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Abstract: It is known that the Stirling numbers of the second kind are related to normal ordering in the Weyl
algebra, while the unsigned Stirling numbers of the first kind are related to normal ordering in the shift
algebra. Recently, Kim-Kim introduced a λ-analogue of the unsigned Stirling numbers of the first kind and
that of the r-Stirling numbers of the first kind. In this article, we introduce a λ-analogue of the shift algebra
(called λ-shift algebra) and investigate normal ordering in the λ-shift algebra. From the normal ordering in
the λ-shift algebra, we derive some identities about the λ-analogue of the unsigned Stirling numbers of the
first kind.
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1 Introduction

The Stirling number of the first kind ( )S n k,1 is defined in such a way that the unsigned Stirling number of

the first kind⎡⎣ ⎤⎦
( ) ( )= −

− S n k1 ,n
k

n k
1 enumerates the number of permutations of the set [ ] { }= …n n1, 2, 3, , ,

which are the products of k disjoint cycles.

The unsigned r-Stirling number of the first kind⎡⎣ ⎤⎦
n
k r

is the number of permutations of [n]with exactly k
disjoint cycles in such a way that the numbers … r1, 2, , are in distinct cycles.

In [1], Kim and Kim introduced a λ-analogue of the unsigned Stirling numbers of the first kind⎡⎣ ⎤⎦
n
k λ

and

that of the unsigned r-Stirling numbers of the first kind⎡⎣ ⎤⎦
n
k r λ,

, respectively, as a λ-analogue of⎡⎣ ⎤⎦
n
k and that

of⎡⎣ ⎤⎦
n
k r

(see (8) and (9)).
The Stirling numbers of the second kind appear as the coefficients in the normal ordering of the Weyl

algebra (see (10) and (11)), while the unsigned Stirling numbers of the first kind appear as those of the shift
algebra S (see (12) and (13)).

The aim of this article is to introduce the λ-shift algebra Sλ (for any �∈λ ), which is a λ-analogue of S
(see (14)), and to investigate the normal ordering of the λ-shift algebra. In addition, from the normal
ordering of the λ-shift algebra Sλ, we derive some identities about the unsigned λ-Stirling numbers of
the first kind.



* Corresponding author: Taekyun Kim, Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea,
e-mail: tkkim@kw.ac.kr
Dae San Kim: Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea, e-mail: dskim@sogang.ac.kr
Hye Kyung Kim: Department of Mathematics Education, Daegu Catholic University, Gyeongsan 38430, Republic of Korea,
e-mail: hkkim@cu.ac.kr

Demonstratio Mathematica 2023; 56: 20220250

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/dema-2022-0250
mailto:tkkim@kw.ac.kr
mailto:dskim@sogang.ac.kr
mailto:hkkim@cu.ac.kr


The outline of this article is as follows. In Section 1, we recall the λ-falling factorial numbers, the falling
factorial numbers, the λ-rising factorial numbers, and the rising factorial numbers. We remind the reader of
the unsigned λ-Stirling numbers of the first kind and the λ-r-Stirling numbers of the first kind. We recall the
Weyl algebra and the normal ordering result in that algebra. We remind the reader of the shift algebra and
the normal ordering result in that algebra. Finally, we define the λ-shift algebra as a λ-analogue of the shift
algebra. Section 2 is the main result of this article. We derive normal ordering results in Sλ in Theorems 1 and

2, where⎡⎣ ⎤⎦
n
k λ

and⎡⎣ ⎤⎦
+

+

n r
k r r λ,

appear, respectively, as their coefficients. We obtain three other normal ordering

results in Theorem 3. In Theorem 4, we obtain a recurrence relation for the unsigned λ-Stirling numbers of
the first kind. In Theorem 6, we obtain another expression of the defining equation in (8) in terms of the
λ-shift operator (see (30)). In Theorem 7, we show a λ- analogue of the dual to Spivey’s identity (see Remark
8). Finally, we conclude this article in Section 3. For the rest of section, we recall what are needed
throughout this article.

For any �∈λ , the λ-falling factorial sequence is defined by:

( ) ( ) ( ) ( ( ) ) ( ) ( )= = − ⋯ − − ≥ [ ]x x x x λ x n λ n1, 1 , 1 see 1,2 .λ n λ0, , (1)

In particular, the falling factorial sequence is given by:

( ) ( ) ( ) ( ( )) ( )= = − ⋯ − − ≥x x x x x n n1, 1 1 , 1 .n0 (2)

Note that ( ) ( )=
→

x xlimλ n λ n1 , .
For any �∈λ , the λ-rising factorial sequence is defined by:

( ) ( ( ) ) ( ) ( )⟨ ⟩ = ⟨ ⟩ = + ⋯ + − ≥ [ ]x x x x λ x n λ n1, 1 , 1 see 1,2 .λ n λ0, , (3)

Especially, the rising factorial sequence is given by:

( ) ( ( )) ( )⟨ ⟩ = ⟨ ⟩ = + ⋯ + − ≥x x x x x n n1, 1 1 , 1 .n0 (4)

Observe that ⟨ ⟩ = ⟨ ⟩
→

x xlimλ n λ n1 , .
With the notation in (2), the Stirling numbers of the first kind are defined by:

( ) ( ) ( ) ( )∑= ≥ [ ]

=

x S n k x n, , 0 see 3–6 .n
k

n
k

0
1 (5)

In addition, the unsigned Stirling numbers of the first kind are given by⎡⎣ ⎤⎦
( ) ( )= −

− S n k1 ,n
k

n k
1 , ( )≥n k, 0 .

The Stirling numbers of the second kind are defined by:

⎧

⎨
⎩

⎫

⎬
⎭

( ) ( )∑= ≥

=

x n
k

x n, 0 .n

k

n

k
0

(6)

Recently, with the notation in (1), the λ-Stirling numbers of the first kind, which are λ-analogues of the
Stirling numbers of the first kind, are defined by:

( ) ( ) ( ) ( )∑= ≥ [ ]

=

x S n k x n, , 0 see 1 .n λ
k

n

λ
k

,
0

1, (7)

In addition, with the notation in (3) the unsigned λ-Stirling numbers of the first kind are defined by:

⎡
⎣

⎤
⎦

( ) ( )∑⟨ ⟩ = ≥ [ ]

=

x n
k

x n, 0 see 1 .n λ
k

n

λ

k
,

0
(8)

Note that ( ) ( )=
→

S n k S n klim , ,λ λ1 1, 1 (see (5)); ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
=

→
limλ

n
k λ

n
k1 .

For � { }∈ ∪r 0 , the λ-r-Stirling numbers of the first kind, which are λ-analogues of the r-Stirling
numbers of the first kind, are defined by:

⎡
⎣

⎤
⎦

( ) ( )∑⟨ + ⟩ =

+

+

≥ [ ]

=

x r n r
k r

x n, 0 see 1 .n λ
k

n

r λ

k
,

0 ,
(9)
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Note that ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
=

→

+

+

+

+

limλ
n r
k r r λ

n r
k r1

,
, where⎡⎣ ⎤⎦

+

+

n r
k r are the r-Stirling numbers of the first kind, which are

introduced by Broder (see [7]) and given by (see (4))

⎡
⎣

⎤
⎦

( )∑⟨ + ⟩ =

+

+

≥

=

x r n r
k r

x n, 0 .n
k

n

r

k

0

The Weyl algebra is the unital algebra generated by letters a and a† satisfying the following commu-
tation relation:

( )− = [ ]aa a a 1 see 1,5,8–23 .† † (10)

Katriel proved that the normal ordering in Weyl algebra is given by (see (6))

( ) ( ) ( )
{ }

∑= [ ]

=

a a n
k

a a see 10,11,12 .n

k

n
k k†

0

† (11)

From the definition of the Stirling numbers of the second kind and (11), we note that

( ) ( ) ( ) ( ) ( )= = − ⋯ − + ≥a a a a a a a a a a n n1 1 , 1 .n n
n

† † † † †

The shift algebra S is defined as the complex unital algebra generated by a and a† satisfying the following
commutation relation:

( )− = [ ]aa a a a see 22 .† † (12)

A word in S is said to be in normal-ordered form if all letters a stand to the right of all letters a†.
From (12), we note that the normal ordering in the shift algebra S is given by (see (11))

( ) ⎡
⎣

⎤
⎦

( ) ( )∑= [ ]

=

a a n
k

a a see 22 .n

k

n
k n†

0

† (13)

For any �∈λ , we consider a λ-analogue of the shift algebra S, which is defined as the complex unital
algebra generated by a and a† satisfying the following commutation relation (see (12))

− =aa a a λa.† † (14)

The λ-analogue of the shift algebra S is called the λ-shift algebra and denoted by Sλ.

2 λ-analogues of normal ordering in the λ-shift algebra
Let Sλ be the λ-shift algebra defined in (14). A word in Sλ is said to be in normal-ordered form if all letters a
stand to the right of all letters a†.

In Sλ, by (14), we obtain

( ) ( )( ) ( ) ( ) ( )= = = + = + = ⟨ ⟩a a a a a a a aa a a λa a a a a λ a a a a ,λ
† 2 † † † † † † † † 2 †

2,
2

( ) ( )( )( ) ( )( )

( ) ( ) ( )( )

( )( ) ( )( )

= =

= + + = + +

= + + = + +

= ⟨ ⟩

a a a a a a a a a aa aa a
a λ a a λ a a a λ a aλ aa a
a λ a λa a a a a a λ a λ a
a a

2 2
.λ

† 3 † † † † † †

† † † 2 † † † 2

† † † 2 † † † 3

†
3,

3

Continuing this process, we have

( ) ( )= ⟨ ⟩ ≥a a a a n, 1 .n
n λ

n† †
, (15)

Thus, by (8) and (15), we obtain (see (7), (11), (13))
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( ) ⎡
⎣

⎤
⎦

( )∑=

=

a a n
k

a a .n

k

n

λ

k n†

0

† (16)

Therefore, by (16), we obtain the following theorem.

Theorem 1. In Sλ, the unsigned λ-Stirling numbers of the first kind appear as the coefficients of ( )a a n† in
normal-ordered form, as it is given by:

( ) ⎡
⎣

⎤
⎦

( )∑=

=

a a n
k

a a .n

k

n

λ

k n†

0

†

For ≥r 0, by (14), we obtain

(( ) ) (( ) )(( ) ) ( )( )

( )( ) ( )( )

+ = + + = + +

= + + + = + + +

= ⟨ + ⟩

a r a a r a a r a a r aa ra a
a r a a λa ra a a r a r λ a
a r aλ

† 2 † † † †

† † † † 2

†
2,

2

and

(( ) ) (( ) )(( ) )(( ) )

( ) ( )( )

( )( ) ( )

( )( )( )

( )( )( )

+ = + + +

= + + + +

= + + + + +

= + + + + +

= + + + + + = ⟨ + ⟩

a r a a r a a r a a r a
a r a a r λ r a a
a r λ r a a λ r a a
a r a r λ λa ra aa a
a r a r λ a r λ a a r a2 .λ

† 3 † † †

† † † 2

† † † 2

† † † 2

† † † 3 †
3,

3

Continuing this process, we have

(( )) ( )+ = ⟨ + ⟩ ≥a r a a r a n, 1 .n
n λ

n† †
, (17)

From (9) and (17), we obtain

(( ) ) ⎡
⎣

⎤
⎦

( )∑+ = ⟨ + ⟩ =

+

+

=

a r a a r a n r
k r

a a .n
n λ

n

k

n

r λ

k n† †
,

0 ,

† (18)

Therefore, by (18), we obtain the following theorem.

Theorem 2. Let r be a non-negative integer. In Sλ, the λ-r-Stirling numbers of the first kind appear as the
coefficients of (( ) )+a r a n† in the normal-ordered form, as it is given by:

(( ) ) ⎡
⎣

⎤
⎦

( )∑+ =

+

+

=

a r a n r
k r

a a .n

k

n

r λ

k n†

0 ,

†

From (14), we note that

( ) ( )

( ) ( )

( ) ( )

= = +

= + = + +

= + = ⋯= +

− −

− −

−

a a a aa a a λ a
a a a λa a a a λa a λa
a a a λa a mλ a2

m m m

m m m m

m m m

† 1 † 1 †

1 † 2 †

2 † 2 †

(19)

and

( ) ( )( ) ( ) ( )

( )( )( ) ( ) ( )

( ) ( )

= = +

= + = + = ⋯

= + = +

− −

− −

−

a a aa a λ a a a
λ a aa a λ a a a
λ a aa λ a a.

n n n

n n

n n

† † † 1 † † 1

† † † 2 † 2 † 2

† 1 † †

(20)

By (19), we obtain
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( ) ( )( ) ( ) ( )

( )( )( ) ( )( ) ( )

( )

= = +

= + = + +

= ⋯ = +

− −

− −

a a a a a a mλ a a
a mλ a a a a mλ a mλ a a

a mλ a .

m n m n m n

m n m n

n m

† † † 1 † † 1

† † † 2 † † † 2

†

(21)

Therefore, by (19), (20), and (21), we obtain the following theorem.

Theorem 3. For �∈m n, and ≠λ 0, we have in Sλ the normal orderings given by:

( ) ( ) ( ) ( ) ( )= + = + = +a a a mλ a a a a λ a a a a mλ a, , .m m n n m n n m† † † † † †

Now, we observe from Theorem 3 that

⎜ ⎟

⎜ ⎟

⎜ ⎟

( ) ( )( ) ⎡
⎣

⎤
⎦

( )

⎡
⎣

⎤
⎦

( ) ⎡
⎣

⎤
⎦

( )

⎡
⎣

⎤
⎦

⎛

⎝

⎞

⎠
( )

⎡
⎣

⎤
⎦

⎛

⎝

⎞

⎠
( )

⎛

⎝
⎜

⎡
⎣

⎤
⎦

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( )

∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

= =

= = +

=

=

=

−

+

=

= =

= =

− +

= =

− + +

=

+

= −

+ − +

a a a a a a a a n
k

a a

a n
k

a a a a n
k

λ a aa

a n
k

k
j

λ a a

n
k

k
j

λ a a

n
k

k
j

λ a a
1

.

n n

k

n

λ

k n

k

n

λ

k n

k

n

λ

k n

k

n

λ j

k
k j j n

j

n

k j

n

λ

k j j n

j

n

k j

n

λ

k j j n

† 1 † † †

0

†

†

0

† †

0

†

†

0 0

† 1

0

† 1 1

1

1

1

1 † 1

(22)

On the other hand, by Theorem 1, we obtain

( ) ⎡

⎣⎢
⎤

⎦⎥
( ) ⎡

⎣⎢
⎤

⎦⎥
( )∑ ∑=

+

=

+
+

=

+

+

=

+

+a a n
j

a a n
j

a a1 1 .n

j

n

λ

j n

j

n

λ

j n† 1

0

1
† 1

1

1
† 1 (23)

Therefore, by (22) and (23), we obtain the following theorem.

Theorem 4. Let �∈n j, with ≥n 0 and ≥j 1. In Sλ, the unsigned λ-Stirling numbers of the first kind satisfy the
following recurrence relation:

⎜ ⎟ ⎜ ⎟
⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

⎛

⎝

⎞

⎠

⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

⎛

⎝

⎞

⎠
∑ ∑

+

=

−

=

−

+

−

= −

+ −

=

+ −

n
j

n
k

k
j

λ n
j

n
k

k
j

λ1
1 1 1

.
λ k j

n

λ

k j

λ k j

n

λ

k j

1

1 1

For ≥n 1, by (15) and (17), we have the λ-analogues of Boole’s relations in the λ-shift algebra given by:

( ) (( ) )= ⟨ ⟩ + = ⟨ + ⟩a a a a a r a a r a, .n
n λ

n n
n λ

n† †
,

† †
,

Now, we define the λ-analogues of !n as (see (8))

( ) ( ) ⎡
⎣

⎤
⎦

( )∑! = ! = ⟨ ⟩ = ≥

=

n n
k

n0 1, 1 , 1 .λ λ n λ
k

n

λ
,

0
(24)

Note that ( ) ! = !
→

n nlimλ λ1 .
From (8) and (9), we note that

⎛

⎝

( ) ⎞

⎠
⎡
⎣

⎤
⎦

∑

!

−

−

=

!

=

∞

k
λt

λ
n
k

t
n

1 log 1 k

n k λ

n
(25)

and
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⎛

⎝

( ) ⎞

⎠
⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

∑

!

−

−

−

=

+

+ !

=

∞

k
λt

λ λt
n r
k r

t
n

1 log 1 1
1

,
k

n k r λ

n

,

r
λ (26)

where k is a non-negative integer.
Thus, by (25) and (26), we obtain

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

⎛
⎝

( )⎞
⎠

⎡
⎣

⎤
⎦

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

⎞

⎠
⎟

∑

∑ ∑

∑ ∑

+

+ !

=

− !

− −

=

⟨ ⟩

! !

= ⟨ ⟩

−

!

=

∞

=

∞

=

∞

=

∞

=

−

n
k

t
n λt k λ

λt

l
t m

k
t
m

n
l

n l
k

t
n

1
1

1
1

1 1 log 1

1

1 .

n k λ

n k

l

l λ l

m k λ

m

n k l

n k

l λ
λ

n

1,

0

,

0
,

λ
1

(27)

Comparing the coefficients on both sides of (27), we obtain

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

∑

+

+

= ⟨ ⟩

−

=

−n
k

n
l

n l
k

1
1

1 .
λ l

n k

l λ
λ1, 0

, (28)

From (9) and (28), we note that

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

⎛

⎝
⎜

⎡
⎣

⎤
⎦

⎞

⎠
⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∑ ∑ ∑

∑ ∑ ∑

⟨ + ⟩ =

+

+

= ⟨ ⟩

−

=

−

⟨ ⟩ = ⟨ ⟩ ⟨ ⟩

= = =

−

= =

−

=

−

mλ n
k

m λ n
l

n l
k

m λ

n l
k

m λ n
l

n
l

mλ

1 1
1

1

1 1 .

n λ
k

n

λ

k k

k

n

l

n k

l λ
λ

k k

l

n

k

n l

λ

k k
l λ

l

n

l λ n l λ

,
0 1, 0 0

,

0 0
,

0
, ,

(29)

Therefore, by (29), we obtain the following theorem.

Theorem 5. For ≥n 0, we have

⎛
⎝

⎞
⎠

∑⟨ + ⟩ = ⟨ ⟩ ⟨ ⟩

=

−
mλ n

l
mλ1 1 .n λ

l

n

l λ n l λ,
0

, ,

We note that

⎛
⎝

⎞
⎠

∑⟨ + ⟩ = ⟨ + ⟩ = !⟨ ⟩

→

=

−
m mλ n

l
l m1 lim 1 .n

λ
n λ

l

n

n l
1

,
0

For any �∈α , we define the λ-shift operator δλ
α by

( ) ( )= +δ f x f x λα .λ
α (30)

Then, we see that

− =δ x xδ λδ ,λ λ λ

where =δ δλ λ
1, and x denotes the “multiplication by x” operator.

In the λ-shift algebra Sλ, a concrete representation is given by the operators ↦a x† and ↦a δλ. From
Theorems 1 and 3, we note that

( )= +δ x x rλ δλ
r s s

λ
r

and

( ) ⎡
⎣

⎤
⎦

( )∑= ≥

=

xδ n
k

x δ n, 0 .λ
n

k

n

λ

k
λ
n

0
(31)
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Now, we observe from (30) and (31) that

( ) ⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

( )
∑ ∑= =

= =

+xδ e n
k

x δ e n
k

x e .λ
n x

k

n

λ

k
λ
n x

k

n

λ

k nλ x

0 0
(32)

By (8) and (32), we obtain

( ) ⎡
⎣

⎤
⎦

( )
∑= ⟨ ⟩ =

− +

=

e xδ e x n
k

x .nλ x
λ

n x
n λ

k

n

λ

k
,

0
(33)

In particular, for =x 1, we have (see (24))

( ) ∣ ⎡
⎣

⎤
⎦

( )( )
∑= = !

− +

=

=

e xδ e n
k

n .nλ x
λ

n x
x

k

n

λ
λ1

0
(34)

Therefore, by (33) and (34), we obtain the following theorem.

Theorem 6. For �∈n , in Sλ, we have

( ) ⎡
⎣

⎤
⎦

( )
∑= ⟨ ⟩ =

− +

=

e xδ e x n
k

x .x nλ
λ

n x
n λ

k

n

λ

k
,

0

In particular, for =x 1, we obtain

( ) ∣ ⎡
⎣

⎤
⎦

( )( )
∑= = !

− +

=

=

e xδ e n
k

n .x nλ
λ

n x
x

k

n

λ
λ1

0

From Theorem 6, we note that

( ) ∣ ( )( ( ) )
= + !

− + + +

=
e xδ e m n .x m n λ

λ
m n x

x λ1 (35)

On the other hand, by (31), we obtain

( ) ( ) ( ) ⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

( )

∑ ∑

∑ ∑

= =

= +

+

= =

= =

+

xδ xδ xδ m
j

n
k

x δ x δ

m
j

n
k

x x mλ δ .

λ
m n

λ
m

λ
n

j

m

λ k

n

λ

j
λ
m k

λ
n

j

m

λ k

n

λ

j k
λ
m n

0 0

0 0

(36)

From (36), we have

( ) ⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

( )

⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

( ) ( )

∑ ∑

∑ ∑

= +

= +

+

= =

+

= =

+ +

xδ e m
j

n
k

x x mλ δ e

m
j

n
k

x x mλ e .

λ
m n x

j

m

λ k

n

λ

j k
λ
m n x

j

m

λ k

n

λ

j k x m n λ

0 0

0 0

(37)

Thus, by (37), we obtain

( ) ⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

( )( ( ) )
∑ ∑= +

− + + +

= =

e xδ e m
j

n
k

x x mλ .x m n λ
λ

m n x

j

m

λ k

n

λ

j k

0 0
(38)

From (35) and (38), we have

( ) ( ) ∣

⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

( )

⎡

⎣⎢
⎤

⎦⎥

( ( ) )

∑ ∑

∑

+ ! =

= +

= ⟨ + ⟩

− + + +

=

= =

=

m n e xδ e
m
j

n
k

mλ

m
j

mλ

1

1 .

λ
x m n λ

λ
n m x

x

j

m

λ k

n

λ

k

j

m

λ
n λ

1

0 0

0
,

(39)

Normal ordering associated with λ-shift algebra  7



By Theorem 5 and (39), we obtain

( ) ⎡

⎣⎢
⎤

⎦⎥
⎡

⎣⎢
⎤

⎦⎥
⎛
⎝

⎞
⎠

∑ ∑ ∑+ ! = ⟨ + ⟩ = ⟨ ⟩ ⟨ ⟩

= = =

−
m n m

j
mλ m

j
n
k

mλ1 1 .λ
j

m

λ
n λ

j

m

λ k

n

n k λ k λ
0

,
0 0

, , (40)

Therefore, by (40), we obtain the following theorem.

Theorem 7. For ≥m n, 0, we have

( ) ⎡

⎣⎢
⎤

⎦⎥
⎡

⎣⎢
⎤

⎦⎥
⎛
⎝

⎞
⎠

∑ ∑ ∑+ ! = ⟨ + ⟩ = ⟨ ⟩ ⟨ ⟩

= = =

−
m n m

j
mλ m

j
n
k

mλ1 1 .λ
j

m

λ
n λ

j

m

k

n

λ
n k λ k λ

0
,

0 0
, ,

Remark 8. (a) Taking the limit as →λ 1, we see from Theorem 7 that

( ) ( ) ⎡

⎣⎢
⎤

⎦⎥
⎛
⎝

⎞
⎠

( )∑ ∑+ ! = + ! = ⟨ ⟩ ! [ ]

→

= =

−
m n m n m

j
n
k

m klim see 19 .
λ

λ
j

m

k

n

n k
1 0 0

This was discovered by Mező in [19], which is dual to Spivey’s identity (see [22,24,25]).
(b) As the identities in Theorem 7 are obviously symmetric in m and n, we obtain the following

symmetric identities:

⎡

⎣⎢
⎤

⎦⎥
⎡

⎣⎢
⎤

⎦⎥

⎡

⎣⎢
⎤

⎦⎥
⎛
⎝

⎞
⎠

⎡

⎣⎢
⎤

⎦⎥
⎛
⎝

⎞
⎠

∑ ∑

∑ ∑ ∑ ∑

⟨ + ⟩ = ⟨ + ⟩

⟨ ⟩ ⟨ ⟩ = ⟨ ⟩ ⟨ ⟩

= =

= =

−

= =

−

m
j

mλ n
j

nλ

m
j

n
k

mλ n
j

m
k

nλ

1 1 ,

1 1 .

j

m

λ
n λ

j

n

λ
m λ

j

m

k

n

λ
n k λ k λ

j

n

k

m

λ
m k λ k λ

0
,

0
,

0 0
, ,

0 0
, ,

3 Conclusion

In this article, as a λ-analogue of the shift algebra S, we introduced the λ-shift algebra Sλ, which is defined
as the complex unital algebra generated by a and a† satisfying the followig commutation relation:

− =aa a a λa.† †

The unsigned λ-Stirling numbers of the first kind⎡⎣ ⎤⎦
n
k λ

and the λ-r-Stirling numbers of the first kind⎡⎣ ⎤⎦
+

+

n r
k r r λ,

were introduced, respectively, as a λ-analogue of the unsigned Stirling numbers of the first kind and a
λ-analogue of the r-Stirling numbers of the first kind. We showed that those numbers appear as the
coefficients in the following normal ordering results in Sλ:

( ) ⎡
⎣

⎤
⎦

( ) (( ) ) ⎡
⎣

⎤
⎦

( )∑ ∑= + =

+

+

= =

a a n
k

a a a r a n r
k r

a a, .n

k

n

λ

k n n

k

n

r λ

k n†

0

† †

0 ,

†

In addition, from those normal ordering results, we derived some properties about the unsigned λ-Stirling
numbers of the first kind.

There are various methods that can be used to find some results on special numbers and polynomials.
These include generating functions, combinatorial methods, umbral calculus, p-adic analysis, differential
equations, analytic number theory, probability, statistics, operator theory, special functions, and mathe-
matical physics.

It is one of our future projects to continue to explore various λ-analogues and degenerate versions of
many special numbers and polynomials with these tools.
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