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Abstract: Fractional Hahn boundary value problems are significant tools to describe mathematical and
physical phenomena depending on non-differentiable functions. In this work, we develop certain aspects of
the theory of fractional Hahn boundary value problems involving fractional Hahn derivatives of the Caputo
type. First, we construct the Green function for an ath-order fractional boundary value problem, with
1< a < 2, and discuss some important properties of the Green function. The solutions to the proposed
problems are obtained in terms of the Green function. The uniqueness of the solutions is proved by various
fixed point theorems. The Banach’s contraction mapping theorem, the Schauder’s theorem, and the
Browder’s theorem are used.
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1 Introduction

Recently, the Hahn calculus and fractional Hahn difference equations have gained much attention. The
Hahn calculus (also called g, w-calculus) can be dated back to 1949, Hahn’s work [1]. Based on the frac-
tional Hahn calculus, the fractional Hahn difference equations were established that can describe some
physical processes appearing in quantum dynamics, discrete dynamical systems, discrete stochastic pro-
cesses, and many others. Here, one should point out that the Hahn difference equations are usually defined
on a time scale set I, ,, with g, ,(t) = gt + w being the scale index. The Hahn difference operator is defined
by [1]:

flgt + w) - f(B)

D, t) =
2.0 f(©) qt+w -t

t # wo.

We note that this operator is combined from the well-known operators: the forward difference operator and
the Jackson g-difference operator.

Dq,a)f(t) =A7,f(t) forg=1,
Dywf(®) =Dy f(t) for w=0,
Dywf@®)=f'(t) forg=1w— 0.
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With the development of the Hahn calculus theory, some related concepts and results have also been
introduced and studied, such as the theory of linear Hahn difference equations, Leibniz’s rule and Fubini’s
theorem associated with Hahn difference operator, and g, w-Taylor expansion [2-8] (see [9-14] for more
details on Hahn and fractional Hahn difference equations). Up to now, compared with the classical frac-
tional differential equations, the study of the fractional Hahn difference equations is still immature. At
present, the literature have many studies on the existence and uniqueness of solutions of fractional Hahn
difference boundary value problems. In [10-13], the Banach’s fixed point theorem and the Schauder’s fixed-
point theorem are used to prove the existence and uniqueness results of Caputo fractional Hahn difference
boundary value problems for fractional Hahn integro-difference equations. In [11], the authors studied a
nonlocal Robin boundary value problem for the fractional Hahn integro-difference equation. The existence
and uniqueness results were proved by using the Banach’s fixed point theorem and the Schauder’s fixed
point theorem. More recently, nonlocal fractional symmetric Hahn integral boundary value problems for the
fractional symmetric Hahn integro-difference equation were studied in [12].

In this work, we are going to gain further insight into the theorem of fractional Hahn difference
boundary value problems. Mainly, we consider the following Caputo fractional Hahn difference boundary
value problem:

(1.1)
y(wo) = d(y), y(T) =P(y),

wherea € (1,2],q € (0, 1),w > 0,17, = {g"T + w[k], : k € No} U {wo}, withw, = ﬁ and¢, Y : CUJ ,,R) —
R being given functionals. We aim to study the existence and uniqueness of the solution to Problem (1.1)
by using the Banach’s fixed point theorem and the existence of at least one solution by using the
Browder’s and the Schauder’s fixed point theorems. This work is organized as follows: Section 2 provides
some basic definitions and relevant results on the Hahn and fractional Hahn calculi. In Section 3, we
study the existence of solutions of Caputo fractional Hahn difference boundary value problems. Section 4
is devoted to the uniqueness of the solutions by using various fixed point theorems. Finally, illustrative
examples are given in Section 5.

{CD;‘,wy(t) = nt, y(0), tell,

2 Preliminaries

In this section, we present some basic definitions and notations for the g, w-calculus (see [1-3,5-8,13]). Let
q € (0,1) and w > 0 and define the g-analogue of both the integer n and the factorial

-1

= = n-1 e | .— T 1 - qk
[n]g : qvl+-+qg+1, [n]!: | |
k=114

, neN

(see [15,16]). The g, w-forward jump operator and the g, w-backward jump operator are defined by:
Og0(t) =qt + w

and

t-w
pq,w(t) = T’ te Ra

respectively. The kth-order iteration of g, ,(t) is given by:
0f () = gt + wlk]y, t € R,

For a, b € R, the g-analogue of the power function (a - b)g withn € Ng := {0, 1, 2, ...} is defined by:
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n-1
(a-b)y=1, (a-b)j=]]a-bg"), neN.
k=0

The g, w-analogue of the power function (a - b)g , with n € Ny is defined by: (see [9,10,13])

n-1
(a - b)g,w =1, (a- b)g,w = H[a - O'(;(,w(b)] nenN.
k=0
In general, for @ € R, we have
LT 1= (bagr
(a - b)g—a“gw,a +0,
11— [(b - woMa — wy)lg" w
a- b Gw = a- “ , a + ’ =
@b = - e[ [T, i —aglgre ©F 9 @ =T,

Note that a; = a® and (a - wo)g, = (@ — wp)*. We use the notation (0)§ = (0)g, =0 for a > 0. The
g-gamma function is defined as [16]:

-
a-qrv

For a, b € R with a < wg < b, we define the g, w-interval by:

[(x) = x € R\{0, -1, -2, ...}.

Ig = [a, blgw = {g*a + wlkly : k € No} U {g*b + w[k], : k € No} U {wo} = [a, Wolg, U [wo, blg,u-

It is clear that for t € [a, b, ., the sequence {g; ,()};2 o uniformly converges to wo.
Also, we consider

IqT,w = I(}‘fﬁjT = [wo, T]q,w-

From now, I is a closed interval of R containing w,.

Definition 2.1. [1,3,8] For any function f: I — R, the Hahn difference operator is defined by:

fgt + w) - f()

gt ot t + wo, (2.1)

Dq,w f(t) =

Dy f(wo) = f'(wo) provided that f is differentiable at w, in the usual sense. We call D, f the g, w-deri-
vative of f and say that f is q, w-differentiable on I.

The nth g, w-derivative, n € N of a function f: I — R is given by:
Dy of (t) = Dgu(DyJf (1)),
provided that D} ,f (¢) is g, w-differentiable on I and D} ,f(t) = f(t).

Lemma 2.1. [6] Let f,g : I , — R be q, w-differentiable at t € I ,.. Then,

(1) Dg,o(f + 8)t) = Dy f(t) + Dg,08(0),

(it) Dg,w(f8)(t) = Dg,o(f(£))8(t) + f(0g,6(t))Dg,w8 (L),

(iif) For any constant ¢ € R, Dy ,(cf)(t) = cDg o(f(1)),
f )(t) _ Dyu(f(0)2(t) — F(O)Dg08(6)

g 8()g(04,0(1))

(iv) Dq,w( provided that g(t)g(0,,.(t)) # 0.
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Lemma 2.2, [3] Forn e N, a, € R
n-1
(@ Dyuat+pyr=a (agt+w) + Bkat + -1,
k=0

n-1
(b) Dyu(at+B)™=-a) (a(gt + w) + By (at + )+,
k=0
provided that (a(qt + w) + B)(at + B) # O.

Lemma 2.3. [9] Lett € I] , and a, B € R. Then,

(@ Dot - P)fo = [alg(p, () - P53,
(b) Dq,m(ﬂ - t)g,w = _[a]q(ﬁ - t)%-

Definition 2.2. 3,8, 9] Let I be a closed interval of R containing a, b, and wy. If f : I — R is a function, we
define the g, w-integral of f from a to b by

jf(t)dq,wt = jf(t)dq,wt - jf(t)dq,wts

Wo Wo

where

ff(t)dq,wt = (x(1 - @) - w) Y g (0 ,(xX)), x €1,
k=0

Wo

provided that the series converges at x = a and x = b.

Lemma 2.4. [8] Let f,g:I — R be q, w-integrable functions on I, k € R, and a, b,c € I witha < c < b.
Then,

(M) jf(t)dq,wt:o,
ab b
(if) jkf(t)dq,wt —k j F(O)dgn
ab aa
(iid) jf(t)dq,wt - —jf(t)dq,wt,
Z cb b
(iv) jf(t)dq,wt= j FO)dg.t + jf(t)dq,wt,
ba ‘ b ‘ b
W) j(f(t)+g(t»dq,wt= jf(t)dq,wn j g(O)dg.ut.

Lemma 2.5. [3,8,9] Let f : I — R be a continuous function at wy. Define

FOO = [fOdgat.

Wo

Then, F is continuous at wy. Furthermore, D, ,F(x) exists for every x € I and
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Dy oF(x) = f(x), x e L.
Conversely,

[Prof©dgut=1®) - 1@, forataper

Lemma 2.6. [3,8] If f,g : I —» R are continuous at wy, then

b
If(t)Dq,wg(t)dq,wt = f(Hg®)g - _[Dq,w(f(t))g(qt +w)dgot, a,b el

Next, we are going to present some basic notations for the fractional Hahn calculus. For more details
one can refer to [9-14].

Definition 2.3. Fora, w > 0,q € (0,1), and f: IqT, » — R, the fractional Hahn integral is defined by

T2 f(t) = rqga) J(t O (5)dg 0
-l ‘r?;)‘ 1 S gn(e - or e (on o (0)
q n=0
and (29, .F)(0) = F(O).

Lemma 2.7. Fora,3 >0, peN,a e qw,andf » — R, we have

(i) I§.075.f(D]= Iq,w[fg,wf(t)] Tguf@®),

i) 79D (O] = DTS 0] - § 9™ p i)
Lo Eatl STla-p+k+1) * o

(i) I(t Oy (ST f(S)dgs = O.

Wo

Definition 2.4. Fora, w > 0, g € (0,1),and f: [

q » — R, the fractional Hahn difference operator of Caputo
type of order a is defined as:

DS f () = (TNDN () =

(N j(t O o SDYZEIDYN £ (5)dy 08
q
and “D?,f(t) = f(t), where N-1<a <N, NeN

Lemma 2.8. Fora, w >0, q € (0,1),and f: I' , - R,

DS I8 f(6) =f(O).

Lemma 2.9. Fora,w >0, g€ (0,1),and f: I, , > R,
t-w
78 D2 () = £(8) - z ' T 01)) K o (@o),
where N-1<a <N, NeN.
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Thus, the following results can be proved.

Lemma 2.10. Let a, w > 0, q € (0, 1), and f be a function on I w Then, the function
y(t) = Ig.f()

is a solution of the following Caputo-type fractional Hahn initial value problem

Dyt =f®), tell, .
Dfywo)=0,  k=0,1,2,..,N-1. :
Proof. Setting
z(t) = I f(b). 2.3)

By using Definition 2.3 and Lemma 2.7, we obtain
D;(ywz(t)h:wo = D(;(,w[]g,wf(t)]lt:wo =0, k=0,1,2,...,N-1.

Therefore, z(t) satisfies the initial conditions in (2.2). Consequently, from Lemma 2.8 z(t) = I ,f(t) solves
the initial value problem (2.2). O

In the following lemmas, we present the solvability of linear forms of Problem (1.1). These results play a
serious role in sequel investigations.

Lemma 2.11. Let a € (1, 2), t € I . The function

yi®) = p(y) + —— lP(y) 0169 (2.4)

satisfies the following fractional boundary value problem (FBVP):

Cna _
Dy oy(®) =0 2.5)
y(wo) = ¢(y),  y(T) = P(y).
Proof. From [9, Corollary 5.1], the solution of equation (2.5) can be written as:
y(£) = co + gt — wo). (2.6)

From the first condition y(wo) = ¢(y), we have cy = ¢(y). From the second condition y(T) = y(y), we
obtain

q =

- L 1w - o).
o

By substituting the values of ¢y and ¢ in equation (2.6), we obtain (2.4). (|

Lemma 2.12. Let a € (1, 2), t € I .. The function

T
j(r G S)EI(S)dy S

y(t) = ¢<y)+ L 900 - 90) + -
[y(a) J

(2.7)

t
— l _ a-1
T,(a) _[(t 0g,0(8)2ah(8)dg, 05

satisfies the following FBVP:
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Cna _
Dy ,y(®) = -h(t), 1<a<2, 2.8)
y(wo) = d(y), y(T) = P().
Proof. Equation (2.8) has a solution
y(t) = co + alt — wo) — Ig,h(t). (2.9)

From the first boundary condition y(wo) = ¢(y), we have co = ¢(y). The second boundary condition
y(T) = Y(y) yields

1 1
G = m Y(y) - ¢(y) + Fq( )

j(T O o S)EIR(S)dy 5 |-

By substituting the values of ¢y, and ¢ in equation (2.9), we directly arrive at Conclusion (2.7). O

From (2.7), we have

t
! a-1
m I(T 0g,0(S)Eah(s)dg,uS — @ I(t — 04, w(8)22h(s)dg, 05

j(T 0y ()& dy o5 + j(T 0y o )EI(S)dy o5

i m m
) Fq(la) j (8 o0l h(dy s (2.10)
mja O o(SNEIR(S)d g 5.

Now, we define the Green function as follows.

Lemma 2.13. The Green function for FBVP

CD,’;’wx(t) =-h(t), l1<a<2, tel], o)
x(wg) =0, x(T)=0 ’
is given by:
(t- CZ;)(T —)t;;,(m(;))z,;} (t- (17:1,(14)(;) bo wo<s<t,
- wo)T,(a «
Graults $) = e ! (2.12)
(t = woX(T = 04,0(8))gw
s t<s<T.
(T - wo)ly(a)
Lemma 2.14. Let a € (1,2), te I ,, and h : I] , — R. The function
YO =20 + [ Gyt ()05 @)

Wo

satisfies the following FBVP:
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DE y(t) = ~h(D),
y(wo) = p(y), y(T) =),

where Gy ,(t, s) is defined by (2.12) and z(t) is a solution to FBVP

Ds ,z(t) = 0,
z(wo) = P(2), z(T) = P(2).

Proof. Applying Lemmas 2.11 and 2.12 to obtain the desired result.

3 Properties of a Green’s function

In this section, we study some propetties of the Green function G ,(t, s) defined by (2.12).

DE GRUYTER

(2.14)

(2.15)

Proposition 3.1. Let G, ,,(t, s) be Green’s function given in (2.12). Then, G, ,(t, s) = O for each s € I; pandais

closed to 2.

Proof. From (2.12), we define the functions

(t — wo)(T - Uq,w(S))Z,—?,} (t- Uq,w(s))g,;(&

t,s)= _
&(t:s) I,@)(T — wp) I,(@)

(t — wo)(T - oq,w(s) 3,77(3
L (a)(T - wo)

s(t,s)= , t<s<T.

(i) First for wy < s < t,

(t = wo)T - 040(Ngw  (t — 04,050

S T w0y L@

1 (t = wo)(T - 04,0()5s — (T = wo)(t — 0g,(S))

V) (T - wo)

It is sufficient to show that

(t — wo)(T - 04,u(8)5

1.
(T~ w0t - Gpu&)i

Since
1- (oq,w(S)—wo
_ a=1_ _ a-1 T-wo
T Uq’w(s))q’w =(T - wo) 1:!)1 _ [ 9%g.0(8) - wo
nz T - wo
1- (m
= (T - wo) [ —
o (e
T*(J)o
and

1-
(t - Gq,m(S))Z,;J =(t- (UO){X_IH

S —wo
t—wo

S — W
nBOl—( 0
t-wo
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then

S — W S — W
(¢ - wo)(T - Ogu(SNE (T _ wo )“ - (et 1= ()
(T - wo)(t — UQ,w(S))% 0l — (;*:’)Z)qwrn 1- (j‘j}’g)qml

- (T - wo) [T 00 =6 - wg™  (E- wo) = (s - wo)g™

t - wo oo (T = wo) = (s = wo)g™™  (t — wo) — (s — wo)g"™!’

We have two cases: Case (1) a — 2
(t - wo)(T - 04.0(S))5a 1
T- -(s- >1
T wot — o 1 0 = el

Then, g(t, s) = 0, and hence, G, ,(t, s) 20, forwy <s <t<T,anda is closed to 2.
Case Q) a — 1

(t — wo)T - 00(Ns%  t- wo

— <1,
(T - wo)(t - oy, w(s) o 1 T - wo
i.e.,
gl(t) S) <0.
(ii) Second fort <s < T,
t — wol(T = 0, ,(5))%=2 _
gz(t, S) _ ( 0)( q,w( ))q,(u _ (t a)()) (T _ Uq,m(S))%
L(a)(T - wo) Ly(a)(T - wo) '
Since
(‘Tq w(8) = wO)
(T - 04.u())& = (T - wo)* [ | .
n=01 — ( ()~ wo)qa 1+n
T-w
1- (S ﬂ’o) n+1
S e i
ol — (ﬂ)qUHH
- T—(Uo
_ _ _ n+1
— (T - wor [ (T - wo) = (s — wo)g"™™ _
oo (T — wo) — (s — wo)g™™"
then g,(t, s) > 0. Therefore, G, ,(t,s) > 0, fort <s < T. O

Proposition 3.2. For the function Gy .(t, s) defined by (2.12), the following relation holds true:

_ (t_ wO) _ a-1 _ a-1
j|Gq,w(t,s)|dq,ws——rq(a+1)[(r W) + (t - wo)™1]. 3.1)

Wo
Proof. From (2.12), we find

(t — wo)
(T - wo) Ty(a)

t
j(t GO (B2)

1
G, (t, s)|d,; oS =
j| 2ot $)ldg.o @
Wo

Wo

j(T O S)Edy 05 +

By [9, Lemma 3.1], we obtain
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T
1 - (T - wo)* _ (T - wo)*
T - 0, ,(S)&2d, s = = )
L@ I (= Gl awdans = =m0 = Tas D 3:3)
Wo
and
t
1 - (t — wo)* _ (t - wo)*
t — 0, o(8)%2d, 45 = = . )
T,() j (6= 90.0N0dgw al(@) T a+1) (34)
Wo
Substituting from (3.3) and (3.4) into (3.2), we have
T
(t — wo) (T — wo)* | (t - wo)”
G, ,(t, s)|d =
I' aolb Maws = S Tar ) L+ 1)
Wo
1
=—[(t - wo)(T — wp)* ! + (t — wy)*
Fq(a 1) [( 0)( 0)* !+ ( 0)“]
(t - wO) -1 -1
=— (T - wo)* " + (t — wo)* ],
L@+ 1) [ 0) ( 0)* '
which completes the proof. O
In the following result, we find the maximum of E |Gy,0(t, S)dg,wS.
0
Corollary 3.1. Forq € (0,1) and 1 < a < 2, we have
T
(T = wo)*
Gy0(t, s)|d < 2—="r, .
max II 7.0(ts $)ldg,uS IS (3.5)
Wo

where G, (t, s) is defined by (2.12).

4 Existence and uniqueness results

4.1 Existence of at least one solution

In this section, we prove the existence of at least one solution to Problem (1.1) by applying the Schauder’s
fixed point theorem and a special case of Browder’s fixed point theorem.

Lemma 4.1. (Schauder’s fixed-point theorem) [17] Let M be a nonempty, closed, bounded, convex, subset of a
Banach space X, and suppose that T : M — M is a continuous operator. Then, T has a fixed point.

The following theorem is an application of the Schauder’s fixed point theorem.

Theorem 4.1. Let h: Iqu » XR = R be a continuous function in the second variable, 1 < a <2, and
max;. Iqu|Z(t)| < M for some M > 0, where z is the unique solution to the FBVP

{CDg’wz(t) =0,
z(wo) = P(2), z(T) = P(2).
Then, the nonlinear FBVP (1.1) has a solution provided that

(t - wo) I« M

———[(T - wo)*™! - (t - wp)* ] < —,
L@+ 0) ( )] -

where ¢ = max{|h(t, w)| : wo <t < T,u € R, |u| < 2M}.
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Proof. Let S be the space of all real-valued functions defined on It{ »- Then, we define a norm ||.| on S by
lyll = maxte,qrwly(t)L So that the pair (S, |. ||) is a Banach space. Let K ={y € S : |y| < 2M}. Then, K is a

compact convex subset of S. Next, define the mapT: S — S by

T
Ty(t) = z(t) + I Garolts (S, Y()dgos, € IT,. 1)

Wo

Lemma 2.14 shows that (4.1) is equivalent to (1.1). Therefore, Problem (1.1) has a solution if and only if the
operator T defined by (4.1) has a fixed point. To do so, we need only to show that T is a continuous operator
from K into itself. First, we show that T maps K into itself. For ¢t € Ii vandyek,

T
ITy(O)] = |z(t) + J.Gq,(u(t: $)h(s, y(s))dg,os

Wo

T
<2 + qu,ma, (S, Y(5))dgus

Wo

T
<M+ j|Gq,w<t, SIS, y()Idg.05

Wo

T
<M+c IIGq,w(t, S)|dg,wS

Wo

(t - wo) a1 (4 a
<M+Cm[(T—wo) V- (t - wo)* ]

<M+cM
c
< 2M.

Now, we will show that T is continuous on K. Let € > 0 be given and assume that
T
l .= max Ile’w(t’ S)|dg,wS.
tell,
Wo

Since h is continuous in its second variable on R, h is uniformly continuous in its second variable on
[-2M, 2M]. Therefore, there exists § > 0 such that for all ¢ € I; » and for all u, v e [-2M, 2M] with
|(¢t, u) — (¢, v)| < 8, we have |h(t, u) — h(t, V)| < ? Thus, for all ¢ € IqT,w, we have

T T
ITy(t) - Tx(t)] = qu,w(r, (S, Y(5))dg.uS - jaq,m(t, (S, X(5))d .05

Wo Wo

T
< Ile,w(t9 $)I1h(s, y(s)) — h(s, x(s))ldg,us

Wo

T
<< leq,w(t, $)dgs < .

Wo

Then, for t € [wo, Tly,», we have [|[Ty(t) — Tx(t)|l < . This shows the continuity of T on K. Hence, T is a
continuous map from K into itself. Then, T has a fixed point in K. O

Lemma 4.2. (A specific case of Browder’s theorem). [17] Let S be a Banach space andT : S — S be a compact
operator. If T(S) is bounded, then T has a fixed point.
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As an application of this lemma, we will prove the following result on the existence of a solution to
FBVP (1.1) under a strong assumption on h.

Theorem 4.2. Let h : I[{ » X R = R be a continuous function in second variable and be bounded, and let
max;. Iqu|Z(t)| < M for some M > 0. Then, the nonlinear FBVP (1.1) has a solution.

Proof. Let S be the space of all real-valued functions defined on I‘i »- Then, the pair (S, ||.])) is a Banach
space. Define the operator T as in (4.1). It is easy to see that the operator T is compact. Next, we shall show
that T(S) is bounded. Since h is bounded, then there exists m > 0 such that for all € IqT’ » and for all

u € R, |h(t,u)] < m. Thus, foranyy € Sand t € IqT,w, we have

T
ITy()] = | z(t) + jcq,w<t, SIA(S, Y(5))dg.05
r

<l2(®)] + f 1Gy.olt, SIS, Y(S))dg.05

Wo

T
<lz(®)] + m j 1Galts $)dgas

Wo

T
< max|z(t)| + m max Jle,w(t, S)ldg,wS
tell, tell,

Wo

Therefore, T is bounded on S. Then, T has a fixed point. |

In the next section, we prove the uniqueness result for Problem (1.1) by applying the Banach’s fixed
point theorem.

4.2 Existence of a unique solution

Lemma 4.3. (Contraction mapping theorem) [17] Let (X, |. |) be a Banach space and T : X — X be a
contraction mapping. Then, T has a unique fixed point in X.

Applying the aforementioned lemma helps to prove the following theorems.

Theorem 4.3. Let h : IqT, » X R = R satisfy a uniform Lipschitz condition with respect to its second variable,
i.e., there exists K > O such that for all t € I; wandu,v eR,

|h(t, u) — h(t,v)| < KJu - v|.

T(a+1)

If (T — wo)* < ©» then the nonlinear fractional Hahn boundary value problem (1.1) has a unique solution.

Proof. Let S be the space of all real-valued functions defined on IqT, »- Then, we define a norm ||. || on S by
lyl = max,, ,qrwly(t)l. So that the pair (S, |. ||) is a Banach space. Now, we define themapT : S — S asin (4.1).

From the equivalence between (4.1) and (1.1), it is enough to prove that T is a contractive mapping. Observe
forallt € I] , and for all x,y € S that
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T
ITy(t) - Tx(t)ll = I[IEIIHTXI I Gy,u(t, S)[A(s, y(s)) — h(s, x(s))ldgus|

T
< max j 1Gy.ult, SIS, Y(S)) — h(s, x(5))|dg05
q,w
Wo

T
<Kly - xImax [1Gya(t, ldgs
q,w

Wo
T — wp)*®
<Kly - x L2
[f(a + 1)
<yly = xl,
where y = % < 1 by the assumption. Therefore, T is a contraction mapping on S. Therefore, T has a
unique fixed qpoint in S. O

Theorem 4.4. Let h : I; » X R — R satisfy a uniform Lipschitz condition with respect to its second variable,
i.e., there exists k > O such that for all t € IqT,w andu,v € R,

|h(t’ u) - h(t’ V)l < k|u - Vly
and the equation
“D§ y(t) + ky(t) = 0

has a positive solution u. Then, the nonlinear fractional boundary value problem (1.1) has a unique solution.

Proof. If the equation CD,‘;,wy(t) + ky(t) = 0 has a positive solution, it follows that u(t) is a solution to FBVP

DE y(b) = —ku(t),
y(wo) = p(w), y(T) = Pp(u),

where ¢(u) = u(wp) and P(u) = u(T). Then, according to Lemma 2.14, we have

T
u(t) = 2(6) + k I Gorolt, SU(S)dg.05,

Wo
where G ,(t, s) is the Green function defined by (2.12) and z(t) is the unique solution to FBVP
‘DS 2(t) =0,
z(wo) = P(2), 2(T) = Y(2),

which is of the form

2(t) = (z) + ;‘—“’°[¢<z> - $@)].
— Wy

Now, since ¢ and Y are positive,

z(t) = r-t P2 + t_wol,b(z)>0, tel,.
T - wo T - wy ’

Then,

T
u(t) > k f Goo(t, SU(S)dg,05-

Wo
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Therefore,

= max Icq olt, SU(S)dg.0s < 1.

teIT

Consider the weighted norm |. | defined by:

x(t
Il = max xOI
tell, u(t)
Let S be the space of all real-valued functions defined on I, q »- Then, the pair (S, ||. ||) is a Banach space. The

operator

Ty(t) = z(t) + IGq,m(t, $h(s, y(s))dg,uS,

Wo

forallt € I ,, satisfies

qu oty TGS, Y(9)) = h(s, x()ldy.08

u(t)

Ty(t) — Tx(t)
u(t)

‘w0 f Gt S)IIR(s, V() = (s, X()ldyu8

“© j|Gq ot IYE) = X(3)|dg.05

1
<A j KIGy ot S)(S)dg.08

<lly - x|l max — I Gy,w(t, SYu(s)dy,«s

tel, q w (t)

<yly = xl.
Since y < 1, T is a contraction mapping on S. Therefore, T has a unique fixed on S (by the contraction
mapping theorem). This shows the existence of the unique solution to the nonlinear FBVP (1.1). O

5 Examples

5.1 Example 1

Consider the following fractional Hahn boundary value problem:

4 -3t+1(1,2
D) jult) = oe e E O e,
(10072% + £3)(1 + [u(t)]) 23 (5.1)

{2

W N

3
) =10e, u(10) = 1
’ 107"

%, T = 10, and

wI-L\
g
1]
wiN
Q
1]
N | =
g
o
1]

Here, a =
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e 312 + |u(t)])
(10072 + £3)(1 + Ju(®)])

h(t, u(t)) =
For t € I} and u, v € R, we obtain
2’3
1
|h(t, u(t)) - h(t, v(t))| <

—————llu-vl.
e3(100m2 + (5)3)

Hence, the first condition
|h(t, u(t)) — h(t, v(t)] < Klu - v

of Theorem 4.3 holds true, with
- r
e(100m> + (2%)

On the other hand, we have

4
(T - wo)’K = (10 - i) - - = 0.000895869.

w|
—_

However,

Ta+1) = r(%) = 0.893616.

—
—
|
N | =
SN— N—
ST

T \nB =
(1-3
So, the second condition

[(a + 1)

T — wp)* <
( 0) X

of Theorem 4.3 is satisfied. Hence, by Theorem 4.3, Problem (5.1) has a unique solution.

5.2 Example 2

For the following fractional Hahn boundary value problem

5 —sin’(1it); 2
D3 w(t) = e Tuxt) , tello,
372 £2(100 + e ™2)(1 + [u(t)]) 2?2
1 1
u4) = ——, u(10)=——:,
@) 125e3 (10) 100772

Wehaveazg, w =2, qzé, wo =4, T=10, and

e—sinz(m) uZ(t)
£2(100 + ey 1+ |u(t)|’

h(t, u(t)) =

Then, for t € 11102 and u, v € R, we obtain
L

1

[h(t, u(t)) - h(t, v(D))| < L6l6

lu - vi.

Hence, the first condition
|h(t, u(t)) - h(t, v(t)| < Klu - v

of Theorem 4.3 holds true, with K = ﬁ On the other hand, we have

15

(5.2)
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T - wo)*K = (10 — 4)3- = 0.0122596.
( 0) ( )3 1616
However,
1\
3 (1 - 5)1
T a+1)= r%(g) = 71226 =1.07789.
(1-3
So, the second condition
I(a +1
(T - a)o)a < 7(1( K+ )

of Theorem 4.3 is satisfied. Hence, by Theorem 4.3, Problem (5.2) has a unique solution.

6 Conclusion

In this study, we have considered a boundary value problem for a fractional Hahn difference equation
subject to two boundary conditions. Our results extend and generalize the results obtained in [18-20]. After
proving the existence and uniqueness results concerning linear variants of the main nonlinear problem, it is
transformed into a fixed point problem. A Green’s function is constructed and used to express the solutions
to the considered boundary value problems. Banach’s, Schauder’s, and Browder’s fixed point theorems are
used to prove the existence and uniqueness results. The main results are illustrated by numerical examples.
Some properties of the fractional Hahn calculus needed in our work are also presented. The results of this
article are new and enrich the theory of boundary value problems for Hahn difference equations. In future
works, we will study the Laplace transform and Baskakov basis functions associated with the fractional
Hahn difference operators. Also, the g, w-analogs of degenerate derivatives and their applications and the
Boson operator can be investigated. These potential results will generalize the recent works [21-24].
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