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1 Introduction

In various disciplines of science, the Hermite-Hadamard inequality for convex functions is studied as it
develops a link between convex function theory and integral inequalities. Many generalizations of convex
functions have been discovered recently. Researchers have also shown a lot of interest in generalizing this
concept for preinvex functions. These inequalities have applications in a variety of areas, including optimiza-
tion, numerical analysis and statistics. He Chengtian’s inequality and the Hermite-Hadamard inequality are
frequently used in engineering, particularly in 3D printing technology, to estimate the maximal and lowest
printing velocity because it is hard to predict the velocity precisely, see, e.g., [1,2].
Let ¥ be a convex function such that ¥ : Q CR - R and g,, g, € Q with g, < g, then
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is the well-known Hermite-Hadamard inequality for convex functions.
The generalization of inequality (1) is given by Fejér [3] as follows:
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where ¢ : [g;;0] = R is a nonnegative, integrable function and symmetric about t = =

* Corresponding author: Fiza Zafar, Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University,
Multan 60800, Pakistan, e-mail: fizazafar@bzu.edu.pk

Sikander Mehmood: Govt. Graduate College Sahiwal, Sahiwal, Pakistan, e-mail: sikander.mehmood@yahoo.com

Asim Asiri: Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia, e-mail: amkasiri@kau.edu.sa

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

3


https://doi.org/10.1515/dema-2022-0254
mailto:fizazafar@bzu.edu.pk
mailto:sikander.mehmood@yahoo.com
mailto:amkasiri@kau.edu.sa

2 — Fiza Zafar et al. DE GRUYTER

Due to the wide applications of fractional calculus and Hermite-Hadamard inequalities in different fields
of sciences, researchers are working on Hermite-Hadamard-type inequalities for fractional and generalized
fractional integrals, see, e.g., [4-9].

In [10], Sarikaya et al. proposed the following inequalities as follows.

Theorem 1. Let ¢ : [05,05] SR —» R with0 < g, < gy and Y € L[a,, 0] be a convex function. If  is a positive,
integrable function on [0,, gy, then the following inequalities hold:

O, + 0p r(a + 1) . .
T2 )® 20y - G,)° U, ¥(0a) + I $(p)] <

W(a,) + Y(ap)
— 5
with a > 0.

In [11], Kilbas et al. defined left- and right-sided Riemann-Liouville fractional integrals as follows:

1

b - -
GRS

t
I(t - s)PyY(s)ds, 0<a,<t<ay
and
JPMO=—L$®-OV%®M& 0<a<t<a,
oV = T(p) )

where ]01; and ]UE_ represent the left- and right-sided Riemann-Liouville fractional integrals, respectively, of

the order p € R*.
We now give the definition of k-fractional integral, which is mainly due to [12].

Definition 1. The left-sided Riemann-Liouville k-fractional integral of order b, k > 0 is defined as follows:

1
kTi(p)

t
JERR() = ———[(t - ) W(s)ds, 0s o <t<a,

and the right-sided Riemann-Liouville k-fractional integral of order p, k > 0 is defined as follows:

1
kI(b)

2Kt = [ - 1pes, 0<ast<a,
t

where ¥ € Ly([aq, 0p])

For k = 1, the Riemann-Liouville k-fractional integrals become the Riemann-Liouville fractional integrals
(see [11]).
Antczak [13] gave the idea of invex sets as:

Definition 2. A set Q C R be an invex w.r.t. the map X : Q x Q - R if, for every g,, g, € Q and s € [0, 1],
ap + SX(ay, gp) € Q.

The generalization of convex functions is given by Weir and Mond [14].

Definition 3. Let @ C R is an invex set and ¢ : @ — R is called a preinvex function w.r.t. X if

Y(0p + SN(Gg, 0p)) < tY(aa) + (1 = $)Y(ap)
Va, 0, € Q and s € [0,1].
If X(g,, 0p) = g, — gy, then in the classical sense, the preinvex functions become convex functions.

The situation of n-times differentiable preinvex functions has been added to the scope of these inequal-
ities. Preinvex functions have constraints on their integrals that rely on the values of the function and its
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derivatives at the ends of the interval. These bounds are provided by the Hermite-Hadamard and Fejér
inequalities, see, e.g., [15-21].

The following lemma for n-times differentiable preinvex functions is proposed by Mehmood et al.
(see [18]).

Lemma 1. Let Q C [0, ) be an open invex subset with respect to X : Q x Q — R. Suppose ¥ : Q >R is a
function such that Y™ exists on Q and Y™ is integrable on [a,, 6, + N(0p, 0,)] for n €N, n = 1, then for every
Oa, Oy € Q with X(ay, g;) > 0, the following equality holds:
Y(0a) + Y0z + X(0p, 02))  T(p+1)
2 2(X(0p, 00))P
_ Y I, a)r
2 T(p+x+1)

UPEW(au + R(0b, 0) + JEX 0,000y P(0)]

(N(0h, )" T(p+1)
2 T(p+n)

[CD*PM (0 + X0y, 02)) ~ Y*(aa)] -

k=1

1
) I (@ - )b+ (1)'sP Y™ (g, + s8(0p, 0a))ds,
0

wherep>0andn = 1.

In this article, we have developed new Fejér-type Hermite-Hadamard identities for higher-order differ-
entiable generalized convex functions for k-fractional integrals. Then, we have developed both the left- and
right-hand sides of weighted Hermite-Hadamard inequalities.

2 Main results

In the main section, we make the assumption [|9lle = SUP;e(q, g,4x(a, 0| P(O) Where ¢ : [05;0, + X(Gp, G2)] — R

is a continuous function, ¢(r> is the rth derivative of ) w.r.t. variable s and L[g, dp] is the collection of all real-
valued Riemann-integrable functions defined on the interval [a,, dp].

Lemma 2. Let @ C R be an open invex set and X be a function such that X : @ x Q —» R. Suppose, ) : Q > R isa
differentiable mapping such that Y € L[a,, g, + X(0p, 0,)], where X(ap, 0,) > 0. Ifw : [0y, 0, + X(0y, 07)] = [0, ®)
is an integrable mapping, then Y g, 0, € Q, we have the following equality:

1 ll’('")(ﬁa + %N(Gb: o'a))

b
m=0 2™N(gp, G )k tTTM

(-1)”‘m‘1](b’k1 )90 + GV Al $(0a + N(0p, 02))

Oa+ 5 N(0b,0a) (0a+ 5 N(0p,00))*

3

1
+ (—1)f—{rl°”‘ @90 + 0, ) (@900 + Mo, 0)
a2

(x(a, O'a))z +T (Ua"’%N(Uva{z))_ Op,0q)

1
= kr:(p) !'W(S)w(”(oa + SN(Tp, 0,))ds,
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Proof. First, we consider

D=

N

1 ss
[ws)p o, + su(ay, o))ds = I I j k" 1(a, + un(op, G))(AUY | x YO(a, + SK(Ty, )ds
0 00

r mtegrals

@)

+
I e
e R

N N

[ ] @ - wi19(a, + un(ay, a))awy [§(o, + s(ay, 02))ds
r irlltegra%s

=L+ L.

From the first integral, we have

N

[ uk=19(0, + un(ab, )y [§(0 + sM(ab, 0
0

0
r integrals
e
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O%N\H
o
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r 1ntegrals
o

N(Ub Ga)

SS N
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00 0
-1 integrals
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After generalization, we obtain
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Yoo, + %N(Gb’ w22 2 b
b= e | SE7YP(0, + SR(0p, T,))(dS)"
' N(Gb, O-a) -([.-0]’ .0[ ¢( a ( b a))( )
Doy + oy )| 22 2
_ Oq t EN Op, Oq b .
- k"~ ; d r-1
(R(0p, 0))? H { SK719(0a + SN(0p, 02))(ds)
V(04 + ~X(0p, 0)) %%
7 Ga + EN Gb, Ga b
-1)r-2 by ’ a2
fen (X(ap, 0))" 1 {,O[Sk (g, + sK(ap, 05))(ds)

1 1
Y(q + ;R(0p, G)) | %,

—1\y-1 w1 2 , Os d
* D (X(ap, o))" 'O[S 9(0a + (03, 0a))ds

SKT1(0, + SN(G, G))P(Ta + SN0, 0))|ds.

D Ll

. 1
+ D (95, 02))" |

After simplification, we obtain

1
2

l/)(r—l)

ZT—IN(O-b’ Ua)

1
Oq + EN(Gb: 0a)

sk719(a, + SN(0p, 0,))ds
0

Il=

Y2 (o, + %N(Gb; 0a)) % b
K ds
2-2(N(Gp, G,))> Is @(0q + SN(Tp, Ga))
b Ya 0

1
7 1 9
Y'(0g + 58(0p, G)) | %,

H O kG g £Sk_1¢(0a e oS

1
2

1
Oa + 5N(0p, Ta)

Y

ooy |J 0 s o)

+ (-

1

S
el

On substituting t = g, + sX(ay, g;), we obtain

SKIY(0g + SK(Th, T))P(Ta + SK(Th, T))ds |

5
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g %N(Gb,oa)

YrD(a, + yN(0p, 0)) [

b
2" IN(ap, Gk !

b
(t - ok p(t)de
Oa
l/)(r—z) g, + %N(O’b, Ga)] Ua+%N(Gb,Ua)

) 2N}, O))E *2 -[ (£~ o) 19(0)dt

Oa

Vo + @ 0| @
S ; (t - gk 1g(0)dt
2(N(0p, Gg))x 1 %
1
U(a, + %N(O'b; Ta)) Gat (9, 0a) .
Sl b [ @-oppwa
(X(ap, ay))x *r o
G+ N(0,00)
1
M — - f (¢ - o) Y(OP(O)L.

p
(N(O-bx O-(,1))k o (oM

From the definition of k-fractional integrals, we have

Y Vo, + N(Ub, 0a) [kIk(b)

,k
I= [ $(0)
2r- 1N(Ub, Ga)k +1 [Ua"'EN(Ub:Ua)]_

lp(r 2g

+ N(Gb) oa)

kTi(b)

2N (T, G 2

&(0a)

Ua"'%N(UbyUa) -

¥'| 0 + 8(0b, 00) [KTie(b) ok
—1\r-2
+ 2Ny, G T ](“"+ M)

kIx(b)
Jh

(R(ay, Ja))ll: +r (Gaty N(Gb Ga))=

+ (—1)r¢ﬂ° k )

(G, O'a))k +r7(Oaty N(Uba))—

$(0a)

1
+ SN(0p, 0q)

Y|o,

+ (-t $(0a)

After summing the above series, we obtain

1
r-1 Yp™ia, + 7NX(0b, 0a)

L=y (-t KI(b) 2" ¢(0,)
m=0

b
2"N(Tp, G T (a0 (5)

] (9¥)(0a).

+ (—1>r;krk(p)f[

(N(Tp, )T aat 3x0n0)

Similarly from the second integral, we have
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1
r-1 Y| g + EN(Gb: 0a) .
L=(-)Yy —kL(p) ¥, $(0a + X(Tp, 0)
m=0 2MN(ap, Gy )T O+ 5 X(0 2,00) |+ ®)

+ () ————
(X(ap, G))K*"

On utilizing equations (3) and (5) in equation (4), we obtain the required result. O

kn(pylb”‘ (@) + N, 00)).

Oa+ %N(Ub: Ua)]

Lemma 3. For k = r = 1 in equation (3), we obtain Lemma 1 of [5].

1
O + EN(O’b» Ga)

Y

g 9(00) + ][b 90 + N0y, 02)

1
(Ua+§N(Ub’°’a))_ Ja+%)((o'h,o'a

X(Gp, 02)P*

(@Y)(a, + X(0p, T,))

+

: p" (@) +J[b 1

~ (X(0y, 0P ot o) o0+ L(ann)

1
= Ty Jow e+ @ s,
0

where

N

Iup‘1¢(oa + ux(op, a))du, sE€ [O, %]

w(s) = 1%

I(l — WP lg(a, + un(oy a))du, s € B 1].
1

Lemma 4. Ify : [g,, 0, + X(0y, 0,)] = R is an integrable function, which is symmetric about g, + %N(O’b, a,) With
g, < g + N(oy, 0,), then we have

1
]Gg;k (g + NX(Gp, G,)) = ](g’alix(gb,aa))_ U(og) = EUGI:Z,I( Y(aa + NX(p, G,)) + ](g;]ix(gb,gu))_l/)(o-a)]; 0]

where p >0

Proof. Since ¥ is symmetric about g, + %N(ob, 0,), We have (20, + X(0p, a;) — t) = Y(t), for allt € [a,, g, + X(Tp, G,)].
Taking 20, + X(0p, 0,) =S =t
Ta*+N(0p,Tq)

J2EY(0 + 10y, 02)) = [0 + M(0b, 02)) = sT¥ p(s)ds

KLi(h)
Ta*+N(0p,T4)
b
= KE.(D) (t - a)x (20, + Koy, 0;) — t)dt
Ga+N(0p,04)
b
= kT(p) (t - o) Y(t)dt
- ](g;lj-x(ob,aa))— ¥(0a)
1
= EUUIZ;" Y(Ga + N0, 0) + JEK, 0 oy ¥ (O] 0

Lemma 5. Let Q € R be an open invex set and X be a function such that X : Q x Q - R. Suppose ) : Q > R isa
differentiable mapping such that Y € L[ay, 0, + X(0y, 0,)], where X(ay, a;) > 0.Ifw : [0y, g + N(Gp, 0)] — [0, ®)
is an integrable mapping, then ¥ g, g, € Q, we have the following equality:
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rf (=) (gy) + (1) ™ WM (g, + X(0p, 0r))
2(N(ap, Gg))Prrm
x U(g;]ix(gb,ga))_d)(oa) + ]0'5’4-,( @(a; + X(ap, 05))]
J&K i amy-@VNGD + J2E(@Y)(00 + X(ap, 0)
+ (-1
(R(ap, G))P*T

m=0

v($)Y(a, + sK(ap, 0,))ds,

1
kTi(b) .
where

jj j ui “p(a, + un(ay, a,))(du)"
00

r integrals
-

v(s) = SS S
+ _[_[ J’ (1 - w)1g(0y + UN(oy, o)), s € [0,1].
11 1

r integrals
— "

Proof. First, we consider

1
[V (0, 0 + s(ay, a))ds
0

N N

1] s
= I I I I uk‘1¢(0a + UN(ap, 02))(dw)" [P (0, + sK(ayp, 0,))ds
0l 00

r 1ntegrals
-

1] ss s
| ] a-wiga+ wnor, a)duy [p(a, + su(ay, a)ds

0
r integrals
— %

= L+

From the first integral, we have

1 ss s
=[] - | w190, + wn(ay, c))duy [p(a, + sn(ap, o2))ds
0f00

r integrals
= b

H J' k(g + UGy, 0))(Au) [pTD(a, + SK(Tp, T

N(Gby Ua)

r 1ntegrals
— s

N(Gbx Ga) 0

ntegrals

I | u 1900, + un(@y, 0@y e, + s(ay, a)ds
00
11

r—

8

9
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_ P D(g, + (G, 02))
1 N(O-b: Ua)

11 1
[ -] st19(a, + sx(ar, a)asyr
00 0

r integrals
=i

w1900, + wicay, o) @y 1 [pr (o, + sn(0y, 0,))ds.
0

tegrals

SS
N(O-b) Ua) JO'.J)‘
1in

r—

On generalizing the result, we have

(g, + (0, 9| (| .
h= e {I J $579(0, + sx(03, a)(@s)
legrals
Y0, + (G, Ta)) j’j -1[ B 10, + S0, 0,))(ds) !
(0, o)) 00...0 sk~ lg(a, + sK(ap, 07))(ds
r-1 integrals
PT-3(a, + X(0, 0p)) j{j’ j’ b0, + SN0y, 0,))(ds) 2
(0, 0))° 00...0 sk p(a, + sK(ap, 07))(dS
r-2 integrals
i 11
R (-1)f-2¢§§“+$’,f’f)) {{s%‘%b(oa + 5x(ap oa))(ds)Z'
1
. <‘1)"1—¢((ZZ(+0:($§)?“)) {s‘i%(oa + sx(ay, )ds
1
F OV ooy {s%'lw(aa + (03, 0T + SN(T), ) |ds

After simplification, we obtain

r-1) 0
Y (;(I,EO';’ES'IJ, Ta)) '!s%—1¢(oa + sN(ay, 0,))ds

=

(g, + Koy ) [
(R(ap, Ga))* l‘([Sk '9(0a + sX(0p, 00))ds

(r-3) F
Y ((Na(aa: z(;’é 2 ,[ 57 19(0, + SK(0y, 0,))ds
b Ya 0

, 1
W Isg‘lq)(aa + SN(ay, 0y))ds

0

+ (1

)r 1lp(0'a + N(Gb Ga))

O o )

I K1p(a, + sK(ap, 0)ds
0



10 — Fiza Zafar et al. DE GRUYTER

1
SKY(g, + SK(O), 0))P(0, + SK(T), T))ds|.

. 1
el

After substituting t = g, + sN(agy, g;), we have

a+N(0p, 0a)

(r—l)o' +N0"0' Garti

L= Pr(a, (p by Oa)) J' (t - O'a)z “1p(t)dt
Xt G

P (g, + (0, 0a))

Tq

Oq+N(0p,0a)

(t - o)e1g(t)dt

(X(0p, T *2 %
-3 Ta+N(0p,04)
wxwﬁgm (- o)t (ot
Ops Og) )k ]
0qtX(0p,04)
X(0p, g e+ a,

Oa+N(0p,0a)

1),« 1 l/)(Ua + N(Gbx Ga)) (t _ O_a)%_1¢(t)dt
(N(O-b’ Ga))k o a,

O +N(0p,0a)

+ (-

Py [ (- et s

(X(ap, 0T
Using the definition of k-fractional integral,

r-1

L= Y (a, + X(oy, Gfl))krk(p) T2 oy (6

N(Tp, G
_ Y(gg + KT, G)KT(P) .,
(N(0, 0)E
d)(r (g, + N(0p, Ua))krk(p)

(NG, G+ *3

] (Ga*+N(Op,0a))~ $(0a)

T o~ 9(0)

1)7‘ 2 w (Ga + N(Gb, Ua))krk(b)

+ ( ]O' +X(0p, 0, ¢(Ga)
)
¥ (~1y P(0q + N(Op, aa);kl“k(b) JEE oy 900
(N(Gh, G
kT,
ey — P o,

(K(Tp, T))E*"

After summing the above series, we obtain

r-1

L= Z( yr-m- 1¢ Y(gq + N(O'Ib 0a))

kTi(p )](l;;]ix(gb,ga))_ ¢(0a)

m=0 N(ap, J)k” m

e e 11411 LA ) ()
(0, G

Similarly, from the second integral, we obtain

(10)
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r-1
b=y Mkrk(p)fg%"qs(oa + X(0h )
m=0 N(Gp, G )™M

1 1n
# DK (B9 + (0, )

(X(Tp, Ga))x

On utilizing equations (10) and (11) in equation (9) and using Lemma 4, we obtain the required result. [

Remark 1. For k = r = 1 in equation (8), we obtain Lemma 3 of [5].

P(0a) + Y(0a + X(Tp, 00)
2(N(0p, 0p))P*
JE oy (@0 + I (9)(0a + N(p, 0)
) (X(Gp, )P

V& exonony- 00 + JE 60 + X(ap, 02))]

1

- T Iv(s)w (02 + SR(G3 ),

where

N

Iub‘1¢(0a + UN(0p, 0,))du
0
v(s) =
+ Ja - wrgeo, + una, c))du, s € [0,1].

Theorem 2. Let @ C R be an open invex set and X be a function such that X : Q x Q — RP. Suppose, 1) : Q@ - R is
a differentiable mapping such that ™ € L[a,, 0, + X(0p, 0,)], where X(dp, a;) > 0. If there is an integral map-
ping such that ¢ : [g4, 0, + X(Gp, 05)] — [0, ) and it is also symmetric with respect to o, + %N(O’b, a,). Let [y
be a preinvex function on Q, then Y a,, g, € Q, we have the following inequality:

r1 l/)(m)(oa + N(O'b: 0a))
i i S Vo a2+ CO 900+ (00 00)
m=0 by Oa)k
1
P @) I, ) @96+ K a) 2)
(R(Gp, 0))x 7| (Ot 27(n0) [ N(Ub Ga]

[[¥D(G)] + [0 llek"T(b)
26°7(p+k (-1 + P)(b+kr(b)I(b+r - 1)

Proof. On taking the modulus of both sides of equation (3), we obtain

r1 Ym(g, + 7N (0p, G))

m=0  2™N(0p, O'a)k *rom

P(a + R(0p, G,))

l( pr-m-1yhk #(an) + (-1 Pk,

(Gaty L (@00~ (Oa+3 N(Ub Ga))*

(¢¢)(Ga + X(0p, G,))

_ r; b
+ (-1 e Ua))pﬂp("a*;”(“bﬂa» (PY)(ay) + ][ QN(% o

1/2
[ w3, + sn(ap, a)ds +
0

1
[ WSy, + sx(ap, a))ds |
1/2

1
© kT(p) kT(b)
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From preinvexity of [)™| on Q and using the fact [||lo = sup,e(y, ,,|(t)], we have

r-1 y)(m) 1
1 w (Ga + ZN(bo-bs Ga)) ( )r m- 1]1) .k ¢(Ua) + ( 1)r+1]]3 k ¢(Ua + N(O’b, O'a))
m=0  2™X(ap, ay)k ™ (0 §N(@00)~ G+ 3 (0, 00))+
G e A IO ) O R N0 AR C S
(X(ay, a))E*T| @2 1 (a,00)) [ . ]
< o I H I wlduy | [ - $)PO(@)] + slpT(a,)]Ids 13)
kTi(b) o 100 3
r integrals
19l I . )
) H I (1 - weduy | [A - $)PO(@)] + slPP(ay)]Ids

172 11
r mtegrals
=

= L +L.

From the first term of equation (13), we have

1/2| ss s
gl . r r
" ki) M{u (dw" | [(1 - YO + sy apl1ds

r integrals
Nl i

1

1/2

K9 ' h
rk<1o>r<1o+r—1> w2 [

~ L(P)N(p+r - D3 e

Making the change of variable t = g, + ux(o, a,) for u € [0, 1],

A - Y (o)l + slYp(ap)[ldsdu

u

(1)

2

%] * O -

1
O iN(UIJ: (9]

L.
[T 5 O DN AN [ |- Lo Y I LA
P T(PIN(p+r - D) M@ 0) 20 ROy o)) 8| N0y, 0)
(14)
2ot 0@ "1 [ ema P - |
. o )| . _[ t- o, t-o, dt.
L(P)T(p+r = 1) X(0p, 0) N(Gb, o) ) |\ X(Gb, Ga)

From the second term of equation (13), we have

1

_ gk
27 kTi(b)

H j(l - wk(duy | (- )P0 + slp(ay)1ds

1/2 11
r 1ntegrals
= i

L KEIRIO) [lE b - oo + s
_Tk(b)F(b+r—1)1/z[J(1 Wy 5du|[(1 = )| (aa)l + slpt(op)|1ds

1

_ k2191l T(b) by A r
" T(p)I(h+r - )_[ (@ - Z[JZ [ = $)YTaa)]| + sy (ap)l1ds|d

k™2 |||l T(b) [1 _ L du.

T T(P)I(p+r - D) .[ a- >£*"2[|¢<r>(oa)| .

__1]

+ oyl
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By the change of variable ¢t = g, + (1 — w)X(0y, G,),

Un"’%N(Ub;Ua) £+r_2
_ K2 191lT(h) [$T(0a)l y J‘ 1 1 t-a, t-o, | dr
27 T(P)I(b+r - 1) X(0p, 05 28 2N ) X a0
‘ (15)
Ot 14(0,00) b
K2 I9lleI(b) @)l [REE t-ag, |' 1) t-a |7
L(p)T(p+r - 1) X(0p, Ga) J 2 ~(0Op, T2) 8 | N(aw, Ta) )

Adding equations (14) and (15) based on equation (13), we obtain the required result as follows:

1
r-1 ¢(m) Og EN(Gb; Ua)

b
m=0 2™N(Gp, Gy )k T

(0a+ 5 N(0p,04)) (Oa+ 5 N(0p,0a))

x ‘(—Dr-m-lﬂ’”‘l P(a) + ()R ¢(0a + N(0p, 0,))

- (A Iﬂ“’" COICh +][§’fl

1
(K(Ty, G))E*T [ Ot 2Mmo- 1,

(9@l + WPk T(R)
2647 (p+k(=1 + r))(p+kr)L(PIT(p+r ~ 1)

o] #9001 0)

Remark 2. For k = r =1 in equation (12), we obtain Theorem 3 of [5].

(g, + X0, T))
N(0p, 07)P*

7’ $(a) +J° 4 $(0u + X(0p, 0))

(O’,ﬁ%N(Gb,Ua))_ (0a* 5 N(05,00))*

(@9)(0 + N(Gy, )

+ o~ WD+l 1
(N(Gb) Ga))b (Uﬂ+§N(Gb’Ua))_ Uu"'iN(Gb:Ua)

! P" (GV)G) +J[b 1

loll. 1
~ T(p+2) 2b*

(¥ (gl + [¢’(ap)l]-
Remark 3. For k= p =1, ¢ =1, X(0y, 0,) = 0y — 0, and r = 2 in equation (12), we obtain the special case

< (0 - oy W2 - A )

O, + 0p
2

‘ p - (0 - o) [0yt

Theorem 3. Let Q C R be an open invex set and X be a function such that X : Q x Q — RP. Suppose, i) : @ - R is
a differentiable mapping such that Y € L[a,, g, + RX(ay, 0,)], where X(ap, 0,) > 0. If there is an integral map-
ping such that ¢ : [g,, g, + X(Gp, 05)] — [0, ) and it is also symmetric with respect to o, + %N(O’b, a,). Let [y
be a preinvex function on Q, then Y a,, g, € Q, we have the following inequality:

| 5o « coyr e, + na, a)
] z 2(N(0p, Gg)) P m

x U(g;lix(gb,ga))_ ¢(aq) + ]Uglk B(a + N(ap, )]

T wirmy-@WNGD + T 2K (@Y)(00 + N(aw, 0)
(X(ap, G))P*"

an
+ (-D’I

18l , ,
< Grrcper Dl + WO,
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Proof. Applying modulus on both sides of equation (8),

rf (=D™1Y(a,) + (1) YT, + (T, Ta))
2(X(Gp, a))P T

X U(g;lix(ab,aa))-d)(aa) +]crlzlrk $(0a + X(0p, 0))]

T oy @VNGD) + T2 (@9)(00 + X(0p, o)
(N(0p, G))P*"

+ (-1)’[

- krk(p)J H | k1900, + wnar, oauy + [[.[ @ - wi(e, + unay, o)auy e,
0

r 1ntegrals r integrals
i’

+ sN(ap, 0p))ds | .

From preinvexity of || on Q, we have

J=

rzll D™ Y®(a,) + (-1 * Yp®)(g, + R(0p, T,))
o 2(N(0p, Gg))PHTK

X U(£a+7((db’gﬂ))—¢(o-a) +]UE+¢(O-‘1 + N(O-b» Ga))]

1 nanony- )G + I, ($Y)(0a + N(ap, 00))
ten (<o G )P

[] - ] w100 + ux(on, auur
00 0

r integrals
=

OF

1
egrals

w | ] @ - wiee, + unian, e | @ - sp(@a)] + s (a)ds.
11

r in

After simplification and letting ||@||.. = supte[a‘Z a,)|@(0)], we obtain the required result

K2 100TCD) ol ey - o '
= - 4" ZU R
L K HIlT(R) e T '
" R - D) f (1 - wx Z‘I (@ = )YTA(a)] + slPT(op)ds du

191l k" "T(p)
~ (b+kr)T(p+r - DI(p)

[ (@)l + Y (o). O



DE GRUYTER Weighted Hermite-Hadamard inequalities = 15

Remark 4. For k = r = 1 in equation (17), we have

Y(aa) + Y(a, + R(0, 04))
2(%(0p, 02))P*1
| nanon- @)@ + I 2. ()G + X(0p, )
(X(0p, 02))P*1

U ey~ 90 * J2, $(0a + N(a, 02))]

Remark 5. For k =1, p=1,¢ = 1 and r = 2 in equation (17), we obtain the special case

191l

< m[ll//(ﬂa)l VAR

1 ¢ Y@ (0| + [¥®(ap)|
" o ayp o0 < 3 N

Y D(ay) - YD(ap)
2(X(ap, a,))

U(ay) + Y(ap)
2(N(0p, G))?

+

]:

Ta

3 Applications

In this section, some examples in the framework of special functions and special means are selected to fulfil
the applicability of our obtained results.

3.1 Special functions

Let the function Fy(z) : R — [1, «] be defined by Waston [22] as follows:
Fy(z) = 2°T(V + 1)z7VGy(2), z € R.

We consider the first kind of modified Bessel function denoted by ry(z), which is given by [22] as follows:

v+2n
z
2]

nr+n+1)°

n=co

Gy(2) = Z

n=0

Then, the first- and second-order derivatives of F ;(z) are given as follows:

Fi(2) = ———Fy1(2).

20 +1)
, 1 2
Fj(z)= R msz(l) + 2F5.4(2) ). (19)
[0 Pp— [_23 Fyes(2) + 62F510(2) |-
v 2+ D@ +2)|T+3 " v

Let ¥ = Fj(z). Then, with the help of Remark given in equation (4) and using the three identities in equation
(19), we can deduce

0q t Oq t O
woorl —(ob—oa[Pv(ob)—Fv(aa)]‘
< _@-o) % F +6 - % F +6
S 6w+ Dw 2|7 +3 v+3(0a) + 60aF52(00) | + | 77, 5 Fr+3(00) + 60uF52(0p)) |
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3.2 Special means

We give the following special means for positive numbers g, and g, where g, < g
(1) Arithmetic mean is denoted by A(g,, gp), and it is defined as follows:
g, + Op

A(Ga’ Gb) = 2 .

(2) Harmonic mean is denoted by H(d,, gp), and it is defined as follows:

2
H(ay, 0p) = 1 1 -

Oq ap
(3) Logarithmic mean is denoted by L(ag,, d;), and it is defined as follows:

Op — Og

L s =
(G, ) Ing, - Ing,

, Oqg # Op.

(4) Logarithmic mean is denoted by L,(d,, 05), and it is defined as follows:

Bl

Op — Og

B (RS CEr)

Proposition 1. For g,, g, € R, where g, < g, and m € N, m > 1, then the following inequality holds:

1

J = |[AG™, oY) + (0 = g)(m + DA(G]™, -] - T

A(=a;"%, ap?)

2
<3(0 — 0)’m(m + DA™, '),

Proof. For y(v) = v™1, |¢'(v)| = (m + Du™ and |”(v)| = m(m + v™ ! is a convex function on R., where
VER,andmeN, m=22.
From equation (18), we obtain the required inequality. (I

4 Conclusion

Finally, it can be said that research on weighted integral inequalities for r-times differentiable preinvex
functions for k-fractional integrals has produced significant findings in the field of mathematical analysis.
The findings of this study have shown that preinvex functions have the potential to be very useful mathema-
tical tools, especially in the area of fractional calculus. Additional knowledge about the characteristics of
preinvex functions and their uses in other mathematical domains is anticipated to be gained through further
study in this area. Overall, the findings in this article have opened up new study directions and laid a strong
platform for the future.
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