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Abstract: In this article, we are interested to study the elliptic equation under the Caputo derivative. We obtain
several regularity results for the mild solution based on various assumptions of the input data. In addition, we
derive the lower bound of the mild solution in the appropriate space. The main tool of the analysis estimation
for the mild solution is based on the bound of the Mittag-Leffler functions, combined with analysis in Hilbert
scales space. Moreover, we provide a regularized solution for our problem using the Fourier truncation
method. We also obtain the error estimate between the regularized solution and the mild solution. Our current
article seems to be the first study to deal with elliptic equations with Caputo derivatives on the unbounded
domain.
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1 Introduction

In this article, we consider the following fractional elliptic equation on the plane:
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where u
0
and G are defined later. The symbol ∂ ∂

w x y t

t
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( ) with the case < <α1 2 on the left-hand side of the first
equation of (1) is defined as follows [1]:
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and Γ is the Gamma function.
If =α 2, the first equation of problem (1) becomes the classical elliptic equation
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As you know, elliptic partial differential equations have applications in almost all areas of mathematics, from
harmonic analysis to geometry to Lie theory, as well as numerous applications in physics. An elliptical partial
differential equation (PDE) occurs when the laws of physics, such as conservation of energy or charge, are
studied in a final or steady state, or are independent of time.

The number of studies on the elliptic equation and also similar equations is so abundant that we could list
typical works, e.g., [2–12] and references therein.

As is known, some physical phenomena involving memory are difficult to describe by classical derivatives,
so it is necessary to have some derivatives of nonlocal forms, such as the Caputo derivative. This is also the
reason why problem (1) is called the Caputo elliptic equation. The direction of our study of our problem (1) lies
in the branch concerned with partial differential equations with fractional derivatives. A fractional partial
differential equation is a type of mathematical equation that describes the behavior of complex systems with
memory and non-local effects. Some of the works related to derivatives of order can be listed, such as [13–29].

Let us list some interesting articles on fractional elliptic equations. Berdyshev et al. [30] studied the
solvability of fractional elliptic equations with the Riemann-Liouville derivative. Turmetov and Nazarova
[31] studied the Dirichlet and Neumann boundary-value problems for the Laplace equation with Caputo
and Riemann-Liouville derivative. Turmetov [32] derived a question about the solvability of some boundary
value problems for a non-homogenous poly-harmonic equation.

The study by Jin and Rundell [33] is one of the first introductory works on the fractional elliptic, which has
the form of (1). Jin and Rundell [33] provided ill-posedness in the sense of Hadamard for the fractional elliptic
equation without giving its approximate solution. In Hadamard’s view, a problem is said to be well-posed if it
satisfies all three conditions. The first condition is that the problemmust have a solution. The second condition
is that the solution to the problem is unique. The third condition is the continuous dependence of the solution
on the input data. Motivated by the study of Jin and Rundell [33], Tuan et al. [34] studied the Cauchy problem
for a semilinear fractional elliptic equation. In fact, they considered the following elliptic problem of Caputo
derivative:
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with the Dirichlet condition = ∈ ∂ ×u x t x t T, 0, , Ω 0,( ) ( ) ( ). Here, ⊂Ω

d� is a bounded domain with a smooth
boundary ∂Ω. Under some assumptions of the sought solution, they proposed the Fourier truncation method
for approximating the problem. Some estimates of the logarithmic type between the sought solution and the
regularized solution are established. Further development work of Tuan et al. [34] has been completed in
detail in the study by Au et al. [35]. In a recent article by Tuan et al. [36], they studied the new method for
solving problem (5) when the input data are noised in L

p space. For the random model for an elliptic equation
with Caputo derivative, Tuan et al. [36] also proposed the Fourier truncation method for stabilizing the ill-
posed problem. They established some convergence rates between the exact solution and the regularized
solution.

To the best of our knowledge, there are not any results on the fractional elliptic equation of the form (1) on
an unbounded domain n� . It is a fact that our model research on n� is often more difficult and complicated
than in the bounded domain. The main technique is to use the Fourier transform that combines the inter-
cepted evaluations of the Mittag-Leffler functions. Processing evaluations on 2� and also some unbounded
domain is a difficult task, thus we have difficulty choosing suitable function spaces for the input functions.

Some new results are obtained in this article, which are described in detail in the following sections. We
obtain the regularity of the mild solution under various assumptions of the source function G and the initial
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datumu
0
. In addition, we obtain the lower bound of the mild solution at the terminal time =t T . It is surprising

that the lower bound results for mild solution are not so much for fractional PDEs of Caputo derivative. In
addition, we also emphasize that the regularity of the mild solution is not mentioned in the series of works [36].
The second result is to provide a regularized solution when the source function =G 0. The key method is the
truncation method, which has been learned through works such as [34,36–38]. We obtain the error estimate
between the exact solution and the regularized solution. The third result is to investigate the approximation
solution when =u 0

0
and G have two various forms. Some complicated evaluation of the convergence rate

between the regularized solution and the sought solution is introduced.
This article is organized as follows: in Section 2, we introduce some preliminary results in which are

mentioned in some solution spaces; Section 3 introduces a regularity result for the mild solution to problem (1);
and in Section 4, we introduce the truncation method and provide the error estimate between the regularized
solution and the exact solution.

2 Preliminary results

We start by introducing some notations and assumptions that are needed for our analysis in the next sections.
Thankful to the interesting the work of Au et al. [35], we can introduce some similar and modified spaces. The
Sobolev space H

k 2�( ) is defined as follows:
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and equipped with the following norm:
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Here, f ξ η,
 ( ) is the Fourier transform of f x y,( ) which is defined as follows:
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where >α 0 and ∈θ � are arbitrary constants.
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3 Regularity of the mild solution

In this section, we provide some regularity results for the mild solution to problem (1) under some suitable
assumptions of u

0
and G.
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Using the Laplace transform with respect to t, we obtain the solution
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This estimate implies that the following bound:
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Combining equations (37) and (38) and using Plancherel theorem, we derive that
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1 , d d

1 exp 2 , d d .

θ α

α α

α

θ

2

2 2 1 2 2

,

2 2

0

2

2

2

2

2 2 2 2

0

2

θ

α α

2

2 1





� �

( )
( ) ( ( ) (( ) ) ( ))

( ) ( ) ∣ ( )∣

( ) (39)

This estimate implies the desired result (20). The proof of the theorem is completed. □

Theorem 3.2. Let =u 0
0

and assume that ≡G g x y,( ). If ∈ −g θ T2,
� , then the mild solution u belongs to

∞
L T H0, ;

θ
2�( ( )), which satisfies that

≤∞ −u

D

α

G .
L T H0, ;

2

θ
θ T

2

2,� �‖ ‖
∣ ∣

‖ ‖
( ( ))

(40)
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If ∈ +−
g H

2

θ μ

α

1

2 �( ), then we have the following lower bound:

⋅ ⋅ ≥ − +u T

D T

α

g, , .
H

μ

H

1

θ θ μ

α

2
1

2

2� �
∥ ( )∥

∣ ∣
‖ ‖

( ) ( )
(41)

Proof. We have given proof of some estimations.
Step 1. Proof of (40). Since =u 0

0
, then the mild solution of problem (1) is defined as follows:

∫ ∫=
⎡

⎣
⎢ − + −

⎤

⎦
⎥− +

u x y t

π

t s E ξ η t s s g ξ η e ξ η, ,

1

2

d , d d .

t

α

α α

α ixξ iyη

0

1

,

2 2

2


�

( ) ( ) (( )( ) ) ( ) (42)

In view of equation(30), we obtain that

− + − ≤ + ⎛
⎝ + − ⎞

⎠
− −

t s E ξ η t s

D

α

ξ η ξ η t sexp .

α

α α

α1

,

2 2
2

2 2 2 2

α

α α

1 1

( ) (( )( ) ) ( ) ( ) ( ) (43)

This implies that

∫ ∫− + − ≤ + ⎛
⎝ + − ⎞

⎠

=

⎛
⎝ + ⎞

⎠ −

+

− −
t s E ξ η t s s

D

α

ξ η ξ η t s s

D

α

ξ η t

ξ η

d exp d

exp 1

.

t

α

α α

α

t

0

1

,

2 2
2

2 2

0

2 2

2

2 2

2 2

α

α α

α

1 1

1

( ) (( )( ) ) ( ) ( ) ( )

( )

(44)

By Plancherel theorem, we follow from equations (42) and (44) that

∫ ∫ ∫

∫ ∫

∫ ∫

⋅ ⋅ = +
⎡

⎣
⎢ − + −

⎤

⎦
⎥

≤ +

⎛

⎝

⎜
⎜⎜

⎛
⎝ + ⎞

⎠ −

+

⎞

⎠

⎟
⎟⎟

≤ + ⎛
⎝ + ⎞

⎠

−∞

+∞

−∞

+∞
−

−∞

+∞

−∞

+∞

−∞

+∞

−∞

+∞
−

u t ξ η t s E ξ η t s s g ξ η ξ η

D

α

ξ η

ξ η t

ξ η

g ξ η ξ η

D

α

ξ η ξ η T g ξ η ξ η

, , d , d d

exp 1

, d d

exp 2 , d d .

H

θ

t

α

α α

α

θ

α

θ

2 2 2

0

1

,

2 2

2

2

2

2

2

2 2

2 2

1

2 2

2

2

2

2

2

2 2 2 2 2 2

θ

α

2

1







�
∥ ( )∥ ( ) ( ) (( )( ) ) ∣ ( )∣

∣ ∣
( )

( )

∣ ( )∣

∣ ∣
( ) ( ) ∣ ( )∣

( )

(45)

Therefore, we have immediately that

⋅ ⋅ ≤
−

u t

D

α

g, , ,
H

2

θ

θ T

2

2,
� �∥ ( )∥

∣ ∣
∥ ∥

( )
(46)

which allows us to obtain the desired result (40).
Step 2. Proof of equation (41).
In view of equation (30), we obtain the following inequality:

− + − ≤ + ⎛
⎝ + − ⎞

⎠
− −

T s E ξ η T s

D

α

ξ η ξ η T sexp .

α

α α

α1

,

2 2
1

2 2 2 2

α

α α

1 1

( ) (( )( ) ) ( ) ( ) ( ) (47)

Thus, using the above estimate, we have immediately that

∫ ∫− + − ≥ + ⎛
⎝ + − ⎞

⎠

=

⎛
⎝ + ⎞

⎠ −

+

− −
T s E ξ η t s s

D

α

ξ η ξ η T s s

D

α

ξ η T

ξ η

d exp d

exp 1

.

T

α

α α

α

T

0

1

,

2 2
1

2 2

0

2 2

1

2 2

2 2

α

α α

α

1 1

1

( ) (( )( ) ) ( ) ( ) ( )

( )

(48)
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In view of Plancherel theorem and combining equations (42) and (44), we follow from equation (48) that

∫ ∫ ∫

∫ ∫

⋅ ⋅ = +
⎡

⎣
⎢ − + −

⎤

⎦
⎥

≥ +

⎛

⎝

⎜
⎜⎜

⎛
⎝ + ⎞

⎠ −

+

⎞

⎠

⎟
⎟⎟

−∞

+∞

−∞

+∞
−

−∞

+∞

−∞

+∞

u T ξ η T s E ξ η t s s g ξ η ξ η

D

α

ξ η

ξ η T

ξ η

g ξ η ξ η

, , d , d d

exp 1

, d d .

H

θ

T

α

α α

α

θ

α

2 2 2

0

1

,

2 2

2

2

1

2

2

2 2

2 2

1

2 2

2

2

θ
2





�
∥ ( )∥ ( ) ( ) (( )( ) ) ∣ ( )∣

∣ ∣
( )

( )

∣ ( )∣

( )

(49)

For any >μ 0, there exists a constant >C 0μ such that the following inequality is true:

− ≥e C z1 .

z

μ

μ (50)

This inequality together with equation (49) yields that

∫ ∫

∫ ∫

⋅ ⋅ ≥ +

⎛

⎝

⎜
⎜⎜

⎛
⎝ + ⎞

⎠ −

+

⎞

⎠

⎟
⎟⎟

≥ + +

−∞

+∞

−∞

+∞

−∞

+∞

−∞

+∞
−

u T

D

α

ξ η

ξ η T

ξ η

g ξ η ξ η

D T

α

ξ η ξ η g ξ η ξ η

, ,

exp 1

, d d

, d d .

H

θ

α

μ

θ

2
1

2

2

2 2

2 2

1

2 2

2

2

1

2 2

2

2 2 2 2 2 2

θ

μ

α

2

2





�
∥ ( )∥

∣ ∣
( )

( )

∣ ( )∣

∣ ∣
( ) ( ) ∣ ( )∣

( )

(51)

Thus, we can derive the following estimate:

⋅ ⋅ ≥ − +u T

D T

α

g, , .
H

μ

H

1

θ θ μ

α

2
1

2

2� �
∥ ( )∥

∣ ∣
‖ ‖

( ) ( )
(52)

The proof of equation (41) is completed. □

Theorem 3.3. Let =u 0
0

and assume that ≡G x y t φ t g x y, , ,( ) ( ) ( ). Let us assume that ≤φ t Ct
m∣ ( )∣ for any > −m 1

and the function ∈ − −g
T,

α β

α

2 2 2� , where < < +β m0 1 . Then, we obtain ∈ ∞
u L T L0, ;

2 2�( ( )) and

≲ − +∞ − −u T g .
L T L

β m

0, ;

1

α β

α
T

2 2

2 2 2

,

� �‖ ‖ ‖ ‖( ( )) (53)

If we further assume that ≥φ t Ct
μ∣ ( )∣ ͠ , > −μ 1, and ∈

− +
g H

2

α σ

α

2 2 2

�( ) for any >σ 0, then we obtain

⋅ ⋅ ≥
+ + + +

− +u T

D C CB σ μ T

α

g, ,

1 2 , 1

.
L

σ

σ μ

H

1

2 1

α σ

α

2 2 2 2 2

2�
�

‖ ( )‖
( )

‖ ‖
͠

( )
( )

(54)

Proof. Since =u 0
0

and ≡G x y t φ t, ,( ) ( ), we have that

∫ ∫=
⎛

⎝
⎜ − + −

⎞

⎠
⎟− +

u x y t

π

t s E ξ η t s φ s s g ξ η e ξ η, ,

1

2

d , d d .

t

α

α α

α ixξ iyη

0

1

,

2 2

2


�

( ) ( ) (( )( ) ) ( ) ( ) (55)

By Plancherel theorem, we obtain that

∫ ∫⋅ ⋅ =
⎡

⎣
⎢ − + −

⎤

⎦
⎥−

u t t s E ξ η t s φ s s g ξ η ξ η, , d , d d .

L

t

α

α α

α2

0

1

,

2 2

2

2

2 2

2


�

�

‖ ( )‖ ( ) (( )( ) ) ( ) ∣ ( )∣
( )

(56)

Using equation (30) and in view of the inequality ≤− −
e C z

z

β

β for any >β 0, we can see that

− + − ≤ + ⎛
⎝ + − ⎞

⎠

≤ + ⎛
⎝ + ⎞

⎠
⎛
⎝− + ⎞

⎠

≤ + ⎛
⎝ + ⎞

⎠

−

−

−

−

− −

t s E ξ η t s φ s

D

α

ξ η ξ η t s φ s

D

α

ξ η ξ η T ξ η s φ s

D C

α

ξ η ξ η T s φ s

exp

exp exp

exp .

α

α α

α

γ
β

1

,

2 2
2

2 2 2 2

2
2 2 2 2 2 2

2

2 2 2 2

α

α α

α

α α α

α β

α α

1 1

1 1 1

1
1

( ) (( )( ) ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

(57)
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Therefore, since the condition ≤φ s Cs
m∣ ( )∣ for > −m 1, we derive that

∫

∫

− + −

≤ + ⎛
⎝ + ⎞

⎠
⎛

⎝
⎜

⎞

⎠
⎟

≲ + ⎛
⎝ + ⎞

⎠

−

−

− +

− −

− −

t s E ξ η t s φ s s

D C

α

ξ η ξ η T s φ s s

ξ η ξ η T t

d

exp d

exp .

t

α

α α

α

γ

t

β

β m

0

1

,

2 2

2

2 2 2 2

0

2 2 2 2 1

α β

α α

α β

α α

1
1

1
1

( ) (( )( ) ) ( )

( ) ( ) ( )

( ) ( )

(58)

Combining equations (56) and (58), we obtain that

∫⋅ ⋅ ≲ + ⎛
⎝ + ⎞

⎠ =− + − +− −

− −u t T ξ η ξ η T g ξ η ξ η T g, , exp 2 , d d ,

L

β m β m2 2 2 2 2 2 2 2 2 2 2 2 2

α β

α α

α β

α
T

2 2

2

2 2 2
1

2 2 2

,


�

�

�∥ ( )∥ ( ) ( ) ∣ ( )∣ ‖ ‖
( ) (59)

which allows us to deduce equation (53). In view of equation (56), we obtain that

∫ ∫⋅ ⋅ =
⎡

⎣
⎢ − + −

⎤

⎦
⎥−

u T T s E ξ η t s φ s s g ξ η ξ η, , d , d d .

L

T

α

α α

α2

0

1

,

2 2

2

2

2 2

2


�

�

∥ ( )∥ ( ) (( )( ) ) ( ) ∣ ( )∣
( )

(60)

Using equation (30) and in view of the inequality ≤− −
e C z

z

β

β for any >β 0, we can see that

− + − ≥ + ⎛
⎝ + − ⎞

⎠
− −

T s E ξ η T s φ s

D

α

ξ η ξ η T s φ sexp .

α

α α

α1

,

2 2
1

2 2 2 2

α

α α

1 1

( ) (( )( ) ) ( ) ( ) ( ) ( ) ( ) (61)

Using the inequality ≥e C z
z

σ

σ for >σ 0, we derive that

⎛
⎝ + − ⎞

⎠ ≥ + −ξ η T s C ξ η T sexp .σ

σ2 2 2 2α

σ

α

1

( ) ( ) ( ) ( ) (62)

From the three latter estimates and condition ≥ > −φ t Ct μ, 1

μ∣ ( )∣ ͠ , we obtain that

∫ ∫⋅ ⋅ ≥
⎛

⎝
⎜ −

⎞

⎠
⎟ +

≥
+ + + +

− +

− +

u T

D C

α

T s φ s s ξ η g ξ η ξ η

D C CB σ μ T

α

g

, , d , d d

1 2 , 1

.

L

σ

T

σ

σ

σ μ

H

2
1

2 2

2

0

2 2 2 2

1

2 2 2 1

2

2

α σ

α

α σ

α

2 2

2

2 2 2

2 2 2

2


�

�

�

∥ ( )∥ ( ) ( ) ( ) ∣ ( )∣

( )
‖ ‖

͠

( )

( )

(63)

The proof of our theorem is completed. □

4 Regularization solutions and error estimates

Theorem 4.1. Let =G 0 and assume that u
0
is noised by u ε0,

such that

− ≤u u ε.ε L0, 0
2 2�

∥ ∥
( ) (64)

Let us give the following:

= ∈ + ≤M η ξ η ξ N, , ,ε ε

2 2 2�{( ) } (65)

where Nε satisfies that

= +∞ + ⎛
⎝

⎞
⎠ =→ →

∕
N N N Tlim , lim 1 exp 0.

ε

ε

ε

ε

k

ε

0 0

2 α

1

( ) ( ) (66)

Let us define a regularized solution

On initial value problem  9



∫= + +
U

π

E ξ η t u ξ η e ξ η

1

2

, d d .
N

ε

M

α

α

ε

ixξ iyη

,1

2 2

0,

ε

[ (( ) ) ( )] (67)

Let us assume that ∈ ∞ +
u L T0, ;

k β 2� �( ( )) for >β 0 and ≥k 0. Then, the error ⋅ ⋅ − ⋅ ⋅u t U t, , , ,
N

ε
k 2� �‖ ( ) ( )‖ ( ) is of

order

⎟⎜
⎛
⎝ + ⎛

⎝
⎞
⎠ + ⎞

⎠
∕ − ∕

N N T ε Nmax 1 exp , 1 .ε

k

ε ε

β2 2α

1

( ) ( ) ( ) (68)

Remark 4.1. Let us choose ⎟⎜= ⎛
⎝

⎛
⎝
⎞
⎠
⎞
⎠

−
N logε

σ

T ε

α

1 1 for any < <σ0 1, then we deduce that

⋅ ⋅ − ⋅ ⋅ ≲
⎛

⎝
⎜ ⎛

⎝
⎞
⎠

⎡
⎣ +

− ⎛
⎝
⎞
⎠
⎤
⎦

⎞

⎠
⎟

− −

u t U t

ε

σ

T ε

, , , , max log

1

, 1

1

log

1

.
N

ε
k

βσ βα

2

2 2

� �‖ ( ) ( )‖ ( ) (69)

Proof. To simplify the proof, we put the following function:

∫= + +
V

π

E ξ η t u ξ η e ξ η

1

2

, d d .
N

ε

M

α

α ixξ iyη

,1

2 2

0

ε

[ (( ) ) ( )] (70)

Using the Plancherel theorem, we obtain that

∫⋅ ⋅ − ⋅ ⋅ = + + + −V t U t ξ η E ξ η t u ξ η u ξ η ξ η, , , , 1 , , d d
N

ε

N

ε

M

k

α

α

ε

2 2 2

,1

2 2

0, 0

2

k

ε

2
 

� �
∥ ( ) ( )∥ ( ) [ (( ) )( ( ) ( ))]

( ) (71)

Using equation (30), we obtain the following bound:

+ ≤ ⎛
⎝ + ⎞

⎠ ≤
⎛
⎝

⎞
⎠E ξ η t

D

α

ξ η T

D

α

N Texp exp ,α

α

ε,1

2 2
2

2 2
2

α α

1 1

(( ) ) ( ) ( ) (72)

for ∈η ξ M, ε( ) . Combining equations (71) and (72), we derive that

∫⋅ ⋅ − ⋅ ⋅ ≤ ⎛⎝
⎞
⎠ + ⎛

⎝
⎞
⎠ −

≤ ⎛⎝
⎞
⎠ + ⎛

⎝
⎞
⎠ −

≤ ⎛⎝
⎞
⎠ + ⎛

⎝
⎞
⎠

V t U t

D

α

M N T u ξ η u ξ η ξ η

D

α

M N T u u

D

α

N N T ε

, , , , 1 exp 2 , , d d

1 exp 2

1 exp 2 ,

N

ε

N

ε

ε

k

ε

M

ε

ε

k

ε ε
L

ε

k

ε

2
2

2

0, 0

2

2

2

0, 0

2

2

2

2

k
α

ε

α

α

2

1

1

2 2

1

 
� �

�

∥ ( ) ( )∥ ( ) ( ) ( ( ) ( ))

( ) ( ) ∥ ∥

( ) ( )

( )

( )

(73)

where in the last estimate, we used equation (78). Hence, we obtain that

⋅ ⋅ − ⋅ ⋅ ≤ ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠

∕
V t U t

D

α

N N T ε, , , , 1 exp .
N

ε

N

ε

ε

k

ε

2
2

k
α

2

1

� �∥ ( ) ( )∥ ( ) ( )( )
(74)

Our next goal is to prove the error ⋅ ⋅ − ⋅ ⋅u t V t, , , ,
N

ε
k 2� �∥ ( ) ( )∥ ( ). Indeed, we obtain

∫

∫

⋅ ⋅ − ⋅ ⋅ = + + +

= + + + +

⧹

⧹

− +

u t V t ξ η E ξ η t u ξ η ξ η

ξ η ξ η u ξ η t ξ η

, , , , 1 , d d

1 1 , , d d .

N

ε

M

k

α

α

M

β k β

2 2 2

,1

2 2

0

2

2 2 2 2 2

k

ε

ε

2

2

2




� �

�

�

∥ ( ) ( )∥ ( ) [ (( ) )( ( ))]

( ) ( ) ∣ ( )∣

( )

(75)

It is easy to verify that if ∈ ⧹ξ η M, ε

2�( ) , then

+ + ≤ +− −
ξ η N1 1 .

β

ε

β2 2( ) ( )

This inequality together with equation (95) yields that
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⋅ ⋅ − ⋅ ⋅ ≤ + ⋅ ⋅ ≤ +− ∕ − ∕+ ∞ +u t V t N u t N u, , , , 1 , , 1 .
N

ε

ε

β

ε

β

L T

2 2

0, ;

k k β k β2 2 2

� � � � � �∥ ( ) ( )∥ ( ) ‖ ( )‖ ( ) ‖ ‖( ) ( ) ( ( )) (76)

Thus, from some above observations, we obtain that

⋅ ⋅ − ⋅ ⋅ ≤ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅

≤ ⎛⎝
⎞
⎠ + ⎛

⎝
⎞
⎠ + +∕ − ∕

)∞ +

u t U t u t V t V t U t

D

α

N N T ε N u

, , , , , , , , , , , ,

1 exp 1

N

ε

N

ε

N

ε

N

ε

ε

k

ε ε

β

L T

2
2 2

0, ; .

k k k

α k β

2 2 2

1

2

� � � � � �

� �

∥ ( ) ( )∥ ∥ ( ) ( )∥ ∥ ( ) ( )∥

( ) ( ) ( ) ‖ ‖

( ) ( ) ( )

( ( )

(77)
□

Theorem 4.2. Let =u 0
0

and assume that ≡G x y t g x y, , ,( ) ( ). Let us assume that g is noised by g
ε
such that

− ≤g g ε.
ε L

2 2�‖ ‖ ( ) (78)

Let us give the following set:

= ∈ + ≤η ξ η ξ N, , ,ε ε

2 2 2M �{( ) } (79)

where Nε is defined later. Let us define a regularized solution

∫ ∫=
⎡

⎣
⎢ − + −

⎤

⎦
⎥− +

W x y t

π

t s E ξ η t s s g ξ η e ξ η, ,

1

2

d , d d .
N

ε

t

α

α α

α

ε

ixξ iyη

0

1

,

2 2

ε

ε
M

( ) ( ) (( )( ) ) ( ) (80)

If ∈
−

g H
ε

2

θ 2

2 �( ), then we obtain

⋅ ⋅ ≤ ⎛
⎝

⎞
⎠ −W t

D

α

M T g, , exp ,
N

ε

H ε ε
H

2

ε

θ α θ
2

1

2

2

2� �
‖ ( )‖

∣ ∣
( ) ‖ ‖

( ) ( )
(81)

and

∫⋅ ⋅ ≥ + +
W T

C T D

αM

ξ η g ξ η ξ η, , , d d .
N

ε

H

μ

μ

ε
M

θ

ε

2

1

2 2 2

ε
θ

ε

μ

α

2

2 
�

‖ ( )‖ ( ) ∣ ( )∣
( ) (82)

Let us assume that ∈ ∞ +
u L T H0, ;

θ β
2�( ( )) for ≥θ 2 and >β 0. Then, we have

⎟⎜⋅ ⋅ − ⋅ ⋅ ≲ ⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

− − ∕
u t W t N N T ε N, , , , max exp , .

N

ε

H
ε ε ε

β1 2

ε
θ

θ

α
2

2

1

�
∥ ( ) ( )∥ ( ) ( ) ( )

( )
(83)

Here, Nε as above is a positive real number, which satisfies that

= +∞ ⎛
⎝

⎞
⎠ =

→ →
−

N N N T εlim , lim exp 0.

ε

ε

ε

ε ε

0 0

1

θ

α
2

1

( ) ( ) (84)

Remark 4.2. We can choose Nε as in Remark (4.1).

Proof. By Plancherel theorem, we follow from equations (80) and (44) that

∫ ∫

∫

∫

⋅ ⋅ = +
⎡

⎣
⎢ − + −

⎤

⎦
⎥

≤ +

⎛

⎝

⎜
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⎛
⎝ + ⎞

⎠ −

+

⎞

⎠

⎟
⎟⎟

≤ + ⎛
⎝ + ⎞

⎠

−

−

W t ξ η t s E ξ η t s s g ξ η ξ η

D

α

ξ η

ξ η t
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D

α

ξ η ξ η T g ξ η ξ η

, , d , d d
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, d d
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θ

t
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α α
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ε

θ

α

ε
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2 2 2
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1

,

2 2

2

2

2

2

2

2 2
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2

2

2

2

2

2 2 2 2 2 2

ε
θ

ε

ε

ε

α

2

1

M

M

M







�
∥ ( )∥ ( ) ( ) (( )( ) ) ∣ ( )∣

∣ ∣
( )

( )

∣ ( )∣

∣ ∣
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(85)

If ∈ξ η N, ε( ) , then we have the following inequality:
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⎛
⎝ + ⎞

⎠ ≤
⎛
⎝

⎞
⎠ξ η T N Texp 2 exp 2 .ε

2 2 α α

1 1

( ) ( )

This equality combined with equation (87) allows us to deduce that
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⎞
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Let us show equation (82). By Plancherel theorem, we follow from equations (80) and (48) that

∫ ∫

∫

∫ ⎟⎜
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⎣
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(87)

Moreover, in view of the inequality − ≥e C z1 ,

z

μ

μ we obtain the following estimate:

∫ ∫⎟⎜+ ⎛
⎝
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⎝ + ⎞

⎠ −
⎞
⎠ ≥ + +
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2
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μ
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Combining equations (87) and (88), we derive the following lower bound:

∫⋅ ⋅ ≥ + +
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Our next aim is to prove equation (83). Let us set the following function:

∫ ∫=
⎡

⎣
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V x y t
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Using the Plancherel theorem, we have the following equality:
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Combining equations (91) and (44), we obtain
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(92)

Since the condition ≥θ 2 and ∈ξ η N, ε( ), we know the fact that
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This inequality together with equation (92) allows us to obtain that
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Next, it is obvious to see that

∫ ∫
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It is easy to verify that if ∈ ⧹ξ η, ε

2 M�( ) , then + ≤− −
ξ η N

β

ε

β2 2( ) ( ) . This inequality together with equation (95)
yields that
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Combining equations (94) and (96), we derive that
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The proof is completed. □
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