DE GRUYTER Demonstratio Mathematica 2023; 56: 20220244 a

Research Article

Appanah Rao Appadu* and Gysbert Nicolaas de Waal
Numerical solution of a malignant invasion

model using some finite difference methods

https://doi.org/10.1515/dema-2022-0244
received March 30, 2022; accepted May 16, 2023

Abstract: In this article, one standard and four nonstandard finite difference methods are used to solve a
cross-diffusion malignant invasion model. The model consists of a system of nonlinear coupled partial differ-
ential equations (PDEs) subject to specified initial and boundary conditions, and no exact solution is known for
this problem. It is difficult to obtain theoretically the stability region of the classical finite difference scheme to
solve the set of nonlinear coupled PDEs, this is one of the challenges of this class of method in this work. Three
nonstandard methods abbreviated as NSFD1, NSFD2, and NSFD3 are considered from the study of Chapwanya
et al.,, and these methods have been constructed by the use of a more general function replacing the denomi-
nator of the discrete derivative and nonlocal approximations of nonlocal terms. It is shown that NSFD1, which
preserves positivity when used to solve classical reaction-diffusion equations, does not inherit this property
when used for the cross-diffusion system of PDEs. NSFD2 and NSFD3 are obtained by appropriate modifica-
tions of NSFD1. NSFD2 is positivity-preserving when the functional relationship [¥(h)]* = 2¢(k) holds, while
NSFD3 is unconditionally dynamically consistent with respect to positivity. First, we show that NSFD2 and
NSFD3 are not consistent methods. Second, we tried to modify NSFD2 in order to make it consistent but we
were not successful. Third, we extend NSFD3 so that it becomes consistent and still preserves positivity. We
denote the extended version of NSFD3 as NSFD5. Finally, we compute the numerical rate of convergence in
time for NSFD5 and show that it is close to the theoretical value. NSFD5 is consistent under certain conditions
on the step sizes and is unconditionally positivity-preserving.

Keywords: standard finite difference method, nonstandard finite difference method, consistency, positivity
preserving, cross-diffusion
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1 Introduction

Fundamental understanding of many natural phenomena such as the propagation of heat and sound requires
working with partial differential equations (PDEs); some literature can be found in [1,2]. In real world, models
consisting of PDEs often possess no exact or analytical solutions; this requires us to obtain numerical approx-
imations to solve and understand such models [3]. A useful and well-known method is the finite difference
method (FDM); the method discretises the spatial and time domains, and a solution can be approximated at the
discrete points using finite difference approximations [4]. A problem arises when using standard finite
difference (SFD) schemes; they do not inherently convey the properties of the exact solution to the numerical
solution such as positivity-preserving solutions for certain PDEs [5].
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Ronald E. Mickens is the pioneer of nonstandard finite difference (NSFD) methods. He started work on this
class of methods around 1990 [6]. NSFD schemes are constructed by using discrete models. The numerical
solutions can preserve properties from the exact solution when solving a differential equation; this makes
NSFD methods appealing [6]. One advantage of NSFD over classical methods for reaction-diffusion equations is
that classical methods can show blow up at long propagation times [7,8]. Studying the stability is not easy for
methods discretising nonlinear PDEs. The freezing coefficient technique and von Neumann stability analysis
can be used, but freezing coefficient is not an accurate technique. For NSFD methods discretising reaction-
diffusion equations, we can obtain conditions for which the methods are positivity-preserving and we can
prove boundedness [9]. Positivity and boundedness will ensure stability [9]. The construction of NSFD schemes
is based on some fundamental principles [10]:

(1) The denominator of the discrete derivative must be replaced by a more general function, for example,

u _ up"-up
S M)“ , where ¢(k) = exp(k) - 1.

(2) In general, we use nonlocal representation of nonlinear terms [11], for example, (Un)? = Unlly+1 and
Um)® = 2Um)® = (Um) U1

(3) The difference equation should have the same order as the original equation. In general, when the order of
the difference equation is larger than the order of the differential equation, spurious solutions might
appear as discussed in [12].

(4) The discrete approximation should preserve some important properties of the corresponding differential
equation. Properties such as boundedness and positivity should be preserved [13].

A scheme is called a nonstandard method if at least one of the first two principles mentioned earlier is
satisfied [14].

Some previous work on advection-diffusion and reaction-diffusion equations can be found in [15-17].
Diffusion equations have been widely applied and studied in the modelling of biological processes such as the
spread of diseases and biofilm growth [18,19]. Reaction-diffusion terms are often present in these models to
study biological system, these systems involve, most commonly, chemical substances that experience local
reaction, and the substances are transformed into each other and spread out over a surface via diffusion [20].
An interesting natural phenomenon due to reaction-diffusion is the formation and spread of patterns such as
spots and stripes over the surface of animals through the chemical interaction between cells [20].

In population dynamics, cross-diffusion equations are often present and require positivity-preserving solu-
tions; these equations are strongly coupled nonlinear parabolic systems making them difficult to work with.
Cross-diffusion occurs when the concentration gradient of one species induces the flux of another species, briefly
discussed in [5,18]. These equations are at the core of modelling several natural processes such as cancer growth
[21] and population dynamics [22] via Volterra-Lotka cross-diffusion systems and chemotaxis [23].

Mathematical analysis for cross-diffusion equations is a challenge, which is largely underdeveloped [18].
From a theoretical point of view, cross-diffusion equations are challenging mainly because they are strongly
coupled nonlinear parabolic systems, which do not enjoy the max principle, and thus, deriving appropriate
estimates and proving the existence of positive solutions is not easy [18]. However, some results on global and
local existence of solutions as well as on their long-time behaviour have been established in [24,25].

We consider a diffusion matrix of a system consisting of two species where both species concentration
gradients induce a flux on each other and themselves:

Dy Dlzl

D=
Dy Dy

where Dy, are the cross-diffusion coefficients [26], and D,,, is the diffusion of species m related to the
concentration gradient of species n. Unlike reaction-diffusion coefficients, the cross-diffusion coefficients
can be negative when species m increases the gradient concentration of species n [26]. The diffusion matrix
is not strictly diagonal and not symmetric positive, which distinguishes it from reaction-diffusion systems [18].

The design of reliable numerical methods that produce non-negative solutions for cross-diffusion equa-
tions has been an open problem until some interesting results from Chapwanya et al. (see [18]).



DE GRUYTER Numerical solution of a malignant invasion model =—— 3

The article is organised as follows. In Section 2, we describe the malignant invasion model to be solved and
give some discussion on the numerical rate of convergence. Section 3 is dedicated to the classical scheme SFD1
to solve the malignant invasion model. In Section 3.2, we present the numerical results using SFD1 for the
malignant invasion model. In Section 4, we describe NSFD1 scheme for the malignant invasion model, and we
also check the consistency. We present some numerical results in Section 4.1. We also consider another case of
initial conditions in Section 4.2 and present some results to show that NSFD1 does not always preserve
positivity. In Sections 5 and 6, we describe NSFD2 and NSFD3 schemes for the malignant invasion model
and check the consistency for both schemes. We also present some numerical results for both schemes in
Sections 5.2 and 6.2. In Section 7, we construct a new method termed as NSFD4 by modifying NSFD2 and check
the consistency. In Section 8, we modify NSFD3 in order to obtain NSFD5 and present some numerical results in
Sections 8.2 and 8.3. Finally, in Section 9, we give some concluding remarks.

2 Malignant invasion model

The mathematical model for cancer growth proposed in [21] is described as follows:

ou 0 oc
- - ) - —|y=— 1
at u - wy ox ”ax ’ M
ac
= - 2
op 4
= _ 3
prakd (uc - p), (3)

where u(x, t), c(x, t), and p(x, t) describe the concentration level of invasive cells, connective tissue, and
protease, respectively.

The system considered is a cross-diffusion system, since in equation (1), the concentration gradient of the
invasive cells induces a flux on the concentration gradient of connective tissue. The parameter € > 0 chosen to
be small is a parameter that signifies the fact that protease enzymes (proteins) are much smaller than those of
connective tissue and invasive cells.

We consider two cases with initial conditions described by [18]:

(1) u(x,0) =exp(-x%); c(x,0)=1-05exp(-x?); p(x,0) = 0.5exp(-x?) 4
) (-2 _ . _
() u(x,0) = m c(x,0) = T+ p(x, 0) = 0.5u(x, 0). 5)

For both cases, the space domain is x € [0, 20] and time domain is ¢t € [0, 50].

The second case of initial conditions is used to computationally show that NSFD1 does not always replicate
the positivity property of solutions of the continuous model.

For appropriate boundary conditions, the zero-flux boundary condition can be considered at the left
boundary and Dirichlet’s or zero-flux boundary conditions can be considered at the right boundary [27].
We will consider zero-flux conditions at both the right boundary and the left boundary.

As discussed in [18], the solutions have the property:

u(x,t) 20, c(x,t)=20, px,t)=0,

where ¢ decreases in time whenever the initial conditions are non-negative. It follows that numerical solution
should also be non-negative.

Taking the right-hand side to be zero, the system described by equations (1), (2), and (3) has three types of
constant steady-state solutions E = (u, ¢, p):

E; = (0, 0, 0) trivial equilibrium,

E, = (1,0, 0) fully malignant equilibrium,

E, = (0, ¢, 0) normal healthy equilibrium, where ¢ > 0 is any constant.
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The solution domain is (X, t) € [0, Xmax]| * [0, T], partitioning the interval x, < x<---< xy with x,, = mh
for m=0,1,2,..,N gives the space step size h = Xyax/N, equally dividing the spatial domain [0, Xpax]-
Similarly, the time step size is given by k = T/M, equally dividing the temporal domain [0, T], with t, = nk
forn=0,1,2,.., M [5].

As we do not have an exact solution, we obtain the numerical rate of convergence in time by using

Ex
In Ex

(6)

T —

@)’

where Ey = ||Ux — Uxl| and Ex = ||U§ - U|| are discrete maximum norm errors [16,17].
All numerical simulations are done in MATLAB using an Intel Core i5-10600k with 16GB RAM.

3 Standard method to solve the malignant invasion model

3.1 Derivation of SFD1

We first consider the standard finite difference scheme constructed in [5], which we denote as SFD1. Khalsaraei
et al. [5] discretised equations (1), (2), and (3) as follows:

ynl - gn Ut - n_1 cl - n_1 n+l - 2C" + Cn—l
m [ m m ][ m m _ Urrrlz m m m )

= Up(l- Up) -

k h h h? ’
Cn+1 _ Cn
o haGn ®)
Pn+1 _ Pn
% = g (URCH - PR, 9
Rewriting equations (7), (8), and (9), they obtained the explicit form as [5]:
k
Unt= (1 + k(1 - Up)Up, - ﬁ(Urrrll(Cr’lel - Cp) + Una(Grot = G, 10)
Cn
n+l _ m 11
and
Pl = pn g glk(URCRt - P, 12)

We would like to mention that it appears that equations (7) and (9) from [5] have typing errors which we
corrected in order to obtain equations (10) and (12) as given in [5].

To check for consistency and to obtain the order of accuracy of SFD1, we obtain the Taylor series expan-
sion of equations (10)—(12) about (t,, X;,). Dividing throughout by k and after some re-arrangement, we obtain

a_U _ U(l _ U) + a_UE + aZ_C
ot ox 0x x> 13)
L _kPU_KPU_ KU hUFC RUIC BIVEC o
2 ot? 6 at3 24 ot* 2 0x ox? 6 ox oax® 12 ax?* ax3 ’
oC ko*C k29°C Kk3o*C oC k% 9%C k3 93C
— +PC=-r—— - ——— ~p ~k—P- ——P- ——P+0(Kk", 14
ot 20t 6t 24 ot* ot 2 ot? 6 ot )
and
oP aC k% _9’Cc K3 9% _ k 9P k*9P K3 9P

2 o(kY. (15)

— -euc+ kU— + —U— + = — - —— - —
€ ot 2 Ot? 6 ot 24 ot*

_U_
ot 2 ot? 6  ot3
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As k, h = 0, we have

E_U(l_U).F%%.F aZ_C—O
ot ox ox ox? ’
ocC
— +PC=0,
ot

and

apP
— - ¢Uc-P)=0.
3t e( )

Hence, SFD1 is consistent with the PDEs. The scheme is first-order accurate both in time and in space.

3.2 Numerical results using SFD1

Stability analysis using Von Neumann conditions cannot be used to obtain the stability region as the equations
are coupled. So we fix h = 1.0, and by running some experiments with different values of k, we try to obtain a
range of values of k such that reasonable numerical solutions are obtained. This is not an ideal method but we

do not think there is an alternative method. We therefore fix h = 1.0 and decrease k %, %, %,

obtain reasonable numerical solutions. Reasonable solutions here refer to solutions that are bounded with
possibly some dispersive oscillations at some values of x and t. Standard FDMs generally generate unphysical
solutions for some PDEs, especially with advection and reactive terms present.

Figure 1 shows results when h = 1.0 and k = 0.5, and we observe unbounded solutions. Figure 2 shows

resultswhenh = 1.0 and k = %, and we observe that the profiles are not very smooth, as clearly seen in Figure

2(e). Reasonable solutions are obtained when h = 1.0 with k = % ork= %,

, until we

as displayed in Figures 3 and 4.
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Figure 1: Results for cancer growth model using SFD1 with k = 0.5 and h = 1.0. (a) Plot of numerical solutions vs t at x = 5, (b) plot of
numerical solution for conc. of IC vs X vs t, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot of numerical solution for
conc. of protease vs X vs t.
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Figure 2: Results for cancer growth model using SFD1 with k = 0.3497 and h = 1.0. (a) Plot of numerical solutions vs t at x = 5, (b) plot of
numerical solutions for conc. of ICvs x vs t, (c) plot of numerical solutions for conc. of CT vs x vs ¢, (d) plot of numerical solutions for conc.
of protease vs x vst and (e) plot of numerical solutions for conc. of protease vs t at x = 1.
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Figure 3: Results for cancer growth model using SFD1 with k = 0.3012 and h = 1.0. (a) Plot of numerical solutions vs t at x = 5, (b) plot of
numerical solution for conc. of IC vs X vs ¢, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot of numerical solution for

conc. of protease vs X vs t.
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Figure 4: Results for cancer growth model using SFD1 with k = 0.25 and h = 1.0. (a) Plot of numerical solutions vs t at x = 5, (b) plot of
numerical solution for conc. of IC vs x vs t, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot of numerical solution for
conc. of protease vs X vs t.

4 NSFD1 scheme to solve the malignant invasion model

The logistic equation is the space-independent case of equation (1), described by:

du
- - 1
; u(l - u). (16)

An exact scheme constructed in [13] to solve equation (16) is

Un+1 -pyn

¢(k) - U"(l - U"+1), ()]

where ¢(k) = exp(k) — 1, with k — 0.

The initial value problem of equation (16) is a solvable separable differential equation, and it can be seen
from the solution that in using the exponential denominator function ¢(k), there is no error between the
continuous and discrete solutions of the initial value problem of equation (16), unlike the case when using the
denominator k [11,18].

Using the nonstandard approach, Anguelov et al. [15] discretised the Fisher-Kolmogorov-Petrovsky-Pis-

kunov (Fisher-KPP) equation, and using these ideas, equation (1) was discretised by Chapwanya et al. [18] as
follows:

Un+1 _ Un Un _ n_ Cn _ n_ n o _ zcn + Cn_
m m _ Unr; 1- Urﬁﬂ _ m m-1 m m 1’ _ rrrll[ m+1 m m 1]’ (18)
pliy o On) [ O 0 TN
where ¢(k) = exp(k) — 1 and (h) = h. Equation (18) can be rewritten as:
Un+1 -yn Utch., - (Un + Un_ )Cn + Un_ Cn_
m m =Ur’rlzl_Urrr[1+1 _ mm+1 m m-1/*m m1m1]' (19)
oy o) [ TIO%;
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Chapwanya et al. [18] chose the functional relation

k 1
000 _ 1 0
[y 2
This gives
1
Un't = Up + 9(OUR(L - UR™) - 2 UnCns1 = (Un + Un-)Cp * Up-1Cn-1-
On re-arrangement, the following explicit NSFD method was obtained in [18], namely
ot = 2Un(+ 900) = (UpCroy = (Un + Up)Cp + Up-1C1) o
" 2(1 + ¢(k)Up) '
Equation (21) can be rewritten as:
gt = Un@ * 2000 * Gi = Gioy) * U (G = i) o

2(1 + ¢(k)Up)

From equation (22), we see that preservation of the positivity of solutions for invasive cells is guaranteed if
Cl 2 Cp_4, which is a very strict restriction. This means that there is a restriction on the type of profile at a
given time and on the initial profile. The complication arises from equation (1) with the addition of the cross-
diffusion term and will require appropriate manipulation to obtain a scheme that enjoys positivity-preserving
solutions [18].

Using the usual rules of the nonstandard approach, namely the non-local approximation of non-linear
terms and the use of complex functions as denominators, the following discretisations are used to solve the
PDEs described by equations (2) and (3) [18]. We have

n+l _ pn
Cn~ — G

Tt G @3)
where ¢(k) = exp(k) - 1, and making C**! the subject of the equation, we obtain
Cn
n+l _ m
" 1 goRy 4
Also,
Pn+1 _ Pn
e ™ ¢ RGP e
which gives
prot Pn* P RUnCr! 26)

1+ ¢(e7k)
In an extreme situation with initial values between 0 and 1, the maximum value of U,,’;"l is

12+ 2¢(k) +1-0) + 1(1)
2(1 + ¢(k)(0))

=2+ ¢(k)),

while the minimum value of U is

1

5"

Hence, the numerical solutions from NSFD1 might not always be bounded between 0 and 1.
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We next check if NSFD1 is consistent Taking the Taylor series expansion of equation (22) and after some

re-arrangement using ¢fk) 1and 555 ¢(k) hZ’ we obtain

oUu ou ac o%C
—-Uu@a-U —+tU_—
ot ( ) ax ox ox?

_k[oU ou| k?*(o%U o%U| k3[otU U

= +2U— |- = tWU—— |- | =7 t4U—

2| a2 at 6| at3 6t2] 24| ot* atd

LMoude oyoc) Mf1oudc 1dudc 1guec, 1ot

—| =+ — +
2| ax ax2  ax? ax 30x ox® 20x*ox: 3ox3ox 6 oxt

10U 9*C 9*Uo3C d%Ud*C 10*UaC

2 0x ox*  ox?ox3  ox3 ox: 2 0x* ox

h3

+ + 0(k*) + O(hY).

Similarly, the Taylor series expansions of equations (24) and (26) about (¢, X;,) give

#C _8%C
+3—- +4—P| - ——— + O(k®
o ot? 24| ot* a3 (k)

24 ot*

aC PC = _E aZ_C + E kz
ot 2| ot? ot 6

k3[a4c 63C] k4 94C

and

Q—S_l(UC pP)= K 1[U£_£]_@ +k_238—1U62_C_02_P_63_P
ot at ot 6 ot>  oat?

_ - - 5
24 ot |t |V ] O

. k34 Ua3C 3P| o*P k_4 9*C  a%P
ot ott

As k, h = 0, we have

oUu oU aC 0%C
— -Ud- —— +U— =
ot -0+ ox 0x ox? 0,
oC
— +PC=0,
ot
and
opP
- ¢ UC-P) =
Y el ) =

27

(28)

(29)

Hence, NSFD1 scheme is consistent with the PDEs. The scheme is first-order accurate both in time and in space.

4.1 Numerical results for NSFD1 (case 1)

In Figures 5 and 6, we display the plot of the numerical solutions for concentration of IC, CT, and protease using

NSFD1 with k = 1.0, h = 1.8538, and k = 0.4055, h = 1.0, respectively.

Figure 7 gives the plot of the numerical solutions for concentration of IC, CT, and protease vs x at some

values of ¢ using NSFD1 with k = 1.0 and h = 1.8538.

From Figures 5 to 7, we observe that the numerical solutions using NSFD1 are non-negative and bounded

between 0 and 1 for case 1.
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Figure 5: Results for cancer growth model using NSFD1 with k = 1.0 and h = 1.8538 (case 1). (a) Plot of numerical solutions vs t at
x(4) = 5.5614, (b) plot of numerical solution for conc. of IC vs x vs t, (c) plot of numerical solution for conc. of CT vs X vs t, and (d) plot of
numerical solution for conc. of protease vs X vs t.
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Figure 6: Results for cancer growth model using NSFD1 with k = 0.4055 and h = 1.0 (case 1). (a) Plot of numerical solutions vs t at
x(6) = 5, (b) plot of numerical solution for conc. of IC vs x vs t, (c) plot of numerical solution for conc. of CT vs X vs t, and (d) plot of
numerical solution for conc. of protease vs X vs t.
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Figure 7: Plot of numerical solutions vs x at some values of ¢ using NSFD1 with k = 1.0, h = 1.8538 (case 1). (a) Plot of numerical solutions
vst at x = 5, (b) plot of numerical solutions vs x att = 15, (c) plot of numerical solutions vs x att = 25, and (d) plot of numerical solutions

vs X att = 35.

4.2 Numerical results using NSFD1 (case 2)

To computationally show that the scheme in equation (22) is not always positivity-preserving, we consider the
case of initial conditions given by equation (5). Clearly, C2 > C?_, is not satisfied, as shown in Figures 8(c), 9(c),

and 10(a).
—IC
0.8r CT ¥
,5 —Protease
©0.6F ]
=
3
204 E
[e]
o
0.2 N
0
0 5 10 15 19.867
t
(a)
I_
O 1
k]
=
o
5
=
Q
o
=
o
(&)
oo O
X t
()

Concentration of IC

Concentration of protease

Figure 8: Results for cancer growth model using NSFD1 with k = 0.4055 and h = 1.0 (case 2). (a) Plot of numerical solutions vs t at
x(6) = 5, (b) plot of numerical solution for conc. of IC vs x vs t, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot of

numerical solution for conc. of protease vs x vs t.
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Figures 8, 9(b) and (d) illustrate that NSFD1 does not always preserve the positivity of solutions.

Figure 10 shows that the numerical solution for the concentration of invasive cells converges to 1 as we
advance in time and space. In Figure 10(b), we observe that the numerical solutions for the concentration of
invasive cells and protease are larger than 1.
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Figure 9: Results for cancer growth model using NSFD1 with k = 1.0 and h = 1.8538 (case 2). (a) Plot of numerical solutions vs t at
x(4) = 5.5614, (b) plot of numerical solution for conc. of IC vs x vs t, (c) plot of numerical solution for conc. of CT vs x vs ¢, and (d) plot of
numerical solution for conc. of protease vs X vs t.
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Figure 10: Plot of numerical solutions vs x at some values of ¢t using NSFD1 with k = 1.0 and h = 1.8538 (case 2). (a) Plot of numerical

solutions vs x att = 0, (b) plot of numerical solutions vs x att = 4, (c) plot of numerical solutions vs x att = 8, and (d) plot of numerical
solutions vs x at t = 12.
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5 Positivity-preserving NSFD methods

5.1 NSFD2 to solve the malignant invasion model

Chapwanya et al. [18] proposed a modification by replacing U} on the left-hand side of equation (19) by -~—=- Un Um !
[18]. This gives
ot - (%) (UG, — (U + UB_ )G + UG ]
= U1 - Urrrll+1) _ Ymbtma m m-1)m m-1tm-1 ’ (30)
p(k) " [y
where ¢(k) = exp(k) — 1 and Y(h) = h
Choosing IZ)((h)) = 1 and upon some re-arrangement give the first equation for NSFD2 as:
g = UR@900 +1+ G~ i) + Upa(1 = Gy + ) a

2(1 + ¢(k)Up)
For NSFD1 and NSFD2, equations (2) and (3) are discretised in a similar manner, i.e.

n
n+l _ Cm

"1+ ¢(k)Py
and

Py + ¢ UG
1+¢(k)

Pn+1 -
m
where ¢(k) = exp(k) - 1.

Theorem. [18] For U2 = 0,C% > 0, and P > 0, we have C} > 0 and P} > 0, with the sequence {C}} being
decreasing in n. Moreover if C> < 1, then U" > 0. NSFD2 scheme when used to discretise equation (1) is posi-
tivity-preserving if C% < 1.

To check for consistency of NSFD2 scheme, we consider equation (31). From the Taylor series expansion

and after some re-arrangement using ¢é{k) 1and we obtain

2¢(k) hz’
R R (3

ot ox 0x x>

10U 12U hoU | K2U

T hox 20X 60X 24 ox*

_ k[o*U ‘o aU|  K*[oU 3UaZ_U _k_364_U 4U63_U

T2 24| ot* ot (32)

a2 at] 6o ot?
Wou e  FUAC| W(LUFC  12UPC 15U | 1 0%
2lox axz  ax2ax| 2|3axox3 20x2ax: 3ax3ax 6 oxt
h3

19U 8*C 9*Ud3C °Ud*C 10*UaC
12

+ 0(k*) + O(h%).
2 0x ox*  ox%*ax3  ox3 ax: 2 ox* ox ) ("

Hence, as k, h = 0, we have

oUu oU acC o*C 19U 10%U
— -UA-U)+ ——+ U=+ 33)
ot ( )+ ox ox ox? hox 20x
From equation (33), we conclude that NSFD2 scheme is not consistent with the PDE for invasive cell concen-
tration. Hence, NSFD2 is not a reliable method to solve the malignant invasion model. We note that this is a

novel result obtained; the consistency of NSFD2 was not checked in [18].
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5.2 Numerical results using NSFD2

Figures 11 and 12 display the plot of the numerical solutions for concentration of IC, CT, and protease using
NSFD2 with k = 1.0, h = 1.8538, and k = 0.4055, h = 1.0, respectively.
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Figure 11: Results for cancer growth model using NSFD2 with k = 1.0 and h = 1.8538 (case 1). (a) Plot of numerical solutions vs t at
x(4) = 5.5614, (b) plot of numerical solution for conc. of IC vs x vs t, (c) plot of numerical solution for conc. of CT vs x vs ¢, and (d) plot of
numerical solution for conc. of protease vs X vs t.
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Figure 12: Results for cancer growth model using NSFD2 with k = 0.4055 and h = 1.0 (case 1). (a) Plot of numerical solutions vst at x = 5,

(b) plot of numerical solution for conc. of IC vs x vs t, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot of numerical
solution for conc. of protease vs X vs t.
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Figures 11 and 12 show that numerical solutions obtained using NSFD2 are non-negative.

The results using NSFD2 are very different from those when using NSFD1. This is expected as NSFD2 is not
a consistent method.

We observe that the initial change in concentration gradients occurs rather quickly, as seen in Figures 11
and 12. This initial change should occur at t = +5, as in Figures 3-6.

6 NSFD3 to solve the malignant invasion model

6.1 Construction and analysis of NSFD3

By decomposing the cross-diffusion term in equation (19) into its positive and negative parts and multiplying

the negative part by o another scheme is constructed in [18] as follows:

Un+1 Un — Un(l _ Un+1) (Ufrrll + Urrrlz—l)Cn’; _ (Urrrllcrrrlwl + Urrrlz—lcrﬁ—l) x Ufrrll+1 (34)
k)" [y YW Un
where ¢(k) = exp(k) -1 and Y(h) = h
By taking R = [lf((:))]z > 0 and making U"*! the subject of the equation, we obtain the explicit NSFD scheme,

which is denoted by NSFD3:

A+ ¢(K))Un + R(Up + Up-1)Cny

RULCE 1+ U Ch ) (35)
1+ ¢(k)Up + 1U—m11

n+l _
Uy, =

Theorem. The scheme given by equation (35) is unconditionally dynamically consistent with respect to posi-
tivity [18].

Next, we check for consistency of NSFD3, and therefore, consider equation (35). From the Taylor series

. . k .
expansion and after some re-arrangement using o0 = 1, we obtain

oUu 6U oC 9%C
—-Ul-U =+ U—
ot ( )+ 9x x ox?
k(e 0U | 2y oU) K& 0 3y ) Kfe'U U 4y &
2| ae2 at  hU at 6| o3 atz  RU at*| 24| ac* a3 nuU ot?
(36)
(AfovoC ovac) jf1ovatc 1oysic 18UsC 1ot
ox ax2  ox% ax 30x ox® 20x*ax: 3ox3ox 6 ox*
h3 19U 9*C 9d*UdC 9d’Uo*C 19*UAC
St Tt ——— |+ O(kY) + O(hY).
12 2 0x ox*  ox*ax3  ox3 ox® 2 ox* ox (k5 ("

Here, we denote y by:

h2
2

aU d*C d*U aC 103U
=
Ox axt  ox2ax 3 ax3

h3
2

a*C ouac o%U
W—— +

—avc- %%+ =22
Y ox ox?2 ox ox  ox

As k, h — 0, we have
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oU pUaC 9% 2koU k29U _ k®°U
= -UA-U)+ —— =

+U—=-Cl——7+ 55— + ——=|. 37
ot ox 0x ox? h* ot  h* at*>  3m% ot 37)

From equation (37), we conclude that NSFD3 scheme is not consistent with the PDE for invasive cell concen-
tration. We note that the consistency of NSFD3 was not checked in [18].

6.2 Numerical results using NSFD3

In Figures 13 and 14, we present plots of the numerical solutions for concentration of IC, CT, and protease using
NSFD3 with k = 1.0, h = 1.8538, and k = 0.4055, h = 1.0, respectively.

Figures 13 and 14 show that numerical solutions obtained using NSFD3 are non-negative.

The profiles from NSFD2 and NSFD3 are very different from each other though they are obtained on a
slight modification of NSFD1.

From Figures 13 and 14, we see that the initial change in concentration gradient is quite delayed, as
previously mentioned, this initial change should occur at t approximately equal to 5.
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Figure 13: Results for cancer growth model using NSFD3 with k = 1.0 and h = 1.8538, i.e. R = 0.5 (case 1). (a) Plot of numerical solutions
vs t at x(4) = 5.5614, (b) plot of numerical solution for conc. of IC vs x vs t, (c) plot of numerical solution for conc. of CT vs x vs t, and (d)
plot of numerical solution for conc. of protease vs X vs t.
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Figure 14: Results for cancer growth model using NSFD3 with k = 0.4055 and h = 1.0, i.e. R = 0.5 (case 1). (a) Plot of numerical solutions

vs t at x = 5, (b) plot of numerical solution for conc. of IC vs X vs ¢, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot of
numerical solution for conc. of protease vs x vs t.

7 NSFD4 to solve the malignant invasion model

We consider NSFD2 given by equation (30) in a general setting without fixing the value of R. We rewrite
equation (30) as:

0.5(Un + Un-1) + Un(9(k) = RCpoy + RCy) + RUp1(Cry ~ Cua)

n+l _
Un = 1+ GO ’ 9
where ¢(k) = exp(k) - 1, (h) = h, and R = [lf((}f))]z.
We can rewrite equation (38) as:
w1 UMO5 + ¢(k) = RCR,; + RCR) + Up (0.5 + RC - RCY_))
Un'™ = . 39)

A+ ¢(k)Up)

From equation (39), we see that in order for NSFD4 to preserve positivity, we require that R < % + ¢(k)
and R 2 %
To check for consistency of NSFD4 scheme, we consider equation (39). We obtain the Taylor series

expansion and after some re-arrangement using % = 1, we obtain the modified equation as:

oUu oU oC 92C h oU h* 02U U
— Q-0+ - +U_5=- — + 7 Py
ot 0x 0x ox 20(k) ox  4p(k) ox 12¢(k) ox
_KaZ_U+ ﬂ_k_za:;_U.FgUaz_U (40)
2| ot? ot 6| ot ot?

k3(otU U
- = - - 4 4
24[at4 +4Uat3]+0(k)+0(h ).
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After taking k, h — 0, we have

%—U(l U)+%£+U62_C h ﬂ_ﬁaz_U_'_h_ZaB_U (41)
ot ox 0x ox? 2¢(k) ox 20x* 6 ox3f

From equation (41), we conclude that NSFD4 scheme is not consistent with the PDE for invasive cell concen-
tration. Hence, NSFD4 is not a reliable method to solve the malignant invasion model. We were not successful
to construct a scheme that is consistent and that preserves the positivity of solutions by working with the
general form of NSFD2 scheme.

8 NSFDS5 to solve the malignant invasion model

8.1 Construction and analysis of NSFD5

In this section, we try to make NSFD3 consistent. We therefore consider
(1 + ¢(k)Up + R(Up + Up1)Ciy

R(UCH .+ UL _CE_y)
1 + ¢(k)Urrrl[ + m m+1Un m-1~m-1
m

n+l _

We rewrite the scheme as:

+ ¢(k))(Un)* + R(Up + Un-1)CrUn

Un+1 = . 42
T Gt IO + RWAChn + UG “
We consider
Un'Up + ¢U)(Up)? + R(UpCirat + UnaCr-p)] = (1 + ¢(R)(Un)? + R(Up, + Up—)CrUp.
Taylor series expansion about (t,, Xn,) gives
ot ax ox ox?
_k 02U oU| Kk2%(oU 02U k3(o*U o3U
= +2U—| - — 3 + 4U—
2| ae2 at 6 [6t3 ot 24[ att at3]
k|l 4 oU 2 U oU 10U|(_ . 8%C 6U aCc 02U
A A At A U t o
2| h* ot hU ot ox U ot ox ax ax  ox
, K[houfovec  ovac 10U\ _ K60 . 3 &UOU
2|U ot |ax ax2 ~ axtox 3 ax® 6 | h? ot? hU ot? ax
3 9%U 9%C U 8C  d*U
+ ——| 22— +2—— + —
2U ot? x> ox ox  ox?
(43)
k*[3no%U(oU 0?>Cc od2UOC 10°U
+ ==+t —— + ——
6 |2U ot | ox ox* ox%ox 3 ox3

k3| 8 83U 4 9%U oU 203U

K(80°U . 4 Q°UU . 20°(, 8°C  0UC oU
24|n2 83~ hU a3 ox = U at3

W + 2o+ —
ox* ox 0x  Ox>

, k[zmetu(oudc  vac 18U
24| U at3|ox x> ax*ox 3 ax3
h(oU 82>C 42U aC h2

+ = +

P _U_
3 0x 6x3 20x2ax> 3ax3ax 6 oxt
18U 9*C 92U C 83U d*C 10*UaC
P
20x ox*  axZax3  ax3ax: 2 ox*ax

2(ox ox2 " ax?ax)
h3
12

10U 63C 102U d*C 1d°UaC . 1 64C]

+ 0(k) + O(hY).
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If we choose k — 0, h — 0, and k < h, it is possible to make NSFD3 consistent.
Choosing different combinations of k and h results in the following modified equations:
For k = 0.001 and h = 1.0, we have

U
— -U-U)+

ot

woc | e
ox 0x x>

1070 oU) 109(6% o) 100(a'U 5%
2 | ot? ot 6 | ot ot? 24 | at* ot3
1073| aU 29U aU 19U(__08%C _aUaC U

—|4—C-=———C+=—|2U— +2

2 ot Uatax Uat|T oxt “oxox oxt

109100
U ot

oU d%C od*UaC 103U
—_—— —— +
ox ox®2  ox%9x 30x3

_10_6 662_UC — iaz_UgC + iaz_U zUaz_C + 2%% + aZ_U
6 | at? U at? ax 2U ot? ox? ox ax  ox?

(44)

, 10°1 3 °UjoUu g oUac  10°U
6 |2U ot?|ox ox2 ox*ox 3 oxd
_109( 00, 40UoU, 29[ oC U 3
24 | otd U ot® ox U otd ox? ox ox  Ox>
10°(2 83U (aU 0°C U OC 10°U
|| —— + ——
24 |U ot3 | ox ox*  ox%ox 3 ox®
1{8U 82C  8*U aC 1(18UdC 108%Ud%C 183UaC 1 0%
e e ) [ e S T Sy
210ox ox*  ox2ox| 2|30xox® 20x*ox: 30x3ox 6 oxt
1(10U d*C d2UdC d3UdC 10*UAC
| e =
1212 ox 9x*  ox2 ox3  ox® ax: 2 ox* ox
For k = 0.00025, h = 0.5, we have
ﬂ_U(l_U).'.ﬂ%.FUaz_C
at ox ox x>
2.5 x 1074( 92U oUu 6.25 x 1078 93U 0U
= -2 T yy— |- == |—— + 30—
2 at? ot 6 ot at?
1.5625 x 1071 94U 03U
- |— % 4U_
24 [at4 ot’
2.5 %1074 oU 40U oU 10U 0%C U oC 9%U
R [ e e e
2 ot U ot ax U ot x> ox ox  Ox>
25x10%( 1 oU(aU @%C QU AC 10%U
+ ||t —— + ——
2 2U ot | ox ox*  ox%ox 3 ox®
625x 108 92U . 602UQU . 3 [ _ 9°C _QUAC U
- U C - e Ct Wy + 2+ —
6 ‘ a2 " Ua ax 2w er| Xt “oxox  ox 45)

6.25 x 1078| 3 92U 6U62_C o’UaC 10%U

6 4U ot | ox ax*  ox%* ox 3 ox3
1.5625 x 1071 93U 8 33U oU 2 93U 9%C oU aC  d%U
e e (il V1S S
24 [ o3 U at® ax U otd ox? ox ox  ox?

owac  ovac 15U
ox ox>  ox*ox 3 ox3
oU d%C 9*U aC 1(18Ud%C 10*Ud*C 10U oC 1_9*C
—— | -t et + U —
ox 0x2  ox*ox| 8|3oxox3 20x*ox: 30x39x 6 ox*

10U 9*C 62_U63C 2’U 9?C 10*UaC

+ —t —— +
2 0x ox*  ox*ax®  ox3 ox: 2 o0x* ox

15625 x 107 ( 4 °U
24 (U a8

1

4
1

9
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From equations (44) and (45), we can conclude that choices such as k = 0.001, h = 1.0 and k = 0.00025,
h = 0.5 appear to be suitable in order to make NSFD3 consistent.

In an extreme situation, the maximum value of U,ﬁ” is

¢(k)
A+ oUW + @ + D) =1+ ¢(k) +2 o(k)

=1
90 >
(L + BUAO)) + o (0)/1 (]

ask— 0,h - 0, and% - 0, we have that U1 - 1.
Error estimates: Let (u, ¢, p) € C>%(0), where = {(x, 1)|0 < x < 1,0 < t < T}for some T > 0.If h and k are
such that

oK) _exp() -1 _

[P h?

then there exists constants Cy, C > 0, independent of h and k, such that

0,

Gr+1 )

max |[u® - U*< max |ul - U + CuM,
(ax fitm = Unl < max ltm = Unll (00— 10 600 + 1) “
0 0
¢, — C
max |c! - CP< max [6m ~ Cl = .
(Xmst) €0 0<msN+1 (|cS - CO|p(k) + 1)«
and
max |p" - P*| < max |p° - P%| + CM,,
(xm,t,[)eelpm ml OsmsN+1|pm ml ?
where
02U ou oU 02C 02U ocC
M = max — () +2ulx, t)—x, t)|, | —&, )—x, ) + —(x, t)—(x, t)|f,
B N o X D+ W D5 06D, | 506 D5 M D+ 5a 6D ( )]
L ocC
M. = max —(x, t) + 2p(x, t)—(x, t)|y,
¢ = max atz( )+ 2p( )at( ) ]
and
02p oP oC
M,= max {| —(x, t) + 2 =—(x, t) - ulx, t)—(x, t for m=1,2,3,..,N.
P mtn)ed atz( ) at( )~ uC )at( ) H

8.2 Numerical results using NSFD5 (case 1)

Figures 15 and 16 give the plot of the numerical solutions for concentration of IC, CT, and protease using NSFD5
with h = 0.5, k = 0.00025 (R = 0.001) and h = 1, 0, k = 0.001 (R = 0.001), respectively.

Figures 17 and 18 depict the plot of the numerical solutions of concentration of IC, CT, and protease vs x at
some values of ¢t using NSFD5 with h = 0.5, k = 0.00025 and h = 1, 0, k = 0.001, respectively.

Tables 1 and 2 give the maximum norm errors E, and the numerical rate of convergence in time R” for
NSFD5.

Figures 15 to 18 demonstrate that numerical solutions are non-negative using NSFD5.

The profiles obtained in Figures 15 and 16 for NSFD5 share some similarities to those of NSFD1 in Figures 5
and 6 and are quite similar to those of SFD1 in Figures 3 and 4.
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Figure 15: Plot of numerical solutions using NSFD5 with k = 0.00025 and h = 0.5 (R = 0.001) (case 1). (a) Plot of numerical solutions vs t
at x(11) = 5, (b) plot of numerical solution for conc. of IC vs X vs t, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot of

numerical solution for conc. of protease vs x vs t.
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Figure 16: Plot of numerical solutions vs x at some values of ¢ using NSFD5 with k = 0.00025 and h = 0.5 (case 1). (a) Plot of numerical
solutions vs x at t = 5, (b) plot of numerical solution vs x at t = 15, (c) plot of numerical solutions vs x at t = 25, and (d) plot of numerical

solutions vs x at t = 35.
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Figure 17: Plot of numerical solutions using NSFD5 with k = 0.001 and h = 1.0 (R = 0.001) (case 1). (a) Plot of numerical solutions vs t at

x(6) = 5, (b) plot of numerical solution for conc. of IC vs x vs t, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot of
numerical solution for conc. of protease vs x vs t.
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Figure 18: Plot of numerical solutions vs x at some values of ¢t using NSFD5 with k = 0.001 and h = 1.0 (case 1). (a) Plot of numerical
solutions vs x att = 5, (b) plot of numerical solution vs x att = 15, (c) plot of numerical solutions vs x att = 25, and (d) plot of numerical
solutions vs x at t = 35.

From Figures 17 and 18, we observe that the numerical solutions of concentration of IC, CT, and protease vs
X at some values of t using NSFD5 share some resemblance to those of NSFD1 in Figure 7. The numerical waves
appear to travel at the same speeds.



DE GRUYTER

Numerical solution of a malignant invasion model = 23

Table 1: Ey errors and the numerical rate of convergence in time using NSFD5 with h = 1.0 at time ¢ = 1.0 and x € [0, 20] (case 1)

k Ei (IC) Ec (CT) E; (protease) RT (IC) RT (CT) RT (protease)
1.0 x 103 1.8803 x 103 6.8828 x 104 1.5879 x 102

5.0 x 10 9.4271 x 10~ 3.4723 x 10~ 7.9974 x 104 0.9961 0.9871 0.9895

2.5 x 10~ 4.7198 x 10~ 17439 x 10~ 4.0123 x 10~ 0.9981 0.9935 0.9951

125 x 107 23615 x 104 8.7392 x 10- 2.0093 x 10~ 0.9990 0.9968 0.9977

Table 2: Ej errors and the numerical rate of convergence in time using NSFD5 with h = 0.5 at time ¢ = 1.0 and x € [0, 20] (case 1)

k Ey (IC) Ey (CT) Ey (protease) RT (IC) RT (CT) RT (protease)
2.5 x 1074 1.6899 x 103 4.8855 x 1074 1.3425 x 1073

1.25 x 104 8.4874 x 1074 2.4553 x 1074 6.7460 x 10~4 0.9936 0.9926 0.9929

6.25 x 1073 4.2531 x 104 1.2308 x 104 3.3813 x 10~* 0.9968 0.9963 0.9964

3125 x 1073 21289 x 104 6.1618 x 1073 1.6928 x 104 0.9984 0.9981 0.9982

We also note that the profiles in Figure 18 resemble those in Figure 5 from [28], where a finite elemental
method is used to solve a cancer growth model.

8.3 Numerical results using NSFD5 (case 2)

Figures 19 and 20 display the plot of the numerical solutions for the concentration of IC, CT, and protease using
NSFD5 for case 2 with h = 0.5, k = 0.00025 and h = 1, 0, k = 0.001, respectively.
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Figure 19: Plot of numerical solutions using NSFD5 with k = 0.00025 and h = 0.5 (R = 0.001) (case 2). (a) Plot of numerical solutions vs t
at x(11) = 5.5614, (b) plot of numerical solution for conc. of IC vs x vs ¢, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot
of numerical solution for conc. of protease vs X vs t.
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Figure 20: Plot of numerical solutions vs x at some values of ¢t using NSFD5 with k = 0.00025 and h = 0.5 (case 2). (a) Plot of numerical
solutions vs x at t = 0, (b) plot of numerical solution vs x at t = 4, (c) plot of numerical solutions vs x at t = 8, and (d) plot of numerical

solutions vs x at t = 24,

Figures 21 and 22 give the plot of the numerical solutions of concentration of IC, CT, and protease vs x at
some values of t using NSFD5 and case 2 with h = 0.5, k = 0.00025 and h = 1, 0, k = 0.001, respectively.
Figures 19-22 demonstrate that numerical solutions are non-negative using NSFD5 and case 2.
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Figure 21: Plot of numerical solutions using NSFD5 and case 2 with k = 0.001 and h = 1.0 (case 2). (a) Plot of numerical solutions vs t at
x =5, (b) plot of numerical solution for conc. of IC vs x vs ¢, (c) plot of numerical solution for conc. of CT vs x vs t, and (d) plot of numerical

solution for conc. of protease vs x vs t.
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Figure 22: Plot of numerical solutions vs x at some values of t using NSFD5 with k = 0.001 and h = 1.0 (case 2). (a) Plot of numerical
solutions vs x att = 0, (b) plot of numerical solution vs x att = 4, (c) plot of numerical solutions vs x att = 8, and (d) plot of numerical
solutions vs x att = 24,

Figures 21 and 22 illustrate that the numerical solution for concentration of invasive cells converges to 1 as
we progress in time and space.

9 Conclusion

In this work, one SFD and a few NSFD methods were used to solve a continuous malignant invasion model.
Stability of SFD methods is not easy to obtain theoretically, and the solutions do not always preserve positivity;
this is one of the challenges of classical schemes in this work. Three NSFD methods from [18] were considered
to solve the malignant invasion model, namely, NSFD1, NSFD2, and NSFD3. We show that NSFD1 is consistent
with the continuous model, and it is positivity-preserving if Cy = Cj_;; therefore, the choice of profile deter-
mines whether the solutions remain non-negative as we progress in time (Figures 6 and 8). We found that
NSFD2 is not consistent with the PDE for invasive cell concentration, though it is positivity-preserving when
k
o
invasive cell concentration, though it is unconditionally positivity-preserving. The profiles obtained from
NSFD2 and NSFD3 were very different from each other (Figures 11-14), likely due to them being inconsistent
methods. NSFD3 being unconditionally dynamically consistent with respect to positivity proved to be useful,
and using this property, we extend NSFD3 by appropriately choosing the step sizes (k, h) to obtain NSFD5. We
show that NSFD5 preserves positivity and is consistent if, for instance, k, h is chosen such that k = 0.001,h = 1.0
and k = 0.00025, h = 0.5. We also show that using these k, h values, the numerical solutions more accurately
represent the expected solutions of the continuous malignant invasion model.

= %; NSFD2 is not useful in this work. Similarly, we found that NSFD3 is not consistent with the PDE for
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