DE GRUYTER Demonstratio Mathematica 2023; 56: 20230105 a

Research Article

Jae-Hyeong Bae and Won-Gil Park*

Approximate multi-variable bi-Jensen-type
mappings

https://doi.org/10.1515/dema-2023-0105
received December 8, 2022; accepted July 19, 2023

Abstract: In this study, we obtained the stability of the multi-variable bi-Jensen-type functional equation:
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1 Introduction

In 1940, Ulam [1] suggested the stability problem of functional equations concerning the stability of group
homomorphisms:

LetG be a group and let H be a metric group with the metricd(:,-). Given € > 0, does there exista§ > 0 such that if a mapping
h: G - H satisfies the inequality d(h(xy), h(x)h(y)) < & for all x,y € G then there is a homomorphism H : G » H with
d(h(x), H(x)) < ¢ for all x € G?

Hyers-Ulam stability is a mathematical result that deals with the variation of approximations of a function
under small perturbations. Research on the stability of functional equations has been continuously conducted,
and rich results are coming out [2-8].

Throughout this article, let X and Y be the vector spaces.

Definition 1. A mapping f: X x X —» Y is called a bi-Jensen mapping if f satisfies the system of equations:
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Let f: X x X — Y be a mapping. In 2006, Bae and Park [9] obtained the general solution of the bi-Jensen
functional equation
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and proved its stability. Subsequent articles have been published since 2008 by several authors [10-13].
For an integer n greater than 1, consider the multi-variable bi-Jensen-type functional equation:
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Equation (2) is a special case of equation (3).

In 2011, Park [14] investigated the approximate additive, Jensen, and quadratic mappings in 2-Banach
spaces. In 2018, EL-Fassi [15] investigated the generalized hyperstability of bi-Jensen functional equation in (2,
B)-Banach spaces.

In this study, we solved the solution and investigated the stability of the multi-variable bi-Jensen-type
functional equation (3) in 2-Banach spaces and quasi-Banach spaces.

2 Main results
We introduce some definitions on 2-Banach spaces [16,17].

Definition 2. Let X be a real vector space with dimX = 2 and||-,-|| : X* -~ R be a function. Then, (X, ||-,||) is
called a linear 2-normed space if the following conditions hold:

(@) ||x,y|| = 0 if and only if x and y are linearly dependent,

(b) [ Il = Ly, x]l,

© [lax, yll = lafllx, yl|

@ [,y + z|| < |yl + [1x, 2|,

foralla €R and x,y, z € X. In this case, the function ||-,-|| is called a 2-norm on X.

Definition 3. Let {x;,} be a sequence in a linear 2-normed space X. The sequence {x,} is said to be convergent in
X if there exists an element x € X such that

lim||x, = x,y|| =0
n—oo

for all y € X. In this case, we say that the sequence {x,} converges to the limit X, simply, denoted
by lim,.,.X, = X.

Definition 4. A sequence {x,} in a linear 2-normed space X is called a Cauchy sequence if there are two linearly
independent points y,z € X such that for any ¢ > 0, there exists N €N such that for all m,n >N,
[[Xm = X, Y|| < € and ||Xm — X, Z|| < €. A 2-Banach space is defined to be a linear 2-normed space in which
every Cauchy sequence is convergent.

In the following lemma, we obtain some basic properties in a linear 2-normed space, which will be used to
prove the stability results.

Lemma 1. [14] Let (X, ||-,-||) be a linear 2-normed space and x € X.

(@ If|Ix,y|| =0 forall y € X, then x = 0.

®) Xzl = [y, zIl| < [|x = y. || for all x,y,z € X.

(¢) If a sequence {x,} is convergent in X, then limy_.«||Xp, y|| = || liMp-wXy, Y| for all y € X.

Let X be a normed space and Y be a 2-Banach space.

Lemma 2. Let f: X x X = Y satisfy (3). And let gx,gy’ : X = Y begivenby g (y) = f(x,y) - f(x,0) and g)’}(x) =
fx,y) - f(0,y) for all x,y € X. Then, g, is additive for all x € X and g, is additive for all y € X.



DE GRUYTER Approximate multi-variable bi-Jensen-type mappings =—— 3

Proof. Letting xy = X, =--= X, = x, y; =y, and y, =---=y, = 0in (3), we have

W 2] = ooy + - 07,0

for all x,y € X. So, we have

2o

for all x,y € X. Putting ¥y = X, == X, = x and y; =---=y, = 0 in (3), we have
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for all x,y,,y, € X. So, we have
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for all x,y,,y, € X. By equation (4) and the aforementioned equation, we know that g, is additive for all
X € X. Similarly, we also know that gy’ is additive for all y € X. O

Theorem 1. A mapping f: X x X — Y satisfies (1) if and only if it satisfies (3).

Proof. First, we assume that f satisfies (1). By [9], there exist a bi-additive mapping B : X x X = Y and two
additive mappings A, A" : X — Y such that f(x,y) = B(x,y) + A(x) + A'(y) + f(0, 0) for all x, y € X. Thus, we
have
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for all x,..., X0, y,..., ¥, € X, Le., f satisfies (3).
Conversely, assume that f satisfies (3). Define gX,gy’ X~ Y by g(y) =f(x,y) - f(x,0) and gy’(x) =

fx,y) - f(0,y) for all x,y € X. By Lemma 2, g, is additive for all x € X and gy’ is additive for all y € X.
Thus, we obtain

28|25 - 600+ 5@

and

y+
2

f

X)

yt+z
= 2875 |+ Y 0) = fly) + (%, 2)
for all x,y, z € X. Similarly, we obtain

y,z] - f6,2) + (9, 2)

for all x,y,z € X, i.e, f satisfies (1). O
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The following theorem proves the stability of equation (3) in 2-Banach spaces.

Theorem 2. Letr € (0,2),e > 0,6,n =2 0,and let f: X x X = Y be a surjection satisfying f(x, 0) = 0 such that

for all X, Xq, ..., Xn, Yy5-., Y,» S, t € X. Then, there exists a unique bi-additive mapping F: X x X - Y such that

e ¢ " 2200 S50 5 Il + Zw

i=1

<eg+§

n’f sl + e O

IFO6Y) = FQ0.) = GG ), f(s, DIl < —5—[& + ndlisll + [ldD] + o X+ 21y ®)

forall x,y,s, t € X.

Proof. Let g(x,y) = f(x,y) - f(0,y) for all x,y € X. Then, g(0,y) = 0 for all y € X. By (5), g satisfies

X+t X y +"‘+y non n
‘ n’g| = " .- n -2 Y80y fs )| s2e+ 8 Z lIxill” + ZZHY] "1+ 2nClisll + 1t Q)
i=1j=1 i=1
for all X, Xi,..., Xn, Yy, Yy S, t € X. Putting x3 = n**lx, xp === x, = 0, y, = n*ly, y, ==y =0 in (7), we
gain

1 1 1
a8 1Y) = g (i, nry), £, 0H < (2 + S CDANr + 2yl + 2nlisll + e @

for all x,y,s,t € X and all k. Thus, we have

1 1 1
80 IY) = S8 (X, ). (s ”H < Y e l2e + S + 210 + 20sl + D] ©)

for all integersl,m (0 <l <m)andall x,y, s, t € X. By (9), the sequence {%g(nkx, n%y)} is a Cauchy sequence

for each x,y € X. Since V is complete, the sequence {ﬁg(nkx, n*y)} converges for each x,y € X.
Define F: X x X - Y by:

F(x,y) = hm —g(nkx n“y) (10)

for all x, y € X. By (7), we have

n

n
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1
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n n
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for all x,..., X3, Y;,..., ¥, S, t € X and all k. Letting kK — « in the aforementioned inequality, we obtain that F
satisfies (3). By Theorem 1, F is a bi-Jensen mapping. Setting [ = 0 and taking m — o« in (9), one can obtain
inequality (6).

Define Gy, Gj: X =~ Y by G(y) = F(x,y) - F(x,0) and Gjy(x) = F(x,y) - F(0,y) for all x,y € X. By
Lemma 2, G is additive for all x € X and Gj is additive for all y € X. Since F(x, 0) = F(0,y) = 0 for all
x,y € X, we have G(y) = Gy(x) = F(x, y) for all x,y € X. Hence, F is bi-additive.

Let G : X x X — Y be another bi-additive mapping satisfying (6). Then, we have

IF(x, y) = GO, ), f(s, ]| = hm—Ilf(ﬂ"x ny) - £(0,n'y) - G(n*x, n'y), f(s, Ol

rk+) g

1 2
< lim " fe + sl + e +

(IIXIIr +2|ylM)] =

for all x,y,s,t € X.So F = G. O
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In [18-20], one can find the concept of quasi-Banach spaces.

Definition 5. Let X be a real vector space. A quasi-norm is a real-valued function on X satisfying the following:
@ |Ix|| =2 0 for all x € X and ||x|| = 0 if and only if x = 0.

(i) ||Ax]|| = |Al|lx|| for all A € R and all x € X.

(iii) There is a constant K > 1 such that ||x + y|| < K(||x|| + |ly|]) for all x,y € X.

The pair (X, ||-]]) is called a quasi-normed space if ||-|| is a quasi-norm on X. The smallest possible K is called
the modulus of concavity of ||-||. A quasi-Banach space is a complete quasi-normed space. A quasi-norm ||| is
called a p-norm 0 <p < 1) if

[+ yIP < |IxiP + |yllP

for all x, y € X. In this case, a quasi-Banach space is called a p-Banach space.

From now on, assume that X is a quasi-normed space with quasi-norm||-|| and that / is a p-Banach space
with p-norm ||-||y. Let K be the modulus of concavity of ||-||y.
We will use the following lemma in the proof of the next theorem.

Lemma 3. [21] Let 0 < p <1 and let x, X, ..., X, be non-negative real numbers. Then,
O+ g+ +x)P S X+ 5+t x.

The following theorem proves the stability of equation (3) in quasi-Banach spaces.

Theorem 3. Letr € (0,2),e> 0,8 2 0 and let f: X x X » Y be a mapping satisfying f(x, 0) = 0 such that

for all x, x,..., X, ¥;,..., Y, € X. Then, there exists a unique bi-additive mapping F : X x X - Y such that

X+, Y ety ii
) - f(X,)’)
n n et

<e+ 6
v

n’f

2 Il + Zuy,»u"’ an
j=1

i=1

2eP
n%® -1

prsp »
IWfx,y) = f(0,y) - Fx, y)lly < + nz;l —r IXIPT + 2|D/||’”)] (12)

forallx,y € X.

Proof. Letting x; = n**1x, %, =---= x, = 0,y; = n**ly,y, =---=y = 0 in (11), we gain

1 1 n-1
il (W6 1Y) = e (X 1) = g f O, nk”y)Hy

1
< —wle + STED( + [yl)]

for all x,y € X and all k. Putting x = 0 in the aforementioned inequality, we obtain

for all y € X and all k. By the aforementioned two inequalities, we have

1 n 1
S O0.19) = s 0. )| < e + orE

1 1 P
ﬁ[f (nkx, nky) = (0, nky)] - W[f (n*1x, nk*ly) = £(0, nk*ly)]
Y (13

< e 1260 + S P+ 2lly]Pr)]
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for all x,y € X and all k. Thus, we have
1 1 L 1 1 m m m b
nz,[f(nx, ny) - f(0,nly)] - nz,n[f(n x, n™y) = f(0,n™y)] ;

m-1

1
< D (27 + SN (P + 2y
k=1

(14)

for all integersl, m (0 < [ < m)and all x, y € X. By (14), the sequence{ =L f(n*x, nky) - £(0, n¥y)]} is a Cauchy
sequence for all x,y € X. Since Y is complete, the sequence { 2k[ f(n"x n%y) - £(0, y)]} converges for
all x,y € X.

Define F: X x X = Y by:

F(x,y) = hm— [f(n*x, nky) = £(0, nky)]

for all x,y € X. Setting x; =---= x, = 0 in (11), we gain
n
n’f|0, —Zy, - an<0y, se+8) |yl
j=1 v j=1

for all y,,...,y, € X. By (11, the aforementioned inequality and Lemma 3, we have

12
n nn
|| | 1le, n“Zy - nf|0, R )yl = 3 ) [f (b, nkyy) = £(0, ny))]
i=1 J=1 J=1 i=1j=1 Y
1 n n
< |20+ S| X [P + 2 3 |y P
i=1 j=1
1 k n n
i 28”[ o IRl DY DN
i=1 j=1

for all x,..., Xu, Yy, Y, € X and all k. Letting k — « in the aforementioned inequality, we obtain that F
satisfies (3).

Define Gy, Gj: X = Y by G(y) = F(x,y) - F(x,0) and Gj(x) = F(x,y) - F(0,y) for all x,y € X. By
Lemma 2, G, is additive for all x € X and G; is additive for all y € X. Since F(x, 0) = F(0,y) = 0 for all
X,y € X, we have Gy(y) = Gj(x) = F(x,y) for all x,y € X. Hence, F is bi-additive. Setting [ = 0 and taking
m — o in (14), one can obtain inequality (12).

To prove the uniqueness of F,letG : X x X — Y be another bi-additive mapping satisfying (12). Then, we
have

IF(x, ) = GO Y)|ly = hm— If (n*x, nky) = £(0, nky) - G(n*x, nky)|ly

1( 2¢2  prrikedgp %

<lim |t (P + 2P

forall x,y € X.So F = G. O

Taking n = 2 and 6§ = 0 in Theorem 3, we obtain the following corollary. The result coincides with the one
of Corollary 4 in [22].

Corollary 1. Let € > 0 be fixed. Suppose that f: X x X - Y be a mapping satisfying f(x, 0) = 0 such that

x+y Z+w

H4f ] 00 2) - o w) - F5, 2) - FO, w)H
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forall x,y,z,w € X. Then, there exists a unique bi-additive mapping F : X x X - Y satisfying

fF&x,y) - f0,y) - Fx, ¥lly <&

41’—1]
forallx,y € X.

3 Conclusion

We demonstrated the stability of the multi-variable bi-Jensen functional equation (3) as the duplicative fusion
equation of the multi-variable Jensen functional equation:

Xl +...+Xn

nf =f0a) +-+ f(xn).
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