces. In 2018, EL-Fassi [15] investigated the generalized hyperstability of bi-Jensen functional equation in $(2, \beta)$ -Banach spaces.

In this study, we solved the solution and investigated the stability of the multi-variable bi-Jensen-type functional equation (3) in 2-Banach spaces and quasi-Banach spaces.

2 Main results

We introduce some definitions on 2-Banach spaces [16,17].

Definition 2. Let \mathcal{X} be a real vector space with $\dim \mathcal{X} \geq 2$ and $\|\cdot, \cdot\| : \mathcal{X}^2 \rightarrow \mathbb{R}$ be a function. Then, $(\mathcal{X}, \|\cdot, \cdot\|)$ is called a *linear 2-normed space* if the following conditions hold:

- (a) $\|x, y\| = 0$ if and only if x and y are linearly dependent,
- (b) $\|x, y\| = \|y, x\|$,
- (c) $\|\alpha x, y\| = |\alpha| \|x, y\|$,
- (d) $\|x, y + z\| \leq \|x, y\| + \|x, z\|$,

for all $\alpha \in \mathbb{R}$ and $x, y, z \in \mathcal{X}$. In this case, the function $\|\cdot, \cdot\|$ is called a *2-norm* on \mathcal{X} .

Definition 3. Let $\{x_n\}$ be a sequence in a linear 2-normed space \mathcal{X} . The sequence $\{x_n\}$ is said to be *convergent* in \mathcal{X} if there exists an element $x \in \mathcal{X}$ such that

$$\lim_{n \rightarrow \infty} \|x_n - x, y\| = 0$$

for all $y \in \mathcal{X}$. In this case, we say that the sequence $\{x_n\}$ converges to the limit x , simply, denoted by $\lim_{n \rightarrow \infty} x_n = x$.

Definition 4. A sequence $\{x_n\}$ in a linear 2-normed space \mathcal{X} is called a *Cauchy sequence* if there are two linearly independent points $y, z \in \mathcal{X}$ such that for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \geq N$, $\|x_m - x_n, y\| < \varepsilon$ and $\|x_m - x_n, z\| < \varepsilon$. A *2-Banach space* is defined to be a linear 2-normed space in which every Cauchy sequence is convergent.

In the following lemma, we obtain some basic properties in a linear 2-normed space, which will be used to prove the stability results.

Lemma 1. [14] Let $(\mathcal{X}, \|\cdot, \cdot\|)$ be a linear 2-normed space and $x \in \mathcal{X}$.

- (a) If $\|x, y\| = 0$ for all $y \in \mathcal{X}$, then $x = 0$.
- (b) $\| \|x, z\| - \|y, z\| \| \leq \|x - y, z\|$ for all $x, y, z \in \mathcal{X}$.
- (c) If a sequence $\{x_n\}$ is convergent in \mathcal{X} , then $\lim_{n \rightarrow \infty} \|x_n, y\| = \|\lim_{n \rightarrow \infty} x_n, y\|$ for all $y \in \mathcal{X}$.

Let \mathcal{X} be a normed space and \mathcal{Y} be a 2-Banach space.

Lemma 2. Let $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ satisfy (3). And let $g_x, g'_y : \mathcal{X} \rightarrow \mathcal{Y}$ be given by $g_x(y) = f(x, y) - f(x, 0)$ and $g'_y(x) = f(x, y) - f(0, y)$ for all $x, y \in \mathcal{X}$. Then, g_x is additive for all $x \in \mathcal{X}$ and g'_y is additive for all $y \in \mathcal{X}$.

Proof. Letting $x_1 = x_2 = \dots = x_n = x$, $y_1 = y$, and $y_2 = \dots = y_n = 0$ in (3), we have

$$nf\left(x, \frac{y}{n}\right) = f(x, y) + (n-1)f(x, 0)$$

for all $x, y \in \mathcal{X}$. So, we have

$$ng_x\left(\frac{y}{n}\right) = nf\left(x, \frac{y}{n}\right) - nf(x, 0) = f(x, y) - f(x, 0) = g_x(y) \quad (4)$$

for all $x, y \in \mathcal{X}$. Putting $x_1 = x_2 = \dots = x_n = x$ and $y_3 = \dots = y_n = 0$ in (3), we have

$$nf\left(x, \frac{y_1 + y_2}{n}\right) = f(x, y_1) + f(x, y_2) + (n-2)f(x, 0)$$

for all $x, y_1, y_2 \in \mathcal{X}$. So, we have

$$ng_x\left(\frac{y_1 + y_2}{n}\right) = nf\left(x, \frac{y_1 + y_2}{n}\right) - nf(x, 0) = f(x, y_1) + f(x, y_2) - 2f(x, 0) = g_x(y_1) + g_x(y_2)$$

for all $x, y_1, y_2 \in \mathcal{X}$. By equation (4) and the aforementioned equation, we know that g_x is additive for all $x \in \mathcal{X}$. Similarly, we also know that g'_y is additive for all $y \in \mathcal{Y}$. \square

Theorem 1. A mapping $f: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ satisfies (1) if and only if it satisfies (3).

Proof. First, we assume that f satisfies (1). By [9], there exist a bi-additive mapping $B: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ and two additive mappings $A, A': \mathcal{X} \rightarrow \mathcal{Y}$ such that $f(x, y) = B(x, y) + A(x) + A'(y) + f(0, 0)$ for all $x, y \in \mathcal{X}$. Thus, we have

$$\begin{aligned} n^2f\left(\frac{x_1 + \dots + x_n}{n}, \frac{y_1 + \dots + y_n}{n}\right) &= n^2B\left(\frac{1}{n} \sum_{i=1}^n x_i, \frac{1}{n} \sum_{j=1}^n y_j\right) + n^2A\left(\frac{1}{n} \sum_{i=1}^n x_i\right) + n^2A'\left(\frac{1}{n} \sum_{j=1}^n y_j\right) + n^2f(0, 0) \\ &= \sum_{i=1}^n \sum_{j=1}^n B(x_i, y_j) + n \sum_{i=1}^n A(x_i) + n \sum_{j=1}^n A'(y_j) + n^2f(0, 0) \\ &= \sum_{i=1}^n \sum_{j=1}^n B(x_i, y_j) + \sum_{i=1}^n \sum_{j=1}^n A(x_i) + \sum_{i=1}^n \sum_{j=1}^n A'(y_j) + \sum_{i=1}^n \sum_{j=1}^n f(0, 0) \\ &= \sum_{i=1}^n \sum_{j=1}^n f(x_i, y_j) \end{aligned}$$

for all $x_1, \dots, x_n, y_1, \dots, y_n \in \mathcal{X}$, i.e., f satisfies (3).

Conversely, assume that f satisfies (3). Define $g_x, g'_y: \mathcal{X} \rightarrow \mathcal{Y}$ by $g_x(y) = f(x, y) - f(x, 0)$ and $g'_y(x) = f(x, y) - f(0, y)$ for all $x, y \in \mathcal{X}$. By Lemma 2, g_x is additive for all $x \in \mathcal{X}$ and g'_y is additive for all $y \in \mathcal{Y}$. Thus, we obtain

$$2g_x\left(\frac{y+z}{2}\right) = g_x(y) + g_x(z)$$

and

$$2f\left(x, \frac{y+z}{2}\right) = 2g_x\left(\frac{y+z}{2}\right) + 2f(x, 0) = f(x, y) + f(x, z)$$

for all $x, y, z \in \mathcal{X}$. Similarly, we obtain

$$2f\left(\frac{x+y}{2}, z\right) = f(x, z) + f(y, z)$$

for all $x, y, z \in \mathcal{X}$, i.e., f satisfies (1). \square

The following theorem proves the stability of equation (3) in 2-Banach spaces.

Theorem 2. *Let $r \in (0, 2)$, $\varepsilon > 0$, $\delta, \eta \geq 0$, and let $f: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a surjection satisfying $f(x, 0) = 0$ such that*

$$\left\| n^2 f\left(\frac{x_1 + \dots + x_n}{n}, \frac{y_1 + \dots + y_n}{n}\right) - \sum_{i=1}^n \sum_{j=1}^n f(x_i, y_j), f(s, t) \right\| \leq \varepsilon + \delta \left(\sum_{i=1}^n \|x_i\|^r + \sum_{j=1}^n \|y_j\|^r \right) + \eta(\|s\| + \|t\|) \quad (5)$$

for all $x, x_1, \dots, x_n, y_1, \dots, y_n, s, t \in \mathcal{X}$. Then, there exists a unique bi-additive mapping $F: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$\|f(x, y) - f(0, y) - F(x, y), f(s, t)\| \leq \frac{2}{n^2 - 1} [\varepsilon + \eta(\|s\| + \|t\|)] + \frac{n^r \delta}{n^2 - n^r} (\|x\|^r + 2\|y\|^r) \quad (6)$$

for all $x, y, s, t \in \mathcal{X}$.

Proof. Let $g(x, y) = f(x, y) - f(0, y)$ for all $x, y \in \mathcal{X}$. Then, $g(0, y) = 0$ for all $y \in \mathcal{X}$. By (5), g satisfies

$$\left\| n^2 g\left(\frac{x_1 + \dots + x_n}{n}, \frac{y_1 + \dots + y_n}{n}\right) - \sum_{i=1}^n \sum_{j=1}^n g(x_i, y_j), f(s, t) \right\| \leq 2\varepsilon + \delta \left(\sum_{i=1}^n \|x_i\|^r + 2 \sum_{j=1}^n \|y_j\|^r \right) + 2\eta(\|s\| + \|t\|) \quad (7)$$

for all $x, x_1, \dots, x_n, y_1, \dots, y_n, s, t \in \mathcal{X}$. Putting $x_1 = n^{k+1}x$, $x_2 = \dots = x_n = 0$, $y_1 = n^{k+1}y$, $y_2 = \dots = y_n = 0$ in (7), we gain

$$\left\| \frac{1}{n^{2k}} g(n^k x, n^k y) - \frac{1}{n^{2(k+1)}} g(n^{k+1} x, n^{k+1} y), f(s, t) \right\| \leq \frac{1}{n^{2(k+1)}} [2\varepsilon + \delta n^{r(k+1)} (\|x\|^r + 2\|y\|^r) + 2\eta(\|s\| + \|t\|)] \quad (8)$$

for all $x, y, s, t \in \mathcal{X}$ and all k . Thus, we have

$$\left\| \frac{1}{n^{2l}} g(n^l x, n^l y) - \frac{1}{n^{2m}} g(n^m x, n^m y), f(s, t) \right\| \leq \sum_{k=l}^{m-1} \frac{1}{n^{2(k+1)}} [2\varepsilon + \delta n^{r(k+1)} (\|x\|^r + 2\|y\|^r) + 2\eta(\|s\| + \|t\|)] \quad (9)$$

for all integers l, m ($0 \leq l < m$) and all $x, y, s, t \in \mathcal{X}$. By (9), the sequence $\{\frac{1}{n^{2k}} g(n^k x, n^k y)\}$ is a Cauchy sequence for each $x, y \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\{\frac{1}{n^{2k}} g(n^k x, n^k y)\}$ converges for each $x, y \in \mathcal{X}$.

Define $F: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ by:

$$F(x, y) = \lim_{k \rightarrow \infty} \frac{1}{n^{2k}} g(n^k x, n^k y) \quad (10)$$

for all $x, y \in \mathcal{X}$. By (7), we have

$$\frac{1}{n^{2k}} \left\| n^2 g\left(n^{k-1} \sum_{i=1}^n x_i, n^{k-1} \sum_{j=1}^n y_j\right) - \sum_{i=1}^n \sum_{j=1}^n g(n^k x_i, n^k y_j), f(s, t) \right\| \leq \frac{1}{n^{2k}} \left[2\varepsilon + n^{kr} \delta \left(\sum_{i=1}^n \|x_i\|^r + 2 \sum_{j=1}^n \|y_j\|^r \right) + 2\eta(\|s\| + \|t\|) \right]$$

for all $x_1, \dots, x_n, y_1, \dots, y_n, s, t \in \mathcal{X}$ and all k . Letting $k \rightarrow \infty$ in the aforementioned inequality, we obtain that F satisfies (3). By Theorem 1, F is a bi-Jensen mapping. Setting $l = 0$ and taking $m \rightarrow \infty$ in (9), one can obtain inequality (6).

Define $G_x, G'_y: \mathcal{X} \rightarrow \mathcal{Y}$ by $G_x(y) = F(x, y) - F(x, 0)$ and $G'_y(x) = F(x, y) - F(0, y)$ for all $x, y \in \mathcal{X}$. By Lemma 2, G_x is additive for all $x \in \mathcal{X}$ and G'_y is additive for all $y \in \mathcal{X}$. Since $F(x, 0) = F(0, y) = 0$ for all $x, y \in \mathcal{X}$, we have $G_x(y) = G'_y(x) = F(x, y)$ for all $x, y \in \mathcal{X}$. Hence, F is bi-additive.

Let $G: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be another bi-additive mapping satisfying (6). Then, we have

$$\begin{aligned} \|F(x, y) - G(x, y), f(s, t)\| &= \lim_{k \rightarrow \infty} \frac{1}{n^{2k}} \|f(n^k x, n^k y) - f(0, n^k y) - G(n^k x, n^k y), f(s, t)\| \\ &\leq \lim_{k \rightarrow \infty} \frac{1}{n^{2k}} \left(\frac{2}{n^2 - 1} [\varepsilon + \eta(\|s\| + \|t\|)] + \frac{n^{r(k+1)} \delta}{n^2 - n^r} (\|x\|^r + 2\|y\|^r) \right) = 0 \end{aligned}$$

for all $x, y, s, t \in \mathcal{X}$. So $F = G$. □

In [18–20], one can find the concept of quasi-Banach spaces.

Definition 5. Let \mathcal{X} be a real vector space. A *quasi-norm* is a real-valued function on \mathcal{X} satisfying the following:

- (i) $\|x\| \geq 0$ for all $x \in \mathcal{X}$ and $\|x\| = 0$ if and only if $x = 0$.
- (ii) $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{R}$ and all $x \in \mathcal{X}$.
- (iii) There is a constant $K \geq 1$ such that $\|x + y\| \leq K(\|x\| + \|y\|)$ for all $x, y \in \mathcal{X}$.

The pair $(\mathcal{X}, \|\cdot\|)$ is called a *quasi-normed space* if $\|\cdot\|$ is a quasi-norm on \mathcal{X} . The smallest possible K is called the *modulus of concavity* of $\|\cdot\|$. A *quasi-Banach space* is a complete quasi-normed space. A quasi-norm $\|\cdot\|$ is called a *p-norm* ($0 < p \leq 1$) if

$$\|x + y\|^p \leq \|x\|^p + \|y\|^p$$

for all $x, y \in \mathcal{X}$. In this case, a quasi-Banach space is called a *p-Banach space*.

From now on, assume that \mathcal{X} is a quasi-normed space with quasi-norm $\|\cdot\|$ and that \mathcal{Y} is a p -Banach space with p -norm $\|\cdot\|_{\mathcal{Y}}$. Let K be the modulus of concavity of $\|\cdot\|_{\mathcal{Y}}$.

We will use the following lemma in the proof of the next theorem.

Lemma 3. [21] Let $0 \leq p \leq 1$ and let x_1, x_2, \dots, x_n be non-negative real numbers. Then,

$$(x_1 + x_2 + \dots + x_n)^p \leq x_1^p + x_2^p + \dots + x_n^p.$$

The following theorem proves the stability of equation (3) in quasi-Banach spaces.

Theorem 3. Let $r \in (0, 2)$, $\varepsilon > 0$, $\delta \geq 0$ and let $f: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping satisfying $f(x, 0) = 0$ such that

$$\left\| n^2 f\left(\frac{x_1 + \dots + x_n}{n}, \frac{y_1 + \dots + y_n}{n}\right) - \sum_{i=1}^n \sum_{j=1}^n f(x_i, y_j) \right\|_{\mathcal{Y}} \leq \varepsilon + \delta \left(\sum_{i=1}^n \|x_i\|^r + \sum_{j=1}^n \|y_j\|^r \right) \quad (11)$$

for all $x, x_1, \dots, x_n, y_1, \dots, y_n \in \mathcal{X}$. Then, there exists a unique bi-additive mapping $F: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$\|f(x, y) - f(0, y) - F(x, y)\|_{\mathcal{Y}} \leq \left[\frac{2\varepsilon^p}{n^{2p} - 1} + \frac{n^{pr} \delta^p}{n^{2p} - n^{pr}} (\|x\|^{pr} + 2\|y\|^{pr}) \right]^{\frac{1}{p}} \quad (12)$$

for all $x, y \in \mathcal{X}$.

Proof. Letting $x_1 = n^{k+1}x, x_2 = \dots = x_n = 0, y_1 = n^{k+1}y, y_2 = \dots = y_n = 0$ in (11), we gain

$$\begin{aligned} & \left\| \frac{1}{n^{2k}} f(n^k x, n^k y) - \frac{1}{n^{2(k+1)}} f(n^{k+1} x, n^{k+1} y) - \frac{n-1}{n^{2(k+1)}} f(0, n^{k+1} y) \right\|_{\mathcal{Y}} \\ & \leq \frac{1}{n^{2(k+1)}} [\varepsilon + \delta n^{r(k+1)} (\|x\|^r + \|y\|^r)] \end{aligned}$$

for all $x, y \in \mathcal{X}$ and all k . Putting $x = 0$ in the aforementioned inequality, we obtain

$$\left\| \frac{1}{n^{2k}} f(0, n^k y) - \frac{n}{n^{2(k+1)}} f(0, n^{k+1} y) \right\|_{\mathcal{Y}} \leq \frac{1}{n^{2(k+1)}} [\varepsilon + \delta n^{r(k+1)} \|y\|^r]$$

for all $y \in \mathcal{Y}$ and all k . By the aforementioned two inequalities, we have

$$\begin{aligned} & \left\| \frac{1}{n^{2k}} [f(n^k x, n^k y) - f(0, n^k y)] - \frac{1}{n^{2(k+1)}} [f(n^{k+1} x, n^{k+1} y) - f(0, n^{k+1} y)] \right\|_{\mathcal{Y}}^p \\ & \leq \frac{1}{n^{2p(k+1)}} [2\varepsilon^p + \delta^p n^{pr(k+1)} (\|x\|^{pr} + 2\|y\|^{pr})] \end{aligned} \quad (13)$$

for all $x, y \in \mathcal{X}$ and all k . Thus, we have

$$\begin{aligned} & \left\| \frac{1}{n^{2l}} [f(n^l x, n^l y) - f(0, n^l y)] - \frac{1}{n^{2m}} [f(n^m x, n^m y) - f(0, n^m y)] \right\|_{\mathcal{Y}}^p \\ & \leq \sum_{k=l}^{m-1} \frac{1}{n^{2p(k+1)}} [2\epsilon^p + \delta^p n^{pr(k+1)} (\|x\|^{pr} + 2\|y\|^{pr})] \end{aligned} \quad (14)$$

for all integers l, m ($0 \leq l < m$) and all $x, y \in \mathcal{X}$. By (14), the sequence $\{\frac{1}{n^{2k}} [f(n^k x, n^k y) - f(0, n^k y)]\}$ is a Cauchy sequence for all $x, y \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\{\frac{1}{n^{2k}} [f(n^k x, n^k y) - f(0, n^k y)]\}$ converges for all $x, y \in \mathcal{X}$.

Define $F : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ by:

$$F(x, y) = \lim_{k \rightarrow \infty} \frac{1}{n^{2k}} [f(n^k x, n^k y) - f(0, n^k y)]$$

for all $x, y \in \mathcal{X}$. Setting $x_1 = \dots = x_n = 0$ in (11), we gain

$$\left\| n^2 f \left(0, \frac{1}{n} \sum_{j=1}^n y_j \right) - n \sum_{j=1}^n f(0, y_j) \right\|_{\mathcal{Y}} \leq \epsilon + \delta \sum_{j=1}^n \|y_j\|^p$$

for all $y_1, \dots, y_n \in \mathcal{X}$. By (11), the aforementioned inequality and Lemma 3, we have

$$\begin{aligned} & \frac{1}{n^{2pk}} \left\| n^2 f \left(n^{k-1} \sum_{i=1}^n x_i, n^{k-1} \sum_{j=1}^n y_j \right) - n^2 f \left(0, n^{k-1} \sum_{j=1}^n y_j \right) - \sum_{i=1}^n \sum_{j=1}^n [f(n^k x_i, n^k y_j) - f(0, n^k y_j)] \right\|_{\mathcal{Y}}^p \\ & \leq \frac{1}{n^{2pk}} \left[2\epsilon^p + n^{kp} \delta^p \left(\sum_{i=1}^n \|x_i\|^{pr} + 2 \sum_{j=1}^n \|y_j\|^{pr} \right) \right] \\ & = 2\epsilon^p \left(\frac{1}{n^{2p}} \right)^k + n^{(r-2)p} \delta^p \left(\sum_{i=1}^n \|x_i\|^{pr} + 2 \sum_{j=1}^n \|y_j\|^{pr} \right) \end{aligned}$$

for all $x_1, \dots, x_n, y_1, \dots, y_n \in \mathcal{X}$ and all k . Letting $k \rightarrow \infty$ in the aforementioned inequality, we obtain that F satisfies (3).

Define $G_x, G'_y : \mathcal{X} \rightarrow \mathcal{Y}$ by $G_x(y) = F(x, y) - F(x, 0)$ and $G'_y(x) = F(x, y) - F(0, y)$ for all $x, y \in \mathcal{X}$. By Lemma 2, G_x is additive for all $x \in \mathcal{X}$ and G'_y is additive for all $y \in \mathcal{X}$. Since $F(x, 0) = F(0, y) = 0$ for all $x, y \in \mathcal{X}$, we have $G_x(y) = G'_y(x) = F(x, y)$ for all $x, y \in \mathcal{X}$. Hence, F is bi-additive. Setting $l = 0$ and taking $m \rightarrow \infty$ in (14), one can obtain inequality (12).

To prove the uniqueness of F , let $G : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be another bi-additive mapping satisfying (12). Then, we have

$$\begin{aligned} \|F(x, y) - G(x, y)\|_{\mathcal{Y}} &= \lim_{k \rightarrow \infty} \frac{1}{n^{2k}} \|f(n^k x, n^k y) - f(0, n^k y) - G(n^k x, n^k y)\|_{\mathcal{Y}} \\ &\leq \lim_{k \rightarrow \infty} \frac{1}{n^{2k}} \left[\frac{2\epsilon^p}{n^{2p} - 1} + \frac{n^{pr(k+1)} \delta^p}{n^{2p} - n^{pr}} (\|x\|^{pr} + 2\|y\|^{pr}) \right]^{\frac{1}{p}} = 0 \end{aligned}$$

for all $x, y \in \mathcal{X}$. So $F = G$. □

Taking $n = 2$ and $\delta = 0$ in Theorem 3, we obtain the following corollary. The result coincides with the one of Corollary 4 in [22].

Corollary 1. *Let $\epsilon > 0$ be fixed. Suppose that $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping satisfying $f(x, 0) = 0$ such that*

$$\left\| 4f \left(\frac{x+y}{2}, \frac{z+w}{2} \right) - f(x, z) - f(x, w) - f(y, z) - f(y, w) \right\|_{\mathcal{Y}} \leq \epsilon$$

for all $x, y, z, w \in \mathcal{X}$. Then, there exists a unique bi-additive mapping $F : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ satisfying

$$\|f(x, y) - f(0, y) - F(x, y)\|_{\mathcal{Y}} \leq \varepsilon \left(\frac{2}{4^p - 1} \right)^{\frac{1}{p}}$$

for all $x, y \in \mathcal{X}$.

3 Conclusion

We demonstrated the stability of the multi-variable bi-Jensen functional equation (3) as the duplicative fusion equation of the multi-variable Jensen functional equation:

$$nf\left(\frac{x_1 + \dots + x_n}{n}\right) = f(x_1) + \dots + f(x_n).$$

Acknowledgement: The authors would like to thank the handling editor and the referees for their helpful comments and suggestions.

Funding information: This research received no external funding.

Author contributions: All authors contributed equally to the writing of this article. All authors have accepted responsibility for entire content of the manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Data sharing is not applicable to the article as no datasets were generated or analyzed during this study.

Ethical approval: The conducted research is not related to either human or animal use.

References

- [1] S. M. Ulam, *A Collection of Mathematical Problems*, Interscience Publishers, New York, 1960.
- [2] M. R. Abdoollahpour, and M. T. Rassias, *Hyers-Ulam stability of hypergeometric differential equations*, *Aequationes Math.* **93** (2019), no. 4, 691–698.
- [3] J. Aczél and J. Dhombres, *Functional Equations in Several Variables*, Cambridge University Press, Cambridge, 1989.
- [4] D. G. Bourgin, *Classes of transformations and bordering transformations*, *Bull. Amer. Math. Soc.* **57** (1951), 223–237.
- [5] S. Czerwinski, *Functional Equations and Inequalities in Several Variables*, World Scientific, Singapore, 2002.
- [6] D. H. Hyers, G. Isac, and T.M. Rassias, *Stability of Functional Equations in Several Variables*, Birkhauser, Boston, 1998.
- [7] S.-M. Jung, *Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis*, Springer, New York, 2011.
- [8] P. Kannappan, *Functional Equations and Inequalities with Applications*, Springer, New York, 2009.
- [9] J.-H. Bae and W.-G. Park, *On the solution of a bi-Jensen functional equation and its stability*, *Bull. Korean Math. Soc.* **43** (2006), 499–507.
- [10] K.-W. Jun, I.-S. Jung, and Y.-H. Lee, *Stability of a bi-Jensen functional equation II*, *J. Inequal. Appl.* **2009** (2009), 976284.
- [11] K.-W. Jun, Y.-H. Lee, and J.-H. Oh, *On the Rassias stability of a bi-Jensen functional equation*, *J. Math. Inequal.* **2** (2008), 363–375.
- [12] K.-W. Jun, Y.-H. Lee, and J.-H. Oh, *On the stability of a bi-Jensen functional equation*, *J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math.* **17** (2010), 231–247.
- [13] G.-H. Kim and Y.-H. Lee, *Hyers-Ulam stability of a bi-Jensen functional equation on a punctured domain*, *J. Inequal. Appl.* **2010** (2010), 476249.

- [14] W.-G. Park, *Approximate additive mappings in 2-Banach spaces and related topics*, J. Math. Anal. Appl. **376** (2011), 193–202.
- [15] I. EL-Fassi, *Brzdek's fixed point method for the generalized hyperstability of bi-Jensen functional equation in $(2, \beta)$ -Banach spaces*, Filomat **32** (2018), 4899–4910.
- [16] S. Gähler, *2-metrische Räume und ihre topologische Struktur*, Math. Nachr. **26** (1963), 115–148.
- [17] S. Gähler, *Lineare 2-normierte Räumen*, Math. Nachr. **28** (1964), 1–43.
- [18] Y. Benyamini and J. Lindenstrauss, *Geometric Nonlinear Functional Analysis*, vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000.
- [19] N. Kalton, *Handbook of the Geometry of Banach Spaces: Vol. 2, Chapter 25. Quasi-Banach spaces*, Elsevier Science B.V., Amsterdam, 2003.
- [20] S. Rolewicz, *Metric Linear Spaces*, PWN-Polish Sci. Publ./Reidel, Warszawa/Dordrecht, 1984.
- [21] A. Najati and M. B. Moghimi, *Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces*, J. Math. Anal. Appl. **337** (2008), 399–415.
- [22] J.-H. Bae and W.-G. Park, *Stability of bi-additive mappings and bi-Jensen mappings*, Symmetry **13** (2021), 1180.