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Abstract: In the 1970s, Rota began to build completely rigid foundations for the theory of umbral calculus
based on relatively modern ideas of linear functions and linear operators. Since then, umbral calculus has
been used in the study of special functions in various fields. In this article, we derive some new and
interesting identities related to degenerate derangement polynomials and some special polynomials by
using A-Sheffer sequences and A-umbral calculus, which are defined by Kim-Kim (Degenerate Sheffer
sequences and A-Sheffer sequences, J. Math. Anal. Appl. 493 (2021), 124521, 21pp).
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1 Intorduction

For a given set A with n elements, a derangement is a permutation of the elements in A such that no element
appears in its original position. The number of derangements of A is called the nth derangement number,
denoted by d,. By the definition of the derangement, we see that

- (-DK
dy=nly o
k=0 :

Derangement numbers are computed recursively or by means of their exponential generating function
in general, and one of the important and widely covered fields in various fields such as combinatorics,
applied mathematics, and engineering (see [1-3]). In [4], the authors found closed forms for derangement
numbers with Hessenberg determinants and derivatives of the exponential generating function of these
numbers. In [5], the authors investigated several interesting combinatorial, analytic, and number theoretic
properties of r-derangement numbers, which are a permutation on n + r elements, such that in its cycle
decomposition, the first r elements appear in distinct cycles. Clarke and Sved found a relation between the
derangement numbers and the Bell numbers by using the inclusion-exclusion principle in [6]. In [7], the
authors defined p, g-analog of the derangement numbers, which is a generalization of derangement num-
bers, and derived a recurrence for them.

For a given A € R - {0}, the degenerate exponential function is defined to be

eX(t) = 1+ ADi,  et) = (1 + A, (see [8]). 1)

Note that lim,_,¢ef = X and lim,_oe(t) = €.
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The study of the degenerate version of functions was first initiated by Carlitz (see [8]), and since then,
degenerations of various special functions have been defined and their properties have been actively
studied by many researchers. In [9], the authors defined the partially degenerate Laguerre-Bernoulli poly-
nomials of the first kind and derived some theorems on implicit summation formulae and symmetry
identities for these polynomials. In [10], the authors derived some identities and properties on the degen-
erate Fubini polynomials and the higher-order degenerate Fubini polynomials by using generating func-
tions and certain differential operators. Kwon et al. defined the modified type 2 degenerate poly-Bernoulli
polynomials and derived some explicit expressions and their representations by using A-umbral calculus
(see [11]). In [12], the authors defined the degenerate poly-Genocchi polynomials and numbers by using the
degenerate polylogarithm function and gave some identities of those polynomials and explicit expressions
of degenerate unipoly polynomials related to special polynomials. Kim and Khan introduced a new type of
degenerate poly-Frobenius-Euler polynomials and numbers, and derived some combinatorial identities
related to these polynomials in [13]. Acikgoz and Duran introduced unified degenerate central Bell poly-
nomials and studied many relations and formulae including the summation formula and derivative proper-
ties (see [14]).

For nonzero integers n and k, the Stirling numbers of the first kind Sy(n, k) and the Stirling numbers of the
second kind S»(n, k), respectively, are given by

n n
On =Y Sin, k)xk and  x"= ) Sy(n, k)(xk, (see [1,3,8,15,16]), @)
k=0 k=0
where (x)g = 1, (X), = x(x — 1)---(x — n + 1), (n = 1) are the falling factorial sequences.

By using the degenerate exponential function, the degenerate derangement polynomials are defined by

the generating function to be

1

1-t

&0 = Y duator,  (see 2).
n=0 °

When x = 0, d,,2(0) = dn, are called the degenerate derangement numbers.
By the definition of degenerate derangement polynomials,

- " 1 .
n;)dn,/\(x)ﬁ = A 0a® e (t)
(ee] tn [oe] tn
= (n_odn,/lﬁ)(r;)(x)n,/lﬁ]
0 n n tn
= rg;)(g(:)( . )dn—r,/\(x)r,)l)ﬁ,
and thus, we see that
dn,/l(x) = Z ( :.l )dn—r,/l(x)r,/l- (3)

r=0

As the degenerate version of the Stirling numbers of the first and the second kind, the degenerate
Stirling numbers of the first kind S, x(n, k) and the degenerate Stirling numbers of the second kind S, (n, k)
are, respectively, introduced by Kim et al. (see [9,16]) as follows:

1 Koy L Loty k= 3 L4
Llogi(1+ ) = ZkSl,A(n, — and (e -1 —nZkSz,A(n,k)n!- (4)

ak € C}a

Let C be the field of complex numbers,

¥ = {f(t) - Ya
n=0 :

and let
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P =C[x] = {Ozozakx"

k=0

a, € C with a; = 0 for all but finite number of k}.

Let P* be the vector space of all linear functionals on P.
For given A € R — {0}, the linear functional (f(t)|-)» on P, called A-linear functional given by f(t), is
defined by

OO = ay, (n 2 0), (see[17]), 5)
where (X)oa = 1, 0O = x(x — A)---(x = (n — DA), (n = 1). From (5), we have
(tkl(x)n,/t>/1 = n!6n,k, (n’ k = 0)9 (6)

where 6,k is the Kronecker’s symbol (see [17]).
For each real number A and each positive integer k, Kim and Kim defined the differential operator on P
in [17] by

(n)k(X)n,k,/l, lf k < n’

k _
ENna = {0, if k> n,

and for any f(t) = Zﬁoak% €7,
n

FONCOm = Z(Z)ak(x)n_k,A. %

k=0
In addition, they showed that for f(t), g(t) € ¥, and p(x) € P,
F®)g®OIpG)) 2 = (8OIf(ONPCOY 2 = (FOIEGEMPCO) 2- (8)

The order o(f(t)) of f(t) € ¥ — {0} is the smallest integer k for which the coefficient of t* does not

vanish. If o(f(t)) = 0, then f(t) is said to be invertible, and such series has a multiplicative inverse % of

f(@®). If o(f(t)) = 1, then f(¢t) is called delta series, and it has a compositional inverse f(t) of f(t) with
fFU®) =Ff 1) = t (see [17-19]).

Let f(t) be a delta series, and let g(¢f) be an invertible series. Then there exists a unique sequence S, 1(x)
(degSn,a(x) = n) of polynomials satisfying the orthogonality conditions:

EOF OIS0 = nlbpx, (1, k = 0). )

(see [17]). Here S, a(x) is called the A-Sheffer sequence for (g(t), f(t)), which is denoted by S, 1(x) ~ (g(t), f())a.
The sequence S, 2(x) is the A-Sheffer sequence for (g(t), f(¢t)) if and only if

1
g(f®)

for all y € €, where f (t) is the compositional inverse of f(t) such that f(f (t)) = f (f(t)) = t (see [17]).
Let Spa(x) ~ (g(t), f(t) and let h(x) = Z?zoalsl,,\(x) € P. Then by (9), we have

e/ F(O) = ZSn,Aw)%, (10)
n=0 :

EOF OO = Y agOFEFIS0ON = Klag,

1=0

and thus, we know that
a = %(g(t)(f(t))"lh(xm. (1)

The following theorem is proved by Kim and Kim [17] and is very useful tools for researching degenerate
versions of special polynomials and numbers.
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Theorem 1.1. Let s, 5 ~ (g(t), f(t)h, t.a = (h(t), I(t))r. Then we have

n

SnA = Z Cr, kT, A5
k=0

where

AFON

6L <h(]j(t))
ki \ g(F(©)

(X)n,/l > .
A

On~ @, ) -1 and  Ona ~ (1, hs

Let (X)n = Yr_oCnk(X)k,2. Since

by Theorem 1.1, we obtain

Gt = {0081+ )H100ma = 3. S1aC K (0 = Sualn, ),
. 2 .

and thus, we know that

n
On = Y. Sialn, X (12)
k=0
In the similar way, we also know that
n
Ona = Y. Saa(n, )Xy (13)
k=0

Umbral calculus consisted of primarily symbolic techniques for sequence manipulation with little
mathematical rigor. In the 1970s, Rota began to build a completely rigid foundation for theories based
on relatively modern ideas of linear functions and linear operators (see [19]). Umbral calculus contributed
to the generalization of Lagrange inversion formula and has been applied in many fields such as combi-
natorial counting with linear recurrences and lattice path counting, graph theory using chromatic poly-
nomials, probability theory, link invariant theory, statistics, topology, physics, etc. (see [18,19]). In addi-
tion, it is being actively applied in various fields by researchers (see [17-25]).

In the past few years, various different umbral calculus has been studied (see [17-20]). In particular,
Kim and Kim defined the degenerate Sheffer sequences, A-Sheffer sequence, a family of A-linear func-
tionals, and A-differential operators in [17].

In this article, we derive some interesting identities related to degenerate derangement polynomials,
degenerate Bernoulli polynomials, degenerate Euler polynomials, degenerate Daehee polynomials, Changhee
polynomials, degenerate Bell polynomials, degenerate Lah-Bell polynomials, Mittag-Leffer polynomials,
and degenerate Frobenius-Euler polynomials by using A-umbral calculus.

2 Main results

By the definition of degenerate derangement polynomials, we note that
dna(0) ~ (1 = Dex(t), . (14)

In addition,

1 . (o0 n o0 tn o0 n ! tn
s () = (Zz)t )(Z (x - 1)n,AE) =y (Z?—!(X - 1)1,/1;!]- (15)

n=0

n=0\1=0
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From (2) and (13), we obtain

dn(x) = Z—(X - Dia

Soad, k)sl(k m)

m M: T M:

x-pm

k

22,

k m

y3% ULLCLISN

n M~ il M~

Let dya(X) = YL o@n,1 (X1 Since (x) 2 ~ (1, ), by Theorem 1.1, we have

Xn, >/t = (rll)< Eodm,/\:n—m (On-1,0 >/1 = (r;)dnfu,

a i1 t!
"I\ A = Ded)

and by (15),

& <1)1<1>M fr
(1—t>eA<t) z(,_o )m

n=0

By (17) and (18), we have

) (),
dn,ﬂz(’;)z( )"

|
m=0 m:

Conversely, we may assume that (x),1 = Z;’_Obn 1d;A(x). Note that

(1= 000 = 1= DY D = ¥ Dot - Zum 14 Y (@ - 1D W
2, Wiy _

n=0 n=1

By (19) and (20),
b = %«1 = He O na
- (’;)«1 DOt

- (rzl)<1|(x)nfz,A>A * (rzl)< ,,i((l)’"’A ) m(l)’"*’“fn_m

14 (’l’)«nn,z,A (1= D)~ ).

(On-1,1 >
A

By (17), (19), and (21), we obtain the following theorem.

Theorem 2.1. For each nonnegative integer n, we have
- (n 3 (=D™(m,a
dna(x) = Z( I )dn—l,A(X)l,A =) Z ( ] )7 (25
1=0 1=0\m=0 m!

and

n

(O = Z(l v (’;)((nn_u (1= DD - 6n,l>)dz,A(x>.

=0

The degenerate Bernoulli polynomials are defined by the generating function to be

(16)

(17)

(18)

(19)

(20)

21
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t X
T4 - HZOB 100 _, (see [8,17,22]).

In the special case x = 0, B, ,(0) = B, , are called the degenerate Bernoulli numbers. By the definition of
degenerate Bernoulli polynomials, the A-Sheffer sequences of these polynomials are as follows:

Bn A(X) - (e/\(t) - 1’ t) .
s t 1

Note that

et) -1 _ Ozo: (Dns12 t"

t n+1l n’ 22)

n=0

Let dpa(X) = Y} o@n,1B;,(x). By Theorem 1.1 and (22), we have

1 et)-1

t 1
(nj=—( ——t'| (x
M=\ T e | OO

A

(" 1 e(t) -1

B ( l )< (1 - tex(t) ’ ( t )A(X)nl,,\ >/l "
(- D i 1
) k=zo( l )( k ) k+1 \ Q- 0be(t) ‘ (On-1-k1 i
1

CAE i (n = 1 kA=) (W a
=22 (z)( k )W

In addition, by (3), we obtain

E/\(t) 1
< = tam" | )
ext) - l 1
( )< (1 - tex(t) )A(X)nl,/l >,1 (24)
(n in-1 et) -1
= ( ; )mzo( ) <f (X)n—l—m,/\ >/1
_N () 1) Dntmin
B Z(l)( m )n—l—m+ldm’A'

Conversely, we assume that ﬁn, 20 = Z;‘:Obn,ldl,,\(x). Then, by (20), we obtain

1/ (1Q-2¢te (t)
b, =E T)/ll (On,
t A
_ (")<;(1 - Het) (x),._m>
1)\ ext) -1 "/, (25)
n-1
-y (“ - )Bm,;l«l - DO mn
m=0 m
n-1-1
Bt 2 (" P @t = 0= =m0,
m=0

By (23), (24), and (25), we obtain the following theorem.
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Theorem 2.2. For each nonnegative integer n, we have

n ((n-ln-l1-k _N\a . —1’1r
(S S (0 o
= o5 n\(n-1 (1)n—l—m+1,/l
(B e o

n n-1-1
B a(x0) = Z(ﬁnu + Z (nn; I)ﬂm,,\((l)n-l-m,zt -(n-1- m)(l)n—l—m—l,/\)]dl,}l(x)-

1=0 m=0

The degenerate Euler polynomials are defined by the generating function to be

2
e(t) +1

ei(t) = ZEn,A(x);—':, (see [8]). 26)
n=0 °

When x = 0, E, 1 = E,2(0) are called the degenerate Euler numbers. By the definition of degenerate Euler
polynomials, we see that

e(t) +1
EH,A(X) ~ (L) t) .
2 A
Let dya(X) = Y. oan,iEA(x). Since
et) +1 1S m
A1 =Y Wa—, 2
> Zmz:l( I @7)
by Theorem 1.1, (22), and (27), we obtain
et)+1
any=—( —2——t'| (Onn
T\ (- telt) ’
A

=" 1 e)+1

) ( ! )< 1 - te(t) 2 (n-1,4 >A .
_"—l ny(n-1 e(t) +1
- g)( l )( a )d“’A<T (X)n—l—a,,\>

n-1-1
n n\(n - 1\MWn-1-qr
= dy- ———da
(I n-LA T (JZ:O(I)( a ) 2 a,A

Conversely, assume that E, 3(x) = Zl”:oan,ldly;((x). Then, by (20), we obtain

A

gy L ( 0= Da©

il e +1
2

n 2
(1)< (- a0 A o

n-1
Z ( rll )( " L; I)EH’A«l = Dex(O)(n-1-an
a=0

tl (X)n,/(

A

(X)n-l,A>

n-l-a

= (7)En—l,/l + z
a=0

By (28) and (29), we obtain the following theorem.

()" enran = 0= 1= DX
a
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Theorem 2.3. For each nonnegative integer n, we have

dn\(x) = Zn:(( I) n-1A + nZI:I( )(n - l)(l)n% a,A)EI,A(X)

=0

and

n n-l-a
En,A<x>=Z(('l’) o+ Z( )( )((1)nm—(n—l—a>(1)nzaM))dm(x)

=0

The degenerate Daehee polynomials are defined by the generating function to be

WQ (log,(1 + t)) = ZDn A(X) , (see[26,27]).

n=0
In the special case x = 0, D, 2 = D, 2(0) are called the degenerate Daehee numbers. Note that, by (4),

L D tlogi1 + 0) - ( ZDA%]( ) (9081 + t>)”)
]( > (On /1251 Al n)— ]

0

= z (Z Z ( ': )Sl,/\(r’ k)Dn—r,}l(X)k,/l)%’

tn
n!

and so we see that

Do) = ¥ 2( )Sm(r, KD A (V1

r=0k=0
In addition,

Do) - (eA(” “L et - 1) .
t A
Let dya(x) = Z;;Oan,lDl,,\(x). By Theorem 1.1, (22), and (27), we obtain
1 eA(t) 1
an,lzﬁ m(e/l(t) DE (Ona
A
“ 1 et) -1
- 2Sutm o(" )< e (x)nm,A>A
L ® -1
- S,.1(m, D, <“"A— On-m-a, >
33 (" o v 2 )
_ o ()nma+1/1
= 2 (" i e

Conversely, assume that D, x(x) = Zf;obn,ldl,;l(x). By (17), (20), and (30), we have
1
—((1 - HexOt Dy A0

)

1

I
M= =

( )51,/1(?, ROD a1 = DOk

I
o

r

Z( )51,/1(’, k)Dn—r,A(’l()«l = el COk-1.n

I
M=

0

(

r

I
M=

“:3~

J5ua0 DD s+ ¥ 3 (")(’l‘)su(r, D (Wt — (K~ DDsro1,):

r r=0k=1+1

(30)

€3

(32
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By (31) and (32), we obtain the following theorem.

Theorem 2.4. For each nonnegative integer n, we have
_ : C e (1)nma+1}t
dnp0) = Y| Y Z ™ \soam, D, 1 Dj,2(x)
1=0\m=0a=0 m-a-+1l
and
n n n r k
DyACO) = Z(Z('r’)su(r, DDurn+ Y Y (")( l )su(r, KD A((Dts — (K - 1)(1)k11,A))d1,A(x).
1=0\r=0 r=0r=I1+1

The Changhee polynomials are defined by the generating function to be

ZLeA (logy(1 + £)) = ZChn(X)—, (see [28,29]).

n=0

When x = 0, Ch,, = Ch,(0) are called the Changhee numbers. Note that, by (4),

2 e (logy(1 + 1) = ( Y Chy— )( Y (x%,%(logm + r))n)

=0 n=0

0
. z(z y(" sl A, k)Chn_Ax)k,A);—':,

n=0\r=0k=0

=

ipme

Chn;—)(z (xszl A mE )

n=0

and so we see that
Chyo) = ¥ Z( Jsuacr, 19Ch (0 (33)
r=0k=0

In addition, by the definition of Changhee polynomials, we see the A-Sheffer sequences of the Changhee
polynomials are as follows:

Chy(x) ~ (L"’A(” ex(t) - 1) .
2 A

Let dya(X) = YL an,IChy(X). By (4), Theorem 1.1, (22), and (27), we obtain

1 et)+1
an,1 = F m(e}l(t) - 1)1 O,z
A

& (n elt) +1 1
= S, o1 n-m

mz_,(m) 2a(m, 1 < 2 (1- e ‘ 0 ’A>A G0
e v(n)n-m et) + 1
- mzl 2 (m)( a )SZ’A(m’ l)da’/l< 2 (On-m-an >}l

1 n
( n )(n - m)SZ,A(m; I)da,/l(l)n—m—a,/l + Z( n )Sz,/\(m, I)dn—m,}l-
0 m

m a 2 o

Conversely, assume that Ch,(x) = erl=0bn,zd1,A(X)- Then, by (20) and (33), we obtain
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by = 1<(1 ~ Hex®tICh,(ON

Il
M= =

2 (n )SM(” Ch- (1 = DOk
k=0T I

(35)
(n )(I;)Sl’A(r’ l)Chy_{(1 = Oex(OI0Ok-1.A2

*
Il
o

r

T M: T M:

0k=0

( Jsacr. et + ) (r)(l)sl,AChn_,«l)k_l,A ~ = D).

r=0k=1+1

By (34) and (35), we obtain the following theorem.

Theorem 2.5. For each nonnegative integer n, we have

A () = i(mi_ "il( " )(n j m)SM(m’ l)dt;A(l)"_m_a’A + il(::l)sz,/\(m, I)dnm,A)Chl(X)’

m a o

and

Chy(0) = Z(Z( a0 Dt + ) (" )(’l‘)sl,AChn_,((l)k_z,A k- 1)(1)k_z_1,A))d1,A.
r=0

=0 r=0k=1+1

The degenerate Bell polynomials are defined by the generating function to be

efe®) -1 = ZBeln A(x)—, (see [17,30]).
n=0 !

In the special case x = 1, Bel, , = Bel, 1(1) are called the degenerate Bell numbers. By the definition of the

Bell polynomials, we see that
Bel, x(x) ~ (1, loga(1 + t)i. (36)

Note that

(Onr-(Ex(®) = 1"

I
M8

er(e®) - 1

=
Il
o

(n AZSZ A, n)

0 I=n

( Y Sn, m)<x>m,A)%,

m=0

Il
M8

=
I

I
M8

0

=
Il

and thus, see that
n

Belya = ) Soa(n, m)(O)ma. 37)

m=0

Let dya(x) = Z;’ZOanJBeIL,\(x). Then by Theorem 1.1, (2), and (36), we obtain

RV 1
=1 < o1+ 0) <x>n,A>A
1
| Owm 38
l( Jsacm < oG ‘oon ,A>A 38)

z( Jsatm. Dt

l
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and by (19) and (38), we have
n n-m 174
ani= Y 3 (1 Jsuatm, p D, (39)
m=Ilr=0 m r
Conversely, assume that Bel, A(x) = Y. bp,id;,a(x). Since
ae(t) - 1) = y (Dn,/ll(e}l(t) -t = 3 (Dn,a 3 S, m)t—l = Yy (D, aS2,4(m, r)ﬁ, (40)
€ n! I m!
n=0 n=0 I=m m=0r=0

by (37) and (40), we have

bn,= %((1 - (e - Dealea(®) — Diea(t) = DNDnn

- Z(;)SZ»A(m’ (@ = (e(®) = D)eaea(t) = DIn-man

m=1
= mz::l az:‘b ,;) ( :1 )( n ; m)sz,A(m, DSy.2(a, (D), 2{(1 = (@®) = MIOn-m-ait @)
=2 m; r;) ( :l )Sz,/\(m, DSy a(n — m, 1) 2
n n-ma n n-m
“X22 ()" ™ Jsaatm. DSea@. DA -,

and by (20) and (37), we obtain
1
Qn,1 = F«l - Hex(t)t![Belp\(0)h

= 3 (77 Jotr motc - Der0100m 101 )

—Sum D+ Y (’?)SM(n, Y@t~ DDpt1.0).

m=I[+1

By (38), (39), (41), and (42), we obtain the following theorem.

Theorem 2.6. For each nonnegative integer n, we have

dn,}l(x) = Z(

=0

z( n )sm(m, l)dn_m,A)Beh,m
m=1

n-m

> (1 Jouacmn. z)%]lzelu(x),
=0 :

n n
1=0\m=lr

and
Bel,, (1) = Z(z Yy ( " )SZ,A(m, DS, — m, YDy
=0 m=Ilr=0 m
) Ozo(r’:l)( e )sz,A(m, DS:(a, r)(l),,A(nnma,A)dz,A(x)
- z(sz,m, D+ Y (';’)sz,un, MWy 1(m l)(nm_z_l,u)dz,A(n
=0 m=l+1

The explicit formula of the unsigned Lah number L(n, k) is
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(43)

L(n, k)—(k 1)” (see [22,31]).

By (43), we can derive the generating function of L(n, k) to be
(44)

1( t ) ZL(n k)— (k > 0), (see[22,31]).

k!
Recently, Kim and Kim defined the degenerate Lah-Bell polynomials by the generating function to be

( ) Z By, A(x) , (see [32]).
When x =1, B,, 1= BrL,(1) are called the degenerate Lah-Bell numbers. By the definition of degenerate Lah-

Bell polynomials, we see that
(45)

BL0 - (L) and BEGO = Y Lo m0ma
’ 1+t/; ’ =
Let dpa(X) = Y1 o@nBl2(x). Since
t : r-1
(1 " t) er( 1K, 1( o (46)
where (x)o = 1 and (x), = x(x + 1)---(x + [ = 1), n > 1. By (46), we obtain
1 1 (¢ )
an1=— X
T\ a-de®d\1+t s
C el r\(n 1 47
§ ) <l>"’(1)( r)< (1 - Det) ’ (X)""’A>A “
c r-1 r
g 1) <I>r l( )(l)dn—r,/ls
and by (19) and (47), we have
Oy LA P (D%,
Gy = ZIZO( )7 Jertan e, 48)
Conversely, assume that B[ ;(x) = ;. bndi,2. Then
1 t t t Y
b””_ﬁ<(l 1—t) (1—t)(1—t) (X)"”‘>A
= Z( ) < ztt A(ﬁ) (X)nm,}l>
ey ' “)
= z ( ) l%/\<_ (X)n—m—r,}(>
m=Ir=0 r A
Z( )L(m DBY iy +2) Z ( )( )(n - m - r)!L(m, )BE,
m=1r=0

In addition, by (45), we have

n,1 = ((1 - Hex®)t'|By,0)0n

L(n, m) ((1 - e ®OCOmn
(50)

Z
Z( )L(n m)(1 - DOl Om1ih

S D+ Y (’I”)L(n, MY Dot — @1~ Dt1,0)-

m=I[+1
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By (47), (48), (49), and (50), we obtain the following theorem.

Theorem 2.7. For each nonnegative integer n, we have

dn,A(x)—Iio(rzl( 1K, 1( )(: )drz,A]fox)

r

= Z(ZIZ( )(;)(—1)"’<l>r_z(_1)2¢]3ﬁ(x).

1=0 a=0
and

m=Ir=0

BLy(x)= i( i( )L(m DBY 1 +2 inzm( )( )(n - m - r)!L(m, Z)B,]:A]dm(x)

n

Z(L(n D+ Y (T)L(n, MY Wi~ (1 - 1)(1>m_1_1,A))d1,A(x>.

m=I[+1

The Mittag-Leffer polynomials are defined by the generating function to be

1+t
(1 i t) ZM (x)—., (see [18,22]).

n=0

In the special case x = 1, M, = M,(1) are called the Mittag-Leffer numbers. Note that
(-2
1-t) Sln\1-t

< on (n + m) grm
mzoz (== g (51)

Z( )z"(x)n<n>,,n%,

and so, by the definition of Mittag-Leffer polynomials and (20),

2
>

LCED») (2 mtminmSiatm, 0600 (52)
and

(e®) + 11 =2 ( eﬂ(”‘l)

-1y (l)r_(e/l(t) -1y (53)

I Mg T Mg

b tb
; T =17y Soa(b, Y)E-

Let dya(X) = YL oan,:Mi(x). Since

M, (x) ~ (1 a -1
" e +1)

by (53), we obtain
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L1 1 e - 1Y i
M\ A = He®l e + 1 A :

1
(u(em 1))A(x)n,A>A

(X)n—m,/\ > (54)
A

(e® + D

< (1 - ex(®)

n 1 _]
Zl( )sz,A(m, 1)<—(1 @O+ D

& -m —l-r(_1\r 1
( )", e Sam, Do, r)<(1—t)e,\(t) ‘(x>nmb,A>A

3
( )( bm)( D0, s, DS1(B, Vil

I
ﬁM=?M=?
L= 1

Eo

>
b=0
and by (19) and (54), we have

" ( 1)a<1>a/l

S 1) () SRV U

Conversely, assume that M,(x) = Zfzoan,ldl,;((x). Then, by (17), we obtain

2
;

zl+r

1= 1«1 ~ De MO

M=10= =
TME

( )2 (M-S, K (1 = OO0
’ . (56)
( )( )2m<m>n_msl,A(m, R0 = eIk 1

Ms

0k=0

(m)zm<m>n_msl,A(m, n+y ¥ (" )(’I‘)zm<m>n_msl,A<m, Okt — (&~ DDkt10)-

m=0k=1+1

m

Il
|| M=

By (54) and (56), we obtain the following theorem.

Theorem 2.8. For each nonnegative integer n, we have
n n n-mb
a1 00) = z(z y ( )( )( e am, 0824, M)me)
_ c ( 1)a<1>a,/1
) 1; ( al ]

OpAE T
My(x) = i(i(;)zwmnmslxm,o . i(”)(’l‘)zm<m>nmsl,A(m, (it

[=0\m=0 m=0k=1+1

3 IS

S O

MI(X).

ﬁM=ﬁ

- (k- I)(l)kll,/l))dl,/\(x)-

The degenerate Frobenius-Euler polynomials of order a, a € {0} UN, are defined by the generating
function to be

1 - (@)
(e(t) )A(t) Zh (Xlu) | (see[33,34)). (57)

When x = 0, h,(lf"}f(u) = h,(lf")f(ulo) are called the degenerate Frobenius-Euler numbers. By (57), we see that
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e(t) - u\*
h & (xlu) ~ ((Ai)—) ,t) :
Note that
e(t) - u)“ 1
= a®) -1 +0-w)H
(SO t) - e - v+ (- w)
1 a
1 - w7 (ey(t) - 1
(1—u)“z( )( W (ex(t) - 1)
=Z (a)’ i A(6) - 1)
C N\ ( )r

S)a(a, 1) t
= 2,A\A, T
Se=a-uw al

(e;[(t) u
a—na@ | ©Pm
A

eA(t) —u)*
<(1—t)eA<t) 1 u ) (X)"‘“>A

ln n-1 elt) —u\*
m=0 (l)( m ) <(ﬁ) (X)n—l—m,/l >/1

B n-l «a n\(n-1 (@), L
B Z Z( l )( m )(1 _ u)rsz”‘(n L - m,r)dm,a,

m=0r=0
and by (19) and (59), we have

By (58), we obtain

n

SRk (), (-1 (1)p0
ZOZZ( )( )S“("_l_ DA Wb
@

Conversely, assume that h % (x|u) = Zl o@n,1d;,A(x). Then

_1/a-vea®,
a"’llg<(e,1(t)u) ()n >
1-u 1
n 1
=(l)<(em )(1—t>eA(r> (O M>A

Z_( )(" )hm}(u)((l )ex(®)|0n_t_m

n-1-1

( )h%(u) . (”)(”m ’)hm}(u)«nn et = (1= 1= YD tm1.0)-

m=0 !

By (59) and (61), we obtain the following theorem.

Theorem 2.9. For each nonnegative integer n, we have

n{n-l1 a
dn 2 (%) = Z( > Z(?)(n N I)(l(a),) Sy = 1= m, r)dy A)h,(A)(x)

1=0\m=0r=0
Y5 5 s (r)n-! @D Dn o
_zzo(mozoz,zo(l)( m )S“("_l_m’ R )

15

(58)

(59)

(60)

(61)
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n n-1-1
B0 = z((’l’)h;ﬂ,A(u) Ly (")(”r; ’)h}:,;(u><(1>n+m,A - 1 M)Wt ) |-

=0 m=0 l

Remark 2.10. Since lim,_ef(t) = eX, limy_odya(x) = dn(x), limy 0B, y(X) = Bu(x), limy_oEna = En(x),
limy 0Dy, a(x) = Dy(x), and lim,_,oBel, A(x) = Bel,(x), where B,(x), En(x), Dn(x), and Bel,(x) are the ordinary
Bernoulli polynomials, Euler polynomials, Daehee polynomials, and Bell polynomials, respectively. If we
take all the degenerate special functions in this article to A — 0, then we obtain the interesting identities
which are mentioned in [35,36].

In addition, Kim found relationships between degenerate Lah-Bell polynomials and another degenerate
special functions. In this article, we found the relationships between degenerate derangement polynomials
and degenerate Lah-Bell polynomials.

3 Conclusion

Derangement numbers are one of the important and widely covered fiel in various fields such as combi-
natorics, applied mathematics, and engineering.

One of the important tools to study the properties of special polynomials is the umbral calculus, which
are built a completely rigid foundation for theories, based on relatively modern ideas of linear functions and
linear operators by Gian-Carlo Rota in 1970s. In particular, Kim-Kim defined A-umbral calculus with degen-
erate Sheffer sequences, A-Sheffer sequence, a family of A-linear functionals, and A-differential operators
in [17].

In this article, we investigated the relationships between degenerate derangement polynomials and
some special polynomials, which are A-falling polynomials, degenerate Bernoulli polynomials, degenerate
Euler polynomials, degenerate Daehee polynomials, Changhee polynomials, degenerate Bell polynomials,
degenerate Lah-Bell polynomials, Mittag-Leffer polynomials, and degenerate Frobenius-Euler polynomials
of order a by using A-umbral calculus, and derived some interesting identities of those polynomials.
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