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Abstract: Let ∗
Sγ A B, , �( ) be the usual class of g -starlike functions of complex order γ in the unit disk

= ∈ <ζ ζ: 1� �{ ∣ ∣ }, where = + ∕ +g ζ Aζ Bζ1 1( ) ( ) ( ), with ∈ − ≤ < ≤ ∈γ A B ζ\ 0 , 1 1,� �{ } . First, we obtain
the bounds of all the coefficients of homogeneous expansions for the functions ∈ ∗

f Sγ A B, , �( ) when =ζ 0 is a
zero of order +k 1 of −f ζ ζ( ) . Second, we generalize this result to several complex variables by considering
the corresponding biholomorphic mappings defined in a bounded complete Reinhardt domain. These main
theorems unify and extend many known results.
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1 Introduction

Let n� be the n-dimensional complex variable space. Let � be the unit open disk in 1� . Suppose that
⊂Ω , Ω n

1 2 � are two domains. Let H Ω , Ω1 2( ) be the family of all holomorphic mappings from Ω1 into Ω2. Let
ϕ

1
, ∈ϕ H ,

2

1� �( ). We say thatϕ
1
is subordinate toϕ

2
, and write ≺ϕ ϕ

1 2
, if there exists a Schwarz functionω on

� such that =ϕ ϕ ω z
1 2

( ( )) on � (see, Amini et al. [1]). Let Ω be a domain (connected open set) in n� , which
contains 0. It is said that =z 0 is a zero of order k of f z( ) if = =−f D f0 0,…, 0 0k 1( ) ( ) , but ≠D f 0 0k ( ) , where

∈k � (see, Lin and Hong [2]). In one complex variable, the following Theorem A concerning starlike functions
of order α is classical and well known.

Theorem A. (Boyd [3]) Let ∈α 0, 1( ) and ∈ +k � . If = + ∑ = +
∞

f z z a zm k m
m

1( ) is a starlike function of order α on the
unit disk � , then

≤
∏ − + −

+ ≤ ≤ + ==
a

μ k α

s k
sk m s k s

1 2 2

!
, 1 1 , 1, 2,….m

μ

s

s

1

∣ ∣
(( ) )

( )

These estimates are sharp for = + =m sk s1, 1, 2,…. Especially, when =k 1,
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It is known that the coefficient inequalities are related to the Bieberbach conjectures [4], which was settled
by de Branges [5]. However, Cartan [6] stated that the Bieberbach conjecture does not hold in several complex
variables. In fact, only a few complete results are known for the inequalities of homogeneous expansions for
subclasses of biholomorphic mappings in n� (see, e.g., Długosz and Liczberski [7], Hamada and Honda [8], Liu
and Wu [9], Liu and Liu [10], Liu et al. [11], and Xu et al. [12]). Many works are concentrating on the bounds of
second- and third-order terms of homogeneous expansions for starlike mappings and the sharp bounds of all
homogeneous expansions for the special subclasses of starlike mappings with some restricted conditions (see,
e.g., Hamada et al. [13], Liu and Liu [14], Tu and Xiong [15], Xiong [16], Xu et al. [17], and Xu et al. [18]). In
Graham et al. [19], the estimate of the second-order coefficients of the first elements of g-Loewner chains in
several complex variables was first obtained. In Bracci [20], a sharp estimate for the second-order coefficients
for the first elements of g-Loewner chains on the Euclidean unit ball of 2� , where = + ∕ −g ζ ζ ζ1 1( ) ( ) ( ), which
gives a support point for the family, was obtained. Generalizations of this result to the unit polydisk in 2� and
to bounded symmetric domains were considered in Graham et al. [21], Hamada and Kohr [22], respectively. In
Xu and Liu [23], the Fekete-Szegö inequality for starlike mappings in several complex variables was first
obtained. Very recent important results related to the Fekete-Szegö inequality in several complex variables
were obtained in other articles (see, e.g., Długosz and Liczberski [24], Elin and Jacobzon [25], Hamada [26], and
Lai and Xu [27]). In particular, the Fekete-Szegö inequality for univalent mappings in several complex vari-
ables was first obtained in Hamada et al. [28]. Also, the other related results may consult in Długosz and
Liczberski [29], Graham and Kohr [30], and Nunokawa and Sokol [31]. Liu et al. [32] considered only the main
coefficients that are analogous with the diagonal elements of a square matrix and generalized Theorem A to
the case on a Reinhardt domain in n� from a new viewpoint. Let

∑=
⎧
⎨
⎩

∈ <
⎫
⎬
⎭

> =
=

D z z p l n: 1 , 1, 1, 2, …,p p p
n

l

n

l
p

l, , … ,

1

n
l

1 2
� ∣ ∣ ( )

be a bounded complete Reinhardt domain in n� , its Minkowski function ρ z( ) is C1 except for some lower-
dimensional manifolds in n� , and → +∞ρ : 0,n� [ ) is defined by:

=
⎧
⎨
⎩

> ∈
⎫
⎬
⎭

∈ρ z t
z

t
D zinf 0 : , .p p p

n
, , … ,

n1 2
�( ) (1)

Let ∈ =∗γ \ 0� � { }. Now, we introduce the following classes ( )∗
Dg γ p p p, , , … ,

n1 2
� , which extend the usual class ∗ γ� ( )

of starlike functions of complex order γ on � in � to the classes of g -starlike mapping of complex order γ on
the bounded Reinhardt domain Dp p p, , … ,

n1 2
in n� . The function class ∗ γ� ( ) was considered earlier by Nasr and

Aouf [33] (also, see Srivastava et al. [34]).

Definition 1.1. Suppose that ∈ ∗γ � and →g : � � be a biholomorphic function such that = >g g ζ0 1, 0R( ) ( )

on � . A normalized locally biholomorphic mapping →f D: p p p
n

, , … ,
n1 2

� is called a g -starlike mappings of
complex order γ on Dp p p, , … ,

n1 2
if

+
⎛

⎝
⎜⎜ −

⎞

⎠
⎟⎟ ∈ ∀ ∈∂

∂
−γ

ρ z

Df z f z

g z D1
1

2

1 , \ 0 ,
ρ z

z

p p p
1

, , … ,
n1 2

�
( )

[ ( )] ( )
( ) { }

( )

( )

(2)

where ρ is the Minkowski function of Dp p p, , … ,
n1 2
. We denote by ( )∗

Dg γ p p p, , , … ,
n1 2

� the set of all g -starlike mappings
of complex order γ on Dp p p, , … ,

n1 2
in n� .

Remark 1.1. (i) If = +
+g ζ

Aζ

Bζ

1

1
( ) (− ≤ < ≤A B1 1, ∈ζ � ) in Definition 1.1, then we write ( )∗

+
+

D
γ

p p p
,

, , … ,Aζ

Bζ
n

1

1
1 2

�

by ( )∗
Dγ A B p p p, , , , … ,

n1 2
� .
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(ii) If =n 1 and = +
+g ζ

Aζ

Bζ

1

1
( ) in Definition 1.1, then it is obvious that Condition (2) is equivalent to

⎜ ⎟+ ⎛
⎝

′
− ⎞

⎠
≺

+
+

− ≤ < ≤ ∈ ∈∗
γ

ζf ζ

f ζ

Aζ

Bζ
A B γ ζ1

1
1

1

1
, 1 1, , .� �

( )

( )

We denote by ∗
γ A B, , �� ( ) the set of all g -starlike mappings of complex order γ on � in � , where

= + ∕ +g ζ Aζ Bζ1 1( ) ( ) ( ), ∈ζ � . In particular, ∗
A B1, , �� ( ) is identical with the well-known class of Janowski

starlike functions (see, Janowski [35]) and −
∗
γ, 1,1 �� ( ) is the set of all starlike functions of complex order γ in � .

(iii) If =γ 1 and = − ∈A α α2 1 0, 1( [ )), =B 1 in Definition 1.1 (the case g is defined as (ii)), then we obtain
the starlike mappings of order α on Dp p p, , … ,

n1 2
(see, e.g., Liu et al. [32]).

(iv) By choosing the suitable functions g and parameters γ in Definition 1.1, we can obtain kinds of
subclasses of starlike mappings defined on the Reinhardt domain Dp p p, , … ,

n1 2
in n� .

In this article, we first extend the definition of g -starlike mappings of complex order γ from the case of one-
dimensional space to the case of higher-dimensional space (see Definition 1.1). Next, we obtain the bound of all
coefficients of homogeneous expansions for the functions ∈ ∗

f γ A B, , �� ( ) when =ζ 0 is a zero of order +k 1 of
−f ζ ζ( ) (see Lemma 2.2). Finally, by applying the results in Section 2, we consider the bound ofmain coefficients of

the homogeneous expansions for the functions ( )∈ ∗
f Dγ A B p p p, , , , … ,

n1 2
� in several complex variables (Theorems 3.1

and 3.2). Also, our results extend some theorems given in the previous literature (see Remarks 1.1–3.1).

2 Preliminaries

The following lemmas are needed in order to prove our estimates. Actually, we may use the similar way to those in
the proof of Liu and Liu [36] (Lemmas 2.1 and 2.3). Here, we give the proof for the sake of completeness.

Lemma 2.1. Let ∈ +k � , ≥C 0, ∈ ∗γ � . Then, for =q 2, 3,…, we have

∑ ∏ ∏+ +
⎛
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⎜ ⎛
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⎠
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⎠
⎟

=

−

=

−
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−
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k
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1
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2 2
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∣ ∣ (3)

Proof. We try to prove this lemma by mathematical induction. First, if =q 2, it is easy to see that (3) is true.
Next, for all =q 2, l3,… , assume that (3) holds true. Then, we need to show that (3) holds true when = +q l 1. By
a simple computation, we have
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This completes the proof. □

Lemma 2.2. Let = + ∑ ∈= +
∞ ∗

f z z a z Sm k m
m

γ A B1 , , �( ) ( ) with ∈ +k � , ∈ ∗γ � , − ≤ < ≤A B1 1. Then, for =s 1, 2,…,

we have

≤
∏ − + −
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a
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1

!
, 1 1 .m
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In particular, if =k 1, then ≤ ∏ + − =− =
−

a μ A B γ m, 2, 3,….m m μ
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1 ! 0
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Proof. Since ∈ ∗
f Sγ A B, , �( ), so we can write that
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Thus, there is a function ∈φ ,� ��( ) with <φ z 1∣ ( )∣ , such that
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A φ z
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zf z
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1
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1
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( ( ))

( )
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Using (4), a simple computation shows that

=
′ −

− + − ′
= + + ⋯ ∈+

+φ z
zf z f z

A B γ B f z Bzf z
b z b z z, .k

k
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(5) is equal to

′ − = − + − ′zf z f z φ z A B γ B f z Bzf z( ) ( ) ( ){(( ) ) ( ) ( )} (6)

and

− = − = + +−m a A B γb m k k k1 , 1, 2,…, 2 .m m 1( ) ( ) (7)

In view of the relations <φ z 1∣ ( )∣ and ∑ ≤=
∞

b 1m k m
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Using (7) and (8), it can be easily shown that
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By applying (6), then it can also be written as:

∑ ∑

∑ ∑

− =
⎧
⎨
⎩

− + − + −
⎫
⎬
⎭

=
⎧
⎨
⎩

− + − + −
⎫
⎬
⎭

+

= +

∞

= +

∞

= +

−

= +

∞

m a z φ z A B γz A B γ B mB a z

φ z A B γz A B γ B mB a z c z

1

.

m k

m
m

m k

m
m

m k

p k

m
m

m p

m
m

1 1

1 1

( ) ( ) ( ) (( ) )

( ) ( ) (( ) )

(10)

Using the equality in (10), we have
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Taking →r 1 in (11) and applying the similar argument being used in Theorem 1 by Boyd [3], we obtain

∑ ∑− ≤ − + − + −
= + = +

−

m a A B γ A B γ B mB a1 .

m k

p

m

m k

p k

m

1

2 2 2 2

1

2 2( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣( ) ∣ ∣ ∣ (12)

In fact, with (12), a simple computation shows that
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Furthermore, in view of (13), we have
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Here, we will prove that the following inequalities
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hold true for =s 1, 2,….

If =s 1, then (15) holds from (9). Moreover, by using Lemma 2.2 in Liu and Liu [36] and (9), we obtain
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Thus, (17) implies that (16) is true for =s 1.
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The aforementioned inequality shows that (16) holds for =s q.
In view of (15), for + ≤ ≤ +sk m s k1 1( ) , we have

∏

∏

∏

∏

≤
− −

⎛
⎝ +

− ⎞
⎠

≤ ⎛
⎝ +

− ⎞
⎠

= ⎛
⎝ − +

− ⎞
⎠

=
− + −

=

−

=

−

=

=

a
k

m s
μ

A B γ

k

s
μ

A B γ

k

s
μ

A B γ

k

μ k A B γ

s k

1 1 !

1

!

1

!
1

1

!
.

m

μ

s

μ

s

μ

s

μ

s

s

0

1

0

1

1

1

∣ ∣
( )( )

∣ ∣∣ ∣

∣ ∣∣ ∣

∣ ∣∣ ∣

(( ) ∣ ∣∣ ∣)

This completes the proof. □

Remark 2.1. If = − ∈A α α2 1 0, 1( [ )), =B 1, and =γ 1 in Lemma 2.2, then it reduces to Theorem A.

3 Main results

The following theorems give the estimates of main coefficients of homogeneous expansions for the class of
g -starlike mappings of complex order γ defined on the bounded complete Reinhardt domain Dp p p, , … ,

n1 2
in n� ,

where = + ∕ +g ζ Aζ Bζ1 1( ) ( ) ( ), − ≤ < ≤ ∈A B ζ1 1, � . Theorems 3.1 and 3.2 will give generalizations of the
results in Boyd [3] and Liu et al. [32].

Theorem 3.1. Suppose that ( )= ′ ∈ ∗
f z f z f z f z S D, , …,

n γ A B p p p1 2 , , , , … ,
n1 2

( ) ( ( ) ( ) ( )) and =z 0 is a zero of order +k 1 of
−f z z( ) . Define

∑=
=

D f z

m
a z z z

0

!
… ,

m

q

m

l l l

n

ql l l l l l

, , … , 1

, , … ,

m

m m

1 2

1 2 1 2

( )( )

where =q n1, 2,…, , + ≤ ≤ + =sk m s k s1 1 , 1, 2,…( ) , and ∈ +k � . Let aqt

m be the =⋯a t n1, 2, …,qt t t, ,

m

 
( { }). If

=a 0qj

m ( ≠q j), then we have

≤
∏ − + −

+ ≤ ≤ + = ∈=
a

μ k A B γ

s k
sk m s k s j n

1

!
, 1 1 , 1, 2,…, 1, 2, …, .jj

m
μ

s

s

1

∣ ∣
(( ) ∣ ∣∣ ∣)

( ) { }

The aforementioned estimates are sharp for < ≤γ0 1, = −A 1, =B 1, = +m sk 1, =s 1, 2,… , and < ≤γ0 1,
= − ∈A α α2 1 0, 1( [ )), =B 1, = +m sk 1, =s 1, 2,…. In particular, if =k 1, then

≤
∏ + −

−
∈ ==

−

a

μ A B γ

m
j n m

1 !
, 1, 2, …, ; 2, 3,….jj

m
μ

m

0

2

∣ ∣
( ∣ ∣∣ ∣)

( )
{ }

Proof. Since = ′f z f z f z f z, , …,
n1 2

( ) ( ( ) ( ) ( )) , then

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

∂
∂

⋯
∂

∂
⋯

∂
∂

⋮ ⋱ ⋮ ⋱ ⋮
∂

∂
⋯

∂
∂

⋯
∂

∂
⋮ ⋱ ⋮ ⋱ ⋮

∂
∂

⋯
∂

∂
⋯

∂
∂

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Df z

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

.

j n

j j

j

j

n

n n

j

n

n

1

1

1 1

1

1

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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For ′ ∈z D0, …, , …,0 ,j p p p, , … ,
n1 2

( ) it is easy to see that ′Df z0, …, , …,0j(( ) )

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

∂ ′
∂

⋯
∂ ′

∂
⋯

∂ ′
∂

⋮ ⋱ ⋮ ⋱ ⋮
∂ ′

∂
⋯

∂ ′
∂

⋯
∂ ′

∂
⋮ ⋱ ⋮ ⋱ ⋮

∂ ′
∂

⋯
∂ ′

∂
⋯

∂ ′
∂

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

0, …, , …,0 0, …, , …,0 0, …, , …,0

0, …, , …,0 0, …, , …,0 0, …, , …,0

0, …, , …,0 0, …, , …,0 0, …, , …,0

.

j j

j

j

n

j j j j

j

j j

n

n j n j

j

n j

n

1

1

1 1

1

1

(( ) ) (( ) ) (( ) )

(( ) ) (( ) ) (( ) )

(( ) ) (( ) ) (( ) )

(18)

Since = ≠a q j0qj

m ( ), it follows that

∂ ′
∂

= = ≠
f z

z
q n q j

0, …, , …,0

0, 1, 2,…, , .
q j

j

(( ) )
(19)

From (18) and (19), then ′Df z0, …, , …,0j(( ) )

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

∂ ′
∂

⋯ ⋯
∂ ′

∂
⋮ ⋱ ⋮ ⋱ ⋮

∂ ′
∂

⋯
∂ ′

∂
⋯

∂ ′
∂

⋮ ⋱ ⋮ ⋱ ⋮
∂ ′

∂
⋯ ⋯

∂ ′
∂

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

0, …, , …,0
0

0, …, , …,0

0, …, , …,0 0, …, , …,0 0, …, , …,0

0, …, , …,0
0

0, …, , …,0

.

j j

n

j j j j

j

j j

n

n j n j

n

1

1

1

1

1

(( ) ) (( ) )

(( ) ) (( ) ) (( ) )

(( ) ) (( ) )

(20)

In view that ′Df z0, …, , …,0j(( ) ) is invertible, thus, it implies that

∂ ′
∂

≠ ∈
f z

z
j n

0, …, , …,0

0, 1, 2, …, .
j j

j

(( ) )
{ } (21)

Using (20) and (21), then we obtain

′ =

⎛

⎝

⎜
⎜
⎜
⎜
⎜

∗ ⋯ ⋯ ∗
⋮ ⋱ ⋮ ⋱ ⋮

∗ ⋯ ⋯ ∗

⋮ ⋱ ⋮ ⋱ ⋮
∗ ⋯ ⋯ ∗

⎞

⎠

⎟
⎟
⎟
⎟
⎟

− ∂ ′
∂

Df z0, …, , …,0

0

1

0

,j
f z

z

1 0, … , , … , 0
j j

j

( (( ) )) (( ) ) (22)

where the symbol ∗ means the unknown term. Furthermore, a simple computation in (22) shows that

′ ′

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

∗ ⋯ ⋯ ∗
⋮ ⋱ ⋮ ⋱ ⋮

∗ ⋯ ⋯ ∗

⋮ ⋱ ⋮ ⋱ ⋮
∗ ⋯ ⋯ ∗

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜⎜

⋮
′

⋮

⎞

⎠

⎟
⎟
⎟⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⋮
′

⋮

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−

∂ ′
∂

∂ ′
∂

Df z f z

f z

f z

0, …, , …,0 0, …, , …,0

0

1

0

0

0, …, , …,0

0

0

0, …, , …,0

0

.

j j

f z

z

j j

j j

f z

z

1

0, … , , … , 0 0, … , , … , 0j j

j

j j

j

( (( ) )) (( ) )

(( ) )
(( ) )

(( ) ) (( ) )

Let = = ′−Df z f z W z W z W z W z, …, , …,j n
1

1( ( ) ( )) ( ) ( ( ) ( ) ( )) and = ′ ∈h z f z H0, …, , …,0j j j j �( ) (( ) ) ( ), ∈z .j � Since
( )∈ ∗

f z S Dγ A B p p p, , , , … ,
n1 2

( ) and =z 0 is a zero of order +k 1 of −f z z( ) , it follows that
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⎟⎜+
⎛
⎝

′
−

⎞
⎠

= +
⎛

⎝

⎜
⎜ ′

−
⎞

⎠

⎟
⎟

= +
⎛

⎝
⎜
⎜

′

′
−

⎞

⎠
⎟
⎟ ∈ ≠

∂ ′
∂

∂ ′
∂

γ

z h z

h z γ

z

f z

γ

ρ z

W z

g z

1
1

1 1
1

0, …, , …,0
1

1
1 0, …, , …,0

2 0, …, , …,0

1 , 0.

j j j

j j

j

f z

z

j j

j

ρ z

z j

j

0, … , , … , 0

0, … , , … , 0

j j

j

j

j

�

( )

( ) (( ) )

(( ) )

(( ) )
( )

(( ) )

(( ) )

(23)

From (23), we find that ∈ ∗
h Sj γ A B, , �( ), and =z 0j is a zero of order +k 1͠ of −h z zj j j( ) , where ≥k k͠ . We

note that

= =a
h

m
m

0

!
, 2, 3,….jj

m
j

m( )( )

(24)

Thus, in view of Lemma 2.2 and (24), we obtain the desired results.
Furthermore, let < ≤γ0 1 and

=
⎛

⎝
⎜

− − −

⎞

⎠
⎟′ = ∈− − −f z

z

z

z

z

z

z

z z z z D

1

,

1

, …,

1

, , , … \ 0 .
k k

n

n

k
n p p p

1

1

2

2

1 2 , , … ,α γ

k

α γ

k

α γ

k

n2 1 2 1 2 1 1 2
( )

( ) ( ) ( )
( ) { }( ) ( ) ( )

(25)

It is easy to check that ( )∈ −
∗

f S Dγ α p p p,2 1,1 , , … ,
n1 2
. Thus, we have

∑′ = + ∈
=

∞
+ +

f z z a z j n0, 0, …, , …,0 , 1, 2, …,
j j j

s

jj

sk

j

sk

1

1 1(( ) ) { }

and

=
∏ − + −

= ∈+ =
a

μ k γ α

s k
s j n

1 2 1

!
, 1, 2,…, 1, 2, …, .jj

sk
μ

s

s

1
1

∣ ∣
(( ) ( ))

{ }

This completes the proof. □

Theorem 3.2. Suppose that ( )= ′ ∈ ∗
f z f z f z f z S D, , …,

n γ A B p p p1 2 , , , , … ,
n1 2

( ) ( ( ) ( ) ( )) and =z 0 is a zero of order +k 1 of
−f z z( ) . Define

∑= ⋯
=

D f z

m
a z z z

0

!
,

m

q

m

l l l

n

ql l l l l l

, , … , 1

, , … ,

m

m m

1 2

1 2 1 2

( )( )

where =q n1, 2,…, , + ≤ ≤ + =sk m s k s1 1 , 1, 2,…( ) , and ∈ +k � . Let atq

m be the =⋯
−

a t n1, 2, …,tqt t t, ,

m 1

 
( { }). If

=a 0jq

m ( ≠q j), then we have

≤
∏ − + −

+ ≤ ≤ + = ∈=
a

μ k A B γ

s k
sk m s k s j n

1

!
, 1 1 , 1, 2,…, 1, 2, …, .jj

m
μ

s

s

1

∣ ∣
(( ) ∣ ∣∣ ∣)

( ) { }

The aforementioned estimates are sharp for < ≤γ0 1, = −A 1, =B 1, = +m sk 1, =s 1, 2,… and < ≤γ0 1,
= − ∈A α α2 1 0, 1( [ )), =B 1, = +m sk 1, =s 1, 2,…. In particular, if =k 1, then

≤
∏ + −

−
∈ ==

−

a

μ A B γ

m
j n m

1 !
, 1, 2, …, ; 2, 3,….jj

m
μ

m

0

2

∣ ∣
( ∣ ∣∣ ∣)

( )
{ }

Proof. Since =a 0jq

m ( ≠q j), it follows that

∂ ′
∂

=
f z

z

0, …, , …,0

0.
j j

q

(( ) )
(26)

Using (18) and (26), we have ′Df z0, …, , …,0j(( ) )
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=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

∂ ′
∂

⋯
∂ ′

∂
⋯

∂ ′
∂

⋮ ⋱ ⋮ ⋱ ⋮

⋯
∂ ′

∂
⋯

⋮ ⋱ ⋮ ⋱ ⋮
∂ ′

∂
⋯

∂ ′
∂

⋯
∂ ′

∂

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

f z

z

0, …, , …,0 0, …, , …,0 0, …, , …,0

0

0, …, , …,0

0

0, …, , …,0 0, …, , …,0 0, …, , …,0

.

j j

j

j

n

j j

j

n j n j

j

n j

n

1

1

1 1

1

(( ) ) (( ) ) (( ) )

(( ) )

(( ) ) (( ) ) (( ) )

(27)

In view that ′Df z0, …, , …,0j(( ) ) is invertible, thus, it implies that

∂ ′
∂

≠
f z

z

0, …, , …,0

0.
j j

j

(( ) )
(28)

Thus, (27) and (28) show that

′ =

⎛

⎝

⎜
⎜
⎜
⎜
⎜

∗ ⋯ ∗ ⋯ ∗
⋮ ⋱ ⋮ ⋱ ⋮

⋯ ⋯

⋮ ⋱ ⋮ ⋱ ⋮
∗ ⋯ ∗ ⋯ ∗

⎞

⎠

⎟
⎟
⎟
⎟
⎟

− ∂ ′
∂

Df z0, …, , …,0
0

1
0

,j
f z

z

1 0, … , , … , 0
j j

j

( (( ) )) (( ) ) (29)

where the symbol ∗ means the unknown term. Furthermore, a simple computation in (29) shows that

′ ′

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

∗ ⋯ ∗ ⋯ ∗
⋮ ⋱ ⋮ ⋱ ⋮

⋯ ⋯

⋮ ⋱ ⋮ ⋱ ⋮
∗ ⋯ ∗ ⋯ ∗

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

′
⋮

′
⋮

′

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

∗
⋮

′

⋮
∗

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−

∂ ′
∂

∂ ′
∂

Df z f z

f z

f z

f z

f z

0, …, , …,0 0, …, , …,0

0
1

0

0, …, , …,0

0, …, , …,0

0, …, , …,0

0, …, , …,0

.

j j

f z

z

j

j j

n j

j j

f z

z

1

0, … , , … , 0

1

0, … , , … , 0j j

j

j j

j

( (( ) )) (( ) )

(( ) )

(( ) )

(( ) )

(( ) )

(( ) ) (( ) )

Define = = ′−Df z f z W z W z W z W z, …, , …,j n
1

1( ( ) ( )) ( ) ( ( ) ( ) ( )) and = ′ ∈h z f z H0, …, , …,0 .j j j j �( ) (( ) ) ( ) Since ∈f z( )

( )∗
S Dγ A B p p p, , , , … ,

n1 2
and =z 0 is a zero of order +k 1 of −f z z( ) , it follows that

⎟⎜+
⎛
⎝

′
−

⎞
⎠

= +
⎛

⎝

⎜
⎜ ′

−
⎞

⎠

⎟
⎟

= +
⎛

⎝
⎜
⎜

′

′
−

⎞

⎠
⎟
⎟ ∈ ≠

∂ ′
∂

∂ ′
∂

γ

z h z

h z γ

z

f z

γ

ρ z

W z

g z

1
1

1 1
1

0, …, , …,0
1

1
1 0, …, , …,0

2 0, …, , …,0

1 , 0.

j j j

j j

j

f z

z

j j

j

ρ z

z j

j

0, … , , … , 0

0, … , , … , 0

j j

j

j

j

�

( )

( ) (( ) )

(( ) )

(( ) )
( )

(( ) )

(( ) )

(30)

From (30), we find that ∈ ∗
h Sj γ A B, , �( ), and =z 0j is a zero of order +k 1͠ of −h z zj j j( ) , where ≥k k͠ . We

note that

= =a

h

m
m

0

!
, 2, 3,….jj

m
j

m
( )

( )

(31)

Thus, in view of Lemma 2.2 and (31), we obtain the desired results. We note that the sharpness of the estimates
of Theorem 3.2 is similar to that of Theorem 3.1. This completes the proof. □
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Remark 3.1.
(i) If =n 1, then Theorem 3.1 (resp. Theorem 3.2) reduces to Lemma 2.2.
(ii) If =γ 1, = − ∈A α α2 1 0, 1( [ )), and =B 1 in Theorems 3.1 and 3.2, then we obtain Theorems 3.1 and 3.2 in

Liu et al. [32], respectively.
(iii) If we take different functions g in Theorem 3.1 (resp. Theorem 3.2), then the bounds of homogeneous

expansions for kinds of subclasses of g -starlike mappings of complex order γ defined on Dp p p, , … ,
n1 2
can be

obtained immediately.
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