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Abstract: Let n and m be two positive integers, and the second-order Fermat-type functional equa-
tion f" + (f”)™ =1 does not have a nonconstant meromorphic solution in the complex plane, except
(n,m) €{(1,1),1,2),(1,3),(2,1), (3,1} The research gives a ready-to-use scheme to study certain Fermat-
type functional differential equations in the complex plane by using the Nevanlinna theory, the complex
method, and the Weierstrass factorization theorem.
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1 Introduction

In this article, a meromorphic function means meromorphic in the finite complex plane. In 1966, Gross [1-4]
investigated the Fermat-type functional equation

fregn=, ®

and derived the following theorem.

Theorem 1.1. (Gross [1- 4]) Let f and g be nonconstant meromorphic functions and n be a positive integer. For
n > 3, the solutions of equation (1) do not exist; for n = 2 and n = 3, there exist the solutions of equation (1).

Yang [5] studied the following generalized Fermat-type functional equation:
f@"+g@m =1, @

where n and m are positive integers and obtained the following theorem.
Theorem 1.2. (Yang [5]) If % + % <1, then equation (2) has no nonconstant entire solutions f(z) and g(z).
In 2012, Li [6] proved the following results on the functional equation in C".

Theorem 1.3. (Li [6]) Let a3, a;, and as be nonzero meromorphic functions in C", and m; and m;, be positive
integers satisﬁiingmi1 + miz < 1.If f; and f, are meromorphic solutions of equation a, f™ + a, f,"* = a3 in C", then,
forj=1,2,
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T(rf) < GN@, ) + O{T[r, Z—i] + T[r, Z—i” + S0 f), 3)

where C] = m

Theorem 1.3 shows that when my 2 3 and m, 2 3 with (my, my) # (3, 3), then j <1, the growth of f; is
controlled by the coefficients of equation @ fl’"1 + ay me2 = as. Furthermore, if the coefficients a; are constants,
I(r,f;) = O(1). Therefore, solutions f; must be constants (see [6]). In other cases, for instance, whenm; = 3 and
m, = 3, there are transcendental meromorphic solutions f and g given by Weierstrass elliptic functions to the
equation f3 + g3 =1 (see [7]); when m; = 2 and m, = 2, it is trivial that the transcendental entire solutions
f=sinh and g = cosh satisfying the equation f? + g2 = 1, where h is a nonconstant entire function; when
my = 2and m, > 2 (or my > 2 and m, = 2), it follows that C; > 1 (or C; > 1), hence the nonconstant meromorphic
solutions for the equation f™ + f;"* =1 may exist; when my >4 and m; =2 (or m; = 2 and m; > 4), the
constant C; is controlled by the coefficients; further C; < 1 (or C; < 1), especially if a4y, a,, a; are constants, the
meromorphic solutions of equation a; f{™ + a,f,;"* = as must degenerate to constants when my > 4, m; = 2 (or
m; = 2, my > 4) (see [6]).

In 2013, Deng et al. [8] investigated the Fermat-type differential equation

fre(fm=1 @

and proved the existence of meromorphic solutions. They have achieved the following theorem.

Theorem 1.4. (Deng et al. [8]) Let f be a nonconstant meromorphic function, and let n and m be two positive
integers. Then, the solutions of equation (4) do not exist, except (n,m) € {(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (4, 2)}.

In 2018, Dang and Chen [9] extended Deng-Lei-Yang’s results and gained the meromorphic solutions for the
following Fermat-type differential equation:

af™ + b(f)y" = 1. (5)
Dang and Chen, in their study [9], purposed the following open problem, which is related to the Fermat-
type functional equation f" + g™ + k" =1 [10,11].

Problem. (Dang and Chen [9]) Let n, m and k be positive integers. Find out all nonconstant solutions for
the Fermat-type functional equation

freym s (=t ®)
In the following, we study the special case of equation (6) as follows:
fre et @

and obtain the following result.

Theorem 1.5. Let n and m be two positive integers. Then, nonconstant meromorphic solutions to equation (7) in
the complex plane do not exist, except (n,m) € {(1,1), (1, 2), (1, 3), (2, 1), (3, 1)}.

2 Some lemmas

For the proof of Theorem 1.5, we require the following concepts and results. We assume that the readers are
familiar with the basic concepts and fundamental theorems of Nevanlinna theory of meromorphic functions.
In what follows, the notation W [12] stands for a class of meromorphic functions in the complex plane that
consists of elliptic functions, rational functions, and rational functions of e* (a € C).
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SetmeN={1,2,3, ..,;ENg=NU{0}, 7= (5,1, ...H), and j = 0,1,..,m.
Define differential monomial [13] as follows:

M{wI(2) = W@ P @ W @1 W@, ®)

Define Y, Tttt Iy and Iy, =1y + 2r, +--+(n + Dny, as the degree and the weight of the differ-
ential monomial M,[w].
Define differential polynomial as follows:

P(w,w’, ...,wm) = Z a-M,[w)], ©)
rel
where a, are constants, and I is a finite index set of multi-indices r = (1, 1y, ...,h). Then, deg (P) =y, =
maXreryy, and Ip = max,/I)y, are called the total degree and the weight of the differential polynomial P.
We say the differential monomial M,[w](z) is a dominant term of P(w, w’, ...,w™) if y,, = y.
Consider the following complex ordinary differential equation:

P(w,w', ...,wm) =0, (10)

where P is a polynomial in w(z), w(z),..., w®(z) with constant coefficients.
If there is exactly p distinct formal Laurent series

w(z) = ) az’ (q@>0,c4%0), (1
k=-q
which satisfies equation (10), we say equation (10) satisfies the (p, q) condition [13]. If we only determine p
distinct principle parts Zf:_qckzk (q > 0,c4 * 0), we say equation (10) satisfies the weak (p, ) condition. If
equation (10) satisfies the (p, q¢) condition, we say equation (10) satisfies the finiteness property: it has only a
finitely formal Laurent series with a finite principal part admitting equation (10).
The function defined by the expression

l + # - l for z€& L
g(z) = {7* weryoll (2 ~ wy  wf ’

o, forzel,

(12)

is called Weierstrass g(z, &,, &) function [14] with two periods 2w; and 2w, for the lattice L and solves equation
(9'(2))? = 4¢0(2)® - g,9(z) - g;, where g, and g; are elliptic invariant defined by
60 140

g - —)g = _—
2 z e (m,n)z¢(0,0) (2mw; + 2nwy)®

= 13
(m.n)#(0,0) (2mw, + 2nw, (13)

2 4 _
The Weierstrass g(z) function has the Laurent series g(z) = % + gzz—(z) + gg—z +-+, and g'(z) = Z—§ e

where the dots indicate terms of higher order. Furthermore, ¢’'(-z) = -¢'(z), 2¢”(z) = 12¢o%(z) -
& 907 (2) = 12¢0(2)§0'(2), ..., any kth derivatives of go can be deduced by the identities one by one. Each elliptic
function with periods 2w; and 2w, is a rational function of g and ¢’. The addition formula [14] reads

@' @) + 9z |
9 (z2) - g(20)

1

#(z - 20) = ~(2) ~ p(20) + 14)

Lemma 2.1. (Conte and Musette [15]) Two successive degeneracies and addition formula of Weierstrass elliptic
functions go(z) = g(z, &, &) are
(1) Degeneracy to simply periodic functions (i.e., rational functions of one exponential e¥*) according to

g(z, 3d?, -d3) = 2d - % cothz[,/%z

if one root ; is double (M(g,, &) = & — 271g% = 0).

5)
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(2) Degeneracy to rational functions of z according to

1
%(2,0,0) = 7 (16)
if one root e; is triple (g, = g; = 0).
Lemma 2.2. (Chang and Yang [16]) Let f and g are two meromorphic functions. If ¢ f + ¢g = 1, then

T(r,f)<N

r }] : N[n é] NS+ S0, w

Lemma 2.3. (Chang and Yang [16]) Let f be a meromorphic function, and let k be a positive integer. Then,
T(r,f®) < (k + DT(r,f) + S(, f). (18)

Lemma 2.4. (Chang and Yang [16]) Let h be a meromorphic function, n be a positive integer, and a;(1 < i < n) be
complex constants such that a, # 0. Then,

T(r, anf" + @po f"7! +-+ar f) = nT(r, f). (19)

Lemma 2.5. (Chang and Yang [16]) Let f(z) be a nonconstant entire function, and, f(z) = e"@, Then,
D T(@r, h) = o(T(r, fH)(r = ),
(2) T(r,h") = S(r,f).

Lemma 2.6. (Wittich [17]) If the algebraic differential equation P(z, f) = 0 has only one dominant term, where
P(z,f) is a differential polynomial in f with polynomial coefficients, then the equation has no transcendental
entire solutions.

Lemma 2.7. (Eremenko [18], Eremenko et al. [19]) Let k € N, then any meromorphic solution w(z) of k-order
Briot-Bouquet equations

Fw®,w) = ) P(w)(w®) = 0 (20)
i=0

belong to the class W, where Pi(w) are polynomials with constant coefficients and w(z) has at least one pole.

Lemma 2.8. (Yuan et al. [13]) Let p, I, m, n € N, deg P(w, w'™) < n. Suppose that the mth order Briot-Bouquet
equation

Pw™, w) = bw" + ¢ (VA
satisfies the weak (p, q) condition, then all meromorphic solutions w belong to the class W. Furthermore, all

nonconstant meromorphic solutions must be one of the following three forms:
(1) Each elliptic solution with pole at z = 0 can be written as follows:
L (Vey @2

, 1p@+B] _
wz) = z=zu=zz (- D! dzi72| 4] g(2) - A'} @(Z)]

-1 @2)
< C-i1 9'(z) + B; (-Dicy q@i-2
Py A z @) + o
bar} g(z) - A; =) (G-Dldz
where c_; are given by series (11), B? = 4A7 - g,A; - g, and Y+..c-y = 0, ¢ € C.
(2) Each rational function solution w = R(z) is of the form
R(z) = Z Z + ¢, @3)

== C Zl)]

with l(=p) distinct poles of multiplicity q.
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(3) Each simply periodic solution is a rational function R() of £ = e®(a € C). R(¢) has I(<p) distinct poles of
multiplicity q, and is of the form

I
i=1j=1 (E - Ei)j
By former discussion, we will apply the complex method (see [13,20-24]) to investigate the exact solutions
of equation (7) by using the following two steps:
(1) Substitute series (11) into equation (7) to determine that the weak (p, ¢) condition holds.
(2) By indeterminant relations (22)-(24), find the elliptic solutions, rational solutions, and simply periodic
solutions f(z) of equation (7).

+ Co. (24)

3 The Proof of Theorem 5

Proof. According to Theorem 1.3, also utilizing Remark 1 (b) and (c) in [6], it is clear that equation (7) has no
nonconstant meromorphic solutions whenn = 3, m = 3 with(n,m) # (3,3),andn>4,m=2(orn = 2, m > 4).
For (n, m) = (n, 1), by Lemma 2.3, we have T(r, f*) = T(r,1 - f”) < 3T(r, f) + S(r, f). Therefore, this implies
that n < 3. Therefore, we only need to consider the following cases for (n, m): (1,1), (1, m) (m = 2),(2,1), (2, 2),
(2,3), (2,4), (3,1), (3,2), (3,3), (4, 2).

Case1.(n,m)=(1,1), f+f" =1.

Consider the homogeneous differential equation f+ f” = 0. The characteristic equation is A2 + 1= 0,
A = #i, then the general solution for the equation f+ f” =0 be f= C;sinz + G, cosz, where C; and C, are
arbitrary. We assume that the special solution for equation f+ f” =1 is f= B, then B =1. Therefore,
f=Csinz + G, cosz + 1 satisfies equation f+ f” = 1, where C; and C, are arbitrary.

Case2.(n,m)=(,m),mz=2, f+(f")" =1

By Lemma 2.6, f is not a transcendental entire function. If a meromorphic function f with at least one pole

q
q+2

positive integer. For this purpose, we only need to build rational solution. Assuming that f= ayz? +
zP™t + apzP 2+ + ap, ag # 0 satisfying the equations, then (f”)™ = p™(p - 1)™ag"z™P? +-- , in the case
we have p = m(p - 2) and p = 2m/(m - 1). By simply computing, we have (m, p) = (2,4), (m,p) = (3, 3),
(m,p) = (4, 8/3), and (m, p) = (5, 5/2). We only consider the two cases: (m, p) = (2,4) and (m, p) = (3, 3).

Subcase 2.1 When (m,p) = (2,4), substituting f= apz* + qz® + ayz> + asz + a, into the equation
f+(f")*=1, we obtain the solution f= —ﬁ(z - 2o)* + C (z - 2p)® - 54 C%(z - zp)? +1296 C3(z - zp) -
11,664 C* + 1, where C is arbitrary.

Subcase 2.2 When (m, p) = (3, 3), substituting f = a¢z3 + az2 + ayz + a; into the equation f+ (f”)* =1,

with multiplicity ¢ satisfies the equation, and q = m(q + 2), then m = <1, but it contradicts that m is a

then the solutions of the mentioned equation satisfy f = %(z - 20)3 + C(z - 2)? - 26 Cli(z - zo) - 8C3 + 1

and f= ‘%(Z - 20)* + C(z - 29)* + 24/6 C%i(z - zp) - 8C? + 1, where 7, and C are arbitrary.
Case3.(n,m)= (2,1, f2+f" =1
By 260"(z) = 1260%(z) - g,, we have (-6g(2))* + (-6¢2(2))" - 3g, =0, and g, is arbitrary. Let f=

—690(2, 85, 83), & = % and in this case f? + f” = 1, we obtain f(z) = —6@[2 - Zp, %,g3].

Case 4. (n,m) = (2,2), f2 + (f") =1

It is easy to know that the equation does not have any meromorphic solution with at least one pole. If f
has a pole, then the pole order of f” is higher than f and thus the equation £ + (f”)* = 1 cannot be held. It is

clear that the equation f2 + (f”)* = 1 does not have any polynomial solution. Because if f is a polynomial,
then T(r,f) = deg (f)logr = plogr and 2plogr = T(r,f%) = deg (f”)*logr = 2(p - 2)logr = (2p - 4)logr,
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hence it is a contradiction. Thus, f must be entire. Since f2 + (f”)* = 1, we have (f + if")(f - if”) = 1. By the
Weierstrass factorization theorem, we can assume that f+ if” = e, h is entire, and f - if” = e”™, then
eih 4 p-ih

f 5 cosh, 25)

eth — gt
"= = Qi . (26)
f o sinh
Following equation (25), we have f’ = -h’sinh and f” = —-h” sinh - (h")? cosh. Following equation (26), we
have sinh = —h” sinh - (h")? cosh, then

(1 + h”)sinh = —(h")% cosh. 27)

We assert that h is a constant. Otherwise, by equation (27), coth = —1;—7”, and by Lemma 2.5, we have
T(r,coth) = T(r, —1;?”) = O(T(r, h)) = S(r, coth), hence it is a contradiction. This shows that h must be a
constant. Then, by equation (25), f is a constant. Therefore, the equation f2 + (f”)* = 1 does not have any
nonconstant meromorphic solution.

Case5.(n,m) = (2,3), f2 + (f")’ =1

It is easy to know that the equation does not have any meromorphic solution with at least one pole. If f
has a pole, then the pole order of (f)? is higher than fZ, and thus the equation f2 + (f”)* = 1 cannot be held.
Furthermore, by Lemma 2.6, the equation does not have any transcendental entire solution. Since p = 6, we

assume that f= Yy ,az8%, and by using Maple, substituting this series into f2 + (f*)° = 1, collecting the
terms and solving the algebraic equation, we can deduce the following coefficient terms: a, = —1/27,000,
a, = -11,250a?, as = 67,500,000a;, as = —227,812,500,000a;, as = 410,062,500,000,000 a7,

ag = —307,546,875,000,000,000 af, and q, is an arbitrary constant. But, in fact, under these conditions of coeffi-
cients, f satisfies f2 + (f”)* = 0. Hence, 2 + (f”)* = 1 does not have any nonconstant meromorphic solution.

Case 6. (n,m) = (2,4), f2 + (f")*=1.

It is easy to know the equation does not have any meromorphic solution with at least one pole. If f has a
pole, then the pole order of (f”)* is higher than f2, and thus the equation f2 + (f”)* =1 cannot be held.
Furthermore, by Lemma 2.6, the equation does not have any transcendental entire solution. Since p = 4, we
can assume f= Zﬁzoakz“‘k, and by substituting this series into the equation f2 + (f”)* =1, collecting all
terms, and solving the algebraic equation, we can deduce the following coefficients: ag = i/144, a, = —54i
a?, as = —1,296a’, a, = 11,664ia, or ao = —i/144, a, = 54ia?, a3 = -1,296a, a, = -11,664ia;!, and a, is an arbi-
trary constant. But, in fact, under these conditions of coefficients, f satisfies f* + (f”)* = 0. Hence,
f2 + (f")* = 1 does not have any nonconstant meromorphic solution.

Case7.(n,m) =3, 1), fA+f" =1

It is easy to know that the equation f° + f” =1 does not have any polynomial solution. Because if we
assume that polynomial f with degree p > 0 satisfies the equation, we have T(r,f3) = 3T(r,f) =
3deg (f)logr = 3plogr = T(r,f”) = deg (f”)logr = (p — 2)logr, so p =-1, which is a contradiction to
p > 0. Furthermore, by Lemma 2.6, the equation does not have any transcendental entire solution. The
equation is a second-order Briot-Bouquet equation, and by Lemma 2.7, all meromorphic solutions belong to the class
W. Assuming f(z) be a meromorphic solution of the equation, and f(z) has a movable pole z,, then in a neighbor-
hood of zy, the Laurent series of w is in the form of Y ;-_;¢x(z - zo)¥(c-1 # 0), and the weak <p, ¢> condition holds. By

— 2 — — 2 —
simply computing, we have f = g R i %25 +-+ and f= —g - -t %ZS +ee

-

By Lemma 2.8, we infer the indeterminant relations of elliptic solutions of f3 + f” =1 with pole at
z=20€C
§'(z - 20, 8, 8) + B
@(Z ~ 2, g2: gg) -A

= e (28)

where A and B are constants, and B? = 443 - g,A - g,.
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Submitting f into f3 + f” = 1, and equating the coefficients, we have the following elliptic solutions:

1 V2
— @/[Z + C, gZ’ g] + T
f= sz y , 29)
@[Z *t G 8 %]
1 V2
_ @12+C,g2,§]—7
®|z +c g, %]

where g, and ¢ are arbitrary. By Lemma 2.1 and according to the degeneration of Weierstrass elliptic function,

we know that the equation does not have any rational solution. If we assume that g, = %, we have
g23 - 27g; = 0, and by the degeneration of Weierstrass elliptic function, we can obtain
-2+ 3./-6 cot[%]csc2 %
f= : (31)
6CSC2[%] -2
-2-3/-6 cot[%]csczlg]
f= (32)
6CSC2[%] -2
Then, we assert that the equation does not have simply periodic solutions in the form of f= % + h,
where &, a, h, b(#0) are constants. Substituting f into the equation, we have
2( paz2 3 2h — 2p0Z 2
2ba(e)+b+3bh ba‘e . 3bh P B=1 33)
(eaz - 5)3 (eaz - E)Z ez — f
Then, we obtain the following algebraic equation:
2ba*(e@)? + b3 = 0
3b2h - bazeaz =0 (34)
3bh? =0
=1

Obviously, the above equation has no solution.

Therefore, f3 + f” = 1 has nonconstant meromorphic solutions.

Case 8. (n,m) = (3,2), f3 + (f")* = 1.

The equation f3 + (f”)* = 1 does not have any polynomial solution, because if we assume that polynomial
f with degree p > 0 satisfying the equation, we have T(r, f3) = 3T(r, f) = 3deg (f)logr = 3plogr = T(r, (f")*) =
2T(r,f”) = 2deg (f”)logr = 2(p - 2)logr, so p = -4, it is a contradiction to p > 0. Furthermore, by Lemma 2.6,
the equation does not have any transcendental entire solution. Now we only consider the meromorphic solutions
with a pole. The equation f3 + (f”)* =1 is a second-order Briot-Bouquet equation, and by Lemma 2.7, all mer-
omorphic solutions belong to the class W. If we assume that f(z) is a meromorphic solution of the equation, and
f(z) has a movable pole z,, then, in a neighborhood of z; the Laurent series of w is in the form of
Y ke-aCi(z = Zo)¥(c_4 # 0), and the weak <p, ¢> condition holds. By simply computing, we know the equation
only admits the following one Laurent series in a neighborhood of z = 0: f= -400z™* + ¢¢z% + -+, ¢ is arbitrary.

By Lemma 2.8, we infer that the indeterminant relations of elliptic solutions of equation (7) with pole at
z=0is
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¢ (-Dc; di2 ~1)%c, d? -400 &
f= (] _ 1)1 de—Z @(Z) + 6= ((4 z 1);1 dZZ @(Z) + (= 6 de @(Z) (35)
j=2 ' '

208,
3

cients of the two series, we have g, = g; = 0 and f = -400z™*. But f = -400z" does not satisfy the equation

Noting that the Laurent series of equation (35) is f= -400z7* - - @22 + 0(z*). Comparing coeffi-
f3 + (f”)* = 1. Therefore, the equation f3 + (f”)* = 1 does not have any nonconstant solutions.

Case 9. (n,m) = (3,3), f3 + (f") =1.

It is easy to know that the equation does not have any meromorphic solution with at least one pole. If f
has a pole, then the order of the pole for f” is higher than f and thus the equation f3 + (f*)* = 1 cannot hold.
Furthermore, the equation does not have any polynomial solution. If f is a polynomial, and T(r,f) =
deg (f)logr = plogr, then we must have 3plogr = T(r, f3) = deg (f)*logr = 3(p - 2)logr = (3p - 6)logr,
which is a contradiction. Then, by Theorem 1.2, we know that f3 + (f”)* = 1 does not have any nonconstant
entire solution. Therefore, the equation does not have any nonconstant meromorphic solution.

Case 10. (n, m) = (4,2), f* + (f")*=1.

The equation does not have any polynomial solutions, because if we assume that polynomial f
with degree p >0 satisfies the equation, we have T(r,f*)=4T(r,f) = 4deg (f)logr = 4plogr =
T(r,( f”)z) = 2deg (f”)logr = 2(p — 2)logr, so p = -2, which is a contradiction to p > 0. Furthermore, by
Lemma 2.6, the equation does not have any transcendental entire solution. Now we only consider the mer-
omorphic solution with a pole. The equation f* + (f”)* = 1is a second-order Briot-Bouquet equation, and by
Lemma 2.7, all meromorphic solutions belong to the class W. If we assume that f(z) is a meromorphic solution,
and f(z) has a movable pole z, then in a neighborhood of z,, the Laurent series of w is in the form of
Z}’;_qck(z - 20)*(c_q # 0), noting that the 4q = 2(q + 2), then g = 2. By simply computing, we know that the

equation only admits the following Laurent series in a neighborhood of z = 0: f = £(6iz7% + cy2* - ﬁzs +e),
where ¢, is arbitrary.

By Lemma 2.8, we infer that the indeterminant relations of elliptic solution of f* + (f”)* = 1 with a pole at
z=0is

(-DVcy @2 (-1)%c_,

T (- Drdzi? @) €= 1)!

@(2) + ¢ = £6ig(z). (36)

Noting that the Laurent series of equation (36) being f = +(6iz"2 + 3g,iz2/10 + 3g,iz*/14 + g}iz6/200 +--- ).
Comparing the coefficients of the two series, we know g, does not exist. Furthermore, the rational degeneracy
of equation (36) is f= +6iz2 + const, but f= +6iz2 + const does not satisfy the equation f* + (f”)* = 1.
Therefore, the equation does not have any nonconstant solution.

The proof is completed. O
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