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Abstract: In this article, we investigate the existence and the precise form of finite-order transcendental entire
solutions of some system of Fermat-type quadratic binomial and trinomial shift equations in C". Our results
are the generalizations of the results of [H. Y. Xu, S. Y. Liu, and Q. P. Li, Entire solutions for several systems of
nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl. 483 (2020),
123641, 1-22, DOLI: https://doi.org/10.1016/j.jmaa.2019.123641.] and [H. Y. Xu and Y. Y. Jiang, Results on entire and
meromorphic solutions for several systems of quadratic trinomial functional equations with two complex
variables, RACSAM 116 (2022), 8, DOI: https://doi.org/10.1007/s13398-021-01154-9.] to a large extent. Most inter-
estingly, as a consequence of our main result, we have shown that the system of quadratic trinomial shift
equation has no solution when it reduces to a system of quadratic trinomial difference equation. In addition,
some examples relevant to the content of the article have been exhibited.
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1 Introduction

It is well known that for m > 3, the Fermat equation x™ + y™ =1 does not admit nontrivial solutions in
rational numbers, but it does so for m = 2. We refer the reader to take a glance on [1,2]. Using the Nevanlinna
theory [3] as a tool, for the Fermat-type functional equation

™)+ g™z =1, (LD

Montel [4], Iyer [5], and Gross [6] established some remarkable results about the existence of entire and
meromorphic solutions of equation (1.1). After that, a number of researchers paid their considerable attentions
to study the existence of entire and meromorphic solutions of Fermat-type equation f* + g™ = 1, where f and
g are, in general, meromorphic functions and m, n € N (see [7-14]).
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In 2004, for m = 2, replacing g by f’ in equation (1.1), Yang and Li [14] investigated to find the form of
solutions of equation (1.1). They obtained that the transcendental entire solution of f(z)? + f'(z)? = 1 has the
form

f@) = %[Ae“z + %e‘“z],

where A and a are nonzero complex constants.

The advent of the difference analogue lemma of the logarithmic derivative (see [15,16]) expedite the
research activity to characterize the entire or meromorphic solutions of Fermat-type difference and differ-
ential-difference equations (see [17-21]).

With the help of the difference Nevanlinna theory for several complex variables, Cao and Korhonen [22]
and Cao and Xu [23] obtained some interesting results on the characterizations of entire and meromorphic
solutions for some Fermat-type difference equations and systems of difference equations, which are
the extensions from one complex variable to several complex variables. Henceforth, we denote by
Z+w=(z+Wwy,2z+ Wy, ..z, + wy) for any z = (z, z, ...,zZp), W = (W, Wy, ...,Wyp), € = (@, G, ...,¢;) € C", the
shift of f(z) is defined by f(z + ¢), whereas the difference of f(z) is defined by A.f(z) = f(z + ¢) - f(2)
(see [24]).

2 Solutions to the system of Fermat-type binomial shift equation in
G:n

In 2012, Liu et al. [25] proved that the transcendental entire solutions with finite-order of the Fermat-
type difference equation f(z)> + f(z + ¢)?* = 1 must satisfy f(z) = sin(Az + B), where B is a constant and
A = (4k + Dm/2c, where k is an integer. Xu and Cao [26] have extended the above result to the case of several
complex variables as follows.

Theorem A. [26] Let c = (q, G, ...,¢n) € C"\{(O, 0, ...,0)}. Then, any nonconstant entire solution f: C"* — P(C)
with finite-order of the Fermat-type difference equation f(z)*> + f(z + ¢)* =1 has the form of f(z) =
cos(L(z) + B), where L is a linear function of the form L(z) = ayz + -+ apnz, on C" such that L(c) =
-n/2 - 2km (k € Z), and B is a constant on C.

After that, many researchers have studied some variants of the above equation and obtained some
remarkable results in the literature (see [27-30]). In 2016, it was Gao [31] who first investigated the existence
and form of entire solutions of the system of differential-difference equation

fi@)?* + f,(z + ¢)* =1,
@+ fiz+c)* =1
in one complex variable and obtained the pair of finite-order transcendental entire solution (f;(2), f,(z)) that
satisfies
(f1(2),f,(2)) = (sin(z - ib), sin(z - ib1)) or (sin(z + ib), sin(z + iby)),
where b and b; are constants, and ¢ = ki, where k is a integer.

Inspired by the above result of Gao [31], Xu et al. [32] in 2020 first converted the above Theorem A into the
Fermat-type systems of shift equations and obtained the following result.

Theorem B. [32] Let ¢ = (¢, @) be a constant in C2. Then, any pair of transcendental entire solutions with finite-
order for the system of Fermat-type difference equations
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|fl(21, B+ (flataznt) =1, 21)

L)+ (fia+azn+e)=1
have the following forms:

eL(@)+B1 4 o~(L(2)*By) A21eL(Z)+Bl + Azze_(L(Z)+Bl)
2 ’ 2 ’

(h@), £(2) =

where L(z) = az; + ayzp, By is a constant in C, and c, Ay, and Ay, satisfy one of the following cases:
(D) L(c) = 2kmi, Ay = —i,and Ay =i, 0or L(c) = 2k + D)mi, Ay = i, and Ay = -1, here and below k is an integer;
(ll) L(C) = (Zk + 1/2)771, Ay = -1, and Ay = -1, 0r L(C) = (Zk - 1/2)7Tl, Ay =1 and Ay = 1.

From the stand point of Theorem B, it is natural to consider the following system of shift equation, namely
the generalized binomial shift equation:

f@? + P2,z + ¢)* = Q2),

22)
£@)* + P(2)*fy(z + ¢)* = Q(2),

where f] :C" - PYC) be entire for j=1,2, P(z), and Q(z) are nonzero polynomials in C", and
c=(q, 6, ..c) ECN.
Before we state the main results of this article, let us set the following:

"C3 "Cy "Cp-1
W(z) = Z s+ Y HXsY) + Y Hi(sd) ++ Y HI NI + HiLy(s1y), 23)

ll iz=1 i3=1 ln 2= =1
where Hf is a polynomial in sf dh] zj + d,u zj, with dh} cj + dlU =0,1<i<"Cpand1<j <j, <mH}is
a polynomial in s d,zl Zj + dlz] Zj, + d,zj z;, with dlz] cj, + dlz] cj2 dlz] 73=0,1<§<"Cy, and 1< <j2 <

Jy <n..; H!is a polynomial in s/ = d;,_ thh +d; iz, *oo ¥ diy g Zg, With d e+ di )
d;_, 1'"71"1;.-1 =0, 121,22 "C,y, and 1<j; <j, << j _, <n; and Hy, is a polynomial in s;; = d;,_uz +
di, 22 +---+ di_nZn With d;,_1q + d;_26 + -+ d; _nCy = 0, where for each k, the representation of s,»" in terms
of the conditions of j, j,,..., jy is unique.

Now, we state our first result as follows.

C]2 +eet

Theorem 2.1. Let ¢ = (@, @, ...,¢p,) € C”\{(O, 0, ...,00}. If (f,(2), ,(2)) be a pair of finite-order transcendental
entire solution for the system (2.2), then P(z) reduces to a constant, say B with B> = 1; Q(z) = Ly(z) + ¥(z) + &,
where ¥(z) is a polynomial as defined in equation (2.3); L1(z) = Zﬁoejzj with Li(c) = 0,¢ €C, j=1,2,..,n,and
(f1(2), f,(2)) takes one of the following forms:

L

fi(2)= l(hl(z)ei<L(z>+W<z>+f> + hy(2)e (L@ ¥+
- = (L(2)+¥(2)+¢) L — —1(L(z)+‘P(z)+E)
£(2) = Ah (2)e ¥ h J(2)e
where hy, and h; are polynomials in s; with hihs = Q, L(z) = Z;Llajzj such that e2L© = -1, and e*¢%) = p2
and ®(z) is a polynomial defined as in equation (2.3), A(#0),¢&,¢’, a; € C.
1L
fi(2)= %(hl(z)ei@@ﬁwz)m + y(2)e (L@ ¥+

fé(Z) = % %hl(z)ei(L(z)ﬂP(z)-E’) + Ah3(z)e—i(L(z)+qI(z)-§/) ’

where hy and hs are polynomials in s; with hhhz = Q, L(z) = Z;l:lajz; such that e?L© = 1 and e%¢*%) = —1/42
and ®(z) is a polynomial defined as in equation (2.3), A(#0),¢,¢’, a; € C.
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Remark 2.2. In Theorem 2.1, let n=2, P(z) =Q(z) =1, A=1, H(s) =0, and L(z) = iL1(z) with L(z) =
mz + @z, € = &, and &’ = i, where ay, a,, &, and & are all constants in C. Then, we easily obtain Theorem
B from Theorem 2.1. Hence, our result is more general than Theorem B.

Remark 2.3. Let Q(z) = k, where k is a nonzero constant in C. Then, from Theorem 2.1, it follows that h; and h;,
are both constants in C.

Now, we exhibit two examples showing that our results are precise.

Example 2.4. Let L(z) =z + 2, P(2) = 1,Q(2) = 2z + 32)'% ¢ = (¢, @) = [(2k + 1)37”, —(2k + |, and k being
3
,and ¢ and ¢’ in C such that € - &’ = ky, kg € C. Then, one can

an integer. In addition, let ¥(z) = [zl + %zz

easily verify that (f}, f,), where
fi@)= %((Zz1 + 32)1elT@+Y@D*E) + (27 + 3z,)0e L@ P+,
f@) = %((Zzl + 32,) e/ E@E@O) 4 (97 4 37,)0e ILDTR@DE)y

is a solution to the system (2.2).

Example 2.5. Let Q(z) = (27 - 32 + Y, ¥(2) = (z + 2z, - 23)°, P(z) = 1, and ¢ = (¢, ¢, ¢3) = (2,3, 5). Let L(z) =
qz + z; + azz3 be such that 2aq + 3ay + 5a3 = ki, and choose &, £ in C such that & + & = 2k + /2, k, and
ki being integers and m, a, and az are constants in C. Then, one can easily verify that (£}, f;), with

h(2)=

[z - 32z, + ZB)Sei(L(z)+‘}'(z)+f) +(2z - 3z + 23)4e—i(L(z)+‘IJ(z)+f)]’

e

@)= 5122 = 32+ 2% OO 4 (21 - 37, + gy)te OO,

is a solution to the system (2.2).

3 Existence of solutions of quadratic trinomial shift equation in C"

Let us recall another quadratic trinomial function equation

f(2)? + 2af (2)g(2) + g(2)* = 1, (3.1
where a is a constant in C. Note that when a = 0, equation (3.1) is exactly the equation (1.1) with m = 2. So, it
will be interesting to investigate the existence and forms of entire and meromorphic solutions of equation (3.1)
when a # 0. In this direction, Saleeby [33] investigated the entire and meromorphic solutions of equation (3.1)
on C" and discovered that the transcendental entire solutions of equation (3.1), a® # 1, must be of the form

1

f@=35

cos(h(z)) sin(h(z)) 1

_ 1 cos(h(z)) _ sin(h(z))
Jita + Ni-a ]andg(z) T2

Tira a ] where h is entire C". The meromorphic solutions

1-B@)?
(a1 - @)p(2)’

. _ - mp(z)?
of equation (3.1) must be of the form f(z) = @D
anday=-a+Va?-1,4=-a- Ja>-1.

In 2016, Liu and Yang [34] investigated the existence and the form of entire solutions of some quadratic
trinomial functional equations in the complex plane C, and obtained the following results.

and g(z) = where (z) is meromorphic in C"

Theorem C. [34] If a # 0, +1, then equation
f@? +2af @) (2) + f'(2)* =1

has no transcendental meromorphic solutions.
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Theorem D. [34] If a # 0, 1, then the transcendental entire solutions with finite-order of the equation
F@P+20f@)f 2+ )+ flz + ) =1 (32)

must be of order 1.

Recently, corresponding to equation (3.2), Xu and his co-authors [35,36] have extended Theorems C and D
from the quadratic trinomial shift equation to systems of trinomial difference equations in one as well as
several complex variables. We list a result corresponding to several complex variables below.

Theorem E. [36] Let ¢ = (@, ) € C2 Then, any pair of finite-order transcendental entire solutions for the system
of trinomial difference equations
[i(2)* + 2af,(2)f,(z + ¢) + fy(z + c)* = 1,

f,(2? + 2af,2)f;(z + ¢) + fi(z + ¢)2 =1 (33)

must be one of the following forms:
L

@ = 1[COS(V(Z) * by | sin(y(2) + by
h@ =5 Ji+a Vi-a )
@ = 1fcos(y(2) + by) | sin(y(2) + b,)
R N NEra

where y(z) = L(z) + H(S), L(z) = qz1 + @z, L(C) = @G + a6, a3, @y, by, b, € C, H(S) is a polynomial in
S =6z - Gz, and L(z), by, and b, satisfy

—a+ Jat =
P2L(O) = 0”7“1’ e2ibi-b) = 1.

-a-+~a*-1

II.
@ = E[COS(V(Z) + by) . sin(y(z) + by)
jiZ_Z J1+a Vi-a
@) = 1fcos(y(z) + by)  sin(y(z) + by)
sz_Z Ji+a Ji-a |

where y(z) is stated as in I, and L(z), by, and b, satisfy

QUL = 1, @2ibib) = 1,

From the above discussion, it is natural to ask the following questions.
Question 3.1. Can we extend Theorem E from C? to C" for any positive integer n?

We also note that the all the authors in this specific field used the term “difference” equations where as all
equations are mainly governed by the shift of the function and there is hardly any presence of the difference.
Hence, the next question is most relevant.

Question 3.2. What can be said about the pair of entire solutions of the trinomial difference equation

f(@) + 2af, (DA f, + (Acf)* = 1

£,2)* + 2af,(2)Af, + (A f)? = 12 G4)

Let L(f) = a1 f(z + ¢) + ayf(z) and ¢ = (g, G, ...,C,) € C", where a;(#0), a, b, h, a, € C. Motivated by the
above questions, let us consider the following system of quadratic trinomial shift equation:
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af,(2)* + 2hf,(DL(f) + DE(f,)? = 1

i X 3.5)
af,(z)? + 2hf,(2)E(f) + DE(£)? = 1.

Motivated by Theorem E, we consider equation (3.5), which is more general setting than equation (3.3) to
obtain our main result, which provides the answers of Questions 3.1 and 3.2 in a compact and convenient
manner.

Before stating the result, let us first set that

1 i 1 {
A = + and A; = - ,
! Vv1+a Vi-a 2 V1+a Ji-a

where a = h/+/ab (#0, +1) is a constant in C. Now, we state our result as follows.

Theorem 3.3. Let a, b, and h be constants in C such that ab # 0 and h # 0, +</ab. Then, any pair of finite-order
transcendental entire solutions (f,(z), f,(z)) of the system (3.5) must be one of the following forms:
L

i cos(L(z) + (2)) , Sin(L(2) + ¥(2))

5

o 304

Jab +h Jab - h
f(z)=igicos(L(Z)+‘P(z)+q)+Sin(L(Z)+qJ(Z)+’1)
R RN @-n |

where L(z) = Z;-‘qajzj, and ¥(z) is a polynomial defined as in equation (2.3), a; € C such that
e’ =1, (a+ ba} - ba?)e™ + 2a;h = 0,
n € C, and L(z) satisfies the relation

Vb aAqel Vb ahye™

¢IL(O) = _ . ,
Jad - JbaAe  JaA; - JbaAe
_Jake - JbaA  JaA, - JbaAe"

JbaA Vb aAeln

I

fi(2)= L[E]i cos(L(z) + ¥(z) + &) , sin(L(z) + ¥(2) + &)
1 \/E a \/% +h m —
f,(2)= L[Q]}l cos(L(z) + ¥(z) + E-n) . sin(L(z) + W(z) + £ - 1)
B Jab +h o &

where L(z) = Z;Llajzj, and ¥(z) is a polynomial defined as in equation (2.3), a; € C such that

]

s

2 =1, a+ ba} - ba’ = 2. ab ae™,
¢, n € C, and L(z) satisfies the relation

elL(©) = va - Jbae™ _ Jbae _ Jbae ™ _Ja - Jbae
Jhae™ Ja - Jbae  Ja - Jbae™ Jbae

Remark 3.4. In Theorem 2.1,letn=2,a=b=1,a¢=1a,=0, and ¢ = (g, ¢) € C2 with d; = ¢ and d, = g.
Choose 1 € C be such that €27 = 1. Then, one can easily obtain Theorem E from Theorem 3.3. Therefore,
Theorem 3.3 is more general than Theorem E.
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Remark 3.5.Leta=b=1,a; = 1,a, = -1, and a® # 0, 1, where a € C. Then, equation (3.5) becomes equation
(3.4). Then, one can easily obtain the following Corollary.

Corollary 3.6. The system of trinomial difference equation (3.4) does not possess any pair of finite-order trans-
cendental entire solutions.

The following examples show that our result is precise.

Example 3.7. In Theorem 3.3,leta = b = 1,h = 2,a; = /6, a; = 1, and €% = 1. Suppose L(z) = z + 2z, + 3z; and
Y(z) = (7 — 2, + 23)!°. Choose ¢ = (@, ¢, ) € C? be such that

V3 +1

q+2¢+3g= —ilog‘

ag-g+a=0.

Then, one can easily verify that (f;, f;) is a pair of transcendental entire solution of equation (3.5), where

f(2) = N [M isin(L(z) + 1P(z))]
and
L(z) + ¥ .
@) = \/—[COS( @) 7 @*n _ isin(L(z) + ¥(z) + Il)].

Example 3.8. In Theorem 33, let a=2b=1 h=2 q-= J2, a; =4, and e%n=-1, Suppose
L(z) = 27 + 3z + 4z; and ¥(2) = (6671 - 26625 + 662z3)Y. Choose ¢ = (g, ¢, ¢;) € C3 be such that
pll(0) = — ‘/ﬁ+1+\/ﬁ_1
V2 + DYV2 -1+ 2V2 - DVV2 +1

Then, one can easily verify that (f}, f,) is a pair of transcendental entire solution of equation (3.5), where

1)i cos(L(z) + W(z))  isin(L(z) + ¥(2))

w0 50| -2

and

1(1 : cos(L(z) + ¥(2)) B isin(L(z) + ¥(2))

R R S

Remark 3.9. If h = ++/ab, then equation (3.5) reduces to[v/af,(z) + VBL(f,)I? = 1and[vVaf,(z) - VDL(f)] =
If Vaf,(z) - VDL(f,)) = 1 and vaf,(z) + VDL(f,) = 1, then we must have

(a - ba})f,(z) = va + Jb(a + @) + 2baay f,(z + ¢) + ba’f,(z + 2¢),

(a - ba})f,(2) = Va + Jb(a + ay) + 2baay fy(z + ¢) + ba¥fy(z + 2c).

Then, it is easy to find the transcendental entire solutions with finite or infinite-order when a, = 0. For
example,

2 2
(i@, f,(2) = [—(e“1 M+ 71 + 7), b—( e 2 + 71 + ZZ)]

2
(i@, f,(2) = [—(sm(e(l1 M) + 71 + ), b—( sin(e®@ 221 + z + 22)]

are the solutions of equation (3.5).
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4 Proofs of the main results

Before we starting the proof of the main results, we present here some necessary lemmas which will play key
role to prove the main results of this article.

Lemma 4.1. [37] Let f; # 0(j = 1,2 ...,m; m 2 3) be meromorphic functions on C" such that f,,..., f,_, are not
constants and f; + f, +--+ f,, =1, as well as

m

+(m = DN (r, f) < AT(r, f;) + O(log* T(r, )

n-1

=rf,

holds for j = 1,..., m — 1 and all r outside possibly a set with finite logarithmic measure, where A < 1is a positive
number. Then, f, =1

Lemma 4.2. [37] Let f; # 0 (j = 1,2,3) be meromorphic functions on C" such that f, are not constant and
fi+f, +f; =1 as well as

3

2

j=1

N, <AT(r, f;) + OQlog* T(r, f,)

r?]]+2N(rf]

holds for all r outside possibly a set with finite logarithmic measure, where A < 1 is a positive number. Then,
either f, =1or f, = 1.

Lemma 4.3. [38-40] For an entire function F on C", F(0) # 0 and put p(ng) = p < . Then, there exist a
canonical function f, and a function g, € C" such that F(z) = f,(z)e&®. For the special case n = 1, f; is the
canonical product of Weierstrass.

Lemma 4.4. [41] If g and h are entire functions on the complex plane C and g(h) is an entire function of finite-

order, then there are only two possible cases:

() the internal function h is a polynomial and the external function g is of finite-order; or

(i) theinternal function h is not a polynomial but a function of finite-order, and the external function g is of zero
order.

Proof of Theorem 2.1. Let (f}, f,) be a pair of finite-order transcendental entire solution of system (2.2). First,
we write equation (2.2) as follows:

(1(@) + iP2)fy(z + O))(f1(2) - P(2)f,(z + ©)) = Q(2)

41
(5@ + P@OFE + ONf@) - PR,z + 0) = 0@). @D

In view of equation (4.1), Lemmas 4.3 and 4.4, it follows that there exist nonconstant polynomials h;(z) and
hy(z), and any nonzero polynomials hy(z), hi2(z), hy1(z), and hyy(z) in C™ with hyy(2)hp(2) = hn(2)he(2) = Q(2)
such that

fi(Z) + lP(Z)fé(Z + C) = hn(Z)eihl(z)
f,(2) = iP(2)f,(z + €) = hpp(z)e” @
£,2) + iPQ2)f,(z + ¢) = hy(z)ei?
£,@) - iP@)fy(z + ¢) = hp(z)e D,



DE GRUYTER Characterizations of entire solutions for the system == 9

which yield that
1 . )
fi(@) = E[hn(l)e’hl(z) + hyy(z)e @),
1 . .
fue + ©) = g s (@™ = (@)@

_1 ih(2) —ihy(2)]- “2)
L) = E[hZI(Z)e 22) + hyp(z)e™ ™2

fiz+o)= [h21(2)e™?) — hyy(z)e D],

1
2iP(z)
Now, after some easy calculations, we obtain from equation (4.2) that

P@OME * ©) inreymy o POMAZ* ) iaer-miay 4 1@ ing) 1, “.3)

—hy(2) —hy(2) hya(2)
and

PO * O iyzroyiniey . POMZ O inyror-niey o M2 iy
~hiy(2) ~hiy(2) hiy(2)

By Lemma 4.1, it follows from equations (4.3) and (4.4) that either

1. 4.4

POME * ) nreyme) = 1 op LOMAZ* O iyeor-my = 1
~hy(2) ~hy(2)

and

P@MAZ * ©) irorinn = 1 gp LEMZ O iror-nie = 1.
—h(2) —h12(2)

Now, we consider the following four possible cases:
Case 1. Let

P@)hu(z + ¢) eilhi(z+) (@) = 1
~hy(2)

iP(Z)h21(Z + C)
—hyy(2)

Next equations (4.3), (4.4), and (4.5) yield

(4.5)
elha(z+O)+h(2) = 1.

P2 + ) iy zreyee) = 1,
hx(2)

PO +O) ppncrnon = 1
hi(z)

4.6)

Since hy(z) and hy(z) are two nonconstant polynomials, it yields from equation (4.5) that hy(z + ¢) + hy(z) = n,
and hy(z + ¢) + l(z) = n,, where n; and 1, are constants in C. Thus, we assume that hy(z) = L(z) + ¥(z) + ¢
and hy = —(L(z) + P(2)) + &, where L(z) = Z7=1ajzj, and ¥(z) is a polynomial defined as in equation (2.3), and
a;, &, & are all constants in C.

From equations (4.5) and (4.6), we obtain P(z)?Q(z + ¢) = Q(z). This implies that P(z) must be constant,
say B such that B? = 1. Thus, we must have Q(z + ¢) = Q(z), which implies that Q(z) = Li(z) + ¥(z) + &, where
W(z) is a polynomial as defined in equation (2.3), L1(z) = Zfoejz,- with Li(c) = 0ande € C,j =1,2,..,n. As Q(2)
is a periodic function of period ¢, and Q(z) = hy1(2)h2(z) = hy1(z)hy(z), we have hyy, hyy, hy1, and hy, as c-per-
iodic functions.
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Therefore, equations (4.5) and (4.6) give

_iBR MO 1.
_{BRyelCHO*E) 1.
iB

B e - g, @7
1

B o) 2 g

K

where K; = hyy(z)/hy(z) and K; = hy(z)/hyy(z), which implies that K; = K, = A, a nonzero constant in C. Now,
from equation (4.7), we can easily obtain the following.

) = A2, say, and eZL© =1,

Thus, from equation (4.2), we obtain
= l(hl(z)ei<L<z)+W<z)+z> + hy(z)e (L@+¥@)+D))
2 3
and

f, = % %hl(z)ei@@”“D-f? + Ahg(z)e OO,

Case 2. Let

iP(z)hu(z + ¢)
—hy(z)

iP(z2)hy(z + C)e
—h12(2)

As h(z) and hy(z) are polynomials in C", from equation (4.8), we have hi(z + ¢) + hy(z) = n, and
—hy(z + ¢) + l(z) = n,, where n, and nj, are constants in C. This implies that ij(z + 2¢) + hi(z) = n; + n,, which
yields that hy(z) is constant, a contradiction.

Case 3. Let

eiluz+e)+ha@) = 1,

(4.8)
~ilh(z+0)-lu(@)) = 1,

Mei(—hl(zwﬁhz(l)) =1,
—hy(2)

el(ha(z+0)+hi(2)) = 1
—hyy(2)

Then, by similar arguments as in Case 2, we obtain a contradiction.
Case 4. Let

iP(z)h1p(z + €)
—hy(2)

iP(2)hp(z + )
—hyy(2)

From equation (4.3), (4.4), and (4.9), we obtain

elChi(z+O)+ha(2)) = 1,

4.9)
piC-ha(z+0) (@) = q.

P(2)hu(z + ¢)
hxu(2)
P(2)hn(z + ¢)
hu(2)
Since h(z) and hy(z) are two nonconstant polynomials in C", equation (4.9) yields that —-hy(z + ¢) +

hy(z) = n, and -hy(z + ¢) + m(z) = n,, where n, and 1, are constants in C. This implies that —hy(z + 2¢) +
h(z)=n, +n, and -hy(z + 2c) + hy(z) = n; + n,. Thus, we assume that h(z) = L(z) + ¥(z) + { and

piu(z+0)-he@) = 1,

(4.10)
eilha@+O)-h(2) = 1.
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hy = L(z) + ¥(z) + &', where L(z) = Z;Lla,-zj and ¥(z) is a polynomial defined as in equation (2.3), @;, £, ¢’ € C.
Then, by similar arguments as in Case 1 of Theorem 2.1, we obtain the conclusion II of Theorem 2.1. O

Proof of Theorem 3.3. Let us make a transformation

Jaf,(z) = U, JbL(f,)(2) = V. (411
Then, the first equation of equation (3.5) reduces to
U2+ 2aUV + V2=1, 4.12)
where a = h/J/ab. Let
U= L(U1 -W), V= L(U1 + ). 413)
7 7
Then, equation (4.12) becomes
A+a)U+(1-a)VE=1 (4.14)

Now, in view of Lemmas 4.3 and 4.4, we obtain from (4.14) that

VI+alU +iv1-aW=eh®
Vi+al - ivl-aV;=eh@,

where hy(z) is a nonconstant polynomial, from which we can obtain that

el 4 i@ el — i@
U=, Vj= . (4.15)

2V1+a 2iVl1 - a
Therefore, equations (4.11), (4.13) and (4.15) together imply

1 i .
fi(Z) = W(Alelhl(z) + Aze_lhl(z)),
(4.16)

- 1 . .
L = —— (A, eih@ + A e (@),
(£) 2 J3h (4, 1 )
Similarly, from the second equation of equation (4.1), we can obtain

1 5 .
f@) = W(Ale’hl(z) + Aye @)

1 417

(Ayei® + A e @),
2/2b

L(f) =
where hy(z) is a nonconstant polynomial in C".
After simple computations, from equations (4.16) and (4.17), we obtain that

\/EalAlei(hl(Z’fC)*hz(Z)) + \/EalAze"(‘hl(Z”)*hz(Z)) + \/EazAlei(hz(Z)"hl(Z)) + \/EazAzei(hZ(Z)_hl(z)) - \/aAzeﬂhZ(Z)
= Ja4

and

(4.18)

\/EalAlei(hz(Z’fC)*hl(Z)) + \/EalAzei(_hZ(Z+C)+h1(z)) + \/EazAlei(hl(Z)‘fhz(Z)) + \/EazAzei(hl(z)_hZ(z)) - \/EAZQZUM(Z)
= \/EA1

(4.19)

Now, we discuss two possible cases.

Case 1. Letay # 0

Subcase 1.1. Let hy(z) — hy(z) = n, where n is a constant in C. Then, it can be easily seen that hy(z) + hy(z)
and hy(z) + hy(z + ¢) are nonconstant polynomials in C".
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Therefore, equations (4.18) and (4.19), respectively, can be rewritten as follows:
Vb @A eteitu@+ O+ @) 1 \[p A, eleitm@-@+O) + (b aAy - JaAyein)elle2@ = jq Ay — /b azAyetn (4.20)
and
Jb a4 eteitu@+ @) 1 \[p q, A, eim@-huz+0) + (b ayA el - Jahy)et@ = Ja A, - b aAre. (4.21)

Note that equation (4.20) implies Vb a:4; — VaAze™ and vaA; - +/b a;A,e! cannot be zero at the same time.
Otherwise, from equation (4.20), we obtain that A;e%M(@+¢) = —A, which implies that hy(z + ¢), and hence h;(z)
is constant, a contradiction.

Let Vb @A — VaAze" # 0 and VaA; - v/bayAzel = 0. Then, we can write equation (4.20) as

Jb @Ay el @+0-m@) 4+ Jb @Ay e (E+O+h(2) = Jb @A, - Jahel,
By the second main theorem of Nevanlinna for several complex variables, we obtain

1

—i(hy(z+c)+h T —i(hy(z+c)+h AT
T(r, e @+ h@)) < N(r, e 0z heD) + N e R —

" e—i(hl(z+c)+h1<z>)] N [r ’

+ 8(r, e—i(hl(Z+C)+h1(Z)))

< N[r, + S(r, enithz+0)+ (@)

1
iz +O)~M(2) ]
< S(r, e @O m@)) + §(r, emihaz+e)-hu(@)),

where w = (\/F MmA; — Jahen)/ JbaA;. This implies that hy(z + ¢) + hy(z), and hence hy(z) is constant, a
contradiction.

Similarly, we can obtain a contradiction for the case JbwA, - JaAe = 0 and Va4, - Vb aAe # 0.

Therefore, \/BazAl - Jade" #0 and Va4, - Jb a@Aze™ = 0. By similar arguments, we obtain that
Vb ayArel - @A, # 0 and VaA, - b aAe™ # 0.

By Lemma 4.1, equations (4.20) and (4.21) yield

\/FalAzeine—ihl(z+c)+ih1(z) — \/EAl _ \/BazAzei" 42
b aAye e i@+ ori@ = /g A — [baAye . '
Taking into account equations (4.20), (4.21), and (4.22), we obtain
Vb ayh o=@ = g Ayein — b ayAy 4.23)
\/EalAleiqeihl(zw)—ihl(z) = JaA, - \/FazAle"”. ’

From (4.22), we conclude that hy(z + ¢) - hy(z) is constant, and hence we assume that hy(z) = L(z) + ¥(z) + ¢,
where L(z) = Z;Llajz,- and ¥(z) is a polynomial as defined in equation (2.3), a;, ¢ € C for j = 1, 2,..., n. There-
fore, in view of equations (4.22) and (4.23), we easily obtain

Jb aAzeie L©) = Jq A — b aAyeln
JbaAye e L© = /g A, - /b aAye i
Vb A eh© = JaAye - Jbay

b ajAeell© = _ja A, — JbaAeln.

(4.24)

Therefore, it follows from equation (4.24) that

N B Jbahse _ JaMe - JbaA  JaA;, - Nbahen
Jad - JbaAe  JaA; - Jbae VbaA NI

From the last equation, we can obtain that

eiL(c) -

e¥ =1, (a+ ba} - ba})e" + 2a;h = 0.
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Hence, from equations (4.16) and (4.17), we obtain

;e 1 [ b ]i cos(L(z) + ¥(2)) | sin(2) + ¥(2))
b2l Jab +h JVab - h

o L(b)|cost@ +¥@) + ) sinC@) + ¥@) + )
© V2la JVab +h Wab -n |

Subcase 1.2. Let hy(z) — hy(z) be nonconstant. Observe that hy(z) — hy(z + ¢) is also nonconstant.
Subcase 1.2.1. Let hy(z) + hy(z) = n, where n is a constant in C.
Therefore, equations (4.18) and (4.19), respectively, yield

\/EalAlei(hl(Z+c)+h2(Z)) + \/EalAzei(_hl(Z+C)+h2(Z)) + \/BazAzei(hZ(Z)_hl(Z)) - JaA,eth® = JgA, - \/EazAleiﬂ (4.25)
and
\/5 A, eihE+ O @) 4 \/5 @A, elChaz+O+h(@) 4 \/5 WA @~ h@) — /g A, e2@) = Jq A, - \/E @A e, (4.26)
Letva - b a,e™ = 0. From equation (4.25), we obtain

\/E A elh@+0-h(@) 4 \/E WA, e M@+ Orh(@) = /g A, — \/E A e, 4.27)

Now, from equation (4.27), we claim vaA, — vb a;A,e7 # 0. Otherwise, we must obtain e%M(@+0) = -4, /A,
which implies that hy(z + ¢), and hence hy(z) is constant, which is impossible. Now, by second main theorem of
Nevanlinna for several complex variables, we obtain

+ N

T(r, eih@ O m@)y < N (r, eituz+o+ @)y + N[r, + S(r, eiltu(z+o+h(@)y

ei(hl(z+c)+h1(z>)] [r’ P+ O (@) — Wl]

IA

N [r, ] + S(r, e+ h(2)y 4 S[r, ] + S(r, eithz+0+h(@))

el(h(2)-hi(z+c)) eithi(2)~hi(z+c))

where wy = (VaAze" — \/bayA;)/~/b aA;. This implies that hy(z + ¢) + hy(z), and hence hy(z) is constant, a
contradiction.
Hence, /@ - +/bage® # 0. Therefore, Lemma 4.1 together with equations (4.25) and (4.26) give

\/FalAlei(hl(Z+C)+h2(Z)) = Ja4, - \/EazAlei'? 4.28)
Jb ayA; i@+ @) = g A - JbayAsel. '
Next, equations (4.25), (4.26), and (4.28) yield
\/Eale‘i(h(l’fc)*hz(l)) =Ja - \/Eaze‘i'? 429
Jbae i@ @) = jg - b ayein, 29)

In view of equation (4.28), we have h(z + ¢) + hy(z) = n, and hy(z + ¢) + l(z) = n,, where n, and 5, are
constants in C. Thus, we assume that hy(z) = L(z) + P(z) + ¢ and hy(z) = —(L(z) + Y(2)) + &', where L(z) =
Zﬁlajz,- and ¥(z) is a polynomial as defined in equation (2.3), @;, £, ¢’ € C and n = &+ &',

Therefore, from equations (4.28) and (4.29), we obtain

JDa e = yg — Jbayen
JDae L) = Jg - b ayeln
Jbae e = /g — Jhae
Vb ae U = Ja ~ \bae™,

(4.30)
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which yield

g0 = YA~ Ybae - baeh
Vbae™ Jva - Jbaeh
Jbae™  Ja - Jbae™

@ - Jbae Jhae

el =1, 2. abae™ = a - baf + baz.

Again, from equations (4.16) and (4.17), we obtain

po L bYi|cosL(z) + (@) + §) _ sin(L(z2) + ¥(@) + )
bozla JJab +h JVab - h
po L )| cos(Liz) + ¥(z) + £~ 1) _ sin(L(z) + ¥(2) + & - )
* V2la Jab +h Jab - h '

Subcase 1.2.2. Let hy(z) + hy(z) be nonconstant.
If hy(z + ¢) + hy(z) is nonconstant, then by Lemma 4.1, we obtain from equation (4.18)

JD @Ay O+ e@) = g A,

which implies that -hi(z + ¢) + hy(z) is a constant. Let —hy(z + ¢) + hy(z) = n,, where n; € C. If hy(z + ¢) +
hi(z) = n,, a complex constant in C, then we must have hy(z + 2¢) + hy(z) = n; + n,, which implies that hy(z) is
constant, a contradiction. Thus, hy(z + ¢) + h(z) is nonconstant. Then, by Lemma 4.1, we obtain from equa-
tion (4.19)

JD Ay ez @) = g A,

This implies that-hy(z + ¢) + hy(z) = const. = ;. But, we must have -h(z + ¢) + hi(z) = n, + n;. Thus, we
conclude that hy(z) = L(z) + W(z) + &, where L(z) = Z'}:la,-zj, and ¥(z) is a polynomial as defined in equation
(2.3), @j, and ¢ are all constants in C, and therefore, hy(z) = L(z) + W(z) + & + n; + L(c). This implies hy(z) -
h(z) = n, + L(c) = constant, a contradiction. Hence, hy(z + ¢) + hy(z) = n,, a constant in C. Now, if hy(z + ¢) +
hi(z) = n,, a constant in C, then we must have hy(z + 2¢) - hi(z) = n, — n, = constant. This implies that h(z) =
L(z) + Y(z) + ¢, where L(z), ¥(z), and ¢ are just defined above. Therefore, hj(z) = -(L(z) + Y(z) + &) +
Ny — L(c) = constant. Then, hy(z) + hy(z) = n, - L(c)=constant, a contradiction. Thus, hy(z + ¢) + ly(z) is
nonconstant.

Then, by Lemma 4.1 and from equation (4.19), we obtain

D Ay i+ @) = g Ay,

which yields that —hy(z + ¢) + hy(z) = constant = ;. Then, we must have h(z + 2c) + hy(z) = n, + g =
constant. This implies that hy(z) is constant, which is not possible.
Case 2. Let a; = 0. Then, (4.18) and (4.19), respectively, reduces to

Jb A, e+ h(@) 4 [h q,AyeiChz+0+h@) — /g A eti@ = g A, (4.31)
and
Jb ayA; i@+ (@) 4 [h q,A,eiCh@ O @) - /G Ay etin@ = G A, (4.32)
By Lemma 4.1, we obtain from (4.31) that either
\/BalAlei(hl(Z”)*hZ(Z» = JaA; or \/EalAlei(-hl(Z’fCﬁhz(Z)) = Jah.
In a similar manner, from equation (4.32), we obtain that either

JD @A e MO @) = G A, or b aAeihEOM@) = g A,



DE GRUYTER Characterizations of entire solutions for the system == 15

Now, we consider the following four possible cases:
Subcase 2.1. Let
Jb @A el ovh(@) = /g A

4.33
JD @Ay e hE O @) = /g A, 433

It follows from equation (4.33) that hy(z + ¢) + hy(z) = n, and hy(z + ¢) + hy(z) = n,, where n, and n, are
constants in C. This implies that hi(z) = L(z) + ¥(z) + £ and hy(z) = -(L(z) + ¥(2)) + &', L(z), ¥(z) are
defined as in Theorem 3.3 and ¢ and ¢’ are constants in C.

Again, in view of equation (4.31), (4.32), and (4.33), it follows that

Jb @Ay @0+ u@) = /g A, s
JbayAye i@+t h@) = /g A, '
From equation (4.33) and (4.34), we obtain
JD @O = g
b i(-L(c)+E+E) —
Vbase va (4.35)

JDae MO - g
Jbae Lo - g

from which we can easily deduce the following:
eUL() =1, ¥ =1, bal=a with n=¢&+¢&.
Therefore, from equations (4.16) and (4.17), we obtain

_ 1 [2]1 cos(L(z) + W(2) + &) , sin(L(2) + ¥(@) + &)
fl - \/E a

J~ab +h Jab - h

po L [ b)i|cos(L2) + ¥(@) + E- ) _ sin(L(2) + ¥(2) + £~ )
* V2la Jab + h Jab - h ’
which is the conclusion II of Theorem 3.3 with a, = 0.
Subcase 2.2.
Let

JD @A i@ @) = g A,
JD @Ay ez @) = g Ay

From the above equations, we obtain h(z + ¢) + hy(z) = n; and —hy(z + ¢) + hy(2) = n,, where n, and n,
are two constants in C. This implies hi(z + 2¢) + hy(z) = n, + n,, which yields that hi(z) is constant, a
contradiction.

Subcase 2.3.

Let

JD Ay i@ @) = g A,
JD Ay im0 @) = /g A,

Similar to the arguments of Subcase 2.2, we obtain a contradiction.
Subcase 2.4.
Let

JD @Ay el e@) = g A,

4.36
JD @Ay ez @) = g A, (4.36)
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In view of equations (4.31), (4.32), and (4.36), we deduce

JD @A eit@oO-1@) = g A,

4.37
JD @A eitE+O-h@) = g A,. (437

Now, from equation (4.36), we know —hy(z + ¢) + hy(z) = n, and —hy(z + ¢) + hy(z) = n,, where n;, , € C. This
implies hy(z) — li(z + 2¢) = n; + N, = hy(z) — hy(z + 2¢). Therefore, we assume that h(z) = L(z) + ¥(z) + ¢
and hy(z) = L(z) + $(z) + &', where L(z) and W(z) are defined as in Theorem 3.3 and &, ¢’ € C.
Next, from equations (4.36) and (4.37), we obtain

VD Ay HOED = g,

VD Ay KO = g a,

VD @A @ COE) = qa,

Vb a4 O 0 = g4,

from which we can easily obtain the following:

(4.38)

. . A?
efn=1, bal=aqa, ¥ = A—ZZ where &-¢& =n.
1
In this case, the form of the pair of finite-order transcendental entire solutions (f;(2), f,(z)) will be same as I of
Theorem 3.3 with a; = 0. O

Proof of Corollary 3.6. Suppose a = b = a; =1 and a; = —1. Then, from the conclusion I of Theorem 3.3, we
obtain that
Azein _ Aze_i’] _ Azei” + Al A2 + A1€i'7

_ = _ = = — (4.39)
Ay + Ajell Ay + Aje™ A Aet

ell(©) =

From first and second of equation (4.39), we obtain that e%n = 1, From first and fourth of equation (4.39),
we obtain A2 + A? = 0, i.e,, a = 0, which is a contradiction.

Again, from the conclusion II of Theorem 3.3, we obtain that 4 = 1, which is a contradiction.

Hence, the system of equation (3.4) does not possess any pair of finite-order transcendental entire solu-
tions. O
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