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Abstract: The purpose of this article is to describe the properties of the pair of solutions of several systems of
Fermat-type partial differential difference equations. Our theorems exhibit the forms of finite order trans-
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conditions and the forms of transcendental entire solutions with finite order of such systems are precise.

Keywords: partial differential difference equation, entire solution, Nevanlinna theory

MSC 2020: 30D 35, 35M 30, 39A 45

1 Introduction

Let us first recall the classical results that the entire solutions of the functional equation
fr+gt=1, an

are f = cosa(z), g = sina(z) was proved by Gross [1], where a(z) is an entire function. This simple-looking
nonlinear functional equation (1.1) can be called as the Fermat-type functional equation, analogous with the
equation x2 + y? = z2 in Fermat’s last theorem in number theory. As a matter of fact, we can find that the study
of the Fermat-type functional equations can be tracked back to more than 60 years ago or even earlier [2,3].

In the past 30 years, there were lots of research focusing on the solutions of functional equation (1.1),
readers can refer to [4-17]. For example, Khavinson [11] in 1995 proved that any entire solutions of the partial
differential equations
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in C? are necessarily linear. It should be noted that equation (1.2) is called as eiconal equation. Later, Saleeby
[18,19] further proved that the entire solution of equation (1.2) is of the form f(z, %) = qz + 6z + n. After
theirs works, Li and co-authors [20-22] further discussed a series of deformation forms of Fermat-type partial
differential equations and gave a number of important and interesting results about the existence and the
forms of solutions for these partial differential equations.

Theorem A. [20, Corollary 2.3] Let P(z, z) and Q(z, z,) be arbitrary polynomials in C?. Then, f is an entire
solution of the equation
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if and only if f= az + 6z + ¢ is a linear function, where ¢;’s are constants, and exactly one of the following
holds:
() @ =0 and Q is a constant satisfying that (¢Q)* = 1;
(i) ¢ =0 and P is a constant satisfying that (¢P)* = 1;
(itd) a6 # 0 and P and Q are both constants satisfying that (¢P)? + (6Q)* = 1.

In the past 40 years, the Nevanlinna theory and the difference Nevanlinna theory of Meromorphic
function with several complex variables have been developed rapidly [23-29]. Especially, Korhonen [30,
Theorem 3.1] in 2012 established a logarithmic difference lemma for meromorphic functions in several vari-
ables of hyper order <2/3. Later, Cao and Korhonen [23] proved that the logarithmic difference lemma for
meromorphic functions holds under the condition “hyper order <1.” By making use of the Nevanlinna theory
and difference Nevanlinna theory of several complex variables [23,30], Xu and Cao [31,32] discussed the
transcendental solutions of several Fermat-type partial differential difference equations. An equation is called
partial differential difference equation, if the equation includes partial derivatives, shifts or differences of f,
which can be called PDDE for short.

Theorem B. [31, Theorem 1.2] Let ¢ = (¢, ) € C2. Then, any transcendental entire solution with finite order of
the PDEE

[af(zl) ZZ)

2
oz ] tfa+azn+o)r=1 (1.4)

has the form of f (2, ;) = sin(Az + B), where A is a constant on C satisfying Ae!A = 1, and B is a constant on C;
as a special case, whenever ¢ = 0, we have f(z, z;) = sin(z + B).

In 2020, the author of this article and his colleagues [33] studied the finite order transcendental entire
solutions when equation (1.4) turns to the system of Fermat-type PDDEs and obtained Theorem C.

Theorem C. [33, Theorem 1.3] Let ¢ = (¢, ¢) € C2. Then, any pair of transcendental entire solutions with finite
order for the system of Fermat-type PDEEs

[ afi (Zl7 ZZ)

2
thia+an+gP=1
oz ] fia+a,2+¢)

, , (15)
[M] A
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have the following forms:

(h@), £,(2)) =

el@*B1 4 o~(L@)*B) A, eL@*B1 1 A, e~(L2)*B)
2 ’ 2 ’
where L(z) = az1 + ayz,, By 1s a constant in C, and @y, ¢, Ay, Ay, satisfy one of the following cases:

O Ay =i, Ap =i, and @ = i, L(c) = [Zk +3 ni;

i, or a; = —i, L(c) = [Zk -2

(i) Ay =i, Ay =i, and a; = i, L(c) = [Zk - %]ni, ora; = —i, L(c) = [Zk + %]rri;

(iii) Ay =1, Ap =1, and ay = i, L(c) = 2kni, or a; = -1, L(c) = 2k + 1)mi;
(iv) Ay =-1,A» =-1,and a; = i, L(c) = 2k + Dmi, or a; = -1, L(c) = 2kri.
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To the best of our knowledge, there are few results about the study of systems of this Fermat-type PDDE
with several complex variables. Moreover, it appears that the study of such fields has not been addressed in
the literature before. Based on these, we are mainly concerned with the solutions of complex Fermat-type
PDDEs, and describe the existence and form of the pair of the finite order transcendental solutions of the
systems of PDDEs with constant coefficients

of, T
ufi(2) + Aa_zl +[afy(z + o) - Bfi(D)) =1,

(1.6)
of, I
uf,(z) + Aa_zl +[afy(z + o) - LD =1,
and
F) af, I
ufi(z) + Ala—f + Aza—fl + [afy(z + ©) - B2 =1,
1 Z) w7
) of, '
[ufz(Z) + /ha—];j + Aza—fz +[afy(z + ) - BHLQDP =1,

wherea, B, u, A, A1, 4, @, ¢ are constants in C. Obviously, equation (1.4) and system (1.5) are the special cases of
systems (1.6) and (1.7). The article is organized as follows. We will introduce our main results about the
existence and the forms of entire solutions for (1.6) and (1.7) in Section 2, which generalize the previous
theorems given by Xu et al. [31-33]. Meantime, we give a series of examples to explain that our results about
the forms of solutions of such systems are precise. The proofs of Theorems 1.6 and 1.7 are given in Sections 4
and 5, respectively.

2 Results and examples
The first main theorem is about the existence and the forms of the solutions for system (1.6).

Theorem 2.1. Let ¢ = (¢, ¢) € C%, ¢ # 0, and a, B, u, A be nonzero constants in C. Let (i@, ), f,(z1, 2,)) be a
pair of transcendental entire solution with finite order of system (1.6). Then, (f,(z, z,), f,(z, 2,)) must satisfy one
of the following cases:

)]

1 6 1
fi(z, ) = — - —eanvatD f (7, 2) = — - —eTaatvatDy
! u 2 uoou
where 1), 81, y, D1, D; € C satisfy
u B .
~q + log— + kmi
epmog p= 208 T @1
G
and one of the following cases:
(i) s1=-m=%landa=-Bors =n =+, a=p;
; - 2 _ _ 2w
(i) 61 = n and n= m, oré, = -n and n= W’

(i) p? = a* - B2, 87+ 87 =1, n} + nf =1, and ad, = —Pn, = \|(n} - D(B? - a?);

e s u
@) ifa # t7, then
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1 1 u
= Mzt azpthy — -~ aizi-@yzp—by — —221*yZ+ Dy
fi(z, z) 2(hay + y)e 2y - ﬂ)e Hz)e ,
1 1 u
= Mzt azpthy — _ —  G—mzi—apzp—by _ —22+y2+ Dy
(a1, z) 20a; + y)e 20 - ll)e Kz + g)e s

where 3(z,) is a finite order period entire function with period 26, and a,, Gy, b, by, y, D1, Dy € C satisfy (2.1),

e2bib2) = 1 2.2)
and

—Ri 2 = o2 N9
= —Bl L a e2(@ertaxs) = 7(/1611 e Bl) :
1 2 > _az )

ifa = %, then

1 VA u
fia, z) = @eammﬂ”bl + ae’alzl‘“zzz_bl - H(zy)eantyarby

1 Y/ u
Lz, z) = Ee“lzﬁaﬂz”bz + ae'“lzl'“zzz"bz - 9(z + gemaatyathy,

where a;, @y, by, by, y € C satisfy (2.1), (2.2) and

2
B = B2 -, P =Ai, edeerae) =1 - f“i; 2.3)

ifa = —%, then

il 1 - _u
fiz, ) = ﬁealzl”“zzz"bl e wn-azby — 9(zy)e 1At varDy

Vi 1 o _ _u
f(a, ) = ae“ﬂ““ﬂ#bz gy s br = Nz, + e intyatDy,

where a;, ay, by, by, y € C satisfy (2.1), (2.2) and

2
—ouBi= Bt - a B =-Ai, edwerax) =1+ ?”i. .4)

The following examples show the existence of transcendental entire solutions of system (1.6).

Example 2.1. Let

- %eﬂzﬁfizz’ fé(zly ZZ) = _% - 1e*ZZ1+SZz.

1
fi(zla ZZ) = E 9

Thus, (f;,f,) is a pair of finite order transcendental entire solution of system (1.6) with A =1, u=2,a=1,
B =-1, and (q, ¢) = (51, mi).

Example 2.2. Let
h@an)=1-e2  f(za,2)=1- 4"

Thus, (f;,f,) is a pair of finite order transcendental entire solution of system (1.6) with A=uy=a=§=1,
and (q, ¢) = (i, mi).

Example 2.3. Let

1 1 1 1
Z,2) = —— — e_zzl*'zz, Z,2) = ——— — e 24tz
fi( 1 2) \/§ fé( 1 2) \/§
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Thus, (f},f;) is a pair of finite order transcendental entire solution of system (1.6) with A =2, u =1,

R PPN N

2 . .
a=—+571 B = - ~ 5 and (q, ¢) = (i, mi).

Example 2.4. Let
V2

. V2 i .
- = -\2iz1+(v2-0.5)z, T __aN2i+(V2-0.5)z,
Z, Z + e s 7, Z 1 1+ e .
fi( 1 2) fé( 1 2) 9 rz

i
2 2
Thus, (f;, f;,) is a pair of finite order transcendental entire solution of system (1.6) with A =1, u = V2i,a =1,
ﬁ = 1) and (Cl, CZ) = (T[) ﬂ'l)

Example 2.5. Let

271+aszy — -2z -7y _ sin(ﬂizz)e‘ﬁzﬁ(ﬁ*0‘5)”"22,

R S T
haz) = s m e Wiz D"

221+ aszy N sin(ﬂizz)e“/ilﬁ(ﬁ +0.5)rrizz’

fanm =t —emen L
A NI 22(\2 - 1)

where a; = log(+/2 + 1) - %i. Thus, (f;, f;) is a pair of finite order transcendental entire solution of system (1.6)
withA=1,u=+2,a=1,8=1i and (g, &) = (i, 1).

Example 2.6. Let y = —%ln 2+ %i + %i, a; = iln 2- %i - %i and

1. iz _i . i
fi(zl, Zz) = ZefZ1+a222 - Ze—ill—agzz _ COS(ﬂlZZ)e_EZ1+VZZ,

1 izy i i
f(@, z) = ZG%Z”“ZZZ - Zle‘ézl‘“zzl + cos(rizy)e 24"V,

Thus, (f;,f,) is a transcendental entire solution of (1.6) with A = -2i, u=1,a = Zie‘gi, B=2(a06) =1,
and p(f) = 1.

For a =1 and f = 0 in system (1.6), we have

Corollary 2.1. Let ¢ = (6, 6) € C% ¢ # 0, and u, A be nonzero constants. If (f;,f,) are a pair of finite order
transcendental entire solution of the following system:

2

of 2o
ufi(z) + Aa—Zl +fiz+c)y=1,
) 2.5)
of,
ufy(z2) + A= +fi(z + c)* =1,
621
then, (f;, f,) must be of the form
1 1
= emztMtbhy 4 T oz~ Wz-by
W 2) = e+ i 20— Ja)® ’
f(zls ZZ) = ;ealzﬁazzﬁbz + ;e—alzl—aglz—bz’
2 2(Aay + ) 2(u - Aay)
where a,, az, by, by € C satisfy af = © ;;1 and
e2aci+axc) = (U + Aay)? = # e2hi-b) = —1, (2.6)

(- Am)?*’

or
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1
eZ(a161+azCz) = —(# + )la1)z = —m, ez(bl_bZ) =1. (27)

Theorem 2.2. Let ¢ = (¢, ¢) € C% a, B, u, Ay, Ay be nonzero constants in C, sy = Az — hz, and sy = h6 -
Aa # 0. Let (f,f,) be a pair of the finite order transcendental entire solutions of system (1.7). Then, (f},f,)
must satisfy one of the following cases:

(0

m 1 -
fi(zl’ z) = a _ Ee natyaz, /1221)+D1,

]E(Zl; Z) = — - —e_/hzl"'V(AlZZ_AZZl)*'DZ’

61 1 &
uou

where n,, 81, ¥, D1, D; € C satisfy

u B .
—q + log~ + 2kmi
A a
eDiD2 = q, =24 , kez, 2.8)
v MG — A

and one of the following cases:

(i) $r=-m=xlanda=-Boré=n==%L,a=p;

(i) 6 =1 andr]z=“720r6 =-n and112=“72'
2o 1 e@-pr OO 17 @ p?

(i) u> = a® - B2, 6E+ 84 =1,n2 + n} =1, and ad, = -Bn, + \|(n? = D(B? - a?);

(i) if u* # (hay + Aay)?, then

1 1 :
 Z) et emmtamthi -~ aameamebi — (s, )emaatysitD:
fi( 15 2) Z(Alal + /1202 + ‘u) 2(/’\1(11 + ﬂzaz - #) ( 1) 1 5
1 1 7
Vet emmtamthy -~ aameameby — (s, + s3)e-LatysitDy
fz( 15 2) 2 Alal + /1202 + 2 Alal + Azaz - ( 1 0) 1 s
u u

where 9(s,) is a finite order period entire functions with period 2sy, and aj, ay, by, by, ¥, D1, D, satisfy (2.2),
(2.8), and

My + Aoty + Bi + 11

hag + ha, + Bi)? = u? - @2, eXaarac) = — 2.9
(hay + Aay + Bi)* = hay + Aoty + Bi - 1 29)
ifu=Aha + Aay, then
fi(zl ZZ) = iea1z1+azzz+b1 + ie—alll—azlz—bl — 19(81)e_’1£121+ysl+D1
) 4!1 2/»{1 )
f(a, z) = %eaﬂ““m”’z + %e‘aﬂl‘“ﬂz‘bz - J(s + So)e'ﬂ%zﬁyslwz,
U 4
where a;, az, by, by, y € C satisfy (2.2), (2.8), and
2
2wBi = B2 -, B =i, emcrae) =1 - Fﬂi; 210)

if u = -(ha + hay), then

4 1 T
fi(zl, Zz) = aea121+a222+b1 + 4_e—a1zl—azzz—b1 _ 3(sl)e /1121+V51+Dl’
1

Y/ 1 _K
f(a, )= ae“m*“ﬂﬁbz + @e‘“lzl‘“m‘bz - 9(s; + sp)e nAyP
1

where a;, az, by, by, y € C satisfy (2.2), (2.8), and
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2
—ouBi= Bt -a B =-hi, edueraxd =1+ F“i. @11)

The following examples show the existence of transcendental entire solutions of system (1.7).

Example 2.7. Let
1 1 1 1
h@ z)=-5 - €™, fiaz)= -5 - e

Thus, (f;, f;,) is a pair of finite order transcendental entire solution of system (1.7) with 4 =1, 4, = -1, u = 2,
a=1B=1 and (¢, ¢) = (k,k),k € {C} - {0}

Example 2.8. Let
V2 1 V21

fl(Zl, ZZ) = T - Ee—ZﬁZZ, fé(zly ZZ) = _T _ Ee—zﬁzZ-

Thus, (f;, f,) is a pair of finite order transcendental entire solution of system (1.7) with & =1, 4, = -1, u = 2
a=1B=1 and(q,¢) = (k, k), k € {C} - {0}.
Example 2.9. Let

L ) = % - % (-7 )Zl“f(Tz*%)zz’

V3 1 1 (_Q l)z (j 1
%) = — + ——=i - ——e\l 2 44" 2+4)ZZ.
(2, ) RN 5

Thus, (f;, f,) is a pair of finite order transcendental entire solution of system (1.7) with Ay = 1, 4, = -1, u = V2,

a=1,8=1i and (g, ¢) = (i, mi).

Example 2.10. Let

1 4 s Z
fl(zl) ZZ) = 9521_622 + ——e 3zl+ ZZ - CoS
243 2.3

il
(Zl - )| arAEw),

H(@, 2) = 2\1/§ i+ %e farin - cos| = (Z1 - g)|eiarAaa),
where
NE)
_rtattagl s B,
-9 + (33 + 4n)i’

Thus, (f;,f,) is a pair of finite order transcendental entire solution of system (1.7) with 4 = V3, & =43,
u= f =1L, B=5+ £l and
]

(Cl) CZ) =

3.3, rﬁﬂﬂ
'5

27! 5

For a =1 and 8 = 0 in system (1.7), we have

Corollary 2.2. Let ¢ = (¢, @) € C?, u, Ay, A, be nonzero constants, and ¢, — X¢ % 0. If(f,, f;) are a pair of finite
order transcendental entire solution of the following system:
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2

o) )
ufi(z) + Ali + Azi +fz+c)P=1,
0z 07,
y " (2.12)
9, 9,
[llfz(l) + Ala_zl + ﬂza—zz +fiz+c)?=1,
then, (f,, f,) must be of the form
fi(a, z) = SR S— etz by 4 S ez~ @z2by
e 2(May + hay + @) 2(u = hag = Ahay) ’
L2, z) = SRR S emz*azthy + _t -z~ W2zb;
2 2(May + Aay + 1) 2(u - hay - hay) ’
where ay, az, by, by € C satisfy (Al ay + haz)* = y*> - 1 and
1
Amertaxs) = (y + g + hay)> = ——————, 2b1=by) = —1, 2.13
e W+ Ay + hay) U= oty — Toy)? e (213
or
el(aa+ae) = _(u + A + /'Izaz)z = ——1 e2b1=b2) = 1, (2.14)

(W - hay - hay)*’

3 Some lemmas
The following lemmas play the key role in proving our results.

Lemma 3.1. [27,28] For an entire function F on C", F(0) # 0 and put p(ng) = p < . Then, there exist a canonical
function f, and a function g. € C" such that F(z) = f(z)e&®. For the special case n = 1, f; is the canonical
product of Weierstrass.

Remark 3.1. Here denote p(ng) to be the order of the counting function of zeros of F.

Lemma 3.2. [3] If g and h are entire functions on the complex plane C and g(h) is an entire function of finite

order, then there are only two possible cases: either

(@) the internal function h is a polynomial and the external function g is of finite order; or else

(b) theinternal function h is not a polynomial but a function of finite order, and the external function g is of zero
order.

Lemma 3.3. [34, Lemma 3.1] Let fl-(io), J =1,2,3, be meromorphic functions on C™ such that f; is not constant,
and f, + f, + f; = 1, and such that

r, 1] +2N(r,f;)

Ny
/i

< AT(r,f,) + O(log* T(r, f,)),

3
2
j=1

for all r outside possibly a set with finite logarithmic measure, where A <1 is a positive number. Then, either
fi=1lorfy =1

Remark 3.2. Here Ny(r, %) is the counting function of the zeros of f in|z| < r, where the simple zero is counted
once, and the multiple zero is counted twice.

Lemma 3.4. Let ¢ = (¢, @) € C? and a, B be two nonzero constants. Let
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gl(z) = 61(22)6&1*%(22)’ gz(z) = ez(zz)ele‘*wz(zz)’

where & is a constant, 6i(z), j = 1, 2 are finite order entire functions, and Y(z), j = 1, 2 are polynomials in z. If
(&, &) is a pair of solutions of system

ag,(z + ¢) - Bg(z) = 0,

(3D
agy(z + ¢) - Bgy(z) = 0,
then, (g,, g,) can be expressed as the form of
8(2) = 0(z)em P, g(2) = 0z + et I,
where 0(z;) are finite order entire period function with the period 2¢; and y is a constant such that
ebiD2 =1 e¥2 = Ee‘flf_
a
Proof. Substituting g;, g, into system (3.1), we have
emreo-wam = 012 B o
02z + @) a
0 (3.2)
ehrer-wim = 022 B o
0i(z+ @) a
which implies
. 2
eV(@+2)-Y(z) = Mﬁ_e—m{, j=1,2. (3.3)

9]-(22 + 20) a®

Noting that §,(z) is a polynomial, we will consider two cases as follows.

Case 1. Suppose that e%®*2)7%() is a constant. In view of (3.3), it follows that ; (Zej(fzz)c) is a nonzero
j(z2 + 2¢2
constant for j =1, 2. Set
0i(z,)
—F—=d, j=12 34
0i(z + 26) J G4)
In view of (3.3), we can deduce that
V() =hzn +D;, j=12, (3.5)

where h, D;, (j = 1, 2) are constants and

N logd’

-¢é + logg
26 Y G '

h=y (3.6)

e+ log
If d = 1, then 6;(z)(j = 1, 2) are finite order entire period functions with period 2, and h = y = %.

Substituting (3.5) and (3.6) in (3.2), we have

C2

0x(z)e: = 01(z, + g)el.
Thus, in view of (3.5) and (3.6), it follows that
8(2) = O1(z)eéntraDy,
and
8,(2) = Oy(z)eéa u*D = (7 + )etatvarDy,

If d # 1, it follows from (3.4) that
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0i(z) = e 28, j=12, (3.7
where g, j = 1,2 are constants. Substituting (3.5)-(3.7) in (3.2), we have eP2"D1 = e&1~¢2, which implies
eDi+ei=(Dater) = 1 (3.8)
For convenience, let B; = D, + & and B, = D, + &. In view of (3.5)—(3.8), it follows that
&) = 01(zy)eéa+ha*D1 = elztyn+h
and
8(2) = 0y(z,)ea+hz* Dy = elutyn*By

where By, B, are constants satisfying (3.8).
Case 2. Suppose that e%(%2*22)-¥(%)(j = 1, 2) are not constants. Noting that Y(2,),j = 1,2, are nonconstant

0(z2)
0i(zp+ 2¢2)°

Thus, there exist two functions 0,(z), 0,(z) such that

polynomials, we can deduce from (3.3) that j =1, 2 are finite order transcendental entire functions.

0i(z,) = 9, j=1,2. (3.9
This leads to
§(2) = e, g(z) = efruts) (310

where y]-(zz) = l/Jj(Zz) + Qj(Zg). Substituting g;, &, in (3.1), we have

ela(Zz*e)=iy(22) = Ee’clf’
a

(3.11)
ezt C2)~l1y(22) = Ee‘flf’
a
which implies that
u(z) =y +D;, j=12 (3.12)
where y, Dj, (j = 1, 2) are constants and
-aé + logﬁ
y= % eDiDr =, (3.13)
G
In view of (3.10) and (3.12), we have
&) = etatyz+Dy 8(2) = efatyztDy (3.14)
where y, D4, D, satisfy (3.13).
Therefore, this completes the proof of Lemma 3.4. O

4 The proof of Theorem 2.1

Proof. Let (f},f,) be a pair of transcendental entire solutions of finite order for system (1.6). Thus, we will
consider the following two cases.

Q) If ufi(2) + /1:—2 is a constant. Denote

F)
ufi (z) + Aa—g =, 4.0
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In view of (1.6), it follows that
af,(z + ¢) - Bfy(2) = n,, 4.2)
where 1), is a constant satisfying
nf+nf=1 (4.3)

From (4.1) and (4.2), we have

of, B ﬁ(—c) B, M
+ A== == + ]/ = =p—+ u—. 4.4
W dz ozuf1 © oz TRy Ty TRy @44
This shows that uf, + Ag—fl is a constant. Let
of,
+ A_ = 45
yf 621 61: ( )
then af;(z + ¢) - Bf,(2) is a constant. Denote
afi(z + ¢) - Bfy(2) = 62, (4.6)
then it follows
B U
§2+682=1, &= E”l + Enz. 4.7
Solving equations (4.1) and (4.5), we have
1 1
fi(zli ZZ) = ﬂ - _e_%zﬁq)l(zﬁ: fZ(Zli ZZ) = é - _e—%21+¢2(22)’ (4.8
u u u u
where ¢,(2), ¢,(z,) are entire functions in z,. Substituting (4.8) in (4.2) and (4.6), we have
61 1 '71 1
al = - =e A(21+C1)+¢z(lz+cz)] Bl— - —e -hatei@) | = n,,
[u u oo ?
ﬁ _ le—(zl+c1)+¢1(zz+cz)] - B[é - le—‘;zlﬂpZ(Zz)] =&y,
U ou u u
which implies
- By = uny,
ez c2)~$y(22) = Eeiq,
a
4.9
- B&1 = uds,
e¢1(ZZ+CZ)_¢2(ZZ) = Ee%cl'
a
Thus, it yields that
0(z) =Yz + D1,  ¢,(%) = yzp + Dy, (4.10)
where y, Dy, D, are constants satisfying
a - logS + kni
QD) =1y = 247 kezZ. (411
) CZ b
Moreover, it follows from (4.7) and (4.9) that
— A2
0y = 561 ¥ %62, 62 - ndlu - gy ﬁ = 0. (4.12)
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(@

(b)

(©

(i)

If 6, = n,, it follows from (4.7) and (4.9) that

61 = il’h, (’71 - 61)[1 + g] =0. (413)

If§;=n,and a = B, then §, = n, = 0 and &; = n, = 1.

If 6, = n, and a # B, then it follows from (4.12) that n, = #’h- Substituting this into (4.3), we have
2 _ [
Vo (a-pr
If 81 = -n,, then it follows from (4.13) that a = -B. Thus, we can deduce from (4.7) or (4.12) that
6, = n, = 0, which implies that §; = -, =1 or ;= -n; = -1.
If 6, = —n,, it follows from (4.2), (4.7), and (4.9) that

8t =n

61 = il]l, (I’]l + 61)[1 - g] =0. (4.14)

If 6 = -n, and a = —f5, then 8, = i, = 0. Then, it yields that §; = -, =1 or 6; = -n, = -1.
If 6, = -n, and a # -, then it follows from (4.12) that n, = ‘#’h- Substituting this into (4.3), we
have

2 [’

R

If 6; = n,, then it follows from (4.14) thata = . Thus, we can deduce from (4.7) or (4.12) that 6, = n, = 0,

which implies that 6; = n, = +1.

If 4% - (@ - B%) = 0, it follows from u # 0 that a # +B. Then we have

as, = B, + J(nf - DB - @¥). (4.15)

Therefore, from (4.8), (4.10), (4.11) and (a), (b), (c), we obtain the conclusion (i) of Theorem 2.1.
If uf, (z) + Ag—g is a nonconstant, then it yields that af,(z + ¢) - Bf,(2), uf, + A:—j;zl, andaf;(z + ¢) - Bf,(2)

8t =n

L . of, .
are all nonconstant. Otherwise, if one of these terms is a constant, we can deduce that uf; (z) + Aa—fl isa
constant. This is a contradiction. Thus, we can rewrite (1.6) as the form

%
0z

0
{#fl(l) + A+ iafy(z + ©) - Bfi(2)||ufi(2) + ?ta—fl - i(afy(z + ) - ﬁ}i(Z))] =1,

=1

% .. oh .
ufy(z) + Aa_zl +i(afy(z + ©) - BhH(2)|uf(2) + Aa_zl - i(afy(z + ©) - Bf,(2))

Since f,f, are entire functions, it follows that uf;(z) + )L:—fl +i(af,(z + ©) - Bfi(2), ufi(2) + Aa—fl -

071
%h

; ; o | .

i(afy(z + ©) = Bfi(2)), uh(2) + A3, — i(afy(z + ¢) - Bf,(2)) and uf,(2) +A£ +i(afy(z + ©) - Bfy(2)) do
not exist zeros and poles. By Lemmas 3.1 and 3.2, there exist two nonconstant polynomials p(z), q(z) in
C? such that

oh . .
ufy () + )la_zl +i(afy(z + ¢) - Bf,(2)) = eP@,
o ]
ufy () + Aa_zl — i(afy(z + ©) - Bf,(2)) = e,

%h . .
uf,(2) + Aa_zl +i(af,(z + ¢) - Bfy(2)) = e1®,

o . )
W@ + 25, ~ ez + ©) = Bf(2) = 0.
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The above equations lead to

of 1 i
1, (z) + /16—21 = S(er+e?),

1
af,(z + ¢) - Bfi(z) = E(e” -eP),

of, 1

ufy(z) + Aa_zl = E(eq +e7),

afi(z + ¢) - Bf,(2) = Zli(eq -e™.

In view of (4.17) and (4.18), we can deduce that

I

)
afy(z + ) + fAz - = %(eq(m) + ety - 2P ) o gpien)
7 1

21 0z

In view of (4.16) and (4.17), we have

of, _ Bi+u Bi-u
— = p(2) -p(2)
auf,(z + ¢) + BA o2 50 erl) + 5 e P2,

By combining with (4.20) and (4.21), we have

op . op .

A+ Bi+ A+ Bi-

azliﬁyeq(zﬂﬁp(z) + 6217“6‘7(2”)_[’(2) — e2az+o) = 1,
at

ai
Similar to the above argument, we can deduce from (4.16), (4.18), and (4.19) that

aq . aq .
A+ Bi+ Ao+ Bi-
L“ep(zwﬁq(z) + 6217”

at at

eP(E+0)=q(2) _ @2p(z+0) = 1,
By Lemma 3.3, we can deduce from (4.22) and (4.23) that

op . ap .
Ao+ Bi- A+ Bi+
L“eq(m)—p(z) =1 or Meqmwpu) =1,

at at
and
aq . aq .
Ay, + Bi- A+ Bi +
azl—“ep(z+0)-q(2) =1 or azliuep(z+c)+q(z) =1.
at at

Now we will consider four cases as follows.

Case 1.
ap .
azliueq(zﬂ)—p(z) = 1’
at
aq .
azliﬂep(zﬂ‘)—q(z) =1,
at

- 13

(4.16)

417

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

In view of (4.24), it follows that q(z + ¢) - p(z) = d; and p(z + ¢) — q(z) = d,, where dy, d; are constants in C.
Thus, it yields that q(z + 2¢) - q(z) = di + dy and p(z + 2¢) - p(z) = d; + d,. Since p, q are polynomials in C?, it
follows that p(z) = L(z) + H(¢z — az) + byand q(z) = L(z) + H(gz — Gz) + by, where L(z) is a linear form of
L(z) = iz + ayz, H(s) is a polynomial in s = 6z — Gz, a1, as, by, b, are constants. Substituting p(z), q(z) into

(4.24), we have
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Aay + AQH’ + ﬁl - ‘ueL(c)+b2—b1 -1 Aay + A\oH’ + ﬁl -
ai ’ ai

H sy biby = 1 (4.25)

By combining with A # 0 and ¢, # 0, it follows from (4.25) that deg.H < 1. Thus, we still write p(z), q(z) as the
forms of p(z) = L(z) + by and q(z) = L(z) + b,. In view of (4.22)—(4.24), we have

Me—m)ﬂh‘bz =1
ai ’
Ayt B e 2 g,
ai
. (4.26)
Meucm-bl =1,
ai
Aa* BUZ B by 2 g
ai
Thus, we can deduce from (4.26) that
| —? (Aay + Bi + p)?
Ay + Bi) = 12 — a2, eXbib) =1 2O = - = ' 4
(Aay + Bi)* = u (A + Bi = p)? K -
If g # +7, solving equations (4.16) and (4.18), we have
2+ a2y tby e~ @z~ az=by u
£ () = G+ _ a1 - K(z)e 12+ t(@) (4.28)
1 1
QWZI+axZy+b; e ua-azb, K
Lz, z) = - Qy(zp)e 27+ 0@, 4.29)

20a + 1) 20 - )

where $(2,), 94(z,) are finite order entire functions and ¢,(z,), ¢,(z;) are polynomials in z,. Substituting (4.28)
and (4.29) in (4.17) and (4.19), and combining with (4.26) and (4.27), by Lemma 3.4, we have

emzi+@zthy  a~mz-ayzy=by
200ay + @) 2(Aay - p)
ea121+azlz+bz e—alzl—azlz—bz

200+ 1) 20 - )

where J(z) is a finite order period entire function with period 2¢, and y, Dy, D, satisfy (4.11) and (4.27).

fi(z,2) = ~ (z)eratvaDs, (4.30)

- Xz + ¢)e 1a+va+Ds (4.31)

fz(zly ZZ) =

Ifaq = % solving equations (4.16) and (4.18), similar to the argument as in case a; # % we have
fi(z,2) = ieb + Serwaah - §(ge tanrahy 432)
fé(zl, z) = iemlﬁazlz’sz + %e—alzrazlz—bz -z + Cz)e‘ﬁll’f)’lz’sz, (4.33)
where 9(z,) is a finite order period entire function with period 26, and y, Dy, D, satisfy (4.11) and (4.27).

Substituting (4.32) and (4.33) in (4.17) and (4.19), and combining with (4.26) and (4.27), we have Bg = Ai.
Ifaq = —%, solving equations (4.16) and (4.18), we have

fila, ) = ie—am—am—bl + %eaﬂﬁazlﬁbl - g(ZZ)E-ﬁZﬁVZﬁDl’ (4.34)
1 —a1z1-ayzy~b Z! iz +azzy+h ~£21+yz,+D.
fz(ZbZz):@e 121~ 22 2+ﬁe“ 222 2_19(22+cz)e AATYRtly (4.35)

where J(z,) is a finite order period entire function with period 2¢, and y, D,, D, satisfy (4.11) and (4.27). Similar
to the above argument, we have g = -Ai.
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Case 2.
ap .

A+ Bi-

azl—”eq@w)—p(z) =1,
ai

A2 4 Bi+

‘mi'yep(zﬂ‘)w(z) =1,
ai

Thus, it follows that q(z + ¢) - p(z) = d; and p(z + ¢) + q(z) = d, where d;, d; are constants. Hence, we have
q(z + 2¢) + q(z) = d; + dy, which is a contradiction with the assumption of ¢(z) being nonconstant polynomial
in C2.

Case 3.
ap .
— + Bi+
azliﬁyeq(zﬂﬁp(z) =1
ai ’
aq .
azli.ﬁuep(zw)—q(z) =1
at

Thus, it follows that q(z + ¢) + p(z) = d; and p(z + ¢) - q(z) = d; where d;, d, are constants. Hence, we have
p(z + 2¢) + p(z) = d; + d,, which is a contradiction with the assumption of p(z) being nonconstant polynomial
in C2
Case 4.
ap .

Yo PP o 2 g

o “ 4.36)
o +Bi+u
e

P O+q(2) = 1.

In view of (4.36), it follows that q(z + ¢) + p(z) = d; and p(z + ¢) + q(z) = d,, where dy, d; are constants in C.
Thus, it yields that q(z + 2¢) - q(z) = d; - dy and p(z + 2¢) - p(z) = d; - d,. Since p, q are polynomials in C?, it
follows that p(z) = L(z) + H(gz - az) + by and q(z) = -L(z) - H(gz - az) + by, where L(z) is a linear form
of L(z) = a1z + ayzp, H(S) is a polynomialin s = 6z - Gz, a1, a, by, b, are constants. Similar to the argument as
in Case 1, we can obtain that p(z) = L(z) + by = aizy + @z + by and q(z) = -L(z) + by, = ~@z — Gz + by. In
view of (4.22), (4.23), and (4.36), it follows

Aal + 'B'l + ‘ue—L(C)+bz+b1 =1,
ai

Mem)ﬂmbZ =1,

o g (4.37)

MEL(C)—bZ—bl =1,
ai

“Aay + Bi -
ai

e—L(C)—bl—bz = 1_

Thus, it leads to

-Aap+ Bi+p-Aay+ Bi-pu Aag+ i+ pdag+ Bi-u
ai ai - ai ai '

By combining witha # 0, 8 # 0, and A # 0, we have @; = 0. Then, p(z) = a,z, + by and q(z) = -ayz, + by. In view
of (4.37), it follows

-a? (Bi - w?
2= 2 — R2 2062 = 1 2(b1+by) = = . 4.38
pwoan el e G T -

Solving equations (4.16) and (4.18), we have
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fita, ) = i(eaﬂﬁbl + e @) — 9)(zy)e im0, (4.39)

f(a, ) = i(e_aﬂ”bz + o) — 9)(z)e 1A 04, (4.40)

where 81(2,), 9:(z) are finite order entire functions and ¢,(2,), ¢,(z;) are polynomials in z. Similar to the
above argument in Case 1, it follows from (4.39) and (4.40) that

1
hz) = 5 (b v eth - Hzp)e iararhy,

1 —-Qy2y+b: aszy—b b +yz+D
f(z, 2) = 2u(e 2tbe 4 e@zmbry — §(z, + g)e At VarD

where J(z,) is a finite order period entire function with period 2¢, and y, Dy, D, satisfy (4.11) and (4.27). In fact,
we can see that the forms of solutions are included in case that a; # i% in Case 1.
Therefore, this completes the proof of Theorem 2.1. O

5 The proof of Theorem 2.2

Proof. Let (f},f,) be a pair of transcendental entire solutions of finite order for system (1.7). Thus, we will
consider the following two cases.

@) If pfi(2) + /11: )lz 22, is a constant. Denote

of of;
ufy(z) + )ll ! /126_1 =1 G.D
0z Z)
In view of (1.7), it follows that
afy(z + ¢) - Bfi(2) = n,, (5.2)
where 1), is a constant satisfying (4.3).
From (5.1) and (5.2), we have
o °h _B ofiz-0o | 0}”1(2-6) My
uf+Alazl+ 2az oz‘ufi ) +A oz 07 +ua
5 (5.3)
U7
= — + —.
n a u a
This shows that uf, + /11 + )lz— is a constant. Let
of of
= 5.4
l’lf + Al a 1 AZ aZZ 611 ( )
then af;(z + ¢) - Bf,(2) is a constant. Denote
afi(z + ¢) - Bf,(2) = 62, (5.5)
then, we have (4.7). The characteristic equations of (5.1) are
d21 _ d22 _ df1 _
a - @ T g T

Using the initial conditions: z = 0, z, = 81, and f; = (0, 1) = Y(s;) with a parameter s, we obtain the following
parametric representation for the solutions of the characteristic equations: z = Ait, z, = At + §;, and
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o1 .«
fi(m, ) = — - —e nat ), (5.6)
! b
where ¢,(s1) is an entire function in $; = Az - A2,. Similarly, solving equation (5.4), we have
6 1 _u
(2, 2) = — — —e nAt oSy, (5.7)
. uoou

where ¢,(s;) is an entire function in $; = Az — A2, Substituting (5.6) and (5.7) in (5.2) and (5.5), we have

a b _ le—‘;(zl+61)+<oz(51+s[])] - B[
u

ﬁ — le‘izﬁ%(sl)] =1,
u

uoou

a

h_ le—ﬁ(zﬁcl)ﬂal(sﬁso)] - ﬁ[é - le_izl*'(ﬂz(sl)] =6y,
uoou uoou

which implies
asy = By = uny,

02(1+50)-94(51) = ge%cl,

an, - B8 = 1Sy o
eP1(s1+50)=9y(sD) = Eeﬁq'
a
Thus, it yields that
@1(s1) = ys1+ D1, @y(s1) = ys1 + Dy, (5.9
where D,, D, are constants and satisfying
20D =1 p= M’ kezZ. (5.10)

ha - Ao

Moreover, from (4.7) and (5.8), we have (4.12). Thus, from (5.6), (5.7), and (5.9), by using the same argument as in
the proof of Theorem 2.1 (i), we can obtain the conclusions of Theorem 2.2 (i).

oh

(i) If ufi(2) + X o /12:—2 is a nonconstant, then it yields that af,(z + ¢) - Bf;(2), uf, + Ala—fz %

ot )
71 522
af,(z + ¢) - Bf,(z) are all nonconstant. Otherwise, if one of these terms is a constant, we can deduce

and

9 of, . . - - .
that uf, (z) + ’1172 + )lzafg is a constant. This is a contradiction. Thus, similar to the argument as in the

proof of Theorem 2.1 (ii), there exists two nonconstant polynomials p(z), q(z) in C? such that

ufh(2) + /11:—2 + /123—2 = %(el’ +eP), (5.11)
Wiz + ) - @) = (e - &), 612
uf(2) + /112—];21 + ?tzg—]zvz = %(eq + e, (5.13)
af,(z + ¢) - Bfy(z) = %(eq - e, (5.14)

In view of (5.11) and (5.14), we have

ap ap .
Mg, * g, * Bl U
elz+0)p(2) 4 %4 92,

ai ai

ap ap .
M+ A + Bi +
15, * g, TRt U CAEHOPD) — @O = 1. (5.15)
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aq aq . aq
— + A+ +
Al 021 Az 522 Bl y

aq .
/11621 +A2822 + ﬂl y

- ePz+0)+q(2) 4 ePz+0)=q(2) — @2p(z+0) = 1. (5.16)
ai ai
By Lemma 3.3, we can deduce from (5.15) and (5.16) that
op op . ap ap ,
Mo+ Mo+ Pi- Mo+ Mo+ i+
ton " Ron d R =1 op on "o Piu QU+ = 1,
ai ai

and

aq aq . aq aq .
My +ho-+Bi-u Mg+ Ao+ Bi+
5Z1 6z2 ep(Z+C)_q(Z) = 1 or 0Z1 6Z2

: : P+ @) = 1,
at at

Now we will consider four cases as follows.
Case 1.

L/ T/ Ay T
Mg, Ty, TR U

. QQ(Z+C)‘P(Z) = 1’
at

(5.17)
oq 9q i
M+ Mo+ Bi-
1oz, 2 0z, B 'uep(z+f)-q(l) =1.
ai

In view of (5.17), it follows that q(z + ¢) — p(z) = d; and p(z + ¢) - q(z) = dy, where dy, d, are constants in C.
Thus, it yields that g(z + 2¢) - q(z) = d; + dy and p(z + 2¢) - p(z) = d; + d,. Since p, q are polynomials in C?, it
follows that p(z) = L(z) + H(6z - az) + byand q(z) = L(z) + H(6z - az) + by, where L(z) is a linear form of
L(z) = iz + ayz, H(S) is a polynomial in s and a;, a,, by, b, are constants. Substituting p(z), q(z) in (5.17), we
have

May + hay + (MG - he)H' + Bi -
ai

Hersbrb = 1 (5.18)

hay + hay + (Mo - he)H' + Bi - u
ai

eL©+bi=by = 1. (5.19)

By combining with A1¢ - A4, # 0, it follows from (5.18) and (5.19) that deg H < 1. Thus, we still write p(z), q(z)

as the forms of p(z) = L(z) + by and q(z) = L(z) + b. In view of (5.15)—(5.17), we have

/11611 + /12612 + ﬁl +u
ai

Ay + Ay + Bi + Ky

e—L(L‘)+b1—b2 = 1’

~L(c)*by=by = 1

ai
' (5.20)
Mag + /12“2. + pi- ueL(c)+b2—b1 =1,

ai
Mag + hay + ﬁl B ‘ueL(C)"'bl‘bz =1
ai
Thus, we can deduce from (5.20) that
(/‘{1611 + /‘{zaz + Bl)2 = ,uz - az, ez(bl_bZ) =1, (5.21)
and
eZL(C) - _a2 - (Alal + Azaz + Bl + 11)2 (5 22)
(hay + Xay + Bi — ) -a? ‘ )

If hai + hap # tu, solving equations (5.11) and (5.13), we have

@@iz1+axZy+by @21~ aszp=by

fi(z,2) = — Oy(sy)e sz, (5.23)

2y + Aoy + 1) 20y + Aoty — 1)
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eiz1+ a2z +h; @z~ ax%~by

— Oy(sy)e 14+ 9:(s0), (5.24)

fz(zl) n) = 200 + Aay + u) - 2(Mhay + hay - 11)

where 91(s1), 95(s1) are finite order entire functions and ¢,(s1), ¢,(s1) are polynomials in s;. Substituting (5.23)
and (5.24) in (5.12) and (5.14), and combining with (5.20)-(5.22), by Lemma 3.4 we have

ea1Z1+a222+b1 e—alzrazzz—bl 0 +ysp+D (5 25)
2,7) = - = J(sp)e natysti .
h. 2 + hay + ) 2ha + hay - p) 1) ’
ezi+ayzythy -z~ 2zy~b; p
L@, z) = - 9(sy + Sg)e natysitDz (5.26)

2oy + hay + @) B 2(hay + Aa; — @)

where J(s;) is a finite order period entire function with period 2sy, and aj, ay, by, by, y, D1, D, satisfy (5.10),
(5.21), and (5.22).

If hay + Aay = u, solving equations (5.11) and (5.13), similar to the argument as in case Aja; + Aa; # u, we
have

1 Z u
fi(ZL Zz) = @ealll*'azlz*'bl + ge—alZl—azlz—bl — 19(81)971Z1+V31+D1, (527)
1

1 Z —Z1+YS1+
fz(zl, z) = Ee(zlz1+azzz+bz - glle—mlrazzz-bz - 9(s; + so)e‘fﬂ ys1 Dz’ (5.28)
where J(s;) is a finite order period entire function with period 2sy, and y, D, D, satisfy (5.10), (5.21), and (5.22).
Substituting (5.27) and (5.28) in (5.12) and (5.14), and combining with (5.20)-(5.22), we have g = Ai.

If hai + ha; = -, solving equations (5.11) and (5.13), we have

1 Y/ 1
fi(Zl, ZZ) = @e_alzl_azzz_bl + ﬁealzl+azzz+b1 - a(sl)e—hzﬁysﬁDl, (5.29)
1

1 Z _k
fé(zl, Zz) = @e_alll_azlz‘bz + aea1Z1+leZz+bz — 19(31 + So)e /1121+V31+D2’ (5.30)
1

where 9(s,) is a finite order period entire function with period 2s,, and y, D1, D, satisfy (5.10), (5.21), and (5.22).
Similar to the above argument, we have g = -A .
Case 2.

W4 4 Bi-

0z 32.2 eq(z+c)—p(z) = 1’
at
0, 0, g
Alazl +A2322 +‘Bl+u

eP+0)+q(2) = 1,

at

Thus, it follows that q(z + ¢) - p(z) = d; and p(z + ¢) + q(z) = d; where d;, d, are constants. Hence, we have
q(z + 2¢) + q(z) = d; + dy, which is a contradiction with the assumption of g(z) being nonconstant polynomial
in C2.

Case 3.

W
Alal1 +A2822 +Bl+‘u

eq(z+c)+p(z) = 1’

ai
aq oq P
Mo+l + i -
1oz 20z pi ‘uep(z+6)-q(z) =1.
ai

Thus, it follows that q(z + ¢) + p(z) = d; and p(z + ¢) — q(z) = d, where d;, d; are constants. Hence, we have
p(z + 2¢) + p(z) = d; + dy, which is a contradiction with the assumption of p(z) being nonconstant polynomial
in C2.
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Case 4.

ap op :
—_— 4+ — + +
A 0z % 0z, pi 'ueq(z+c)+P(Z) =1

o (5.31)
— 4+ H— + B+
/’h azl AZ 622 Bl ‘uep(Z+C)+q(Z) = 1.
ai

In view of (5.31), it follows that q(z + ¢) + p(z) = d; and p(z + ¢) + q(z) = d,, where d,, d, are constants in C.
Thus, it yields that g(z + 2¢) - q(z) = d; — dy and p(z + 2¢) - p(z) = d; - d,. Since p, q are polynomials in C?, it
follows that p(z) = L(z) + H(6z - az) + by and q(z) = -L(z) - H(6z - az;) + by, where L(z) is a linear form
of L(z) = a4z + axz, H(s) is a polynomial in s and ay, a, by, b; are constants. Similar to the argument as in Case
1, we can obtain that p(z) = L(z) + by = a1z1 + @z + by and q(z) = -L(z) + b, = ~ayzy — @y + by.

By using the same argument as in Case 4 of Theorem 2.1, we can obtain that the forms of solutions are
included in case that Aa; + A,a, # u in Case 1 of Theorem 2.2.

Therefore, this completes the proof of Theorem 2.2. O
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