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Abstract: The purpose of this article is to describe the properties of the pair of solutions of several systems of
Fermat-type partial differential difference equations. Our theorems exhibit the forms of finite order trans-
cendental entire solutions for these systems, which are some extensions and improvement of the previous
theorems given by Xu, Cao, Liu, etc. Furthermore, we give a series of examples to show that the existence
conditions and the forms of transcendental entire solutions with finite order of such systems are precise.
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1 Introduction

Let us first recall the classical results that the entire solutions of the functional equation

+ =f g 1,2 2 (1.1)

are = =f a z g a zcos , sin( ) ( ) was proved by Gross [1], where a z( ) is an entire function. This simple-looking
nonlinear functional equation (1.1) can be called as the Fermat-type functional equation, analogous with the
equation + =x y z2 2 2 in Fermat’s last theorem in number theory. As a matter of fact, we can find that the study
of the Fermat-type functional equations can be tracked back to more than 60 years ago or even earlier [2,3].

In the past 30 years, there were lots of research focusing on the solutions of functional equation (1.1),
readers can refer to [4–17]. For example, Khavinson [11] in 1995 proved that any entire solutions of the partial
differential equations

⎜ ⎟ ⎜ ⎟
⎛
⎝

∂
∂

⎞
⎠ + ⎛

⎝
∂
∂

⎞
⎠ =

f

z

f

z
1,

1

2

2

2

(1.2)

in 2� are necessarily linear. It should be noted that equation (1.2) is called as eiconal equation. Later, Saleeby
[18,19] further proved that the entire solution of equation (1.2) is of the form = + +f z z c z c z η,1 2 1 1 2 2( ) . After
theirs works, Li and co-authors [20–22] further discussed a series of deformation forms of Fermat-type partial
differential equations and gave a number of important and interesting results about the existence and the
forms of solutions for these partial differential equations.

Theorem A. [20, Corollary 2.3] Let P z z,1 2( ) and Q z z,1 2( ) be arbitrary polynomials in C2. Then, f is an entire
solution of the equation
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if and only if = + +f c z c z c1 1 2 2 3 is a linear function, where cj ’s are constants, and exactly one of the following
holds:
(i) =c 01 and Q is a constant satisfying that =c Q 12

2( ) ;
(ii) =c 02 and P is a constant satisfying that =c P 11

2( ) ;
(iii) ≠c c 01 2 and P and Q are both constants satisfying that + =c P c Q 11

2
2

2( ) ( ) .

In the past 40 years, the Nevanlinna theory and the difference Nevanlinna theory of Meromorphic
function with several complex variables have been developed rapidly [23–29]. Especially, Korhonen [30,
Theorem 3.1] in 2012 established a logarithmic difference lemma for meromorphic functions in several vari-
ables of hyper order < ∕2 3. Later, Cao and Korhonen [23] proved that the logarithmic difference lemma for
meromorphic functions holds under the condition “hyper order <1.” By making use of the Nevanlinna theory
and difference Nevanlinna theory of several complex variables [23,30], Xu and Cao [31,32] discussed the
transcendental solutions of several Fermat-type partial differential difference equations. An equation is called
partial differential difference equation, if the equation includes partial derivatives, shifts or differences of f ,
which can be called PDDE for short.

Theorem B. [31, Theorem 1.2] Let = ∈c c c,1 2
2�( ) . Then, any transcendental entire solution with finite order of

the PDEE
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has the form of = +f z z Az B, sin1 2 1( ) ( ),where A is a constant on� satisfying =Ae 1iAc1 , and B is a constant on� ;
as a special case, whenever =c 01 , we have = +f z z z B, sin1 2 1( ) ( ).

In 2020, the author of this article and his colleagues [33] studied the finite order transcendental entire
solutions when equation (1.4) turns to the system of Fermat-type PDDEs and obtained Theorem C.

Theorem C. [33, Theorem 1.3] Let = ∈c c c,1 2
2�( ) . Then, any pair of transcendental entire solutions with finite

order for the system of Fermat-type PDEEs
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have the following forms:
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where = +L z a z a z1 1 2 2( ) , B1 is a constant in � , and a c A A, , ,1 21 22 satisfy one of the following cases:

(i) = −A i21 , =A i22 , and =a i1 , = ⎛
⎝ + ⎞

⎠L c k πi2
1

2
( ) , or = −a i1 , = ⎛

⎝ − ⎞
⎠L c k πi2

1

2
( ) ;

(ii) =A i21 , = −A i22 , and =a i1 , = ⎛
⎝ − ⎞

⎠L c k πi2
1

2
( ) , or = −a i1 , = ⎛

⎝ + ⎞
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2
( ) ;

(iii) =A 121 , =A 122 , and =a i1 , =L c kπi2( ) , or = −a i1 , = +L c k πi2 1( ) ( ) ;
(iv) = −A 121 , = −A 122 , and =a i1 , = +L c k πi2 1( ) ( ) , or = −a i1 , =L c kπi2( ) .
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To the best of our knowledge, there are few results about the study of systems of this Fermat-type PDDE
with several complex variables. Moreover, it appears that the study of such fields has not been addressed in
the literature before. Based on these, we are mainly concerned with the solutions of complex Fermat-type
PDDEs, and describe the existence and form of the pair of the finite order transcendental solutions of the
systems of PDDEs with constant coefficients
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where α β μ λ λ λ c c, , , , , , ,1 2 1 2 are constants in� . Obviously, equation (1.4) and system (1.5) are the special cases of
systems (1.6) and (1.7). The article is organized as follows. We will introduce our main results about the
existence and the forms of entire solutions for (1.6) and (1.7) in Section 2, which generalize the previous
theorems given by Xu et al. [31–33]. Meantime, we give a series of examples to explain that our results about
the forms of solutions of such systems are precise. The proofs of Theorems 1.6 and 1.7 are given in Sections 4
and 5, respectively.

2 Results and examples

The first main theorem is about the existence and the forms of the solutions for system (1.6).

Theorem 2.1. Let = ∈c c c,1 2
2�( ) , ≠c 02 , and α β μ λ, , , be nonzero constants in � . Let f z z f z z, , ,

1 1 2 2 1 2( ( ) ( )) be a
pair of transcendental entire solution with finite order of system (1.6). Then, f z z f z z, , ,
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The following examples show the existence of transcendental entire solutions of system (1.6).
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Thus, f f,
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( ) is a pair of finite order transcendental entire solution of system (1.6) with =λ 1, =μ 2, =α 1,
= −β 1, and =c c πi πi, ,1 2( ) ( ).
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μ

λ

μ

λ

1 1 2 2 1 1 1 2 2 1
1

1 1 1

1 1 2 2 2 1 1 2 2 2
1

1 1 2

( ) ( )

( ) ( )

where ∈a a b b γ, , , ,1 2 1 2 � satisfy (2.2), (2.8), and
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− = − = − = +− +μβi β α βc λ i
μ

β
i2 , , e 1

2
.a c a c2 2

1 1
2 1 1 2 2( ) (2.11)

The following examples show the existence of transcendental entire solutions of system (1.7).

Example 2.7. Let

= − − = − −− + − +f z z f z z,
1

2

1

2
e , ,

1

2

1

2
e .z z z z

1 1 2 2 1 2
1 2 1 2( ) ( )

Thus, f f,
1 2

( ) is a pair of finite order transcendental entire solution of system (1.7) with =λ 11 , = −λ 12 , =μ 2,
=α 1, =β 1, and = ∈ −c c κ κ κ, , , 01 2 �( ) ( ) { } { }.

Example 2.8. Let

= − = − −− + − +f z z f z z,
2

4

1

2
e , ,

2

4

1

2
e .z z z z

1 1 2 2 1 2
1 2 1 2( ) ( )

Thus, f f,
1 2

( ) is a pair of finite order transcendental entire solution of system (1.7) with =λ 11 , = −λ 12 , =μ 2,
=α 1, =β 1, and = ∈ −c c κ κ κ, , , 01 2 �( ) ( ) { } { }.

Example 2.9. Let

) )( (= − − + + +f z z,
1

2 2

1

2
e ,

z z
1 1 2

2

2

1

4 1

2

2

1

4 2( )

) )( (= + − − + + +f z z i,
3

2

1

2 2

1

2
e .

z z
2 1 2

2

2

1

4 1

2

2

1

4 2( )

Thus, f f,
1 2

( ) is a pair of finite order transcendental entire solution of system (1.7) with =λ 11 , = −λ 12 , =μ 2 ,
=α 1, =β i, and =c c πi πi, ,1 2( ) ( ).

Example 2.10. Let

= + − ⎡
⎣ − ⎤

⎦

= + − ⎡
⎣ − ⎤

⎦

− − + − + −

− − + − + −

f z z
z πi

κ
z z

f z z
z πi

κ
z z

,
1

2 3
e

2 3
e cos e ,

,
1

2 3
e

2 3
e cos e ,

z z z z z A z z

z z z z z A z z

1 1 2

1

1 2

2 1 2

1

1 2

4

3 1
5

6 2
4

3 1
5

6 2
1

2 1 1 2

4

3 1
5

6 2
4

3 1
5

6 2
1

2 1 1 2

( ) ( )

( ) ( )

( )

( )

where

⎜ ⎟=
+ +

− + +
=

⎛
⎝

−
+ ⎞

⎠
A

i i

π i
κ

π
i

9 3 3 4
, 3

9

10

3 4

10
.

π3

2

1

2 3 3

( )

Thus, f f,
1 2

( ) is a pair of finite order transcendental entire solution of system (1.7) with =λ 31 , =λ 32 ,

=μ
3

2
, =α 1, = +β i

1

2

3

2
, and

⎟⎜ ⎜ ⎟=
⎛
⎝

+ +
⎛
⎝

+ ⎞
⎠

⎞
⎠

c c i
π

i,
3

2

3

2
,

3

5

4 3 2

5
.1 2( )

For =α 1 and =β 0 in system (1.7), we have

Corollary 2.2. Let = ∈c c c,1 2
2�( ) , μ λ λ, ,1 2 be nonzero constants, and − ≠λ c λ c 01 2 2 1 . If f f,

1 2
( ) are a pair of finite

order transcendental entire solution of the following system:

The study of solutions for several systems of PDDEs with two complex variables  7



⎧

⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

+
∂
∂

+
∂
∂

⎤
⎦⎥

+ + =

⎡
⎣⎢

+
∂
∂

+
∂
∂

⎤
⎦⎥

+ + =

μf z λ
f

z
λ

f

z
f z c

μf z λ
f

z
λ

f

z
f z c

1,

1,

1 1

1

1

2

1

2

2

2

2

2 1

2

1

2

2

2

2

1

2

( ) ( )

( ) ( )

(2.12)

then, f f,
1 2

( ) must be of the form

=
+ +

+
− −

+ + − − −f z z
λ a λ a μ μ λ a λ a

,
1

2
e

1

2
e ,a z a z b a z a z b

1 1 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 1 2 2 1( )
( ) ( )

=
+ +

+
− −

+ + − − −f z z
λ a λ a μ μ λ a λ a

,
1

2
e

1

2
e ,a z a z b a z a z b

2 1 2

1 1 2 2 1 1 2 2

1 1 2 2 2 1 1 2 2 2( )
( ) ( )

where ∈a a b b, , ,1 2 1 2 � satisfy + = −λ a λ a μ 11 1 2 2
2 2( ) and

= + + =
− −

= −+ −μ λ a λ a
μ λ a λ a

e
1

, e 1,a c a c b b2
1 1 2 2

2

1 1 2 2
2

21 1 2 2 1 2( )
( )

( ) ( ) (2.13)

or

= − + + = −
− −

=+ −μ λ a λ a
μ λ a λ a

e
1

, e 1.a c a c b b2
1 1 2 2

2

1 1 2 2
2

21 1 2 2 1 2( )
( )

( ) ( ) (2.14)

3 Some lemmas

The following lemmas play the key role in proving our results.

Lemma 3.1. [27,28] For an entire function F on n� , ≠F 0 0( ) and put = < ∞ρ n ρF( ) . Then, there exist a canonical
function fF and a function ∈gF

n� such that =F z f z eF
g zF( ) ( ) ( ). For the special case =n 1, fF is the canonical

product of Weierstrass.

Remark 3.1. Here denote ρ nF( ) to be the order of the counting function of zeros of F .

Lemma 3.2. [3] If g and h are entire functions on the complex plane � and g h( ) is an entire function of finite
order, then there are only two possible cases: either
(a) the internal function h is a polynomial and the external function g is of finite order; or else
(b) the internal function h is not a polynomial but a function of finite order, and the external function g is of zero

order.

Lemma 3.3. [34, Lemma 3.1] Let ≢ =f j0 , 1, 2, 3j ( ) , be meromorphic functions on m� such that f
1
is not constant,

and + + =f f f 1
1 2 3

, and such that

∑
⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟ +

⎫
⎬
⎭

< +
=

+N r
f

N r f λT r f O T r f,
1

2 , , log , ,

j j
j

1

3

2 1 1
( ) ( ) ( ( ))

for all r outside possibly a set with finite logarithmic measure, where <λ 1 is a positive number. Then, either
=f 1

2
or =f 1

3
.

Remark 3.2. Here N r,
f2

1
( ) is the counting function of the zeros of f in ≤z r∣ ∣ , where the simple zero is counted

once, and the multiple zero is counted twice.

Lemma 3.4. Let = ∈c c c,1 2
2�( ) and α β, be two nonzero constants. Let
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= =+ +g z θ z g z θ ze , e ,ξz ψ z ξz ψ z
1 1 2 2 2 2

1 1 2 1 2 2( ) ( ) ( ) ( )( ) ( )

where ξ is a constant, =θ z j, 1, 2j 2( ) are finite order entire functions, and =ψ z j, 1, 2j 2( ) are polynomials in z2. If
g g,

1 2
( ) is a pair of solutions of system

⎧
⎨
⎩

+ − =
+ − =

αg z c βg z

αg z c βg z

0,

0,

2 1

1 2

( ) ( )

( ) ( )
(3.1)

then, g g,
1 2

( ) can be expressed as the form of

= = ++ + + +g z θ z g z θ z ce , e ,ξz γz D ξz γz D
1 2 2 2 2

1 2 1 1 2 2( ) ( ) ( ) ( )

where θ z2( ) are finite order entire period function with the period c2 2 and γ is a constant such that

= =− −β

α
e 1, e e .D D γc c ξ1 2 2 1

Proof. Substituting g g,
1 2

into system (3.1), we have

⎧

⎨
⎪

⎩
⎪

=
+

=
+

+ − −

+ − −

θ z

θ z c

β

α

θ z

θ z c

β

α

e e ,

e e ,

ψ z c ψ z c ξ

ψ z c ψ z c ξ

1 2

2 2 2

2 2

1 2 2

2 2 2 1 2 1

1 2 2 2 2 1

( )

( )

( )

( )

( ) ( )

( ) ( )

(3.2)

which implies

=
+

=+ − −
θ z

θ z c

β

α
je

2
e , 1, 2.ψ z c ψ z j

j

c ξ2
2

2 2

2

2

2j j2 2 2 1

( )

( )
( ) ( ) (3.3)

Noting that ψ zj 2( ) is a polynomial, we will consider two cases as follows.

Case 1. Suppose that + −eψ z c ψ z2j j2 2 2( ) ( ) is a constant. In view of (3.3), it follows that +
θ z

θ z c2

j

j

2

2 2

( )

( )
is a nonzero

constant for =j 1, 2. Set

+
= =

θ z

θ z c
d j

2
, 1, 2.

j

j

2

2 2

( )

( )
(3.4)

In view of (3.3), we can deduce that

= + =ψ z hz D j, 1, 2,j j2 2( ) (3.5)

where =h D j, , 1, 2j ( ) are constants and

= + =
− +

h γ
d

c
γ

c ξ

c

log

2
,

log

.

β

α

2

1

2

(3.6)

If =d 1, then =θ z j 1, 2j 2( )( ) are finite order entire period functions with period c2 2 and = =
− +

h γ
c ξ

c

log
β

α1

2

.
Substituting (3.5) and (3.6) in (3.2), we have

= +θ z θ z ce e .D D
2 2 1 2 2

2 1( ) ( )

Thus, in view of (3.5) and (3.6), it follows that

= + +g z θ z e ,ξz γz D
1 1 2

1 2 1( ) ( )

and

= = ++ + + +g z θ z θ z ce e .ξz hz D ξz γz D
2 2 2 1 2 2

1 2 2 1 2 1( ) ( ) ( )

If ≠d 1, it follows from (3.4) that

The study of solutions for several systems of PDDEs with two complex variables  9



= =− +θ z je , 1, 2,j
z ε

2

d

c j
log

2 2
2( ) (3.7)

where =ε j, 1, 2j are constants. Substituting (3.5)–(3.7) in (3.2), we have =− −e eD D ε ε2 1 1 2, which implies

=+ − +e 1.D ε D ε1 1 2 2( ) (3.8)

For convenience, let = +B D ε1 1 1 and = +B D ε2 2 2. In view of (3.5)–(3.8), it follows that

= =+ + + +g z θ z e eξz hz D ξz γz B
1 1 2

1 2 1 1 2 1( ) ( )

and

= =+ + + +g z θ z e e ,ξz hz D ξz γz B
2 2 2

1 2 2 1 2 2( ) ( )

where B B,1 2 are constants satisfying (3.8).
Case 2. Suppose that =+ − je 1, 2ψ z c ψ z2j j2 2 2 ( )( ) ( ) are not constants. Noting that =ψ z j, 1, 2,j 2( ) are nonconstant

polynomials, we can deduce from (3.3) that =+ j, 1, 2
θ z

θ z c2

j

j

2

2 2

( )

( )
are finite order transcendental entire functions.

Thus, there exist two functions z zϱ , ϱ
1 2 2 2( ) ( ) such that

= =θ z je , 1, 2.j
z

2
ϱj 2( ) ( ) (3.9)

This leads to

= =+ +g z g ze , e ,ξz μ z ξz μ z
1 2

1 1 2 1 2 2( ) ( )( ) ( ) (3.10)

where = +μ z ψ z zϱj j j2 2 2( ) ( ) ( ). Substituting g g,
1 2

in (3.1), we have

⎧

⎨
⎪

⎩
⎪

=

=

+ − −

+ − −

β

α

β

α

e e ,

e e ,

μ z c μ z c ξ

μ z c μ z c ξ

2 2 2 1 2 1

1 2 2 2 2 1

( ) ( )

( ) ( )

(3.11)

which implies that

= + =μ z γz D j, 1, 2,j j2 2( ) (3.12)

where =γ D j, , 1, 2j ( ) are constants and

=
− +

=−γ
c ξ

c

log

, e 1.

β

α D D
1

2

1 2 (3.13)

In view of (3.10) and (3.12), we have

= =+ + + +g z g ze , e ,ξz γz D ξz γz D
1 2

1 2 1 1 2 2( ) ( ) (3.14)

where γ D D, ,1 2 satisfy (3.13).
Therefore, this completes the proof of Lemma 3.4. □

4 The proof of Theorem 2.1

Proof. Let f f,
1 2

( ) be a pair of transcendental entire solutions of finite order for system (1.6). Thus, we will
consider the following two cases.

(i) If + ∂
∂μf z λ

f

z1

1

1

( ) is a constant. Denote

+
∂
∂

=μf z λ
f

z
η .

1

1

1
1

( ) (4.1)
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In view of (1.6), it follows that
+ − =αf z c βf z η ,

2 1 2
( ) ( ) (4.2)

where η
2
is a constant satisfying

+ =η η 1.
1

2

2

2 (4.3)

From (4.1) and (4.2), we have

+
∂
∂

= ⎡
⎣⎢

− +
∂ −

∂
⎤
⎦⎥

+ = +μf λ
f

z

β

α
μf z c λ

f z c

z
μ

η

α
η

β

α
μ

η

α
.

2

2

1
1

1

1

2

1

2
( )

( )
(4.4)

This shows that + ∂
∂μf λ

f

z2

2

1

is a constant. Let

+
∂
∂

=μf λ
f

z
δ ,

2

2

1

1
(4.5)

then + −αf z c βf z
1 2
( ) ( ) is a constant. Denote

+ − =αf z c βf z δ ,
1 2 2( ) ( ) (4.6)

then it follows

+ = = +δ δ δ
β

α
η

μ

α
η1, .1

2

2

2
1 1 2

(4.7)

Solving equations (4.1) and (4.5), we have

= − = −− + − +f z z
η

μ μ
f z z

δ

μ μ
,

1
e , ,

1
e ,z ϕ z z ϕ z

1 1 2

1

2 1 2

1μ

λ

μ

λ1 1 2 1 2 2( ) ( )( ) ( ) (4.8)

where ϕ z ϕ z,
1 2 2 2( ) ( ) are entire functions in z2. Substituting (4.8) in (4.2) and (4.6), we have

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

− ⎞
⎠

− ⎛
⎝

− ⎞
⎠

=

⎛
⎝

− ⎞
⎠

− ⎛
⎝

− ⎞
⎠

=

− + + + − +

− + + + − +

α
δ

μ μ
β

η

μ μ
η

α
η

μ μ
β

δ

μ μ
δ

1
e

1
e ,

1
e

1
e ,

z c ϕ z c z ϕ z

z c ϕ z c z ϕ z

1 1

2

1 1

2

μ

λ

μ

λ

μ

λ

μ

λ

1 1 2 2 2 1 1 2

1 1 1 2 2 1 2 2

( ) ( ) ( )

( ) ( ) ( )

which implies

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− =

=

− =

=

+ −

+ −

αδ βη μη

β

α

αη βδ μδ

β

α

,

e e ,

,

e e .

ϕ z c ϕ z c

ϕ z c ϕ z c

1 1 2

1 1 2

μ

λ

μ

λ

2 2 2 1 2 1

1 2 2 2 2 1

( ) ( )

( ) ( )

(4.9)

Thus, it yields that

= + = +ϕ z γz D ϕ z γz D, ,
1 2 2 1 2 2 2 2( ) ( ) (4.10)

where γ D D, ,1 2 are constants satisfying

= =
− +

∈− γ
c kπi

c
ke 1,

log

, .D D

μ

λ

α

β
2

1

2

1 2 �( ) (4.11)

Moreover, it follows from (4.7) and (4.9) that

= + − − −
−

=η
β

α
δ

μ

α
δ δ η μ α β

α β

μ
, 0.

1 1 2 2

2

2

2 2 2 2

2 2

2
( )[ ( )] (4.12)
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(a) If =δ η2 2
, it follows from (4.7) and (4.9) that

= ± − ⎛
⎝ + ⎞

⎠ =δ η η δ
β

α
, 1 0.1 1 1 1( ) (4.13)

If =δ η1 1
and =α β, then = =δ η 02 2

and = = ±δ η 11 1
.

If =δ η1 1
and ≠α β, then it follows from (4.12) that = −

η η
α β

μ2 1
. Substituting this into (4.3), we have

= =
+ −

δ η
μ

μ α β
.1

2

1

2

2

2 2( )

If = −δ η1 1
, then it follows from (4.13) that = −α β. Thus, we can deduce from (4.7) or (4.12) that

= =δ η 02 2
, which implies that = − =δ η 11 1

or = − = −δ η 11 1
.

(b) If = −δ η2 2
, it follows from (4.2), (4.7), and (4.9) that

= ± + ⎛
⎝ − ⎞

⎠ =δ η η δ
β

α
, 1 0.1 1 1 1( ) (4.14)

If = −δ η1 1
and = −α β, then = =δ η 02 2

. Then, it yields that = − =δ η 11 1
or = − = −δ η 11 1

.

If = −δ η1 1
and ≠ −α β, then it follows from (4.12) that = − +

η η
α β

μ2 1
. Substituting this into (4.3), we

have

= =
+ +

δ η
μ

μ α β
.1

2

1

2

2

2 2( )

If =δ η1 1
, then it follows from (4.14) that =α β. Thus, we can deduce from (4.7) or (4.12) that = =δ η 02 2

,
which implies that = = ±δ η 11 1

.
(c) If − − =μ α β 02 2 2( ) , it follows from ≠μ 0 that ≠ ±α β. Then we have

= − ± − −αδ βη η β α1 .2 2 2

2 2 2( )( ) (4.15)

Therefore, from (4.8), (4.10), (4.11) and (a), (b), (c), we obtain the conclusion (i) of Theorem 2.1.

(ii) If + ∂
∂μf z λ

f

z1

1

1

( ) is a nonconstant, then it yields that + −αf z c βf z
2 1
( ) ( ), + ∂

∂μf λ
f

z2

2

1

, and + −αf z c βf z
1 2
( ) ( )

are all nonconstant. Otherwise, if one of these terms is a constant, we can deduce that + ∂
∂μf z λ

f

z1

1

1

( ) is a
constant. This is a contradiction. Thus, we can rewrite (1.6) as the form

⎧

⎨
⎪

⎩
⎪

⎡
⎣⎢

+
∂
∂

+ + − ⎤
⎦⎥
⎡
⎣⎢

+
∂
∂

− + − ⎤
⎦⎥

=

⎡
⎣⎢

+
∂
∂

+ + − ⎤
⎦⎥
⎡
⎣⎢

+
∂
∂

− + − ⎤
⎦⎥

=

μf z λ
f

z
i αf z c βf z μf z λ

f

z
i αf z c βf z

μf z λ
f

z
i αf z c βf z μf z λ

f

z
i αf z c βf z

1,

1.

1

1

1
2 1 1

1

1
2 1

2

2

1
1 2 2

2

1
1 2

( ) ( ( ) ( )) ( ) ( ( ) ( ))

( ) ( ( ) ( )) ( ) ( ( ) ( ))

Since f f,
1 2

are entire functions, it follows that + + + −∂
∂μf z λ i αf z c βf z

f

z1 2 1

1

1

( ) ( ( ) ( )), + −∂
∂μf z λ

f

z1

1

1

( )

+ −i αf z c βf z
2 1

( ( ) ( )), + − + −∂
∂μf z λ i αf z c βf z

f

z2 1 2

2

1

( ) ( ( ) ( )) and +μf z
2
( ) + + −∂

∂λ i αf z c βf z
f

z 1 2

2

1

( ( ) ( )) do

not exist zeros and poles. By Lemmas 3.1 and 3.2, there exist two nonconstant polynomials p z q z,( ) ( ) in
2� such that

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

+
∂
∂

+ + − =

+
∂
∂

− + − =

+
∂
∂

+ + − =

+
∂
∂

− + − =

−

−

μf z λ
f

z
i αf z c βf z

μf z λ
f

z
i αf z c βf z

μf z λ
f

z
i αf z c βf z

μf z λ
f

z
i αf z c βf z

e ,

e ,

e ,

e .

p z

p z

q z

q z

1

1

1
2 1

1

1

1
2 1

2

2

1
1 2

2

2

1
1 2

( ) ( ( ) ( ))

( ) ( ( ) ( ))

( ) ( ( ) ( ))

( ) ( ( ) ( ))

( )

( )

( )

( )
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The above equations lead to

+
∂
∂

= + −μf z λ
f

z

1

2
e e ,p p

1

1

1

( ) ( ) (4.16)

+ − = − −αf z c βf z
i

1

2
e e ,p p

2 1
( ) ( ) ( ) (4.17)

+
∂
∂

= + −μf z λ
f

z

1

2
e e ,q q

2

2

1

( ) ( ) (4.18)

+ − = − −αf z c βf z
i

1

2
e e .q q

1 2
( ) ( ) ( ) (4.19)

In view of (4.17) and (4.18), we can deduce that

+ +
∂
∂

= + −
∂
∂

++ − + −αμf z c βλ
f

z

α λ

i

p

z2
e e

2
e e .q z c q z c p z p z

2

1

1 1

( ) ( ) ( )( ) ( ) ( ) ( ) (4.20)

In view of (4.16) and (4.17), we have

+ +
∂
∂

=
+

+
− −αμf z c βλ

f

z

βi μ

i

βi μ

i2
e

2
e .p z p z

2

1

1

( ) ( ) ( ) (4.21)

By combining with (4.20) and (4.21), we have

+ +
+

+ −
− ≡

∂
∂ + +

∂
∂ + − +

λ βi μ

αi

λ βi μ

αi
e e e 1.

p

z q z c p z

p

z q z c p z q z c21 1( ) ( ) ( ) ( ) ( ) (4.22)

Similar to the above argument, we can deduce from (4.16), (4.18), and (4.19) that

+ +
+

+ −
− ≡

∂
∂ + +

∂
∂ + − +

λ βi μ

αi

λ βi μ

αi
e e e 1.

q

z p z c q z

q

z p z c q z p z c21 1( ) ( ) ( ) ( ) ( ) (4.23)

By Lemma 3.3, we can deduce from (4.22) and (4.23) that

+ −
≡

+ +
≡

∂
∂ + −

∂
∂ + +

λ βi μ

αi

λ βi μ

αi
e 1 or e 1,

p

z q z c p z

p

z q z c p z1 1( ) ( ) ( ) ( )

and

+ −
≡

+ +
≡

∂
∂ + −

∂
∂ + +

λ βi μ

αi

λ βi μ

αi
e 1 or e 1.

q

z p z c q z

q

z p z c q z1 1( ) ( ) ( ) ( )

Now we will consider four cases as follows.

Case 1.

⎧

⎨
⎪⎪

⎩
⎪
⎪

+ −
≡

+ −
≡

∂
∂ + −

∂
∂ + −

λ βi μ

αi

λ βi μ

αi

e 1,

e 1.

p

z q z c p z

q

z p z c q z

1

1

( ) ( )

( ) ( )

(4.24)

In view of (4.24), it follows that + − =q z c p z d1( ) ( ) and + − =p z c q z d2( ) ( ) , where d d,1 2 are constants in � .
Thus, it yields that + − = +q z c q z d d2 1 2( ) ( ) and + − = +p z c p z d d2 1 2( ) ( ) . Since p q, are polynomials in 2� , it
follows that = + − +p z L z H c z c z b2 1 1 2 1( ) ( ) ( ) and = + − +q z L z H c z c z b2 1 1 2 2( ) ( ) ( ) , where L z( ) is a linear form of

= +L z a z a z1 1 2 2( ) , H s( ) is a polynomial in ≔ −s c z c z2 1 1 2, a a b b, , ,1 2 1 2 are constants. Substituting p z q z,( ) ( ) into
(4.24), we have
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+ ′ + −
≡

+ ′ + −
≡+ − + −λa λc H βi μ

αi

λa λc H βi μ

αi
e 1, e 1.L c b b L c b b1 2 1 2

2 1 1 2( ) ( ) (4.25)

By combining with ≠λ 0 and ≠c 02 , it follows from (4.25) that ≤Hdeg 1s . Thus, we still write p z q z,( ) ( ) as the
forms of = +p z L z b1( ) ( ) and = +q z L z b2( ) ( ) . In view of (4.22)–(4.24), we have

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

+ +
≡

+ +
≡

+ −
≡

+ −
≡

− + −

− + −

+ −

+ −

λa βi μ

αi

λa βi μ

αi

λa βi μ

αi

λa βi μ

αi

e 1,

e 1,

e 1,

e 1.

L c b b

L c b b

L c b b

L c b b

1

1

1

1

1 2

2 1

2 1

1 2

( )

( )

( )

( )

(4.26)

Thus, we can deduce from (4.26) that

+ = − = =
−

+ −
=

+ +
−

−λa βi μ α
α

λa βi μ

λa βi μ

α
, e 1, e .b b L c

1
2 2 2 2 2

2

1
2

1
2

2
1 2( )

( )

( )
( ) ( ) (4.27)

If ≠ ±a
μ

λ1 , solving equations (4.16) and (4.18), we have

=
+

−
−

−
+ + − − −

− +f z z
λa μ λa μ

ϑ z,
e

2

e

2
e ,

a z a z b a z a z b
z ϕ z

1 1 2

1 1

1 2

μ

λ

1 1 2 2 1 1 1 2 2 1

1 1 2( )
( ) ( )

( ) ( ) (4.28)

=
+

−
−

−
+ + − − −

− +f z z
λa μ λa μ

ϑ z,
e

2

e

2
e ,

a z a z b a z a z b
z ϕ z

2 1 2

1 1

2 2

μ

λ

1 1 2 2 2 1 1 2 2 2

1 2 2( )
( ) ( )

( ) ( ) (4.29)

where ϑ z ϑ z,1 2 2 2( ) ( ) are finite order entire functions and ϕ z ϕ z,
1 2 2 2( ) ( ) are polynomials in z2. Substituting (4.28)

and (4.29) in (4.17) and (4.19), and combining with (4.26) and (4.27), by Lemma 3.4, we have

=
+

−
−

−
+ + − − −

− + +f z z
λa μ λa μ

ϑ z,
e

2

e

2
e ,

a z a z b a z a z b
z γz D

1 1 2

1 1

2

μ

λ

1 1 2 2 1 1 1 2 2 1

1 2 1( )
( ) ( )

( ) (4.30)

=
+

−
−

− +
+ + − − −

− + +f z z
λa μ λa μ

ϑ z c,
e

2

e

2
e ,

a z a z b a z a z b
z γz D

2 1 2

1 1

2 2

μ

λ

1 1 2 2 2 1 1 2 2 2

1 2 2( )
( ) ( )

( ) (4.31)

where ϑ z2( ) is a finite order period entire function with period c2 2, and γ D D, ,1 2 satisfy (4.11) and (4.27).
If =a

μ

λ1 , solving equations (4.16) and (4.18), similar to the argument as in case ≠a
μ

λ1 , we have

= + −+ + − − − − + +f z z
μ

z

λ
ϑ z,

1

4
e

2
e e ,a z a z b a z a z b z γz D

1 1 2

1

2

μ

λ1 1 2 2 1 1 1 2 2 1 1 2 1( ) ( ) (4.32)

= + − ++ + − − − − + +f z z
μ

z

λ
ϑ z c,

1

4
e

2
e e ,a z a z b a z a z b z γz D

2 1 2

1

2 2

μ

λ1 1 2 2 2 1 1 2 2 2 1 2 2( ) ( ) (4.33)

where ϑ z2( ) is a finite order period entire function with period c2 2, and γ D D, ,1 2 satisfy (4.11) and (4.27).
Substituting (4.32) and (4.33) in (4.17) and (4.19), and combining with (4.26) and (4.27), we have =βc λi1 .

If = −a
μ

λ1 , solving equations (4.16) and (4.18), we have

= + −− − − + + − + +f z z
μ

z

λ
ϑ z,

1

4
e

2
e e ,a z a z b a z a z b z γz D

1 1 2

1

2

μ

λ1 1 2 2 1 1 1 2 2 1 1 2 1( ) ( ) (4.34)

= + − +− − − + + − + +f z z
μ

z

λ
ϑ z c,

1

4
e

2
e e ,a z a z b a z a z b z γz D

2 1 2

1

2 2

μ

λ1 1 2 2 2 1 1 2 2 2 1 2 2( ) ( ) (4.35)

where ϑ z2( ) is a finite order period entire function with period c2 2, and γ D D, ,1 2 satisfy (4.11) and (4.27). Similar
to the above argument, we have = −βc λi1 .
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Case 2.

⎧

⎨
⎪⎪

⎩
⎪
⎪

+ −
≡

+ +
≡

∂
∂ + −

∂
∂ + +

λ βi μ

αi

λ βi μ

αi

e 1,

e 1.

p

z q z c p z

q

z p z c q z

1

1

( ) ( )

( ) ( )

Thus, it follows that + − =q z c p z d1( ) ( ) and + + =p z c q z d2( ) ( ) where d d,1 2 are constants. Hence, we have
+ + = +q z c q z d d2 1 2( ) ( ) , which is a contradiction with the assumption of q z( ) being nonconstant polynomial

in 2� .
Case 3.

⎧

⎨
⎪⎪

⎩
⎪
⎪

+ +
≡

+ −
≡

∂
∂ + +

∂
∂ + −

λ βi μ

αi

λ βi μ

αi

e 1,

e 1.

p

z q z c p z

q

z p z c q z

1

1

( ) ( )

( ) ( )

Thus, it follows that + + =q z c p z d1( ) ( ) and + − =p z c q z d2( ) ( ) where d d,1 2 are constants. Hence, we have
+ + = +p z c p z d d2 1 2( ) ( ) , which is a contradiction with the assumption of p z( ) being nonconstant polynomial

in 2� .
Case 4.

⎧

⎨
⎪⎪

⎩
⎪
⎪

+ +
≡

+ +
≡

∂
∂ + +

∂
∂ + +

λ βi μ

αi

λ βi μ

αi

e 1,

e 1.

p

z q z c p z

q

z p z c q z

1

1

( ) ( )

( ) ( )

(4.36)

In view of (4.36), it follows that + + =q z c p z d1( ) ( ) and + + =p z c q z d2( ) ( ) , where d d,1 2 are constants in � .
Thus, it yields that + − = −q z c q z d d2 1 2( ) ( ) and + − = −p z c p z d d2 1 2( ) ( ) . Since p q, are polynomials in 2� , it
follows that = + − +p z L z H c z c z b2 1 1 2 1( ) ( ) ( ) and = − − − +q z L z H c z c z b2 1 1 2 2( ) ( ) ( ) , where L z( ) is a linear form
of = +L z a z a z1 1 2 2( ) , H s( ) is a polynomial in ≔ −s c z c z2 1 1 2,a a b b, , ,1 2 1 2 are constants. Similar to the argument as
in Case 1, we can obtain that = + = + +p z L z b a z a z b1 1 1 2 2 1( ) ( ) and = − + = − − +q z L z b a z a z b2 1 1 2 2 2( ) ( ) . In
view of (4.22), (4.23), and (4.36), it follows

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

+ +
≡

− + +
≡

+ −
≡

− + −
≡

− + +

+ +

− −

− − −

λa βi μ

αi

λa βi μ

αi

λa βi μ

αi

λa βi μ

αi

e 1,

e 1,

e 1,

e 1.

L c b b

L c b b

L c b b

L c b b

1

1

1

1

2 1

1 2

2 1

1 2

( )

( )

( )

( )

(4.37)

Thus, it leads to
− + + − + −

=
+ + + −λa βi μ

αi

λa βi μ

αi

λa βi μ

αi

λa βi μ

αi
.

1 1 1 1

By combining with ≠α 0, ≠β 0, and ≠λ 0, we have =a 01 . Then, = +p z a z b2 2 1( ) and = − +q z a z b2 2 2( ) . In view
of (4.37), it follows

= − ≡ =
−
+

=
−

−
+μ α β

α

βi μ

βi μ

α
, e 1, e .a c b b2 2 2 2 2

2

2

2

2
2 2 1 2

( )

( )
( ) (4.38)

Solving equations (4.16) and (4.18), we have
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= + −+ − − − +f z z
μ

ϑ z,
1

2
e e e ,a z b a z b z ϕ z

1 1 2 1 2

μ

λ2 2 1 2 2 1 1 1 2( ) ( ) ( ) ( ) (4.39)

= + −− + − − +f z z
μ

ϑ z,
1

2
e e e ,a z b a z b z ϕ z

2 1 2 2 2

μ

λ2 2 2 2 2 2 1 2 2( ) ( ) ( ) ( ) (4.40)

where ϑ z ϑ z,1 2 2 2( ) ( ) are finite order entire functions and ϕ z ϕ z,
1 2 2 2( ) ( ) are polynomials in z2. Similar to the

above argument in Case 1, it follows from (4.39) and (4.40) that

= + −

= + − +

+ − − − + +

− + − − + +

f z z
μ

ϑ z

f z z
μ

ϑ z c

,
1

2
e e e ,

,
1

2
e e e ,

a z b a z b z γz D

a z b a z b z γz D

1 1 2 2

2 1 2 2 2

μ

λ

μ

λ

2 2 1 2 2 1 1 2 1

2 2 2 2 2 2 1 2 2

( ) ( ) ( )

( ) ( ) ( )

where ϑ z2( ) is a finite order period entire function with period c2 2, and γ D D, ,1 2 satisfy (4.11) and (4.27). In fact,
we can see that the forms of solutions are included in case that ≠ ±a

μ

λ1 in Case 1.
Therefore, this completes the proof of Theorem 2.1. □

5 The proof of Theorem 2.2

Proof. Let f f,
1 2

( ) be a pair of transcendental entire solutions of finite order for system (1.7). Thus, we will
consider the following two cases.

(i) If + +∂
∂

∂
∂μf z λ λ

f

z

f

z1 1 2

1

1

1

2

( ) is a constant. Denote

+
∂
∂

+
∂
∂

=μf z λ
f

z
λ

f

z
η .

1 1

1

1

2

1

2
1

( ) (5.1)

In view of (1.7), it follows that

+ − =αf z c βf z η ,
2 1 2
( ) ( ) (5.2)

where η
2
is a constant satisfying (4.3).

From (5.1) and (5.2), we have

+
∂
∂

+
∂
∂

= ⎡
⎣⎢

− +
∂ −

∂
+

∂ −
∂

⎤
⎦⎥

+

= +

μf λ
f

z
λ

f

z

β

α
μf z c λ

f z c

z
λ

f z c

z
μ

η

α

η
β

α
μ

η

α
.

2 1

2

1

2

2

2
1 1

1

1

2

1

2

2

1

2

( )
( ) ( )

(5.3)

This shows that + +∂
∂

∂
∂μf λ λ

f

z

f

z2 1 2

2

1

2

2

is a constant. Let

+
∂
∂

+
∂
∂

=μf λ
f

z
λ

f

z
δ ,

2 1

2

1

2

2

2

1
(5.4)

then + −αf z c βf z
1 2
( ) ( ) is a constant. Denote

+ − =αf z c βf z δ ,
1 2 2( ) ( ) (5.5)

then, we have (4.7). The characteristic equations of (5.1) are

= = = −
z

t
λ

z

t
λ

df

t
η μf

d

d
,

d

d
,

d
.

1

1

2

2

1

1 1

Using the initial conditions: = =z z s0,1 2 1, and = ≔f f s ψ s0,
1 1 1 1( ) ( ) with a parameter s, we obtain the following

parametric representation for the solutions of the characteristic equations: =z λ t1 1 , = +z λ t s2 2 1, and
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= − − +f z z
η

μ μ
,

1
e ,

z φ s
1 1 2

1
μ

λ1
1 1 1( ) ( ) (5.6)

where φ s
1 1( ) is an entire function in ≔ −s λ z λ z1 2 1 1 2. Similarly, solving equation (5.4), we have

= − − +f z z
δ

μ μ
,

1
e ,

z φ s
2 1 2

1
μ

λ1
1 2 1( ) ( ) (5.7)

where φ s
2 1( ) is an entire function in ≔ −s λ z λ z1 2 1 1 2. Substituting (5.6) and (5.7) in (5.2) and (5.5), we have

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

− ⎞
⎠

− ⎛
⎝

− ⎞
⎠

=

⎛
⎝

− ⎞
⎠

− ⎛
⎝

− ⎞
⎠

=

− + + + − +

− + + + − +

α
δ

μ μ
β

η

μ μ
η

α
η

μ μ
β

δ

μ μ
δ

1
e

1
e ,

1
e

1
e ,

z c φ s s z φ s

z c φ s s z φ s

1 1

2

1 1

2

μ

λ

μ

λ

μ

λ

μ

λ

1 1 2 1 0 1 1 1

1 1 1 1 0 1 2 1

( ) ( ) ( )

( ) ( ) ( )

which implies

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− =

=

− =

=

+ −

+ −

αδ βη μη

β

α

αη βδ μδ

β

α

,

e e ,

,

e e .

φ s s φ s c

φ s s φ s c

1 1 2

1 1 2

μ

λ

μ

λ

2 1 0 1 1 1

1 1 0 2 1 1

( ) ( )

( ) ( )

(5.8)

Thus, it yields that
= + = +φ s γs D φ s γs D, ,

1 1 1 1 2 1 1 2( ) ( ) (5.9)

where D D,1 2 are constants and satisfying

= =
− +

−
∈− γ

c kπi

λ c λ c
ke 1,

log

, .D D

μ

λ

α

β
2

1

2 1 1 2

1 2 �( ) (5.10)

Moreover, from (4.7) and (5.8), we have (4.12). Thus, from (5.6), (5.7), and (5.9), by using the same argument as in
the proof of Theorem 2.1 (i), we can obtain the conclusions of Theorem 2.2 (i).

(ii) If + +∂
∂

∂
∂μf z λ λ

f

z

f

z1 1 2

1

1

1

2

( ) is a nonconstant, then it yields that + −αf z c βf z
2 1
( ) ( ), + +∂

∂
∂
∂μf λ λ

f

z

f

z2 1 2

2

1

2

2

and

+ −αf z c βf z
1 2
( ) ( ) are all nonconstant. Otherwise, if one of these terms is a constant, we can deduce

that + +∂
∂

∂
∂μf z λ λ

f

z

f

z1 1 2

1

1

1

2

( ) is a constant. This is a contradiction. Thus, similar to the argument as in the

proof of Theorem 2.1 (ii), there exists two nonconstant polynomials p z q z,( ) ( ) in 2� such that

+
∂
∂

+
∂
∂

= + −μf z λ
f

z
λ

f

z

1

2
e e ,p p

1 1

1

1

2

1

2

( ) ( ) (5.11)

+ − = − −αf z c βf z
i

1

2
e e ,p p

2 1
( ) ( ) ( ) (5.12)

+
∂
∂

+
∂
∂

= + −μf z λ
f

z
λ

f

z

1

2
e e ,q q

2 1

2

1

2

2

2

( ) ( ) (5.13)

+ − = − −αf z c βf z
i

1

2
e e .q q

1 2
( ) ( ) ( ) (5.14)

In view of (5.11) and (5.14), we have

+ + +
+

+ + −
− ≡

∂
∂

∂
∂ + +

∂
∂

∂
∂ + − +

λ λ βi μ

αi

λ λ βi μ

αi
e e e 1.

p

z

p

z q z c p z

p

z

p

z q z c p z q z c
1 2 1 2

21 2 1 2( ) ( ) ( ) ( ) ( ) (5.15)
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+ + +
+

+ + −
− ≡

∂
∂

∂
∂ + +

∂
∂

∂
∂ + − +

λ λ βi μ

αi

λ λ βi μ

αi
e e e 1.

q

z

q

z p z c q z

q

z

q

z p z c q z p z c
1 2 1 2

21 2 1 2( ) ( ) ( ) ( ) ( ) (5.16)

By Lemma 3.3, we can deduce from (5.15) and (5.16) that

+ + −
≡

+ + +
≡

∂
∂

∂
∂ + −

∂
∂

∂
∂ + +

λ λ βi μ

αi

λ λ βi μ

αi
e 1 or e 1,

p

z

p

z q z c p z

p

z

p

z q z c p z
1 2 1 2

1 2 1 2( ) ( ) ( ) ( )

and

+ + −
≡

+ + +
≡

∂
∂

∂
∂ + −

∂
∂

∂
∂ + +

λ λ βi μ

αi
or

λ λ βi μ

αi
e 1 e 1.

q

z

q

z p z c q z

q

z

q

z p z c q z
1 2 1 2

1 2 1 2( ) ( ) ( ) ( )

Now we will consider four cases as follows.
Case 1.

⎧

⎨
⎪⎪

⎩
⎪
⎪

+ + −
≡

+ + −
≡

∂
∂

∂
∂ + −

∂
∂

∂
∂ + −

λ λ βi μ

αi

λ λ βi μ

αi

e 1,

e 1.

p

z

p

z q z c p z

q

z

q

z p z c q z

1 2

1 2

1 2

1 2

( ) ( )

( ) ( )

(5.17)

In view of (5.17), it follows that + − =q z c p z d1( ) ( ) and + − =p z c q z d2( ) ( ) , where d d,1 2 are constants in � .
Thus, it yields that + − = +q z c q z d d2 1 2( ) ( ) and + − = +p z c p z d d2 1 2( ) ( ) . Since p q, are polynomials in 2� , it
follows that = + − +p z L z H c z c z b2 1 1 2 1( ) ( ) ( ) and = + − +q z L z H c z c z b2 1 1 2 2( ) ( ) ( ) , where L z( ) is a linear form of

= +L z a z a z1 1 2 2( ) , H s( ) is a polynomial in s and a a b b, , ,1 2 1 2 are constants. Substituting p z q z,( ) ( ) in (5.17), we
have

+ + − ′ + −
≡+ −λ a λ a λ c λ c H βi μ

αi
e 1,L c b b1 1 2 2 1 2 2 1

2 1

( )
( ) (5.18)

+ + − ′ + −
≡+ −λ a λ a λ c λ c H βi μ

αi
e 1.L c b b1 1 2 2 1 2 2 1

1 2

( )
( ) (5.19)

By combining with − ≠λ c λ c 01 2 2 1 , it follows from (5.18) and (5.19) that ≤Hdeg 1s . Thus, we still write p z q z,( ) ( )

as the forms of = +p z L z b1( ) ( ) and = +q z L z b2( ) ( ) . In view of (5.15)–(5.17), we have

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

+ + +
≡

+ + +
≡

+ + −
≡

+ + −
≡

− + −

− + −

+ −

+ −

λ a λ a βi μ

αi

λ a λ a βi μ

αi

λ a λ a βi μ

αi

λ a λ a βi μ

αi

e 1,

e 1,

e 1,

e 1.

L c b b

L c b b

L c b b

L c b b

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 2

2 1

2 1

1 2

( )

( )

( )

( )

(5.20)

Thus, we can deduce from (5.20) that

+ + = − =−λ a λ a βi μ α , e 1,b b
1 1 2 2

2 2 2 2 1 2( ) ( ) (5.21)

and

=
−

+ + −
=

+ + +
−

α

λ a λ a βi μ

λ a λ a βi μ

α
e .L c2

2

1 1 2 2
2

1 1 2 2
2

2( )

( )
( ) (5.22)

If + ≠ ±λ a λ a μ1 1 2 2 , solving equations (5.11) and (5.13), we have

=
+ +

−
+ −

−
+ + − − −

− +f z z
λ a λ a μ λ a λ a μ

ϑ s,
e

2

e

2
e ,

a z a z b a z a z b
z ϕ s

1 1 2

1 1 2 2 1 1 2 2

1 1

μ

λ

1 1 2 2 1 1 1 2 2 1

1 1 1( )
( ) ( )

( ) ( ) (5.23)
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=
+ +

−
+ −

−
+ + − − −

− +f z z
λ a λ a μ λ a λ a μ

ϑ s,
e

2

e

2
e ,

a z a z b a z a z b
z ϕ s

2 1 2

1 1 2 2 1 1 2 2

2 1

μ

λ

1 1 2 2 2 1 1 2 2 2

1 2 1( )
( ) ( )

( ) ( ) (5.24)

where ϑ s ϑ s,1 1 2 1( ) ( ) are finite order entire functions and ϕ s ϕ s,
1 1 2 1( ) ( ) are polynomials in s1. Substituting (5.23)

and (5.24) in (5.12) and (5.14), and combining with (5.20)–(5.22), by Lemma 3.4 we have

=
+ +

−
+ −

−
+ + − − −

− + +f z z
λ a λ a μ λ a λ a μ

ϑ s,
e

2

e

2
e ,

a z a z b a z a z b
z γs D

1 1 2

1 1 2 2 1 1 2 2

1

μ

λ

1 1 2 2 1 1 1 2 2 1

1
1 1 1( )

( ) ( )
( ) (5.25)

=
+ +

−
+ −

− +
+ + − − −

− + +f z z
λ a λ a μ λ a λ a μ

ϑ s s,
e

2

e

2
e ,

a z a z b a z a z b
z γs D

2 1 2

1 1 2 2 1 1 2 2

1 0

μ

λ

1 1 2 2 2 1 1 2 2 2

1
1 1 2( )

( ) ( )
( ) (5.26)

where ϑ s1( ) is a finite order period entire function with period s2 0, and a a b b γ D D, , , , , ,1 2 1 2 1 2 satisfy (5.10),
(5.21), and (5.22).

If + =λ a λ a μ1 1 2 2 , solving equations (5.11) and (5.13), similar to the argument as in case + ≠λ a λ a μ1 1 2 2 , we
have

= + −+ + − − − − + +f z z
μ

z

λ
ϑ s,

1

4
e

2
e e ,a z a z b a z a z b z γs D

1 1 2

1

1

1

μ

λ1 1 2 2 1 1 1 2 2 1
1

1 1 1( ) ( ) (5.27)

= − − ++ + − − − − + +f z z
μ

z

λ
ϑ s s,

1

4
e

2
e e ,a z a z b a z a z b z γs D

2 1 2

1

1

1 0

μ

λ1 1 2 2 2 1 1 2 2 2
1

1 1 2( ) ( ) (5.28)

where ϑ s1( ) is a finite order period entire function with period s2 0, and γ D D, ,1 2 satisfy (5.10), (5.21), and (5.22).
Substituting (5.27) and (5.28) in (5.12) and (5.14), and combining with (5.20)–(5.22), we have =βc λ i1 1 .

If + = −λ a λ a μ1 1 2 2 , solving equations (5.11) and (5.13), we have

= + −− − − + + − + +f z z
μ

z

λ
ϑ s,

1

4
e

2
e e ,a z a z b a z a z b z γs D

1 1 2

1

1

1

μ

λ1 1 2 2 1 1 1 2 2 1
1

1 1 1( ) ( ) (5.29)

= + − +− − − + + − + +f z z
μ

z

λ
ϑ s s,

1

4
e

2
e e ,a z a z b a z a z b z γs D

2 1 2

1

1

1 0

μ

λ1 1 2 2 2 1 1 2 2 2
1

1 1 2( ) ( ) (5.30)

where ϑ s1( ) is a finite order period entire function with period s2 0, and γ D D, ,1 2 satisfy (5.10), (5.21), and (5.22).
Similar to the above argument, we have = −βc λ i1 1 .

Case 2.

⎧

⎨
⎪⎪

⎩
⎪
⎪

+ + −
≡

+ + +
≡

∂
∂

∂
∂ + −

∂
∂

∂
∂ + +

λ λ βi μ

αi

λ λ βi μ

αi

e 1,

e 1.

p

z

p

z q z c p z

q

z

q

z p z c q z

1 2

1 2

1 2

1 2

( ) ( )

( ) ( )

Thus, it follows that + − =q z c p z d1( ) ( ) and + + =p z c q z d2( ) ( ) where d d,1 2 are constants. Hence, we have
+ + = +q z c q z d d2 1 2( ) ( ) , which is a contradiction with the assumption of q z( ) being nonconstant polynomial

in 2� .
Case 3.

⎧

⎨
⎪⎪

⎩
⎪
⎪

+ + +
≡

+ + −
≡

∂
∂

∂
∂ + +

∂
∂

∂
∂ + −

λ λ βi μ

αi

λ λ βi μ

αi

e 1,

e 1.

p

z

p

z q z c p z

q

z

q

z p z c q z

1 2

1 2

1 2

1 2

( ) ( )

( ) ( )

Thus, it follows that + + =q z c p z d1( ) ( ) and + − =p z c q z d2( ) ( ) where d d,1 2 are constants. Hence, we have
+ + = +p z c p z d d2 1 2( ) ( ) , which is a contradiction with the assumption of p z( ) being nonconstant polynomial

in 2� .
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Case 4.

⎧

⎨
⎪⎪

⎩
⎪
⎪

+ + +
≡

+ + +
≡

∂
∂

∂
∂ + +

∂
∂

∂
∂ + +

λ λ βi μ

αi

λ λ βi μ

αi

e 1,

e 1.

p

z

p

z q z c p z

q

z

q

z p z c q z

1 2

1 2

1 2

1 2

( ) ( )

( ) ( )

(5.31)

In view of (5.31), it follows that + + =q z c p z d1( ) ( ) and + + =p z c q z d2( ) ( ) , where d d,1 2 are constants in � .
Thus, it yields that + − = −q z c q z d d2 1 2( ) ( ) and + − = −p z c p z d d2 1 2( ) ( ) . Since p q, are polynomials in 2� , it
follows that = + − +p z L z H c z c z b2 1 1 2 1( ) ( ) ( ) and = − − − +q z L z H c z c z b2 1 1 2 2( ) ( ) ( ) , where L z( ) is a linear form
of = +L z a z a z1 1 2 2( ) , H s( ) is a polynomial in s and a a b b, , ,1 2 1 2 are constants. Similar to the argument as in Case
1, we can obtain that = + = + +p z L z b a z a z b1 1 1 2 2 1( ) ( ) and = − + = − − +q z L z b a z a z b2 1 1 2 2 1( ) ( ) .

By using the same argument as in Case 4 of Theorem 2.1, we can obtain that the forms of solutions are
included in case that + ≠ ±λ a λ a μ1 1 2 2 in Case 1 of Theorem 2.2.

Therefore, this completes the proof of Theorem 2.2. □
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