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Abstract: In this article, we investigate the relationships between the instantaneous invariants of a one-
parameter spatial movement and the local invariants of the axodes. Specifically, we provide new proofs for
the Euler-Savary and Disteli formulas using the E. Study map in spatial kinematics, showcasing its elegance
and efficiency. In addition, we introduce two line congruences and thoroughly analyze their spatial equiva-
lence. Our findings contribute to a deeper understanding of the interplay between spatial movements and
axodes, with potential applications in fields such as robotics and mechanical engineering.
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1 Introduction

The study of invariants of a one-parameter spatial movement and axodes is of great importance in various
fields, including mathematics, physics, and engineering. In the context of spatial movements, invariants
provide valuable information about the behavior of objects as they move through space. One of the main
reasons for studying the invariants of one-parameter spatial movements and axodes is to understand the
geometric and kinematic properties of moving objects. Invariants can be used to describe the trajectory,
velocity, and acceleration of an object as it moves through space, providing insights into its physical behavior.
Moreover, it can be used to construct mathematical models of moving systems, which can be used to design
and optimize complex engineering systems. The invariants of a one-parameter spatial movement can be used
to characterize the geometry of ruled surfaces, such as their curvature and torsion. This relationship between
invariants and ruled surfaces has important applications in fields such as computer graphics and architecture.
Throughout the spatial movement of two rigid bodies, the instantaneous screw axis (ISA) changes its position
and ownerships and traces two various but connected ruled surfaces named the fixed axode in the fixed body
and the moveable axode in the moveable body. Throughout the movement, the axodes roll and slide relative to
each other in a specific way such that tangential contact between the axodes is constantly preserved through
the entire length of the two mating rulings (one in each axode), which together locate the ISA at any instant. It
is great that not only does a special movement give height to a unique set of axodes, but that the converse also
applies. This shows that if the axodes of any movement are known, the given movement can be reconstructed
without studying the physical elements of the mechanism, their organization, specific dimensions, or the
procedure by which they are constructed [1-3].
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The utility of axodes is well-known from the work of Garnier [4] who extensively studies the kinematic
ownerships of the relative instantaneous movement generated by the axodes up to the second order. Expres-
sions for the velocity and acceleration of points in the moveable body are gained, and special cases of move-
ment are investigated. In addition, he gave the Euler-Savary formulae for the spherical movement in Eucli-
dean 3-space. A method for locating ISA and determining its properties has been developed by Phillips and
Hunt [5]. Skreiner [6] modeled the average of change of the ISA by intermediary of a screw movement and
researched several special cases. Dizioglu [7] generalized the method of Euler-Savary for the construction of
the Disteli axis based on the local properties of the axodes. Abdel-Baky and Al-Solamy [8] provided a new
geometric and kinematic approach to one-parameter spatial movement based on information specifying the
movement of the axodes. There are various recent works in the literature dealing with ISA and the invariants
of the axodes [9-11]. Dual numbers were first introduced by W. Clifford, and after him, E. Study utilized them
as an instrument for his research on differential line geometry and kinematics. He gave special care to the
impersonation of directed lines by dual unit vectors and defined the mapping that is known by his name. The
E. Study map states that: The set of all directed lines in Euclidean 3-space is directly linked to the set of points
on the dual unit sphere in the dual 3-space [1-3]. It allows a perfect generalization of mathematical statement
for spherical point geometry to spatial line geometry by means of dual number extension, i.e., replacing all
ordinary quantities with the corresponding dual numbers quantities. There exists a vast literature on the
E. Study map including several monographs, e.g., [8-19].

In this article, based on E. Study map, the instantaneous invariants of the relative movement between two
dual unit spheres are utilized for deriving the velocity and the acceleration of point trajectories (dual curve).
The curvature possessions of line trajectories are obtained in terms of the invariants that describe the
kinematics of the relative movements of two rigid bodies. The invariants of a line trajectory and their
monarchies are derived from that of the axodes for a new proof of the Disteli formulae. Then by using
E. Study map, two line congruences that are the locus of dual points having specific trajectories, as well as
their special cases, examined in detail.

2 Elements of screw calculus

We begin with requisite concepts on dual numbers, dual vectors, and E. Study map (see [1-3] ): An oriented line
in Euclidean 3-space can be realized by a point a € L and a normalized direction vector X of L, i.e., (X, X) = 1.
To acquire components for L, one forms the moment vector X* = a x x with respect to the origin point in E3, If
a is substituted by any point f = a + tx, t € R on L, this shows that x* is independent of a on L. The two
vectors X and X" are not independent of one another and fulfill the following conditions:

(x,x) =1, (x,x) =0.

The six components x;, x; (i = 1,2, 3) of X and x* are named the normalized Pliicker coordinates of the line L.
Thus, the two vectors X and x* realize the oriented line L.

A dual number X is a number x + ex*, where x and x*in R and ¢ is a dual unit with assets that € # 0, and
€2 = 0. Then, the set:

D3 ={X = x + ex" = (3, %, %)},
together with the inner product
(X9) =X, + %9, + X3,
forms the dual 3-space D3. The norm of X is defined as follows:

(X", X)

1l

IXIl = lIx|l + € » [1x]l# 0.
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Hence, we write the dual vector X as a dual multiplier of a dual vector in the form
X = |IX]le,
where e is referred to as the axis. The ratio

x5, x)
lIx]?

is called the pitch along the axis€.If h = 0 and ||x|| = 1, X is a directed line; when h is finite, X is a proper screw;
and when h is infinite, X is called a couple. A dual vector with a norm equal to a unit is called a dual unit vector.
Hence, every directed line L = (x, x*) € E3 x [E® is represented by a dual unit vector

X=x+ex((x,x) =1, (X*,x) = 0).
The dual unit sphere in D?3 is
K ={X € D3|||R|? = X + X + X5 = 1}.

Then, we have the E. Study map: The set of all points of dual unit sphere in dual 3-space is in one-to-one
correspondence with the set of all directed lines in Euclidean 3-space.

2.1 One-parameter dual spherical movements

Let K, and Ky be two dual unit spheres with O as a common center in D3. We assume that {0;é;, ,, €3}, and

{0; %1, %2, %3} be two orthonormal dual frames rigidly linked to K, and K, respectively. If we let {O;ﬁ, %2, %3} be
fixed, whereas the elements of the set {O; €, &,, €3} are functions of a real parameter t € R (say the time).
Then, we may say that K ,, moves with respect to Ks. Such movement is called a one-parameter dual spherical
movement and denoted by K,,/K;. If K, and Ky correspond to the line spaces L, and s, respectively, then
Kn/Ks represents the one-parameter spatial movement L /L. Therefore, L, is the moveable space with
respect to the fixed space L; in E3. We shall also define a further dual unit sphere K, represented by the set
{0;1y, T, T3}, by the first-order instantaneous properties of the movement, which is defined below.

As we known, there is an instantaneous screw axis (ISA) for the one-parameter spatial movement L /L.
At any instant t € R, the ISA traces the moveable axode 7, in L, and the fixed axode 7y in L;. We take
Fi(t) = ri(t) + ery(t) as the ISA of the movement L /Ly and

. v B B
B(t) = 1ot) + exy(0) = 5+

i
ar

as the mutual central normal of two separated screw axes. A third dual unit vector is defined as £3(t) = 1y x .
This frame is named the relative Blaschke frame, and the congruous lines intersect at the common striction
(central) point S of the axodes 77; (i = m, f). The dual arc length dS; = ds; + eds;” of y(¢) isdS; = % dt = p(t)dt.
Since p = p + ep* contains only first derivatives of Fi(¢), it is a first-order property of the movement K ,,/Ky, in
particular its dual speed. We set dS = ds + eds* to indicate dS;, since they are equal to each other. The distribu-
tion parameter of the axodes is

_p_*zds*
He) = = g

(o))

Remark 2.1. In each position of the movement, the axodes have the ISA of the position in common, i.e., the
moveable axode contact with the fixed axode along the ISA in the first order at any instant ¢.
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Furthermore, the motion K,/K; is

B0 10 £ .
B|=[1 0 B|=a6) x|8) [E] @

where @;(8) = w; + ew = Py + T is the Darboux vector and y(§) = y + ey* is the dual geodesic curvature of
the axodes ;. The tangent of ¢(s) is given as follows:

3_2 = L()E(s) + U(S)ra(s). 0

The dual geodesic curvature y; = ), + &y’ is defined in terms of y, 4, and T; as follows:
Vi = v+ e - pyy) = det(®y, £, ). )
The Disteli-axis (curvature axis or evolute) of the axodes 7; is

~ ; ph+ 1
bi=bi+8h;=+= L

@l - jre1 ®

Let ¢ = ¢, + e be the radius of curvature between F; and b;. Then,

b; = AVi r+ Al I3 = cos@f‘l + sinﬁ-f'g, (6)
SRR RN R
where
§i =y + e - uy) = cotd,. ™
Thus, we conclude the equality:
Vi = ¥ = COLQ; — COLP,,. 8)

Itis a dual counterpart of a well-known formula of Euler-Savary from ordinary spherical kinematics [1-3]. This
dual version provides a relationship among the two axodes in direct contact and the kinematic geometry
corresponding to the instantaneous invariants of the one-parameter spatial movement I,/ ;. From the real
and the dual parts of equation (8), respectively, we obtain:

cot@y = Cot@y, = ¥ = Y )
and

o %

sin’¢,,  sin*¢,

=L = T = u(yy = Y- (10)

Equations (9) and (10) are new Disteli’s formulae for the axodes of the movement L ,/L ;.
Now let us assume that the relative Blaschke frame is fixed in K. Then,

| r
Kn/Ky @ [F3| = @ x |Ty, 1
T Is
where
O = af - Oy = O, (12)

is the relative Darboux vector ||@]| = @ = @ + @™ = ), + (T, + uy,) is the relative dual geodesic curvature. It
follows that w =y, -y, and w" =TIy - L - u(y, - ),) are the rotational angular speed and translational
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angular speed of the movement L /07, respectively, and they are both invariants in kinematics. Hence, the
following corollary can be given:

Corollary 2.1. For the one-parameter spatial movement I, /1L, at any instantt € R, the pitch of the movement is
given as follows:
w* rf - In
h(s)=—=—"—"—-4U (13)
w yf Vm

In this study, we neglect the pure translational movements, i.e., w* # 0. Moreover, we eliminate zero
divisors w = 0. Therefore, we shall study only non-torsional movements, so that the axodes are non-develop-
able ruled surfaces (1 # 0).

3 Kinematic geometry of a line trajectory

Through the movement L /L ; that, any fixed line X € I, generally, forms a ruled surface in the space Ly will
be denoted by (X) and its generator by X. Then, we can write

% [ateq i)
XB) =X, X = R| =%t x| T =T (14)
X3 X3+ EX; s
where
X+ xf+xi=1, s
XX+ XX, + XX = 0.
The velocity X’ and the acceleration X” of X fixed in K ,, respectively, are
R'=0 xX=0(-x; + ) (16)
and
X7 = 0T - (H0% + B0 + (RO — {0 — KOS an
Then,
X' x X" =01 - XDt + %BX]. (18)
The dual arc length dii = du + edu* of X(5) is
di = ||X’||d§ = @1 - X7 dS. (19
The distribution parameter of (X) is
Aw) = ‘3’; =h- 1’2";12. (20)
The Blaschke frame {O; X(5), /t\(§ ), 8(8)} is derived as follows:
R = X(3), t6) = ¥R, 86) = % x 1. (21)
Then,
X| (0 1 0)% X
%@=-1 0 X|t|=m@x|t| (22)
g] 0 —x 0jg g
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where @ = @ + ew” = ¥ X + g is the Darboux vector, and

. dx dx
X, =,

da’ da?

_ RO~ 5D + % )

¥ (@) =y+el - Ay) =det 5
Y@ =y+el-2y) o0 - 22

is the dual geodesic curvature of X(i1). The dual unit vectors X, /t\ and g match to three concurrent mutually
orthogonal lines in [E3, Their point of crossing is the central point ¢ on the ruling X. g($) is mutually perpendicular
toX(@) and X(& + dil) and is named the central tangent of (X) at the central point. The traces of the central points
is the striction curve. The line t is the central normal of (X) at the central point. The tangent vector of c(u) is

% =Tx + g (24)

Here, y(u), T(w), and A(u) are the curvature (construction) functions of (X). Furthermore, the Disteli-axis of (X)
is as follows:

b(il) = —= = === = cosp R +sing g, (25)
where ¢ = ¢ + £¢" is a dual angle (radius of curvature) between % and b. Hence, we conclude that

cotd = cotg - e¢*(1 + cot?¢) = 7 (@0). (26)

Thus, we have

1
(@) =k+ex' = J1+)2 =

simj;’
dg 1 dy
_ i —_
di ~ “1+jptda’

Pl

27

*

T(M)y=t+er =

H+

where K(i1) is the dual curvature, and 7(i1) is the dual torsion of the dual curve X(i1).

3.1 Disteli formulae of a line trajectory
It is readily seen from equation (16) that X’ is orthogonal to both @ and X. If 9 =9+ ed" is the dual angle
between @ and X, then we can write

%]l = @ sind. (28)

. . ~ o A . .
Then, there exists a mutual perpendicular m of r; and t (see Figure 1). Therefore, with the chosen sense of
rotation angles, one can write

% = cosdty + sindm. (29)
The dual angle = ¢ + e¢* among the dual unit vectors ¥; and t leads to
m = cos@r, + Sin@ts. (30)
Hence, we can write
% = cosdf; + sind (cos@T, + sin@ts), (3D

where the dual angles ¢ = ¢ + €9, =09+ e950< 0 <21, 0<9<m,and ¢, d* € R. This choice of coordi-

nates is such that a screw movement of angle ¢ about the ISA and distance ¢* along it caries I3 to be the
Ao - . . .

central normal t of X. Substituting equation (31) into equation (23), we have

sin@ 32)

7(@) = cotd + —
X O sin* ¢
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Figure 1: The line % and its Disteli-axis b.

or by combining it with equation (26), we obtain

sin@

cotg - cotd = (33)

@ sin?d

Equation (33) shows the relationship between the dual spherical curve X(&1) on K, which is corresponding to a
line trajectory, and its osculating dual cone, which is corresponding to its Disteli-axis at any instant (see Figure 1).
From the real and the dual parts, respectively, we obtain:

sing
to - cotd = , (34)
cotg - co w sin?
and
) 9* si 2
¢ = sin”¢ [(h + 29" cotd) sing — ¢* cos@] + y'sin g 35)

w sin?d
Equations (34) and (35) are new Disteli formulae for the one-parameter spatial movement IL /L s; the first
equation reveals the connection among the positions of the line X in the space L ,, and the Disteli-axis b. The
second one describes the distance from the line X to the Disteli-axis b. The striction point c(¢*, 9*) may be on
the ISA if 3" = 0, and on the Disteli-axis b if ¢* = 0. Note that the striction point is the origin of the relative

Blaschke frame, i.e., S =0, see Figure 1. This means that 3 = g (real const.) and 3" = ¢ (real const.).

4 Inflection and torsion line congruences

In this section, a method for determination of a line congruence is given by using dual vector calculus. Then,
analogous to both planar and spherical movements, the well-known inflection, and torsion curves are calcu-
lated on K. Consequently, two line congruences are introduced, and their geometrical-kinematical properties
are examined in detail.

Since €% = €3 = ...= 0, the Pliicker coordinates of X are:

X = cosd, x; = —9*sind,
X, = sind cos@,x, = 3* cosd cosp — @*sing sind, (36)
X3 = sind sing, x; = ¢* cosd sing + ¢* cosy sind.
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Let B(B,, B,, B;) indicate a point on X. Since X* = B x X, we have the system of linear equations in g; for i=1, 2, 3
(B; are the coordinates of B):

B,sind sing - B;sind cosp = x{, -f,sindsing + pycosd = x;, B, sind cosp - B,cosd = x3.  (37)

The matrix of coefficients of unknowns f,, f,, and f; is the skew symmetric matrix

0 sind sing -sind cosg
-sind sing 0 cosd |,
sind cos¢p  -cosd 0

and thus its rank is 2 with ¢ # 2k (k is an integer). The rank of the augmented matrix

0 sind sing -sind cosgp X
-sind sing 0 cosd X5
sind cosp  -cosd 0 X,

is also 2. Thereby, this system has infinite solutions given as follows:
B, sing - Bycosp = -9* B, = (B, - ¢*)tand cosg - 3" sing, Py = (B, - ¢*)tand sing + J" cosy. (38)
Since B, can be arbitrarily, then we may set 5, = ¢". In this case, equation (38) reduces to

1= 9", B, = ~9"sing, B3 = §" cosg. (39)
Let y (3;,Y,,Y;) denote a point on the oriented line X. We can write:

"+ vcosd
y(@, o*v) = |-0"sing + vsind cosp|, v ER, (40)
J* cosg + sind sing

which represents two-parametric family of oriented lines or a line congruence.

Definition 4.1. Throughout the motion K /Ky, the locus of dual points, whose trajectories have a vanishing
dual geodesic curvature in Ky, is called the inflection dual curve.

By definition, from equation (26), we have

)?(a)=0<=>cot¢3=0<=>¢=§, and ¢'=0oy=0, and T=0. @D

In this instant, the oriented lines X, /t\, and b are the Blaschke frame of (X). Further, from equation (33) the dual
points satisfying ¥ (1) = 0, we have

¢: @sin2d + 2sing = 0. (42)
The real part of equation (42) identifies the inflection cone for the spherical part of the movement L /Ly and is
given as follows:

€ : wsin2d + 2sing = 0. (43)

The intersection of the inflection cone with a real unit sphere centered at the apex of the cone defines a
spherical curve. There is a plane for every line direction of a line of the inflection cone, defined by the dual
part of equation (42):

7T w*sin2d + 2wd* cos29 + 2¢* cosg = 0. (44)
If equation (43) is solved with respect to ¢, we obtain

1
, and c0323=ia‘/w2—4sin2go. (45)

2sing

sin29 = -
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By substituting equation (45) into equation (44), we find
7 hsing F Jw? - 4sin@p 3" - ¢ cos = 0. (46)

Equation (46) is linear in the position coordinates ¢* and J* of the oriented line X. Therefore, for a one-
parameter spatial movementl /L s, the lines in a §iven fixed direction in L p,-space lie on a plane. As shown in
Figure 2, the angle ¢ identifies the central normal t, thus equation (46) defines two lines L* and L™ in the plane
spanned by t and the ISA (L* and L~ are corresponding to the inflection circle in planar kinematics). If the
distance ¢* along the central normal t from the ISA is taking as the independent parameter, then equation
(46) becomes
[12 — in2
Tt = ?wﬁ* + htane. 47)
cos¢

We remark that L* (or L7) will change its location if the parameter ¢ is defined as a various value, but ¢ =
constant. Meanwhile, the location of the plane 7 is changed if the parameter ¢ of L* (or L") has various value,
but = consent. Therefore, the set of all directed lines L* and L~ defined by equation (47) is inflection line
congruence for all values of (¢, 9*) (Figure 2).

Now it is simple to demonstrate a parametric representation of the inflection line congruence. For this
objective, from equation (43), we obtain

@ =sin™ [_w 312n219 , (48)
and by combining it with the real part of equation (36), we obtain
W : 1 .
x(®) = |cosd, /1 - Esm2 23| sind, —Ew sin29 sind|, (49)

which is the inflection curve of the spherical part of movementl ,,/ILs, where 0 < & < 77, with w = 1 (see Figure 3).
Furthermore, from equations (48), (49), and (40), we know that

" +vcosd

2
sind
, VER. (50)

,wsin2d N
y(@, 9", v) = 2

V1 - [% sin?29

2

91 - [% sin?29| - %w sin28 sind

This inflection line congruence composes of the ruled surfaces y(3, ¢*, v), ¢ = ¢* = t €R, y(J, (p(;‘, V), (pg =
constant, and y(Jy, ¢*, v), 9 = constant. If we choose w =1, J; =1, (p(;‘ = 0 for example, then equation (50)

4 X
[—] t
4/,’/ ~L /
&~ ¢
|
@' \®
v N 3

Figure 2: Lines of the inflection line congruence.
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Figure 3: Inflection curve.

Figure 4: Ruled surface.

represents a ruled surface in the inflection line congruence. The graph of the ruled surface is shown in Figure 4,
0<d<mand -2<v<2

Definition 4.2. Throughout the movement K ,,/Ky, the locus of dual points, whose trajectories have a vanishing
dual torsion on Ky, is called the torsion dual curve or circling point dual curve.

By Definition 4.2 and equation (27), we obtain the condition

0w ¥
T()=0e - 0 © y=const.and T - Ay = const. (51
In this instance, the line trajectories maintain the same dual angle $ with respect to the Disteli-axis b up to the
third order. Thus, locally, the ruled surface (X) is traced. Throughout a one-parameter helical movement of
constant pitch h along the constant Disteli-axis b, by the line X existing at a constant distance ¢* and constant
angle ¢ relative to b. This implies that the striction curve of (%) is a cylindrical helix. Then, the torsion dual

curve can be described by the following:

Theorem 4.1. Throughout the one-parameter dual spherical movement K /K, the dual curve X(i) € Ky has a
vanishing dual torsion iff ¥ (i) is constant.

Corollary 4.1. The ruled surface (X) has a constant Disteli-axis iff (a) y= constant, and (b) T - Ay = constant.
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Furthermore, from equations (27) and (32), we have:
+6[3cos§ sing + (@ - y)sind]cos@ - &’ sind sing

= @%2sin3 9
or by combining it with equation (51), we obtain
(@) = 0 © cotd = dcsch + b sec, (52)
where
&=a+8a*=}7;a, and B(u)=b+eb*=%. (53)
If equation (53) is solved with respect to the angle 3, then we obtain
9 = cot™ (dcscd + b secd). (54)
By a similar procedure, the spherical curve X(¢) can be expressed as follows:
! (a cscp + bseco, cosg, sing). (55)

x(p) =
\/1 + (acsco + bsecp)?
This parametrization defines the spherical part of the movement L/l ;. Fora = 1,b = 0.3, and 0 < ¢ < 27, the

curve is shown in Figure 5. Similarly, there are associated plane of lines with each direction of the torsion cone,
(56)

defined by
a‘csco + b*seco + @*(bseco tang — acsco coty) + d*c sec’d = 0.

Then, from equations (40), (55), and (56), we know that
v(acscy + bseco)

\/(acsup +bsecp)® +1
, Vv coso
-J*sing +
¢ J(acsco + bsecp)® +1 vER.
5 cosp + vsing
J(acsco + bsecg)? +1

(57)

y(9, o"v) =

Ifwetakea = ¢*=39"=1,b=0,0 < ¢ < 27,and -4 < v < 4, then we immediately obtain a ruled surface in the

torsion line congruence (Figure 6).

Figure 5: Torsion curve.
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Figure 6: Ruled surface.

5 Conclusion

In this study, we have utilized E. Study map as a direct method for analyzing the kinematic-geometry of one-
parameter spatial movement by exploring the properties of axodes and their similarity to spherical kine-
matics. We have also examined the invariants of a line trajectory and derived dual versions of the planar
Euler-Savary equation, resulting in several expressions that depend on the axodes. In addition, we have
investigated the theoretical expressions for the direction of a line congruence. These results have the potential
to broaden the use of geometric properties of ruled surfaces traced by lines embedded in spatial mechanisms.
Our results in this article can contribute to the field of spatial kinematics and have practical applications in
mechanical mathematics and engineering. Our future research will focus on exploring some applications of
our main discoveries. We plan to integrate concepts from singularity theory, submanifold theory, and other
relevant results (referenced in [20-36]) to investigate promising avenues within this article.
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