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1 Introduction

LetD be the open unit disk in the complex plane C and N the set of positive integers. Denote by H(D) the class
of all analytic functions on D and S(D) the family of all analytic self-maps of D.

The set of all conformal automorphisms of D forms a group, called the Mobius group, and is denoted by
Aut(D). It is well known from complex analysis that every element of Aut(D ) has the form eg,,(z), where 8 is a
real number and

-z
1-wz’
is a special automorphism of D exchanging the points w and 0. Let X be a linear space of analytic functions on
D. Then, X is said to be Mobius invariant if for all f€ X and ve Aut(D), f° v € X and satisfies that
IIf ° vilx = |Ifllx (see [1]). A typical example of M6bius invariant space is the analytic Besov space B,. Recall
that for 1 < p < =, a function f € H(D) belongs to B, if

[r@pa - zpyp2aa@) < «,
D

a,(2) = wED,

where dA is the normalized Lebesgue area measure on D. Note that when p = 2, B, is known as the Dirichlet
space, which is the only Mdébius invariant Hilbert space (see [2]).
The analytic Besov space B; consists of all f € H(D ), which have a representation as:

f(2) = Y a,0,,(2),
n=1

for some sequences {a;}ney € 1! and {A,}nen in D. The norm in B is defined by:

Ifllz, = inf{ Y lanl : f(2) = Y an0y,(2)}.
n=1 n=1
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By [1], we know that the space B; is the minimal Mobius invariant space, as it is contained in any Mébius
invariant space. Furthermore, B; is identical with the set of f€ H(D) for which f” € LY(D, dA), and there
exist constants C; and C, such that

Cillflls, < F O] + PO + [If" (2)1dA) < Gl
D

For more studies of B; space, see also [3-8].
Suppose that u is a weight, namely, a strictly positive continuous function on D. We also assume that y is
radial: u(z) = u(|z|) for any z € D. An f€ H(D) is said to belong to the Bloch-type space B, if
sup u(2)|f ()] < .
z€D
B, is a Banach space under the norm |f||, = |[f(0)| + sup,cpu(2)|f(2)l. When u(z) =1 - |z, the induced
space B, reduces to the classical Bloch space, which is the maximal M6bius invariant space [9]. For some
results on the Bloch-type spaces and operators on them, see, for instance, [4,10-14].
Suppose thatgp € S(D) andu € H(D), the composition and multiplication operators on H(D) are defined,
respectively, by:

Cof(2) = f(p(2)) and M,f(2) = u(z)f (2),

where f€ H(D) and z € D. The product of these two operators is known as the weighted composition
operator W, = u(z)f(¢(2)). It is important to provide function theoretic characterizations when ¢ and u
induce a bounded or compact weighted composition operator on various function spaces. See [7,15] for
more research about the (weighted) composition operators acting on several spaces of analytic functions.
The differentiation operator D, which is defined by Df(z) = f'(z) for f € H(D), plays an important role in
operator theory and dynamical system.

The first papers on product-type operators including the differentiation operator dealt with the operators
DC, and CyD (see, for example, [11,16-19]). In [20,21], Stevi¢ and co-workers introduced the so-called Stevi¢-
Sharma operator as follows:

Tuof(2) = u(2)f (9(2)) + v(2)f (¢(2)), f€ H(D),

where u,v € H(D) and ¢ € S(D). By taking some specific choices of the involving symbols, we can easily
obtain the general product-type operators:

MCy=Tuop CoMy=Ty-p0,p MD =Touia, DMy =Ty uia, CoD = Ty
Dqu = Ib,w’,¢, MuCgoD = R),u,ga: MuDC<p = Yz),u(p’,(p: CgoMuD = T(),uﬂga,rpx
DMCo = T ugr,ps  CoDMy = Tiveguegpr DCoMu = Ty« 9).0(u= p),0-

Recently, there has been an increasing interest in studying the Stevi¢-Sharma operator between various
spaces of analytic function. For instance, the boundedness, compactness, and essential norm of T, ,,, on the
weighted Bergman space were characterized by Stevi¢ et al. in [20,21]. Wang et al. in [22] considered the
difference of two Stevi¢-Sharma operators and investigated its boundedness, compactness, and order bound-
edness between Banach spaces of analytic functions. Zhu et al. in [14] provided some necessary and sufficient
conditions for T,,,, to be bounded or compact when considered as an operator from the analytic Besov space
By, into Bloch space. Abbasi et al. in [23] generalized the Stevi¢-Sharma operator as follows:

Tivof @) = u@f (9(2) + v(2)f ™ (p(2)), mEN,

and studied its boundedness, compactness, and essential norm from Hardy space into the nth weighted-type space,
which was introduced by Stevi¢ in [24] (see also [25]). Note that when m = 1, we obtain the Stevi¢-Sharma operator
T,,,v,o- Some more related results can be found (see, e.g, [4, 5,8,10-14,26-32] and references therein).

Motivated by the aforementioned studies, here we investigate the boundedness and essential norm of the
generalized Stevi¢-Sharma operator T, , from the minimal Mobius invariant space B; into the Bloch-type
space 8,,. As a corollary, we give the characterizations of its compactness.
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Recall that the essential norm of a bounded linear operator T: X - Y is the distance from T to the

compact operators K : X — Y, that is,

| Tllex-y = inf{||T - Kllx~y : K is compact},

where X and Y are the Banach spaces. Note that ||T||ex~y = 0 if and only if T : X — Y is compact.
Throughout this article, for nonnegative quantities X and Y, we use the abbreviation X <Y or Y z X if
there exists a positive constant C independent of X and Y such that X < CY. Moreover, we write X = Y

ifXsYsX.

2 Auxiliary results

In this section, we state several auxiliary results that are needed in the proofs of our main results. The

following lemma can be found, for example, in [8] (see also [33]).

Lemma 1. Let k € N, then
Iflle = IIflle, and (1 = |zB)[f© )] = |If|la,
for each f € B.

For any w € D and j € N, set

_ - wpy
fiw® = T 2ED-

It is easily seen that fj,w € By and supwe[DHfj’WHB1 < 1 for each j € N. Moreover, fLW converges to 0 uniformly

on compact subsets of D as |w| - 1.

Lemma 2. Letm € Nandm > 1. For anyw € [D\{O} and i, k € {0,1, m, m + 1}, there exists a function &w€ By

such that

wk&y

&) =
SO = G e

where 8 is the Kronecker delta.
Proof. For any w € [D\{O} and constants ¢, ¢, ¢;, and ¢, let
4
2,2 = 2 ¢f,,(@),
j=1

where fj’W is defined in (1). For each i € {0, 1, m, m + 1}, the system of linear equations

& W) =a+ g+ a+c= S,

, B w B Wi
g&(w)=(a+2¢+3c+ 4c4)1 e 1= WP
2)! (m + 3)! wm wms;
(m) ={m!qg + + Dl + (m + + ] = m
&y (W) [m a+(@m+1le 9 G 6 G A-wphm  a-wpm

(m + 3)! . (m + 4)!

Wm+1 Wm+16i(m+1)

Cy

gy P(w) = [<m *Dlg+(m+2)g+

C:
2 6

a- IWIZ)m+1 - 1- |W|2)m+1’

has a unique solution ¢/, ¢}, ¢}, and ¢}, which is independent of w, since the determinant of the system
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1 1 1 1
1 2 3 1
(m+2)! (m+3)
m! (m+1)! 2 6 = %ml(m + 1)!m2(m —1)(m+1)#0.
(m+1)! (m+2) (m ;’ 3 (m ;— 4)!

For such ¢}, j € {1, 2,3, 4}, the function
4

(@ = Y.cf,, @

Jj=1

satisfies the desired result. O
By a similar argument, we can obtain the following lemma.

Lemma 3. For any w € D\{0} and i, k € {0, 1, 2}, there exists a function h;,, € By such that

V_Vk(‘)"k

W) = —& )
W= T

where &8y, is the Kronecker delta.

In order to estimate the essential norm of TITW : By - 8B, we need the following two lemmas. The first one
characterizes the compactness in terms of sequential convergence, whose proof is similar to that of [15,
Proposition 3.11], so we omit the details.

Lemma 4. Letm € N,u,v € H(D), and ¢ € S(D). Then, the operator T,(\, , : By = 8B, is compact if and only if
for each bounded sequence, { f; }nen in By converges to zero uniformly on compact subsets of D asn — «, we have
I Tay,oflls, = 0 asn — o

Lemma 5. [8] Every bounded sequence in B, has a subsequence that converges uniformly inD to a function in B;.

3 Main results

In this section, we formulate our main results. For simplicity of the expressions, we write

A1(2) = [u(2)9(2)I,
Am(2) = v(2)],
An+1(2) = v(2)9'(2)|.

We first give several characterizations of the generalized Stevi¢-Sharma operator T, , : B; = B, to be
bounded.

Theorem 1. Letu,v € HD), ¢ € S(D), m € N, m > 1, and u be a radial weight. Then, the following statements
are equivalent.

(i) The operator T\, , : Bi > B, is bounded.

(i) u € B,

4
2 sup |17, of s, < o,

j=1w€D

and
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Y supu(2)Ai(z) < =,

i€{l,m,m+1}z€D

where f; , are defined in (1).
(ii}) u € B, and

T sup HPAD
i€{l,m,m+1}z€D (1 - |(P(Z)|2)l

Proof. (i) = (ii). Suppose that T;/', , : B; — B, is bounded. Taking f,(z) = 1 € B; we obtain, T}, oy = u € By,
that is,

sup u(z)|u'(z)| < . @

z€ED

Foreachw € D and j € {1, 2, 3, 4} |If; , |5, = 1 and hence by the boundedness of Ty, We have ||T,ffv,¢fj,W lls, < co.
Therefore,

4
Z sup ”TITV,(J},W”B;, < .

Jj=1weD
Taking f(z) = z € By and using the boundedness of T/, , : B; — B, we obtain
o > ||T% oI5, = SUp u(2)|(Ty, oy ) (2))
zeD

= sup u(2)|w'(2)e(z) + u(z)p(2)|

z€D
2 sup u(2)|u(z)¢’(z)| - sup u(2)|u'(2)p(2)l,
z€D zeD

which along with (2) and the fact that |p(z)| < 1, it follows that

sup u(2)|u2)9 ()| < |y o lls, + sup u(D)W'(2)] < e. 3)
z€D

z€D
Applying the operator T/}, , for f, (z) = z™ € B yields
© > || T, oflls, 2 SUp U(DI(T, oy ) (2] = sup u(@)|u'@)p2)™ + mu(2)p'(2)p(2)™ " + mv'(2)|.
z€eD

z€D
Using (2), (3), the fact that |¢(z)| < 1, and the triangle inequality, we obtain
sup p(2)|v'(z)] < ce. )

zeD

By choosing f,,,,(z) = z™*! € B;, we conclude that
© > || T ofpat lls, 2 SUP UI(TLY, a1 ) (2]
z€D

= sup u@)W'2)p(2)™* + (m + Du(2)¢'(2)p(2)™ + (m + DV'(2)(z) + (m + H(2)p'(2)].

ZED
By using (2), (3), and (4), in the same manner, we obtain

sup u(2)|v(2)9'(z)] < . ©)

ZED
Combining (3), (4), and (5), we deduce that
> Supu(2)Ai(z) < .

i€{l,m,m+1}z€D

(ii) = (iii). Assume that (ii) holds. By Lemma 2, for each i € {1, m, m + 1} and ¢(w) # 0, there exist constants
¢}, ¢}, ci, and ¢} such that
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4
8ip)(2) = chlfj,r/)(w)(z) € By, (6)
=1
and

8o (W) (1 - lpm)P)*’

where f].’W are defined in (1) and k € {0,1, m, m + 1}. Then,

4
0 > Z sup “TITV,(ﬂf}',(p(w)”Bu Z sup ”TIT\),(/Jgi,(p(w)“By
WED

j=1weD (7)
m oo WA W) (W)
2 y(W)l(Tu,v,(agiy(p(w)) (W)I - (1 _ |(P(W)|2)l
From (7) and (ii), for each i € {1, m, m + 1}, we have
sup p(w)A;(w) _
-1 (1 190DP
and
pwAw) _ ©
o =gy = e HmACD ==
Therefore,
5 HDA@)

sup :
i€{l,m,m+1}zED (1 - le@)P)
(iii) = (i). Suppose that (iii) holds. For any f € B;, by Lemma 1, we have

UDITH @IS @@ (@) + Y u@DA@I V(@)

i€{l,m,m+1}
Z)Ai(z
<, + ieﬂ%ﬂ}%}wum.
Moreover,
(T, o O = [u(0)f (9(0)) + v(0)f ™(9(0))] = [Iu(O)I + %]Ilﬂlm-
A - le(0)F")
Thus, T,/ , : B1 = B, is bounded. The proof is completed. O

By using Lemma 3 instead of Lemma 2, the following result may be proved in much the same way as
Theorem 1.

Theorem 2. Letu,v € H(D), ¢ € S(D), and i be a radial weight. Then, the following statements are equivalent.
(i) The operator Ty, : By > B, is bounded.
(i) u € By,

3
Y Sup | Tvofiulls, < .

j=1weD

and
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sup u(z)|u(z2)’(z) + v'(z)| + sup u(z)|v(z)e’(z)| < .

z€D Z€ED
(iii) u € By, and

LMD + V@) @M@ @)
i S 1 e S R P 0

Now, we estimate the essential norm of T/, , acting from the minimal Mébius invariant space to the Bloch-
type space. Then, we obtain some equivalence conditions for compactness of T, .

Theorem 3. Letu,v E HD), ¢ € S(D), m €N, m > 1, and u be a radial weight such that TlTV,w iB1— B, s
bounded. Then,

4
- . 1(2)Ai(z)
T plle.sim, = 2 Wmsup|| T, of ylls, = 2 limsup——————,
u,v,plle,51~>5y A et MV(J},W u i1 |0) -1 (1 - |(p(z)|2)l

where f; ,, are defined in (1).
Proof. We first show that

4
T olle.5i~, 2 2 HmSUp|ITY, of s,
j=1 |w|-1

Itis obvious that for each j € {1,2,3,4} andw € D, |f; , ||, S 1. Moreover, f; , converge to zero uniformly on
compact subsets of D. For any compact operator K from B, into 8, by using some standard arguments (see,
e.g., [34,35]), we obtain

lim ||Kf; =0.
lim 1, s

It follows that

1T, ~ Kllgi-s, = imsup||(Tyy,p = KOf; s,

[w|~1
2 limsup|| T, of; I8, — imsup||Kf; , ||, -
[w|-~1 [wl-1
Therefore,
4
1Ty glle -5, = ifI}fIITJf’w = K|lp-8, 2 zhlmlsgpﬂva,Jj,wllgﬂ. @)
j=1 w|~
Next, we prove that
- 1(2)Ai(z)
T ollesiog, 2 2 limsup——————"—

icammet lo@i-1 4 = 9@

Let {z;} be a sequence in D such that [p(z)| - 1 as j — . Since T}, , : By > B, is bounded, for any compact
operator K : By —» B, and i € {1, m, m + 1}, applying Lemma 4 and (7), we obtain

I = Klls, -5, = imsup|| T4, o8, o ls, — 1imsup|[Kg; o, ls,
]*?00

]‘*W
= limsup 1(z)Ai(Z)|p(z)I!
T e (= lezB)

where g, ,,, are defined in (6). Therefore,

. wzAle@)I u(z)Ai(z)
Y Lg 2z limsup—————=— = limsup——————,
Wi ollens, = BP0 oGP~ o @ - lo@P)
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from which we have

- (2)Ai(2)
1Ty glleBi~5, = Z hmsup‘uil ©

iefl,m,m+1} |9(z)|-1 a- |(P(Z)|2)i'

Combining (8) and (9) yields

4
2)Ai(z

T lle s, = Min 3 Hmsup|| T, of; lls, 2 limsule(gi .

j=1 wl-1 iegmm+ilo@)-1 4 = [9(2)I)

It is sufficient to show that

4
72)Ai(z
I, ollei-5, < min{ Y HKmsupl|Te, ofylls,. 2. 1imsup_1#_( Ai( 2 1
=1 Iwi-1 iemm+1 o1 (1~ 192

Define K, f(z) = f.(z) = f(rz), where 0 < r < 1. Then, K, : B; - B; is a compact operator with ||K;|| <1 and
f = f uniformly on compact subsets of D asr — 1 clearly. Let {r;} C (0, 1) be a sequence such thatr; — 1 as
Jj — o, Then, for each j €N, lef'v’(pKrj : By = B, is compact, and so

”TlTv,(pHE,Br'Z?y = lir_nsup”TlTv,(o - TLTV,(/)KVJ'”Bl_’BM'

jooo

Therefore, we only need to show that

limsup||T,Tv,¢ - Tl:’,’l\),(pKrj”BI"B[l

]%DO
4 (10)
. : : u(2)Ai(2)
< minj 2 limsup||T;, of; I8, limsup——————1.
jZl |w|—»1pII J} I i€{1,§m+1}|¢(z)|—>?(1 - |(0(Z)|2)
For every f € B; such that||f||s, <1, we have
(T = T, oK lls, = |Tit o (0) = T, o (O)] + SUP (DI(Tyt of = T, o (2]
z€D
<1(f = £)@O)uO)] + I(f = £,)™(@O)w(0)] + sup u@)I(f - £, X p@)u'(2)|
X z€D Y
+osup uz) Y 1 - £)e@)1Ai) a
lp(2)|sry €{l,m,m+1}
E,
+osup p@ Y 1F-£)00@)IA@),
lo@)>ry E{l,mm+1}
E3

where N € N such thatr; > % forall j 2 N. Furthermore, we have (f - fr]_)“) — 0 uniformly on compact subsets
of D as j — « for any nonnegative integer ¢. Now, Theorem 1 implies

limsupE, = limsupE; = 0. 12)
jooo jooo
From Lemma 5,
lim E; < ullg, im sup|(f - £, )(2)| = 0. 13)
Uinde J7® zeD

Finally, we estimate Es.

Es< Y sup u@UOe@)Ai@) + Y sup u@IrfOre@)Ai2).

i€fl,mm+1} |9(2)|>ry iefl,m,m+1}|0@)[>ry (14)
E G;

For eachi € {1, m, m + 1}, using Lemma 1, (6), and (7), we obtain
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up 1 - le@P)If P (@@)] u@)Ai2)le@)I
lp(2)|>rn |(P(Z)|l - |(0(Z)|2)1
S|flls, sup 1T, 680013,
lo@)1>rv

4
= 2 sup |IT of s,

j=Uwl>ry

E:

and

. _ NIPO) u(2)Ai(2) < U(2)Ai(z) ‘
E |¢(Sz];1|I>)rN(1 |(P(Z)| ) lf ((P(Z))| (1 _ |(P(z)|2)l |V‘||B1|¢(i;1|£)m (1 _ |(P(z)|2)l

Taking the limits as N — o in (15) and (16), we obtain
4
limsupF; < ) limsup|| T of w13,
Jo j=1 |w|-1
and

. . w(z)Ay(z)
limsupF; < limsup———.
e e @~ @)

Similarly, we have

4
Z)Ai(z
limsupG; < ZlimsuplITlI'fv,(ﬂl}WIIB# and limsupG; < limsule(zi.
jooo =1 w1 ’ jooo lo-1 1 = 19(2))

Therefore, by (11)—(14) and (17)-(19), we obtain

1imSUPIITJ7v,¢ - T'Zlv,(pKr]’”Bl_'gy = limsup sup ”(TlTv,go - lel\/,(pKrj)f”By
joo j=e |Iflls =1

4
s Y limsup||TR, of; 5,

j=1 |w|-1
and
. . U(2)Ai(z)
limsup||T, , - T Krllpos, S 2 limsup——————.
joen u,v,¢ u,v,(PKrJ 175y T o)1 a- |(p(z)|2)l

From the last two inequalities, we obtain (10) and the proof is completed.

-_ 9

15)

(16)

7

(18)

(19)

O

Corollary 1. Letu,v € HD), ¢ € S(D),m € N,m > 1, and u be a radial weight. Suppose that Tva,(p ‘B~ B,is

bounded, then the following statements are equivalent.
(i) The operator Ty, , : By > B, is compact.

(i)
4
2 limsup||T7, of; , lls, = 0.
j=1 |w|-1
(i)
A.
> limsupM =

ietmmin lo-1 4 = [9@P)

By the same method as in the proof of Theorem 3, we can obtain the following results for the case m = 1,

namely, the Stevi¢-Sharma operator.
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Theorem 4. Letu,v € H(D), ¢ € S(D), and u be a radial weight such that T, ., : By = B, is bounded. Then,

3
1T, 0lle.Bi~8, = zhmsup”Tu,v,(p j,wHBy

j=1 |wl-1

@U@0 @ + V@ . @@ @)
=] 1 .

T 0@ e - 9@P?

Corollary 2. Letu,v € H(D), ¢ € S(D), and u be a radial weight. Suppose that T, , : By = B, is bounded, then
the following statements are equivalent.
(i) The operator Ty, : By = B, is compact.

(i0)
3
thsup”Tu,v,q) j,wl By =0.
j=1 |w|-1
(itd)
/| + VvV 7
limsu U2 2) > V@)l + limsu MZW&)' =0.
lp(2)|~1 1-le@) o1 1= [e@P)
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