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Abstract: In this study, we have investigated the oscillatory properties of the following fractional difference
equation:

Ve () Vo (k) = pOOr(VY () + G| Y (- Kk = DY@ =0,

u=k-a+l

where k € Ny, V* denotes the Liouville fractional difference operator of order a € (0, 1), p, and q are non-
negative sequences, and T and G are real valued continuous functions, all of which satisfy certain assumptions.
Using the generalized Riccati transformation technique, mathematical inequalities, and comparison results,
we have found a number of new oscillation results. A few examples have been built up in this context to
illustrate the main findings. The conclusion of this study is regarded as an expansion of continuous time to
discrete time in fractional contexts.
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1 Introduction

For every real-world situation to be physically understood, difference equations are crucial. Recent years have
seen a significant increase in scholarly interest in the study of fractional differences, which is a generalization
or extension of classical calculus. Compared to continuous fractional calculus, which has a lengthy history
spanning several centuries, discrete fractional calculus is a relatively recent idea. It has also been proven that
equations with fractional differences perform better than identical equations with integer order differences.
Fractional differences are helpful in numerous applications of applied science, including engineering, physics,
computer science, chemistry, biology, signal processing, electrochemistry, viscoelasticity, fluid dynamics, and
image processing [1-4]. Furthermore, one of the most fascinating topics for scientists and engineers is the
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oscillation/non-oscillation of physical waves, which can be well described by fractional difference equa-
tions [1,5].

In [6], Gray et al. provided a novel definition of fractional difference in the form of a finite sum over a
specified index set, which was understood as the discrete fractional operator in the sense of Riemann-Liou-
ville. This was done because the sum of the discrete fractional operators already in use was infinite. Since then,
there have been several distinct definitions of discrete fractional operators of the Riemann-Liouville type. In
[7], Miller and Ross proposed a new description of the Riemann-Liouville left fractional difference and sum
using a generalization of the Cauchy function, which is similar to the Riemann-Liouville fractional differential
and integral. Following that, several facets of this definition have been studied, including some features of
fractional finite difference theory and fractional difference equation theory. See [8,9] and the references
therein for more details. Moreover, in [10], Atici and Eloe introduced a fractional nabla difference operator
that is comparable to the forward fractional difference suggested in a study by Miller and Ross [7].

In recent years, many authors have thought about various features of fractional differential and fractional
difference equations. For further information, see [10-26] and references therein. where various qualitative
characteristics of solutions have been taken into account. Several authors have also looked into fractional
difference equations’ oscillatory solutions [27-29]. Particularly, some authors have investigated how fractional
nabla difference equations oscillate [30-35].

Before introducing the main problem, we recall some relevant results. In [11], Chen initiated the study of
oscillatory behavior for the fractional difference equation of the form

[r@)D5)"()] - q)r

I(y - K)_“X(H)dll' =0,

where k > 0, a € (0,1) is a constant, D% is the Liouville right-sided fractional derivative of order a of y

defined by (D%) () = ~r5 -5 4

formation technique and Young’s inequality to obtain oscillations results.
Furthermore, in [12], Chen obtained some sufficient conditions for the oscillatory behavior of the frac-
tional differential equation with damping

I:(y - k) y(wdu for k € (0, ). They used the generalized Riccati trans-

(DI ) = p(OD YK + g, =0,

Jw - orau

wherex > 0,a € (0, 1) is a constant, D % is the Liouville right-sided fractional derivative of order a of y defined
by (DY)(x) ==—ﬁ%j:(u - k)Y (u)du for k € (0, ). The main results were obtained by employing a

generalized Riccati transformation technique and certain mathematical inequalities.
In [28], Chatzarakis et al. studied the oscillatory behavior of solutions of the fractional difference equation
of the form

k-1+a

Y (k- - Dy (u)

U=Ko

A(r(k)g (A% ())) + p(K)x =0,

where k € Ny 11-¢, @ € (0, 1] is a constant, and A? denotes the Riemann-Liouville fractional difference of order
a, by using the Riccati transformation and Hardy-type inequalities.
In [14], Liu and Xu discussed a class of fractional differential equations of the form

DIy (k) DI (k) = p(IT(D Y (K)) + q(K)G =0,

I(u - Ky (wds

wherek > 0,a € (0, 1) is a constant, and D *y denotes the Liouville right-sided fractional derivative of order a
of y. They used a generalized Riccati transformation technique to derive some additional oscillation criteria
for the equation.
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In [29], Alzabut et al. established new oscillation results for a nonlinear fractional difference equation with
a damping term of the form

Kk-1+a

Y (k- - DOy ()

U=Ko

Aa()AY (k) + p(r)A%y (k) + q(x)r =0,

where Kk € Ny +1-¢, @ € (0, 1] is a constant, and A” denotes the Riemann-Liouville fractional difference of order
a. The Riccati transformation, a few mathematical inequalities, and comparative outcomes are used to pro-
duce the results.

The works described above served as our inspiration and motivation for this article, which examines the
oscillatory behavior of the following fractional difference equation with damping term:

Y (u-k-Dw| =0, @

u=k-a+l

VY )V () = pOr(Vix (k) + q(K)G

where k €Ny ={0,1,2, ..} and V* denotes the Riemann-Liouville fractional difference operator of order

a € (0,1) and the following circumstances are assumed to exist:

(A) p is a nonnegative sequence such that 1 - p(k) > 0 for all k € Nj,.

(A2 q is a nonnegative sequence.

(A3) G,F:R — R are continuous functions with kG(x) > 0, kF(x) > 0 for k # 0, and there exist constants k
and k, such that G(k)/x = kj, k/F(x) = k, for all k # 0.

(A9 VF(w) < uand F(u) € C(R, R) are continuous functions with F~(u) > 0 for u # 0, and there exist some
positive constant a; such that F7X(uv) = ayF Y (u)F~(v) for uv # 0.

The article is organized as follows: in Section 2, we present some basic definitions to support our key conclu-
sions; in Section 3, we offer some fresh findings on the oscillation of equation (1); and finally, we construct a
few examples in Section 4 to show that it is impossible to ignore the presumptions that underlie our primary
findings.

2 Preliminaries

In this section, we review certain fundamental notations, definitions, and discrete fractional calculus lemmas
that are necessary for the sections to follow.
For arbitrary a, we define

+
o TED o
where we have the convention that division at the pole yields zero, i.e., we assume that ifk — a + 1 € {0, -1, ...,~k},

then k@ = 0. The backward difference operator is defined by as follows:
VF(x) = F(k) - F(x - 1). (3)

Throughout the study, we consider the following V notation:

VF(g(k)) = %Vg(m 4
= VF(g(K))Vg (k). ®)

We refer to a real-valued sequence y meeting equation (1) as a solution of equation (1). A solution y(x) of
equation (1) is said to be oscillatory if for every positive integer ky, there exists k > kg such that y(k)y(x + 1) < 0;
otherwise, it is said to be non-oscillatory. An equation is oscillatory if all its solutions oscillate.
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Definition 2.1. [36] Let a > 0 and p(u) = ¢ — 1 be the backward jumping operator. Then, the ath right frac-
tional sum of F is defined as follows:

b
TR = o 3 (W) - 0@, KN =.b-Lb -2, ®
U=K+a

Note that V™* maps functions defined on N to the functions defined on ,_N.

Definition 2.2. [36] Leta > 0 and [n] = a + 1. The Riemann-Liouville right fractional difference of F is defined
as follows:

VAF(K) = (-1)"V"V""OF (i), K €pan-ay N.

= (- vn i — x)m-a-Dfp c N @)
B )F(n—a) M=K+(n—a)(p(u) *) W), K Epr-oy N

Using Definitions 2.1 and 2.2, we can obtain the definition for Liouville right-sided fractional sum and
Liouville right-sided fractional difference on the whole real axis R of order a € (0,1) for a function F as
follows:

1 0
-a = — — (a-1)
VE®) = 1 #z%a(p(u) K@DFW), Kk €No. ®)
VeF(k) = (-DVV- T DF () = Ti-o 2 (@ - KCDFW), k€N ©
p=x+(1-a)
The following relation is also valid:
(V*O(K) = -V(VY)(k), a€(0,1), k€ Ny. (10)
Set
GO = Y (- x- Dy, a
u=k-a+l
and then
VG(k) = -T(1 - a)(VY)(x). 12)

3 Main results

First, we study the oscillation of equation (1) under the following condition:

1
] o, K €N, (13)

where v(u) = Moy (1 + p(k)), 4 € Ny,

Theorem 3.1. Suppose that (A;)-(A4) and (13) hold. Assume that there exists a positive decreasing sequence r
such that

Vr@yve | _

4T - ayrquw)| (14)

limsup Y |Kr(uq(uv(u - 1) -

K— 00 ‘Ll=K‘0+1

where kg and k, are defined as in (A43). Then, every solution of (1) is oscillatory.
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Proof. Suppose that y is a nonoscillatory solution of (1). Without loss of generality, we may assume that y is an
eventually positive solution of (1). Then, there exists k; € N, such that y(x) > 0 and G(x) > 0 for all Kk € N,
where G is defined in (11). It follows that

V(E VY (1))(K)) = VF(Vi (K)v(k = DV(V (K)) + F(V% (K)Vv(K).
In view of v above, we have
V(F(VY (1)v(K)) = =TF (VY (K)v(K = DV () + F(VoY )M, (1 + p(u)) = T2 (1 + p(w)]

= =VF(Uy )V Kk = 1) + F(V (k)L - 1+ p(x)v(k - 1)
= =VF(VY(I)Vy )v(k = 1) + FVYE)pKIV(K = 1).

From (A,), the above equation becomes
VEVY)V(K)) 2 =ViY )V )ik = 1) + FVYE)p(KIV(K = 1).
From (1), we have
VEWY)V(K) 2 =V )V )k = 1) + FVYE)IpEV(K = 1) = qR)G(GE)V(K = 1) > 0. )

That is, V(F(Vi%(x))v(k)) > 0 Kk € Ny,. Then, F(V%(x))v(k) is strictly increasing for all x € N,,. Since,
v(k = 1) > 0 for all k and from (44), V¥ (k) is eventually of one sign. Now, we claim that

VY (k) <0, KENg. (16)

If not, then there exists k; € N,, such that V% (k) > 0. Since F(V% (k))v(x) is strictly increasing for all k € N,
we have

F(V%(x))v(K) = FVY (k))v(Kkz) = ¢ >0 forall k € N,. an
Then, we have
c c
V() 2 FY|—| = Fll—/——————|
1092 E o) ™ | ot + 2@

From (A4), we obtain

C

|
= 1 + p(10)

> qFY(c)F?

1
. (1 + p(u))]'
Then, we obtain

1
I, (1 + p(u))

-VG(x)
T aF Y oOrd-a)’

-1

Summing the above inequality from x; + 1 to k, we have

1 - i VG(w)
I, 1+ p(v) |~ aF (oI - a)’

K

2 F!

u=K+1 u=ky+1
[ 6() - 6x)
aF Yo - a)
G(ky)

<— 0
aF Y (o) - a) ’

which is a contradiction with (13). Therefore, (16) holds. Define the function w(x) as generalized Riccati
substitution

—VIOF (VY (x))

w(k) = r) 0

, K EN. (18)
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Then, we have w(k) > 0 for k € N,,. Now,

_ o TVOOF(VY (k) | ~V(K)F(Vox (x))
Vw(x) =V — e © r(k - 1) + Vr(k) — G ©
_ | Vvm)F (Vi (x))) vk - DEVY®-D)| o, V)
- cw T G060 - 1 }r(’( D S0
_r®qGGm)k -1 raFViyk - D)v(k - DIA - )V (k) - Vrx) W)
G(K) G(K)G(k - 1) r() ’

Since F(V%(x))v(x) is strictly increasing on Ny, F(V%(k - D)v(x - 1) < F(V%(k))v(k) for all k € Ny,. Then,
the above inequality becomes

r@qGGaEWE -1 r@FVYE)VEIA - aviy®) — Vr()

w(x) < - G(x) G(K)G(k - 1) r(x)

w(K).

Since VG(x) > 0, G(x) is increasing for all k € N,. Then,

rqGGE)WK -1 r@FVYE)VEIA - aviy®)  Vr)

w(K) < - G(x) G2(x) TR
_ rmqGGIONMK -1 TA - V®) | TrK)
6 rOVOFEa Gy " T M-

Using (43), we have

r()qGGuv(k -1 T - a)viy(x) Vr(x)

e G(x) roovGOET ) O 0
k'l v
= ~hr(eqlevlc =1 - ﬁoE)v(;g) WiK) + r<(K)) w(K).
Let x = w(k), a = _":(FK()lvE}g), and b = er(K’;{ By using the inequality ax? + bx < -b?/4a, we have

W) < ~kr(OqOVCe = 1) + 5 e S

or

(Vr(k)*v(K)

-Vw(k) 2 klr(K)Q(K)V(K -1) - m

Summing from x, + 1 to k¥ on both sides of the above inequality, we obtain

(Vr(w)*v(u)
4lT(1 - a)r(u) |

K

w(ko) = w(kg) - w(k) =
u=Ko+1

kr(uq(uvp - 1) -

Taking limsup, .., on both sides of the above inequality, then we obtain

(Vr(w)*v(u)
4k I'(1 - a)r(u)

limsup ) |kr(u)q(uv(u - 1) - < w(Ky),

K— 00 ;1=Kg+1
which is a contradiction with (14). If y is eventually a negative solution of (1), the proof is similar; hence, we
omit it. The proof is complete. O

Theorem 3.2. Suppose that (A;)-(A4) and (13) hold. Assume that there exists a positive decreasing sequence r
such that
[Vr(w - r@pl

K
limsu kir - = oo, (19)
st py%ﬂ U0 ~ T e

where v(u) is defined in Theorem 3.1. Then, every solution of (1) is oscillatory.
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Proof. Suppose that y(x) is a nonoscillatory solution of (1). Without loss of generality, we may assume that
x () is an eventually positive solution of (1). Then, there exists k; € Ny, such that y(x) > 0 and G(x) > 0 for all
K € N,,. Proceeding as in the proof of Theorem 3.1, we obtain (16). Now, define the function w(x) as follows:

w(k) = r(K)%i()(K» K € Ny,. (20)
Then, we have
-F(V® -F(V¢
Vw(k) = Vli( G (i()( K) ]F(K -+ Vr(K)Ii( G (i()( )

_ | VEFE DV (K) FVY&-1D)| Vr(x)
‘l G(x) Ve Giocmk =1 (KD T W
_ VEEY DV @rk =1 r(x = DEVY (K = DIA - a)Vy(K) L V) W)

G(x) G(x)G(k - 1) r(x)
< VE@Y NV (rek) _ r@FVy(k -~ DITA - eV (k) N Vr(K)W(K)
a G(x) G(K)G(k — 1) r(x) '

From (A4) and (1), we obtain
[PGOF (VY (K)) — quIGGINIr(K)  rGF(VYy(k - DIIA - )V () Vr(K)

Yw(k) < G(x) G(K)G(k - 1) r(x) Wi
_ _ qGGINI®) _ ra)F(Voy(k - I - VY (x)  r(x)
= —p(K)w(k) G G(K)G(k - 1) ¥ r(x) w).

Since G(k) > 0, V% (x) <0, and VF(Ve(x)) < V%(k), we have F(V%(x)) is strictly decreasing on Ny,
Therefore, we have —F(V%(k — 1)) < -F(V%(x)) for all k € Ny,. Thus,

qGGEIr(k) _ raFVYENIA - vy ®) = Vr)
G(k) G(K)G(k - 1) r(x)

Vw(x) < -p(x)w(k) - w(K).

Since VG(x) > 0, G(x) is increasing for all k € N,,. Then

qOGGEIr() _ rFVYENIA - vy ®) = Vr)

Vw(x) < -p(K)w(k) - 6o G ) w(K).
Using (43), we have,
< ~pw)r() _ kI - aw*(k)  Vr(x)
Vw(k) < w0 kq(r)r(x) o e © w(K). 21
Taking
X=wk), a=- kIl - a) @#0), b= Vr(x) - p(x)r(x)

r(x) r(x) ’
and by using the inequality ax? + bx < -b*/4a, we have

[Vr(x) - r()p(x)*
4T - ar(k)

Vw(k) < -kr(k)q(x) +

Summing both sides of the above inequality from k, + 1 to k, we obtain

[Vr(u) - r(wp)I?
4kT(1 - a)r(p)

[Vr(uw) - r(Wp)?
I - Or(w |

w(K) - wko) € ) |~kr(wq(u) +

u=Ko+1

wko) 2 Y |kr(wqu) -

u=xo+1
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Taking the limit supremum of both sides of the above inequality as k — %, we obtain

. [Vr(u) - r(wpw)]?
Y |krwq) - 4k,T(1 - a)r(u)

u=xo+1

< w(kp) < o,

which is a contradiction with (19). If y(x) is eventually a negative solution of (1), the proof is similar; hence, we
omit it. The proof is complete. O

Theorem 3.3. Assume that (A;)—(A4) and (13) hold, and there exists a positive sequence H(k, u) such that

H(x,k)=0 for k = Ky,
H(x,u)>0 for k> u 2 Ko, (22)
VoH (k, )= H(x,u) — H(k,u - 1) <0 for Kk 2 it 2 K.

If there exists a positive decreasing sequence r such that

. c (Vr@yH®, ) | _
HISUP 17 g 2 | (TR = e r = ) ™ @

then (1) is oscillatory.

Proof. Suppose that y(x) is a nonoscillatory solution of (1). Without loss of generality, we may assume that
X () is an eventually positive solution of (1). Then, there exists k; € Ny, such that y(x) > 0 and G(x) > 0 for all
K € N,,. Proceeding as in the proof of Theorem 3.1, we obtain (16). Also, as in the proof of Theorem 3.2, we
obtain (18). We can rewrite (18) as follows:

k(1 - a)w(k) . vr(x)

Yw (k) < ~kq(r(x) - r(x) ) "

().

Multiplying the above inequality by H(x, &) and summing from x to x, we obtain

£ < < V < kIl - a)w?
> kqQr@H(K, ) < + Y H(k, )W) + ) I b, ww) - Y I = W)

H(x, u). 24
= et S T S W (o, 1) (24)

Using summation by parts, we obtain

= Y H(k, wVw(w) = ~[Hx, w@) e, + Y VHK, w(u - 1)

u=Ky U=Ky

<—[H@, ww -, + 2 VH(K, )w(w)

u=Ky

= [H(x, )w(K)] + Y VH(K, )w(y).

U=Ky

Substituting the above inequality into (24), we have

K

Y kq(ur(wH K, u) < HK, k)w(k) + )

u=K u=K

v k(1 - @)H(k,
[VH (K, ) + MH (x, Ww(y) - W

Xwi. @5
W wA ). (25)

Taking
kI - a)H(K, \Y
— ““W’ bﬂH(&uH%H(&y),

and by using the inequality ax? + bx < -b*/4a, we have
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Vr(w) _ kIQ - o)H(x, 1)
Q0 H(k, ) |w(w) W
i (rq)VH(, u) + Vr(wH (k, 1))*

per Al - o)H (6, Wr(w)

i (Vr(wH(x, u))*

= AT (1 = a)H (K, )r(u)

_ i (Vr@)*H (k, 1)
kT - r(w)”

VH(x, i) + w(u)

K
2
u=Ky

U=Ky
Substituting the above inequality in (25), we obtain

WrGOyHK, 1)

2 kq(ur@H, ©) < Hk, )wle) + Y 4kT(1 - ayr(u)’

=Ky U=Ky
Since VH(k, u) < 0forx > u 2 ko, we have 0 < H(k, k1) < H(k, ko) for k > K 2 k. Therefore, from the previous
inequality, we obtain for k € N,

. (Vr(u)*H (K, i)
2 [ar@H @, @ - Ak T(1 — ayr(u)

u=Ky

< LBk, kW) < —H(k, Ko)w(ky). 26)
ki ki

Since 0 < H(k, 1) < H(K, ko) for k > u = ko, we have 0 < H(k, u)/H(k, ko) < 1fork > y = ky. Hence, from (26),
we have

K 2
S lqGor@e, w - SrUIHE D

H(k, ko) =, AkakoI(1 - a)r(u)
K1—1
3 (Vr(w)*H(x, w)
= r(HE, U) - <
Hoe 10 yZ rEH I = e or
o (Vr(u))*H(x, u)
+ rQOH(K, ) ~ ————————
G, ko) 2| OGRS = e =
K1—1 1
< r H(k, u) + —H(K, Ko)w(k
G, )| &, (OICOH T )+ 5 H ok k()
k-1 1
< 2 T(0qQ + L wk).
H=Ko 1
Letting k — o, we obtain
K K11
- _ _rQYHG® ) | _ S 1
hrf;m e w0 2, AWr@HK B - gt o] #gcor(u)q(u) * ) < =,
which yields a contradiction to (23). The proof is complete. O
Next, we study the oscillation of (1) under the following condition:
i Pl |a @7)
pm (Mg + p(v)

Theorem 3.4. Suppose that (4;)-(A4) and (27) hold. Assume that there exists a positive decreasing sequence r
such that (14) holds and also, for every T = Ky,
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2 F!

k=T

1 K
- z -1 = 28
() #zTQ(.U)V(‘U 1)] ) (28)

where v(u) is defined in Theorem 3.1 holds. Then, every solution of (1) is oscillatory or satisfies lim,_.»G(k) = 0.

Proof. Suppose that y(x) is a nonoscillatory solution of (1). Without loss of generality, we may assume that
X (x) is an eventually positive solution of (1). Then, there exists k; € Ny, such that (k) > 0 and G(x) > 0 for all
K € N,,. Proceeding as in the proof of Theorem 3.1, we know that V% (k) is eventually one sign; then, there are
two cases for the sign of Ve (k). If V% (x) is eventually negative, similar to Theorem 3.1, we have the oscillation
of (1). Next, V2% (k) is eventually positive, then there exists K, € N, such that V¥ (x) > 0 for k = ky. From (12),
we obtain VG(k) < 0 for k € N,,. Thus, we obtain lim,..G(k) = L. We now claim that L = 0. Otherwise,
assume that L > 0, then from (12) and (4;), we obtain for k € N,

VEFE Y ))v(K)) 2 q)G(GE)V(K = 1) 2 kq(K)G(K)v(k = 1) = kLq(k)v(k - 1).
Summing both sides of the above inequality from k; + 1 to k, we have
K K
F(Vo ()W) 2 FOY V() + kL ) quv(u - 1) > kL ) quv(u - 1).
u=K+1 u=Ky+1
Hence, from (12), we obtain

lezZ:KZHQ(‘u)V(# -1
v(k)

VG(k)
I'd-a)

= Vi (k) = F!

> qyF -1 (kL)F -1

Ly @V - 1)
v(K) '

Summing both sides of the last inequality from x; + 1 to k, we obtain

DI (Y (TR 1)]

G() < G(ky) - al(1 - WF (kL) Y F! )

u=ky+1

Letting k — o, from (28), we obtain lim,_G(k) = —o. This is a contradiction with G(x) > 0. Therefore, we have
L =0, ie., limy.oG(x) = 0. The proof is complete. ([l

4 Applications
In this section, we construct some numerical examples regarding our results.

Example 4.1. Consider the following fractional difference equation:

(V@) , K +K+3

2k +2)  40(1/3)(k + 2)K? 2 W-k-DTEpG =0, kEN.  (29)

u=x+1/3

(V@) () =

This corresponds to equation (1) with a = 2/3, p(k) = i q(k) = m F(x) = % and G(x) = 2x. For
Ko =0,
- 1 - 1 e 1
Z FYl— =9 Z =4 Z =00
U=Ko Hk=K0(1 + p(k)) ] ‘1:0“ +3

— 1
u=0 H%=0[1 +
Therefore, (13) holds. Choose k = 2 and k, = 1. It is clear that the conditions (41)-(44) hold. Furthermore,

taking r(x) = ﬁ we have
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(Vr(u))?v(u)

limsup Z kr(wqyvu - 1) - 4k, T(1 - a)r(u)

K=o y=Kp+l
1 pP+p+3p+2 u+3
lu+1 8F(1/3) (u+2u* 2 8T(1/3)u*(u + 1)

limsup Z

K— 00

8r(1/3) Koo

Then, (14) holds. Therefore, by Theorem 3.1, every solution of (29) is oscillatory.
Example 4.2. Consider the following fractional difference equation:
(VP2 )-(V20)(x) - —(V”ZX)(K) + K Z -k =D =0, kKEN,. (30)
U=K+1/2
This corresponds to equation (1) with a = 1/2, p(k) = 1/, q(x) = k%, and F(x) = G(x) = x. For ko = 1,

2 1 ]i s 1o,

Mo 1+ ()| 5[ T+ D) "2

U=kKo

Therefore, (13) holds. Choose k = k; = 1. It is clear that the conditions (4;)-(44) hold. Furthermore, taking
r(x) = 1/x, we have

= limsup Y |(1/pu? -

S - 2
limsup Y |kr(uq(u) - [Vr(u) - rpW] l

(-1/pu - 1) - 1/u?)?
4koI'(1 - a)r(u)

AT(1/2)u?

K=o =Ko+l K=o u=2
s 111 1)
=limsup ) |u- ——=— —]
P | I NE 110 u
= 00,
Then, (19) holds. Therefore, by Theorem 3.2, every solution of (29) is oscillatory.
Example 4.3. Consider the following fractional difference equation:
(V40 )-(T 4 (k) - —(v1/4;()(;<) +K Z (- K= 1)) = 0,k €N,. 3

u=x+3/4

This corresponds to equation (1) with a =1/4, p(x)=1/k, q(k) =k, and F(x) = G(x) = x. Taking
Ko=1k =k =1, and r(k) =1, we see that the conditions (13) and (4;)-(A4) hold. Furthermore, taking
H(k, u) = k - %, then

VHGG ) =k -2 - (k- @-1%=1-2u<0,

for k > 4 = 1. Now,

Gr@OFH 0| gL S - i) = o,
2

limsup Z Qr@HE 1 = prd ~ o) koo K= 105

cow  HK, Ko)p x

Thus, by Theorem 3.3, equation (30) is oscillatory.
Example 4.4. Consider the following fractional difference equation:

V(). V() = VI (k) + 28 ) (u -k~ DY) = 0,k €Ny, (32)
u=k+2/3

This corresponds to equation (1) with a = 1/3, p(x) = 1q(x) = 2%, and F(x) = G(x) = x. For ko = 1,
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2 F!

U=Ko

1 < |
Mje=ey(1 + p(k))] Z Hk 2 ,Z “
Thus, (27) holds. Choose k; = k, = 1. It is clear that the conditions (41)-(A4) hold. Furthermore, r(x) =
we have

2“ then

(Vr(u)>v(u)

K
T (L - ayr() |~ Hmsup 2|2

K—o00 u:l

limsup Y [Kr(uq(uvu - 1) -

K—00 11=K0+1

1
) z#+2r(2/3)] -

Then, (14) holds. In addition, for T = 1,

©

@ - 1)
Zz 22#2#1 3ZT_°°

k=1 pu=1 k=1

2F s

k=1

V( ) 2 Z qvu - | =

Thus, (28) holds. Therefore, by Theorem 3.4, equation (30) is oscillatory or limy-.G(x) = 0

5 Conclusion

In this article, we have established some oscillation criteria for fractional difference equations with a damping
term. In particular, nothing is yet known about the oscillatory properties of the following fractional difference
equation:

Ve () VY (k) - p(RF(VY(K)) + qK)G| D (1 -k - DOy ()| =

u=k-a+l

Based on the transformation used in G, we have obtained a relationship between fractional- and integer-order
difference. We employed the generalized Riccati transformation technique, some mathematical inequalities,
and comparison results to prove four oscillation theorems for the proposed equation. To evaluate the validity
of the proposed results in this research, we offered some numerical examples that indicate consistency with
the theoretical results. The approach in obtaining the main theorems above can be generalized to research
oscillatory solutions of fractional difference equations with more complicated forms, which are expected to be
researched further.
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