

Research Article

Zhitao Guo*

Generalized Stević-Sharma operators from the minimal Möbius invariant space into Bloch-type spaces

<https://doi.org/10.1515/dema-2022-0245>
 received April 8, 2022; accepted May 17, 2023

Abstract: The aim of this study is to investigate the boundedness, essential norm, and compactness of generalized Stević-Sharma operator from the minimal Möbius invariant space into Bloch-type space.

Keywords: generalized Stević-Sharma operator, minimal Möbius invariant space, Bloch-type space, essential norm

MSC 2020: 47B38, 30H25, 30H30

1 Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and \mathbb{N} the set of positive integers. Denote by $H(\mathbb{D})$ the class of all analytic functions on \mathbb{D} and $S(\mathbb{D})$ the family of all analytic self-maps of \mathbb{D} .

The set of all conformal automorphisms of \mathbb{D} forms a group, called the Möbius group, and is denoted by $\text{Aut}(\mathbb{D})$. It is well known from complex analysis that every element of $\text{Aut}(\mathbb{D})$ has the form $e^{i\theta}\sigma_w(z)$, where θ is a real number and

$$\sigma_w(z) = \frac{w - z}{1 - \bar{w}z}, \quad w \in \mathbb{D},$$

is a special automorphism of \mathbb{D} exchanging the points w and 0. Let X be a linear space of analytic functions on \mathbb{D} . Then, X is said to be Möbius invariant if for all $f \in X$ and $v \in \text{Aut}(\mathbb{D})$, $f \circ v \in X$ and satisfies that $\|f \circ v\|_X = \|f\|_X$ (see [1]). A typical example of Möbius invariant space is the analytic Besov space B_p . Recall that for $1 < p < \infty$, a function $f \in H(\mathbb{D})$ belongs to B_p if

$$\int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-2} dA(z) < \infty,$$

where dA is the normalized Lebesgue area measure on \mathbb{D} . Note that when $p = 2$, B_2 is known as the Dirichlet space, which is the only Möbius invariant Hilbert space (see [2]).

The analytic Besov space B_1 consists of all $f \in H(\mathbb{D})$, which have a representation as:

$$f(z) = \sum_{n=1}^{\infty} a_n \sigma_{\lambda_n}(z),$$

for some sequences $\{a_n\}_{n \in \mathbb{N}} \in l^1$ and $\{\lambda_n\}_{n \in \mathbb{N}}$ in \mathbb{D} . The norm in B_1 is defined by:

$$\|f\|_{B_1} = \inf \left\{ \sum_{n=1}^{\infty} |a_n| : f(z) = \sum_{n=1}^{\infty} a_n \sigma_{\lambda_n}(z) \right\}.$$

* Corresponding author: Zhitao Guo, School of Science, Henan Institute of Technology, Xinxiang, 453003, China,
 e-mail: guotao60698@163.com

By [1], we know that the space B_1 is the minimal Möbius invariant space, as it is contained in any Möbius invariant space. Furthermore, B_1 is identical with the set of $f \in H(\mathbb{D})$ for which $f'' \in L^1(\mathbb{D}, dA)$, and there exist constants C_1 and C_2 such that

$$C_1 \|f\|_{B_1} \leq |f(0)| + |f'(0)| + \int_{\mathbb{D}} |f''(z)| dA(z) \leq C_2 \|f\|_{B_1}.$$

For more studies of B_1 space, see also [3–8].

Suppose that μ is a weight, namely, a strictly positive continuous function on \mathbb{D} . We also assume that μ is radial: $\mu(z) = \mu(|z|)$ for any $z \in \mathbb{D}$. An $f \in H(\mathbb{D})$ is said to belong to the Bloch-type space \mathcal{B}_μ , if

$$\sup_{z \in \mathbb{D}} \mu(z) |f'(z)| < \infty.$$

\mathcal{B}_μ is a Banach space under the norm $\|f\|_{\mathcal{B}_\mu} = |f(0)| + \sup_{z \in \mathbb{D}} \mu(z) |f'(z)|$. When $\mu(z) = 1 - |z|^2$, the induced space \mathcal{B}_μ reduces to the classical Bloch space, which is the maximal Möbius invariant space [9]. For some results on the Bloch-type spaces and operators on them, see, for instance, [4,10–14].

Suppose that $\varphi \in S(\mathbb{D})$ and $u \in H(\mathbb{D})$, the composition and multiplication operators on $H(\mathbb{D})$ are defined, respectively, by:

$$C_\varphi f(z) = f(\varphi(z)) \quad \text{and} \quad M_u f(z) = u(z) f(z),$$

where $f \in H(\mathbb{D})$ and $z \in \mathbb{D}$. The product of these two operators is known as the weighted composition operator $W_{u,\varphi} = u(z) f(\varphi(z))$. It is important to provide function theoretic characterizations when φ and u induce a bounded or compact weighted composition operator on various function spaces. See [7,15] for more research about the (weighted) composition operators acting on several spaces of analytic functions. The differentiation operator D , which is defined by $Df(z) = f'(z)$ for $f \in H(\mathbb{D})$, plays an important role in operator theory and dynamical system.

The first papers on product-type operators including the differentiation operator dealt with the operators DC_φ and $C_\varphi D$ (see, for example, [11,16–19]). In [20,21], Stević and co-workers introduced the so-called Stević-Sharma operator as follows:

$$T_{u,v,\varphi} f(z) = u(z) f(\varphi(z)) + v(z) f'(\varphi(z)), \quad f \in H(\mathbb{D}),$$

where $u, v \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. By taking some specific choices of the involving symbols, we can easily obtain the general product-type operators:

$$\begin{aligned} M_u C_\varphi &= T_{u,0,\varphi}, & C_\varphi M_u &= T_{u \circ \varphi,0,\varphi}, & M_u D &= T_{0,u,id}, & D M_u &= T_{u',u,id}, & C_\varphi D &= T_{0,1,\varphi}, \\ DC_\varphi &= T_{0,\varphi',\varphi}, & M_u C_\varphi D &= T_{0,u,\varphi}, & M_u D C_\varphi &= T_{0,u\varphi',\varphi}, & C_\varphi M_u D &= T_{0,u \circ \varphi,\varphi}, \\ DM_u C_\varphi &= T_{u',u\varphi',\varphi}, & C_\varphi D M_u &= T_{u' \circ \varphi,u \circ \varphi,\varphi}, & DC_\varphi M_u &= T_{\varphi'(u' \circ \varphi),\varphi'(u \circ \varphi),\varphi}. \end{aligned}$$

Recently, there has been an increasing interest in studying the Stević-Sharma operator between various spaces of analytic function. For instance, the boundedness, compactness, and essential norm of $T_{u,v,\varphi}$ on the weighted Bergman space were characterized by Stević et al. in [20,21]. Wang et al. in [22] considered the difference of two Stević-Sharma operators and investigated its boundedness, compactness, and order boundedness between Banach spaces of analytic functions. Zhu et al. in [14] provided some necessary and sufficient conditions for $T_{u,v,\varphi}$ to be bounded or compact when considered as an operator from the analytic Besov space B_p into Bloch space. Abbasi et al. in [23] generalized the Stević-Sharma operator as follows:

$$T_{u,v,\varphi}^m f(z) = u(z) f(\varphi(z)) + v(z) f^{(m)}(\varphi(z)), \quad m \in \mathbb{N},$$

and studied its boundedness, compactness, and essential norm from Hardy space into the n th weighted-type space, which was introduced by Stević in [24] (see also [25]). Note that when $m = 1$, we obtain the Stević-Sharma operator $T_{u,v,\varphi}$. Some more related results can be found (see, e.g., [4, 5, 8, 10–14, 26–32] and references therein).

Motivated by the aforementioned studies, here we investigate the boundedness and essential norm of the generalized Stević-Sharma operator $T_{u,v,\varphi}^m$ from the minimal Möbius invariant space B_1 into the Bloch-type space \mathcal{B}_μ . As a corollary, we give the characterizations of its compactness.

Recall that the essential norm of a bounded linear operator $T : X \rightarrow Y$ is the distance from T to the compact operators $K : X \rightarrow Y$, that is,

$$\|T\|_{e,X \rightarrow Y} = \inf\{\|T - K\|_{X \rightarrow Y} : K \text{ is compact}\},$$

where X and Y are the Banach spaces. Note that $\|T\|_{e,X \rightarrow Y} = 0$ if and only if $T : X \rightarrow Y$ is compact.

Throughout this article, for nonnegative quantities X and Y , we use the abbreviation $X \leq Y$ or $Y \geq X$ if there exists a positive constant C independent of X and Y such that $X \leq CY$. Moreover, we write $X \approx Y$ if $X \leq Y \leq X$.

2 Auxiliary results

In this section, we state several auxiliary results that are needed in the proofs of our main results. The following lemma can be found, for example, in [8] (see also [33]).

Lemma 1. *Let $k \in \mathbb{N}$, then*

$$\|f\|_{\infty} \lesssim \|f\|_{B_1} \quad \text{and} \quad (1 - |z|^2)^k |f^{(k)}(z)| \lesssim \|f\|_{B_1}$$

for each $f \in B_1$.

For any $w \in \mathbb{D}$ and $j \in \mathbb{N}$, set

$$f_{j,w}(z) = \frac{(1 - |w|^2)^j}{(1 - \bar{w}z)^j}, \quad z \in \mathbb{D}. \quad (1)$$

It is easily seen that $f_{j,w} \in B_1$ and $\sup_{w \in \mathbb{D}} \|f_{j,w}\|_{B_1} \lesssim 1$ for each $j \in \mathbb{N}$. Moreover, $f_{j,w}$ converges to 0 uniformly on compact subsets of \mathbb{D} as $|w| \rightarrow 1$.

Lemma 2. *Let $m \in \mathbb{N}$ and $m > 1$. For any $w \in \mathbb{D} \setminus \{0\}$ and $i, k \in \{0, 1, m, m + 1\}$, there exists a function $g_{i,w} \in B_1$ such that*

$$g_{i,w}^{(k)}(w) = \frac{\bar{w}^k \delta_{ik}}{(1 - |w|^2)^k},$$

where δ_{ik} is the Kronecker delta.

Proof. For any $w \in \mathbb{D} \setminus \{0\}$ and constants c_1, c_2, c_3 , and c_4 , let

$$g_w(z) = \sum_{j=1}^4 c_j f_{j,w}(z),$$

where $f_{j,w}$ is defined in (1). For each $i \in \{0, 1, m, m + 1\}$, the system of linear equations

$$\begin{cases} g_w(w) = c_1 + c_2 + c_3 + c_4 = \delta_{i0}, \\ g'_w(w) = (c_1 + 2c_2 + 3c_3 + 4c_4) \frac{\bar{w}}{1 - |w|^2} = \frac{\bar{w} \delta_{i1}}{1 - |w|^2}, \\ g_w^{(m)}(w) = \left(m!c_1 + (m+1)!c_2 + \frac{(m+2)!}{2}c_3 + \frac{(m+3)!}{6}c_4 \right) \frac{\bar{w}^m}{(1 - |w|^2)^m} = \frac{\bar{w}^m \delta_{im}}{(1 - |w|^2)^m}, \\ g_w^{(m+1)}(w) = \left((m+1)!c_1 + (m+2)!c_2 + \frac{(m+3)!}{2}c_3 + \frac{(m+4)!}{6}c_4 \right) \frac{\bar{w}^{m+1}}{(1 - |w|^2)^{m+1}} = \frac{\bar{w}^{m+1} \delta_{i(m+1)}}{(1 - |w|^2)^{m+1}}, \end{cases}$$

has a unique solution c_1^i, c_2^i, c_3^i , and c_4^i , which is independent of w , since the determinant of the system

$$\left| \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ m! & (m+1)! & \frac{(m+2)!}{2} & \frac{(m+3)!}{6} \\ (m+1)! & (m+2)! & \frac{(m+3)!}{2} & \frac{(m+4)!}{6} \end{array} \right| = \frac{1}{12}m!(m+1)!m^2(m-1)(m+1) \neq 0.$$

For such $c_j^i, j \in \{1, 2, 3, 4\}$, the function

$$g_{i,w}(z) = \sum_{j=1}^4 c_j^i f_{j,w}(z)$$

satisfies the desired result. \square

By a similar argument, we can obtain the following lemma.

Lemma 3. *For any $w \in \mathbb{D} \setminus \{0\}$ and $i, k \in \{0, 1, 2\}$, there exists a function $h_{i,w} \in B_1$ such that*

$$h_{i,w}^{(k)}(z) = \frac{\bar{w}^k \delta_{ik}}{(1 - |w|^2)^k},$$

where δ_{ik} is the Kronecker delta.

In order to estimate the essential norm of $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$, we need the following two lemmas. The first one characterizes the compactness in terms of sequential convergence, whose proof is similar to that of [15, Proposition 3.11], so we omit the details.

Lemma 4. *Let $m \in \mathbb{N}$, $u, v \in H(\mathbb{D})$, and $\varphi \in S(\mathbb{D})$. Then, the operator $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$ is compact if and only if for each bounded sequence, $\{f_n\}_{n \in \mathbb{N}}$ in B_1 converges to zero uniformly on compact subsets of \mathbb{D} as $n \rightarrow \infty$, we have $\|T_{u,v,\varphi}^m f_n\|_{\mathcal{B}_\mu} \rightarrow 0$ as $n \rightarrow \infty$.*

Lemma 5. [8] *Every bounded sequence in B_1 has a subsequence that converges uniformly in $\overline{\mathbb{D}}$ to a function in B_1 .*

3 Main results

In this section, we formulate our main results. For simplicity of the expressions, we write

$$\begin{aligned} A_1(z) &= |u(z)\varphi'(z)|, \\ A_m(z) &= |v'(z)|, \\ A_{m+1}(z) &= |v(z)\varphi'(z)|. \end{aligned}$$

We first give several characterizations of the generalized Stević-Sharma operator $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$ to be bounded.

Theorem 1. *Let $u, v \in H(\mathbb{D})$, $\varphi \in S(\mathbb{D})$, $m \in \mathbb{N}$, $m > 1$, and μ be a radial weight. Then, the following statements are equivalent.*

- (i) *The operator $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$ is bounded.*
- (ii) *$u \in \mathcal{B}_\mu$,*

$$\sum_{j=1}^4 \sup_{w \in \mathbb{D}} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu} < \infty,$$

and

$$\sum_{i \in \{1, m, m+1\}} \sup_{z \in \mathbb{D}} \mu(z) A_i(z) < \infty,$$

where $f_{j,w}$ are defined in (1).

(iii) $u \in \mathcal{B}_\mu$, and

$$\sum_{i \in \{1, m, m+1\}} \sup_{z \in \mathbb{D}} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i} < \infty.$$

Proof. (i) \Rightarrow (ii). Suppose that $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$ is bounded. Taking $f_0(z) = 1 \in B_1$ we obtain, $T_{u,v,\varphi}^m f_0 = u \in \mathcal{B}_\mu$, that is,

$$\sup_{z \in \mathbb{D}} \mu(z) |u'(z)| < \infty. \quad (2)$$

For each $w \in \mathbb{D}$ and $j \in \{1, 2, 3, 4\}$, $\|f_{j,w}\|_{B_1} \leq 1$ and hence by the boundedness of $T_{u,v,\varphi}^m$ we have $\|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu} < \infty$. Therefore,

$$\sum_{j=1}^4 \sup_{w \in \mathbb{D}} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu} < \infty.$$

Taking $f_1(z) = z \in B_1$ and using the boundedness of $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$, we obtain

$$\begin{aligned} \infty &> \|T_{u,v,\varphi}^m f_1\|_{\mathcal{B}_\mu} \geq \sup_{z \in \mathbb{D}} \mu(z) |(T_{u,v,\varphi}^m f_1)'(z)| \\ &= \sup_{z \in \mathbb{D}} \mu(z) |u'(z)\varphi(z) + u(z)\varphi'(z)| \\ &\geq \sup_{z \in \mathbb{D}} \mu(z) |u(z)\varphi'(z)| - \sup_{z \in \mathbb{D}} \mu(z) |u'(z)\varphi(z)|, \end{aligned}$$

which along with (2) and the fact that $|\varphi(z)| < 1$, it follows that

$$\sup_{z \in \mathbb{D}} \mu(z) |u(z)\varphi'(z)| \leq \|T_{u,v,\varphi}^m f_1\|_{\mathcal{B}_\mu} + \sup_{z \in \mathbb{D}} \mu(z) |u'(z)| < \infty. \quad (3)$$

Applying the operator $T_{u,v,\varphi}^m$ for $f_m(z) = z^m \in B_1$ yields

$$\infty > \|T_{u,v,\varphi}^m f_m\|_{\mathcal{B}_\mu} \geq \sup_{z \in \mathbb{D}} \mu(z) |(T_{u,v,\varphi}^m f_m)'(z)| = \sup_{z \in \mathbb{D}} \mu(z) |u'(z)\varphi(z)^m + mu(z)\varphi'(z)\varphi(z)^{m-1} + m!v'(z)|.$$

Using (2), (3), the fact that $|\varphi(z)| < 1$, and the triangle inequality, we obtain

$$\sup_{z \in \mathbb{D}} \mu(z) |v'(z)| < \infty. \quad (4)$$

By choosing $f_{m+1}(z) = z^{m+1} \in B_1$, we conclude that

$$\begin{aligned} \infty &> \|T_{u,v,\varphi}^m f_{m+1}\|_{\mathcal{B}_\mu} \geq \sup_{z \in \mathbb{D}} \mu(z) |(T_{u,v,\varphi}^m f_{m+1})'(z)| \\ &= \sup_{z \in \mathbb{D}} \mu(z) |u'(z)\varphi(z)^{m+1} + (m+1)u(z)\varphi'(z)\varphi(z)^m + (m+1)!v'(z)\varphi(z) + (m+1)!v(z)\varphi'(z)|. \end{aligned}$$

By using (2), (3), and (4), in the same manner, we obtain

$$\sup_{z \in \mathbb{D}} \mu(z) |v(z)\varphi'(z)| < \infty. \quad (5)$$

Combining (3), (4), and (5), we deduce that

$$\sum_{i \in \{1, m, m+1\}} \sup_{z \in \mathbb{D}} \mu(z) A_i(z) < \infty.$$

(ii) \Rightarrow (iii). Assume that (ii) holds. By Lemma 2, for each $i \in \{1, m, m+1\}$ and $\varphi(w) \neq 0$, there exist constants c_1^i, c_2^i, c_3^i , and c_4^i such that

$$g_{i,\varphi(w)}(z) = \sum_{j=1}^4 c_j^i f_{j,\varphi(w)}(z) \in B_1, \quad (6)$$

and

$$g_{i,\varphi(w)}^{(k)}(w) = \frac{\overline{\varphi(w)}^i \delta_{ik}}{(1 - |\varphi(w)|^2)^k},$$

where $f_{j,w}$ are defined in (1) and $k \in \{0, 1, m, m+1\}$. Then,

$$\begin{aligned} \infty &> \sum_{j=1}^4 \sup_{w \in \mathbb{D}} \|T_{u,v,\varphi}^m f_{j,\varphi(w)}\|_{\mathcal{B}_\mu} \gtrsim \sup_{w \in \mathbb{D}} \|T_{u,v,\varphi}^m g_{i,\varphi(w)}\|_{\mathcal{B}_\mu} \\ &\geq \mu(w) |(T_{u,v,\varphi}^m g_{i,\varphi(w)})'(w)| = \frac{\mu(w) A_i(w) |\varphi(w)|^i}{(1 - |\varphi(w)|^2)^i}. \end{aligned} \quad (7)$$

From (7) and (ii), for each $i \in \{1, m, m+1\}$, we have

$$\sup_{|\varphi(w)| > \frac{1}{2}} \frac{\mu(w) A_i(w)}{(1 - |\varphi(w)|^2)^i} < \infty$$

and

$$\sup_{|\varphi(w)| \leq \frac{1}{2}} \frac{\mu(w) A_i(w)}{(1 - |\varphi(w)|^2)^i} \lesssim \sup_{w \in \mathbb{D}} \mu(w) A_i(w) < \infty.$$

Therefore,

$$\sum_{i \in \{1, m, m+1\}} \sup_{z \in \mathbb{D}} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i} < \infty.$$

(iii) \Rightarrow (i). Suppose that (iii) holds. For any $f \in B_1$, by Lemma 1, we have

$$\begin{aligned} \mu(z) |(T_{u,v,\varphi}^m f)'(z)| &\leq \mu(z) |u'(z)| |f(\varphi(z))| + \sum_{i \in \{1, m, m+1\}} \mu(z) A_i(z) |f^{(i)}(\varphi(z))| \\ &\leq \left(\|u\|_{\mathcal{B}_\mu} + \sum_{i \in \{1, m, m+1\}} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i} \right) \|f\|_{B_1}. \end{aligned}$$

Moreover,

$$|(T_{u,v,\varphi}^m f)(0)| = |u(0)f(\varphi(0)) + v(0)f^m(\varphi(0))| \leq \left(|u(0)| + \frac{|v(0)|}{(1 - |\varphi(0)|^2)^m} \right) \|f\|_{B_1}.$$

Thus, $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$ is bounded. The proof is completed. \square

By using Lemma 3 instead of Lemma 2, the following result may be proved in much the same way as Theorem 1.

Theorem 2. *Let $u, v \in H(\mathbb{D})$, $\varphi \in \mathcal{S}(\mathbb{D})$, and μ be a radial weight. Then, the following statements are equivalent.*

- (i) *The operator $T_{u,v,\varphi} : B_1 \rightarrow \mathcal{B}_\mu$ is bounded.*
- (ii) *$u \in \mathcal{B}_\mu$,*

$$\sum_{j=1}^3 \sup_{w \in \mathbb{D}} \|T_{u,v,\varphi} f_{j,w}\|_{\mathcal{B}_\mu} < \infty,$$

and

$$\sup_{z \in \mathbb{D}} \mu(z) |u(z)\varphi'(z) + v'(z)| + \sup_{z \in \mathbb{D}} \mu(z) |v(z)\varphi'(z)| < \infty.$$

(iii) $u \in \mathcal{B}_\mu$, and

$$\sup_{z \in \mathbb{D}} \frac{\mu(z) |u(z)\varphi'(z) + v'(z)|}{1 - |\varphi(z)|^2} + \sup_{z \in \mathbb{D}} \frac{\mu(z) |v(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^2} < \infty.$$

Now, we estimate the essential norm of $T_{u,v,\varphi}^m$ acting from the minimal Möbius invariant space to the Bloch-type space. Then, we obtain some equivalence conditions for compactness of $T_{u,v,\varphi}^m$.

Theorem 3. *Let $u, v \in H(\mathbb{D})$, $\varphi \in S(\mathbb{D})$, $m \in \mathbb{N}$, $m > 1$, and μ be a radial weight such that $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$ is bounded. Then,*

$$\|T_{u,v,\varphi}^m\|_{e, B_1 \rightarrow \mathcal{B}_\mu} \approx \sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu} \approx \sum_{i \in \{1, m, m+1\}} \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i},$$

where $f_{j,w}$ are defined in (1).

Proof. We first show that

$$\|T_{u,v,\varphi}^m\|_{e, B_1 \rightarrow \mathcal{B}_\mu} \gtrsim \sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu}.$$

It is obvious that for each $j \in \{1, 2, 3, 4\}$ and $w \in \mathbb{D}$, $\|f_{j,w}\|_{B_1} \leq 1$. Moreover, $f_{j,w}$ converge to zero uniformly on compact subsets of \mathbb{D} . For any compact operator K from B_1 into \mathcal{B}_μ , by using some standard arguments (see, e.g., [34,35]), we obtain

$$\lim_{|w| \rightarrow 1} \|K f_{j,w}\|_{\mathcal{B}_\mu} = 0.$$

It follows that

$$\begin{aligned} \|T_{u,v,\varphi}^m - K\|_{B_1 \rightarrow \mathcal{B}_\mu} &\gtrsim \limsup_{|w| \rightarrow 1} \|(T_{u,v,\varphi}^m - K) f_{j,w}\|_{\mathcal{B}_\mu} \\ &\gtrsim \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu} - \limsup_{|w| \rightarrow 1} \|K f_{j,w}\|_{\mathcal{B}_\mu}. \end{aligned}$$

Therefore,

$$\|T_{u,v,\varphi}^m\|_{e, B_1 \rightarrow \mathcal{B}_\mu} = \inf_K \|T_{u,v,\varphi}^m - K\|_{B_1 \rightarrow \mathcal{B}_\mu} \gtrsim \sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu}. \quad (8)$$

Next, we prove that

$$\|T_{u,v,\varphi}^m\|_{e, B_1 \rightarrow \mathcal{B}_\mu} \gtrsim \sum_{i \in \{1, m, m+1\}} \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i}.$$

Let $\{z_j\}$ be a sequence in \mathbb{D} such that $|\varphi(z_j)| \rightarrow 1$ as $j \rightarrow \infty$. Since $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$ is bounded, for any compact operator $K : B_1 \rightarrow \mathcal{B}_\mu$ and $i \in \{1, m, m+1\}$, applying Lemma 4 and (7), we obtain

$$\begin{aligned} \|T_{u,v,\varphi}^m - K\|_{B_1 \rightarrow \mathcal{B}_\mu} &\gtrsim \limsup_{j \rightarrow \infty} \|T_{u,v,\varphi}^m g_{i,\varphi(z_j)}\|_{\mathcal{B}_\mu} - \limsup_{j \rightarrow \infty} \|K g_{i,\varphi(z_j)}\|_{\mathcal{B}_\mu} \\ &\gtrsim \limsup_{j \rightarrow \infty} \frac{\mu(z_j) A_i(z_j) |\varphi(z_j)|^i}{(1 - |\varphi(z_j)|^2)^i}, \end{aligned}$$

where $g_{i,\varphi(z_j)}$ are defined in (6). Therefore,

$$\|T_{u,v,\varphi}^m\|_{e, B_1 \rightarrow \mathcal{B}_\mu} \gtrsim \limsup_{j \rightarrow \infty} \frac{\mu(z_j) A_i(z_j) |\varphi(z_j)|^i}{(1 - |\varphi(z_j)|^2)^i} = \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i},$$

from which we have

$$\|T_{u,v,\varphi}^m\|_{e,B_1 \rightarrow \mathcal{B}_\mu} \gtrsim \sum_{i \in \{1, m, m+1\} \mid \varphi(z) \mid \rightarrow 1} \limsup \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i}. \quad (9)$$

Combining (8) and (9) yields

$$\|T_{u,v,\varphi}^m\|_{e,B_1 \rightarrow \mathcal{B}_\mu} \gtrsim \min \left\{ \sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu}, \sum_{i \in \{1, m, m+1\} \mid \varphi(z) \mid \rightarrow 1} \limsup \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i} \right\}.$$

It is sufficient to show that

$$\|T_{u,v,\varphi}^m\|_{e,B_1 \rightarrow \mathcal{B}_\mu} \lesssim \min \left\{ \sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu}, \sum_{i \in \{1, m, m+1\} \mid \varphi(z) \mid \rightarrow 1} \limsup \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i} \right\}.$$

Define $K_r f(z) = f_r(z) = f(rz)$, where $0 \leq r < 1$. Then, $K_r : B_1 \rightarrow B_1$ is a compact operator with $\|K_r\| \leq 1$ and $f_r \rightarrow f$ uniformly on compact subsets of \mathbb{D} as $r \rightarrow 1$ clearly. Let $\{r_j\} \subset (0, 1)$ be a sequence such that $r_j \rightarrow 1$ as $j \rightarrow \infty$. Then, for each $j \in \mathbb{N}$, $T_{u,v,\varphi}^m K_{r_j} : B_1 \rightarrow \mathcal{B}_\mu$ is compact, and so

$$\|T_{u,v,\varphi}^m\|_{e,B_1 \rightarrow \mathcal{B}_\mu} \leq \limsup_{j \rightarrow \infty} \|T_{u,v,\varphi}^m - T_{u,v,\varphi}^m K_{r_j}\|_{B_1 \rightarrow \mathcal{B}_\mu}.$$

Therefore, we only need to show that

$$\begin{aligned} & \limsup_{j \rightarrow \infty} \|T_{u,v,\varphi}^m - T_{u,v,\varphi}^m K_{r_j}\|_{B_1 \rightarrow \mathcal{B}_\mu} \\ & \leq \min \left\{ \sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu}, \sum_{i \in \{1, m, m+1\} \mid \varphi(z) \mid \rightarrow 1} \limsup \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i} \right\}. \end{aligned} \quad (10)$$

For every $f \in B_1$ such that $\|f\|_{B_1} \leq 1$, we have

$$\begin{aligned} & \|(T_{u,v,\varphi}^m - T_{u,v,\varphi}^m K_{r_j})f\|_{\mathcal{B}_\mu} = |T_{u,v,\varphi}^m f(0) - T_{u,v,\varphi}^m f_{r_j}(0)| + \sup_{z \in \mathbb{D}} \mu(z) |(T_{u,v,\varphi}^m f - T_{u,v,\varphi}^m f_{r_j})'(z)| \\ & \leq \underbrace{|(f - f_{r_j})(\varphi(0))u(0)| + |(f - f_{r_j})^{(m)}(\varphi(0))v(0)|}_{E_0} + \underbrace{\sup_{z \in \mathbb{D}} \mu(z) |(f - f_{r_j})(\varphi(z))u'(z)|}_{E_1} \\ & + \underbrace{\sup_{|\varphi(z)| \leq r_N} \mu(z) \sum_{i \in \{1, m, m+1\}} |(f - f_{r_j})^{(i)}(\varphi(z))| A_i(z)}_{E_2} \\ & + \underbrace{\sup_{|\varphi(z)| > r_N} \mu(z) \sum_{i \in \{1, m, m+1\}} |(f - f_{r_j})^{(i)}(\varphi(z))| A_i(z)}, \end{aligned} \quad (11)$$

where $N \in \mathbb{N}$ such that $r_j \geq \frac{2}{3}$ for all $j \geq N$. Furthermore, we have $(f - f_{r_j})^{(t)} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $j \rightarrow \infty$ for any nonnegative integer t . Now, Theorem 1 implies

$$\limsup_{j \rightarrow \infty} E_0 = \limsup_{j \rightarrow \infty} E_2 = 0. \quad (12)$$

From Lemma 5,

$$\lim_{j \rightarrow \infty} E_1 \leq \|u\|_{\mathcal{B}_\mu} \limsup_{j \rightarrow \infty} \sup_{z \in \mathbb{D}} |(f - f_{r_j})(z)| = 0. \quad (13)$$

Finally, we estimate E_3 .

$$E_3 \leq \underbrace{\sum_{i \in \{1, m, m+1\} \mid \varphi(z) \mid > r_N} \sup_{|\varphi(z)| > r_N} \mu(z) |f^{(i)}(\varphi(z))| A_i(z)}_{F_i} + \underbrace{\sum_{i \in \{1, m, m+1\} \mid \varphi(z) \mid > r_N} \sup_{|\varphi(z)| > r_N} \mu(z) |r_j f^{(i)}(r_j \varphi(z))| A_i(z)}_{G_i}. \quad (14)$$

For each $i \in \{1, m, m+1\}$, using Lemma 1, (6), and (7), we obtain

$$\begin{aligned}
F_i &= \sup_{|\varphi(z)| > r_N} \frac{(1 - |\varphi(z)|^2)^i |f^{(i)}(\varphi(z))| \mu(z) A_i(z) |\varphi(z)|^i}{|\varphi(z)|^i} \frac{\mu(z) A_i(z) |\varphi(z)|^i}{(1 - |\varphi(z)|^2)^i} \\
&\lesssim \|f\|_{B_1} \sup_{|\varphi(z)| > r_N} \|T_{u,v,\varphi}^m g_{i,\varphi(z)}\|_{\mathcal{B}_\mu} \\
&\lesssim \sum_{j=1}^4 \sup_{|w| > r_N} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu},
\end{aligned} \tag{15}$$

and

$$F_i = \sup_{|\varphi(z)| > r_N} (1 - |\varphi(z)|^2)^i |f^{(i)}(\varphi(z))| \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i} \lesssim \|f\|_{B_1} \sup_{|\varphi(z)| > r_N} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i}. \tag{16}$$

Taking the limits as $N \rightarrow \infty$ in (15) and (16), we obtain

$$\limsup_{j \rightarrow \infty} F_i \lesssim \sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu} \tag{17}$$

and

$$\limsup_{j \rightarrow \infty} F_i \lesssim \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i}. \tag{18}$$

Similarly, we have

$$\limsup_{j \rightarrow \infty} G_i \lesssim \sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu} \quad \text{and} \quad \limsup_{j \rightarrow \infty} G_i \lesssim \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i}. \tag{19}$$

Therefore, by (11)–(14) and (17)–(19), we obtain

$$\begin{aligned}
\limsup_{j \rightarrow \infty} \|T_{u,v,\varphi}^m - T_{u,v,\varphi}^m K_{r_j}\|_{B_1 \rightarrow \mathcal{B}_\mu} &= \limsup_{j \rightarrow \infty} \sup_{\|f\|_{B_1} \leq 1} \|(T_{u,v,\varphi}^m - T_{u,v,\varphi}^m K_{r_j})f\|_{\mathcal{B}_\mu} \\
&\lesssim \sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu},
\end{aligned}$$

and

$$\limsup_{j \rightarrow \infty} \|T_{u,v,\varphi}^m - T_{u,v,\varphi}^m K_{r_j}\|_{B_1 \rightarrow \mathcal{B}_\mu} \lesssim \sum_{i \in \{1, m, m+1\}} \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i}.$$

From the last two inequalities, we obtain (10) and the proof is completed. \square

Corollary 1. *Let $u, v \in H(\mathbb{D})$, $\varphi \in S(\mathbb{D})$, $m \in \mathbb{N}$, $m > 1$, and μ be a radial weight. Suppose that $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$ is bounded, then the following statements are equivalent.*

(i) *The operator $T_{u,v,\varphi}^m : B_1 \rightarrow \mathcal{B}_\mu$ is compact.*

(ii)

$$\sum_{j=1}^4 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{\mathcal{B}_\mu} = 0.$$

(iii)

$$\sum_{i \in \{1, m, m+1\}} \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z) A_i(z)}{(1 - |\varphi(z)|^2)^i} = 0.$$

By the same method as in the proof of Theorem 3, we can obtain the following results for the case $m = 1$, namely, the Stević-Sharma operator.

Theorem 4. Let $u, v \in H(\mathbb{D})$, $\varphi \in S(\mathbb{D})$, and μ be a radial weight such that $T_{u,v,\varphi} : B_1 \rightarrow \mathcal{B}_\mu$ is bounded. Then,

$$\begin{aligned} \|T_{u,v,\varphi}\|_{e, B_1 \rightarrow \mathcal{B}_\mu} &\approx \sum_{j=1}^3 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi} f_{j,w}\|_{\mathcal{B}_\mu} \\ &\approx \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z)|u(z)\varphi'(z) + v'(z)|}{1 - |\varphi(z)|^2} + \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z)|v(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^2}. \end{aligned}$$

Corollary 2. Let $u, v \in H(\mathbb{D})$, $\varphi \in S(\mathbb{D})$, and μ be a radial weight. Suppose that $T_{u,v,\varphi} : B_1 \rightarrow \mathcal{B}_\mu$ is bounded, then the following statements are equivalent.

- (i) The operator $T_{u,v,\varphi} : B_1 \rightarrow \mathcal{B}_\mu$ is compact.
- (ii)

$$\sum_{j=1}^3 \limsup_{|w| \rightarrow 1} \|T_{u,v,\varphi} f_{j,w}\|_{\mathcal{B}_\mu} = 0.$$

(iii)

$$\limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z)|u(z)\varphi'(z) + v'(z)|}{1 - |\varphi(z)|^2} + \limsup_{|\varphi(z)| \rightarrow 1} \frac{\mu(z)|v(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^2} = 0.$$

Acknowledgements: The author is grateful to the referees and the editor for bringing important references to our attention and many valuable suggestions that greatly improved the final version of this manuscript.

Funding information: This work was supported by the National Natural Science Foundation of China (No. 12101188).

Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The author states no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or analyzes during this study.

References

- [1] J. Arazy, J. S. D. Fisher and J. Peetre, *Möbius invariant function spaces*, J. Reine Angew. Math. **363** (1985), 110–145.
- [2] J. Arazy and J. S. D. Fisher, *The uniqueness of the Dirichlet space among Möbius-invariant Hilbert spaces*, Illinois J. Math. **29** (1985), no. 3, 449–462, DOI: <https://doi.org/10.1215/ijm/1256045634>.
- [3] G. Bao and H. Wulan, *The minimal Möbius invariant space*, Complex Var. Elliptic Equ. **59** (2014), no. 2, 190–203, DOI: <https://doi.org/10.1080/17476933.2012.727408>.
- [4] F. Colonna and S. Li, *Weighted composition operators from the minimal Möbius invariant space into the Bloch space*, *Mediterr. J. Math.* **10** (2013), no. 1, 395–409, DOI: <https://doi.org/10.1007/s00009-012-0182-8>.
- [5] S. Li, *Weighted composition operators from minimal Möbius invariant spaces to Zygmund spaces*, *Filomat* **27** (2013), no. 2, 267–275, DOI: <https://doi.org/10.2298/FIL1302267L>.
- [6] S. Ohno, *Weighted composition operators on the minimal Möbius invariant space*, *Bull. Korean Math. Soc.* **51** (2014), no. 4, 1187–1193, DOI: <https://doi.org/10.4134/BKMS.2014.51.4.1187>.
- [7] K. Zhu, *Operator Theory in Function Spaces*, 2nd edition, American Mathematical Society, Providence, 2007.
- [8] X. Zhu, *Weighted composition operators from the minimal Möbius invariant space into n -th weighted-type spaces*, *Ann. Funct. Anal.* **11** (2020), no. 2, 379–390, DOI: <https://doi.org/10.1007/s43034-019-00010-7>.

- [9] L. A. Rubel and R. M. Timoney, *An extremal property of the Bloch space*, Proc. Amer. Math. Soc. **75** (1979), no. 1, 45–49, DOI: <https://doi.org/10.2307/2042668>.
- [10] S. Li and S. Stević, *Some characterizations of the Besov space and the α -Bloch space*, J. Math. Anal. Appl. **346** (2008), no. 1, 262–273, DOI: <https://doi.org/10.1016/j.jmaa.2008.05.044>.
- [11] S. Li and S. Stević, *Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces*, Appl. Math. Comput. **217** (2010), no. 7, 3144–3154, DOI: <https://doi.org/10.1016/j.amc.2010.08.047>.
- [12] A. K. Sharma, *Products of composition multiplication and differentiation between Bergman and Bloch-type spaces*, Turk. J. Math. **35** (2011), no. 2, 275–291, DOI: <https://doi.org/10.3906/mat-0806-24>.
- [13] S. Stević, *On a product-type operator from Bloch spaces to weighted-type spaces on the unit ball*, Appl. Math. Comput. **217** (2011), no. 12, 5930–5935, DOI: <https://doi.org/10.1016/j.amc.2010.12.099>.
- [14] X. Zhu, E. Abbasi, and A. Ebrahimi, *A class of operator-related composition operators from the Besov spaces into the Bloch space*, Bull. Iranian Math. Soc. **47** (2021), no. 1, 171–184, DOI: <https://doi.org/10.1007/s41980-020-00374-w>.
- [15] C. C. Cowen and B. D. MacCluer, *Composition operators on spaces of analytic functions*, CRC Press, Boca Raton, 1995.
- [16] R. A. Hibschweiler and N. Portnoy, *Composition followed by differentiation between Bergman and Hardy spaces*, Rocky Mountain J. Math. **35** (2005), no. 3, 843–855, DOI: <https://doi.org/10.1216/rmj/m1181069709>.
- [17] S. Li and S. Stević, *Composition followed by differentiation from mixed-norm spaces to α -Bloch spaces*, Sb. Math. **199** (2008), no. 12, 1847–1857, DOI: <https://doi.org/10.1070/SM2008v199n12ABEH003983>.
- [18] S. Ohno, *Products of differentiation and composition on Bloch spaces*, Bull. Korean Math. Soc. **46** (2009), no. 6, 1135–1140, DOI: <https://doi.org/10.4134/BKMS.2009.46.6.1135>.
- [19] S. Stević, *Norm and essential norm of composition followed by differentiation from α -Bloch spaces to H_μ^∞* , Appl. Math. Comput. **207** (2009), no. 1, 225–229, DOI: <https://doi.org/10.1016/j.amc.2008.10.032>.
- [20] S. Stević, A. K. Sharma, and A. Bhat, *Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces*, Appl. Math. Comput. **218** (2011), no. 6, 2386–2397, DOI: <https://doi.org/10.1016/j.amc.2011.06.055>.
- [21] S. Stević, A. K. Sharma, and A. Bhat, *Products of multiplication composition and differentiation operators on weighted Bergman space*, Appl. Math. Comput. **217** (2011), no. 20, 8115–8125, DOI: <https://doi.org/10.1016/j.amc.2011.03.014>.
- [22] S. Wang, M. Wang, and X. Guo, *Differences of Stević-Sharma operators*, Banach **14** (2020), no. 3, 1019–1054, DOI: <https://doi.org/10.1007/s43037-019-00051-z>.
- [23] E. Abbasi, Y. Liu, and M. Hassanlou, *Generalized Stević-Sharma type operators from Hardy spaces into n th weighted type spaces*, Turkish J. Math. **45** (2021), no. 4, 1543–1554, DOI: <https://doi.org/10.3906/mat-2011-67>.
- [24] S. Stević, *Composition operators from the weighted Bergman space to the n th weighted spaces on the unit disc*, Discrete Dyn. Nat. Soc. Art. **2009** (2009), 742019, DOI: <https://doi.org/10.1155/2009/742019>.
- [25] S. Stević, *Weighted differentiation composition operators from the mixed-norm space to the n th weighted-type space on the unit disk*, Abstr. Appl. Anal. **2010** (2010), 246287, DOI: <https://doi.org/10.1155/2010/246287>.
- [26] E. Abbasi, *The product-type operators from hardy spaces into n th weighted-type spaces*, Abstr. Appl. Anal. 2021 (2021), 5556275, DOI: <https://doi.org/10.1155/2021/5556275>.
- [27] E. Abbasi, *A class of operator related weighted composition operators between Zygmund space*, AUT J. Math. Comput. **2** (2021), no. 1, 17–25, DOI: <https://doi.org/10.22060/ajmc.2020.18833.1041>.
- [28] Z. Guo and Y. Shu, *On Stević-Sharma operators from Hardy spaces to Stević weighted spaces*, Math. Inequal. Appl. **23** (2020), no. 1, 217–229, DOI: <https://doi.org/10.7153/mia-2020-23-17>.
- [29] Z. Guo, L. Liu, and Y. Shu, *On Stević-Sharma operator from the mixed norm spaces to Zygmund-type spaces*, Math. Inequal. Appl. **24** (2021), no. 2, 445–461, DOI: <https://doi.org/10.7153/mia-2021-24-31>.
- [30] Y. Liu and Y. Yu, *On Stević-Sharma type operator from the Besov spaces into the weighted-type space H_μ^∞* , Math. Inequal. Appl. **22** (2019), no. 3, 1037–1053, DOI: <https://doi.org/10.7153/mia-2019-22-71>.
- [31] F. Zhang and Y. Liu, *On a Stević-Sharma operator from Hardy spaces to Zygmund-type spaces on the unit disk*, Complex Anal. Oper. Theory. **12** (2018), no. 1, 81–100, DOI: <https://doi.org/10.1007/s11785-016-0578-8>.
- [32] S. Stević, *Essential norm of some extensions of the generalized composition operators between k th weighted-type spaces*, J. Inequal. Appl. **2017** (2017), 220, DOI: <https://doi.org/10.1186/s13660-017-1493-x>.
- [33] K. Zhu, *Analytic Besov spaces*, J. Math. Anal. Appl. **157** (1991), no. 2, 318–336, DOI: [https://doi.org/10.1016/0022-247X\(91\)90091-D](https://doi.org/10.1016/0022-247X(91)90091-D).
- [34] P. Galindo, M. Lindström, and S. Stević, *Essential norm of operators into weighted-type spaces on the unit ball*, Abstr. Appl. Anal. **2011** (2011), 939873, DOI: <https://doi.org/10.1155/2011/939873>.
- [35] S. Li and S. Stević, *Generalized weighted composition operators from α -Bloch spaces into weighted-type spaces*, J. Inequal. Appl. **2015** (2015), 265, DOI: <https://doi.org/10.1186/s13660-015-0770-9>.