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Abstract: In this article, the stochastic fractional Davey-Stewartson equations (SFDSEs) that result from
multiplicative Brownian motion in the Stratonovich sense are discussed. We use two different approaches,
namely the Riccati-Bernoulli sub-ordinary differential equations and sine-cosine methods, to obtain novel
elliptic, hyperbolic, trigonometric, and rational stochastic solutions. Due to the significance of the Davey-
Stewartson equations in the theory of turbulence for plasma waves, the discovered solutions are useful in
explaining a number of fascinating physical phenomena. Moreover, we illustrate how the fractional deri-
vative and Brownian motion affect the exact solutions of the SFDSEs using MATLAB tools to plot our
solutions and display a number of three-dimensional graphs. We demonstrate how the multiplicative
Brownian motion stabilizes the SFDSE solutions at around zero.

Keywords: fractional Davey-Stewartson equations, stochastic Davey-Stewartson equations, Riccati-Bernoulli
sub-ODE method
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1 Introduction

In 1974, Davey and Stewartson developed the Davey-Stewartson equation (DSE) [1]. DSE is used to illustrate
how a three-dimensional wave-packet changes over time on water with a limited depth. It is a set of coupled
partial differential equations for the complex field (wave amplitude) u(x, y, t) and the real field (mean flow)
v(x,y, t):

. 1
iue + 552(uxx + 6%uy,) + KlulPu — wu = 0, 1)
Vix — 62Vyy - ZK(lulz)x =0, (2)

where k = +1 and §° = +1. The constant k measures the cubic nonlinearity. The case § = 1 is known as the
DS-I equation, while 6 = i is known as the DS-II equation. The DS-I and DS-II are two integrable equations
in two space dimensions that originate from higher dimensional versions of the nonlinear Schrédinger
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equation. They occur in a variety of applications, including the description of gravity-capillarity surface
wave packets in shallow water.

The solutions to the DS equations (1)-(2) have been utilized in plasma physics, nonlinear optics,
hydrodynamics, and other disciplines. For instance, the solutions of the DS equation might describe the
interaction of a properly matched microwaves and spatiotemporal optical plus. Therefore, many authors
have provided exact solutions for this equation utilizing different methods such as double exp-function [2],
sine—cosine [3], (G' / G)-expansion [4], generalized (G’ / G)-expansion [5], the uniform algebraic method [6],
the extended Jacobi’s elliptic function [7], trial equation method [8], and the first integral method [9].

Many important phenomena, such as image processing, electro magnetic, acoustic, anomalous diffu-
sion, and electrochemical, are now represented by fractional derivatives [10—24]. One advantage of frac-
tional models is that they may be expressed more explicitly than integer models, which motivates us to
create a number of important and useful fractional models. Recently, Khalil et al. [25] proposed a novel
concept of fractional derivative that expands the well-known limit definition of the derivatives of a function.
This definition is known as the conformable fractional derivative. In contrast to earlier definitions, the new
definition is clearly compatible with the classical derivative and appears to meet all of the standards of the
standard derivative. It is crucial for fulfilling the product formula, the quotient formula, and it has a less
complicated formula for the chain rule. The conformable fractional derivative of the fractional partial
differential equations has been studied by a number of researchers, including [26-30] and references
theirin.

Conversely, several disciplines, such as engineering, climate dynamics,chemistry, physics, geophysics,
the atmosphere, biology, fluid mechanics, and others, have pointed out the benefits of adding random
impacts in the statistical features, analysis, simulation, prediction, and modeling of complex processes
[31-33]. Noise cannot be neglected because it has the potential to initiate interesting phenomena. Finding
exact solutions to fractional PDEs with a stochastic term is typically more challenging than finding solu-
tions to classical PDEs.

To reach a better degree of qualitative agreement, we consider DSEs (1) and (2) with fractional space
and forced by multiplicative noise in the Stratonovich sense as follows:

iue + %52(1T§Xu + 62T u) + kulu — uTqv + iou - B; = 0, (3)

TSy - 825y — 2T i(juf?) = 0, (4)

where T¢ is the conformable fractional derivative [25], 0 is the strength of noise, and B(t) is the Brownian
motion.

t
We know that there are several possible interpretations for the stochastic integral _[OX dB. A stochastic
integral is often interpreted using the Stratonovich and It calculus [34]. A Stratonovich stochastic integral

t
(written as jOX o dB) is one that is computed at the middle, whereas the stochastic integral is Itd (written as

t
J;)X dB) when it is investigated at the left end. Next equation is how the Stratonovich integral and It0 integral

are connected:

aX(T Z0) 4. )

IX(T Z.)dB(T) = _[ X(r, Z.)o dB(T) - —IX( 79X Z0)
where X is supposed to be sufficiently regular and {Z;, t > 0} is a stochastic process.

The objective of this work is to determine the exact solutions to the stochastic fractional Davey-Stewarts
equations (SFDSEs). This study is the first to successfully get the exact solutions of SFDSEs (3) and (4).
We used two methods, the Riccati-Bernoulli sub-ordinary differential equation (sub-ODE) approach and
the sine-cosine method, to acquire a broad range of solutions, such as those for trigonometric, hyperbolic,
and rational functions. Additionally, we use MATLAB package to produce 3D figures for some of the
created solutions in this work to examine the impact of the Brownian motion on the solutions of SFDSEs
(3) and (4).
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This article is set up as follows: In Section 2, we employ an appropriate wave transformation to provide
the wave equation of SFDSEs. In Section 3, to create the analytical solutions of SFDSEs (3) and (4), we use
two methods. In Section 4, we examine how the Brownian motion impacts on the produced solutions.
Finally, we present conclusions of this article.

2 Wave equation for SFDSEs

The next wave transformation is conducted in order to acquire the wave equation for the SFDSEs (3) and (4):
u(x, y, £) = p()e@ B0, y(x,y, t) = th(n)el-2BO-27, (6)
with

n= ix“ + &y"‘ -nt and w= Yryay ﬂy“ + wst,
a a a a

where the functions i and ¢ are deterministic, {rzj}?zl,{wj}?zl are undefined constants. Putting equation (6)
into equation (3) and utilizing

d ) 2 .
d—'; =(-13¢" + iwsp - 0PB; + %4) ~ g%p)elivw-0BO-0%),
! . 02 2 2
= (¢ + iwsp — 0pB; = —-)elemoBL=TL,

= (-ny¢ + iwsp - 0@ o By)elw-oBO-00),
where we used (5), and
TSu=(2¢" + 2iwme - wip)eiw-BO-0D,
Thu=(n7g" + 2iwn,g - wip)ew-oBO-0,
T5(uP) = my(p?)e2PO-27,

To = ’111/)’ e(—ZUB(t)—zazt)’ Ty = nlzll)lle(_ZUB(t)—Zazt),

we obtain for real part
(55 Jniot o~ (w5 + 38%2 + 3803 + p? ~ myhecm0 o, ™

(- 8" - 2mix(p?) = 0, ®)
and for imaginary part
(-1 + 2Qw1 + 2n,w)¢’ = 0. 9)
From equation (9), we obtain
N3 = 2w + 21,w). (10)
Now, integrating equation (8) once and putting the constant of integral equal zero, we have

1K
T 2 11)

Y= g,
(',112 - 62'122)

Plugging equation (11) into equation (7), we obtain

(pu — V0 + (p3e(—203(t)—202t) =0, (12)
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where
2K 2ws + 8wl + §'w3
=——— — and = . 13
N ST o)) 2T s e W
Taking expectation E(-), yields
9"~y - vl (e 2P0) = 0. (14)

Since B(t) is the standard normal process, hence E(e 20B()) = e2’t, Hence, equation (14) becomes

@" - y@® -y = 0. (15)

3 Analytical solutions of the SFDSEs

We utilize two distinct methods including the Riccati-Bernoulli sub-ODE [35] and sine-cosine [36,37] to
obtain the solutions of SFDSEs (equations (3) and (4)). The methods that have been proposed are useful
tools that can solve a wide variety of other nonlinear PDEs. In addition to that, this procedure can provide a
brand new infinite sequence of solutions.

3.1 Riccati-Bernoulli sub-ODE method

First, let us define the Riccati-Bernoulli equation (RBE) as follows:
@' =up? + Ly + b, (16)

where ¢, &, and & are unknown constants and ¢ = @(n).
Differentiating equation (16) and using equation (16), we have

Q" = 20103 + 300607 + (208 + )@ + b, (17)
We obtain by putting (17) into (15)
(22 — Y3 + 300602 + (248 + €3 - Y@ + & = 0.
Making all ¢i(i = 0, 1, 2, 3) coefficients null, we attain the following system:
L& =0, &+ -y)=0, 346=0, 2¢{-y=0.

The solution of the aforementioned system is

V4 )2)
=% /=, £L=0, &H=—"=. 18
1 \3 2 3= 0 (18)

There are different solutions to the RBE (16) relying on ¢ and .
First case: If &5 = O (i.e., y, = 0), hence the solution of the RBE (16) is

21
o) =- |=— fory >o0. (19)
wn

Substituting equation (19) into equation (11) and integrating we obtain

2K 2nx 1 2, -1
() = 7I¢2dn = j dn = ——.
- 6;) (- 6 J (an)? (] - ™) tin
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Therefore, the solution of SFDSEs (3) and (4), for y, > 0, is

u(x v, t) — \/E e(m} oB(t)-o t)

1
—4Kkn,

— (7203(072020’
(n? - & n)(vm)

vix,y, t) =

where n = 2x% + y - 2nw: + 2n,w)H)t.
Second case: If ¥, > 0 and y; > 0, hence the solution of RBE (16) is

Y
) = /y1 tan(,/ 5 n)
__ ¥ 2!
) = /y1 cot(,/ 5 n)-

Substituting into equation (11) and integrating, we obtain

() = 2711’()'2 [\/7 ) n]
(’71 ))’1 YZ

or

or
—2n,KY, 2 1A
Y1) = ——=5—| .| — cot nl+nl,
(’712 - 62’722 NARRZ 2
respectively.
Therefore, the solutions of SFDSEs (3) and (4) are as follows:
ulx, y, t) = \/7tan( 2] ’1)9(’“’ oB(t)-071),
¥
v(x,y,t) = '111% \/j an yz ) n |eC20B0O-20%0),
- )|\ v
or

ulx,y, t) = —\/E cot(\/gn)e("“"”B(““’z‘),
Y 2

—21KY, \/7 ( Y OB 207
v(xX,y,t) = ———==5—| |—cot| |[=n|+n e(-20B(H)-20 t)’
(' - &°n; ))ﬁ[ Y2 2

where np = %X“ + %y“ - (2nw: + 2n,w)H)t.
Third case: If y, < 0, ¥, > 0, and |@]| < —%, hence the solution of RBE (16) is
1

_ " ¥
o) = - " tanh( > n).

Substituting into equation (11) and integrating, we obtain

’71KY2
ViD= o gy )yl[ f tanh(\r ")]

— 5

(20)

21

(22)

(23)

(24)

(25)
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Thus, the solution of the SFDSEs (3) and (4) is

u(x, y, t) = — |22 tanh( f__)’Zn)e(i(u—aB(t)—ozt)’
)4l 2

vix,y,t) = ’11 !2 tanh n | [eC20B0O-20°),
y
(- )yl

where n = x“ + y“ - 2w, + 2nw))t.
Fourth case If ¥, <0, > 0and ¢? > %yz then the solution of the RBE (16) is
1

- _ 2% coml 22
o) ” cot ( 5 n)-

Substituting into equation (11) and integrating, we obtain

_ m2nKy, -2 ( nZ) )
W) = — 1772 1y |22 coth| =22 .
@ (’712 - 52’722 M [’1 Y2 CO 2 1

Consequently, the solution of the SFDSEs (3) and (4) is

ulx,y, t) = - |7V Coth( | 2)’ n) (iw-0B()-0%),
N

v(x,y,t) = ’11 )2 ZZ cot (-20B(6)-200),
y o h e
(rll ))’1

where y, and y, defined in equation (13) and 1 = ix“ + fy“ - (2nw1 + 2n,w,)t.

3.2 Sine-cosine method

Let the solutions ¢ of equation (15) have the form

@) = AH™,
where

H =cos(Bnp) or H =sin(Bn).
Putting equation (30) into equation (15) we obtain
(Y,A - ABIn?)H" + n(n — DAB?H"2 + yA’°H" = 0.
Equalizing the term of H in equation (32), we have
n-2=3n=n=-1
Setting equation (33) into equation (32)
(,A — AB)H + (y,A3 + 2ABY)H3 = 0

Balancing each coefficient of H3 and H™! to zero, we have

VoA — AB? =
and

¥4 +2AB2 =0

We obtain by solving these equations

DE GRUYTER

(26)

(27)

(28)

(29)

(30)

€3]

(32

33

(34)

(35

(36)
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[-2
B=y, and A= =y
n

Hence, the solution of equation (15) is

on) = %sec(\/y_zn) or @)= %csc(\/y_zn).
1 1

Substituting into equation (11) and integrating, we obtain

4KV, Ay,
=— V2 an(Jy, = 1V2 ot( ).
o n? - 67Dy, R or P mZ - 6Dy, O

There are various cases relying on the sign of y; and y,.
Case 1: If y, > 0 and y; < O, then the SFDSEs (3)—(4) have the exact solutions:

-2 .
u(x, Y, t) _ Y2 SeC[\/YZTI]e(W_UB(t)_UZt),
\ %

—4nxJy,

vix,y,t) = mtan( \/y—zn)e(*ZUB(t)—Zazt),
or
u(x,y, t) = _}Zlyz Csc[\/y—zrl]e(iw—aB(t)—ozt)’
1
v(x,y,t) = %cot( \/y—zq)e«zOB(t)—zazt)_
Case 2: If y, < 0 and y; < 0, then the SFDSEs (3) and (4) have the exact solutions:
ulx,y, t) = i\/?sech[\/—_yzq]eﬁw—aB(t)—ozr)’
1
vy, t) = % tanh[ /=y, n]e(-29BO-207),
or
ux,y, t) = \/2772C5Ch[\/—_yzn]e(iw—UB(t)—ozt)’
1
vy, t) = %Coth[ JnleC2B0-20%),
Case 3: If y, < 0 and y; > O, then the SFDSEs (3) and (4) have the exact solutions:
ux, y,t) = \/?Sech[\/—_yzn]e(iw—UB(t)—azt),
1
v(x,y,t) = % tanh[, /=y, n]e20BO-20°0),
or

-2 .
ulx, y, t) = —i —h csch[\/—_yzn]e(“”*"B(f)*"zf),
)4

el 4

@37

38)

39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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Solution

Solution

Space "Xx" 0 o

oc=0, a=1in Eq. (26)

Space "x" 0 o

oc=0, a=1in Eq. (27)

Figure 1: 3D plot of equations (26) and (27) witho = 0 and o = 1.

—4'11K \/__)/2

b b t =
Ve 3, ) (- 80,y

coth[ /-y, rl]e(—ZOB(t)—Zazt).

Case 4: If y, > 0 and y; > O, then the SFDSEs (3) and (4) have the exact solutions:

Solution

25 1

20

Solution

2

1

Space "x" 0 o0 Time "t"

oc=1, a=1in Eq. (26)

2 1

Space "x" 0 0 Time "t"

o=1, a=1in Eq. (27)

(49)

Solution

25

20

Solution

2

1

Space "x" 0 0 Time "t"

oc=2, a=1in Eq. (26)

1
Time "t

Space "x" 0 o0

oc=2, a=1in Eq. (27)

Figure 2:

3D plot of equations (26) and (27) witho =1,2 and a = 1.
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N

o
N
2

N
N

o
Solution
- o

Solution

o
o

0.5

oo

2

Solution
Solution

Figure 3: 3D plot of equation (26) with o = 0 and different a.

2 .
u(x, Y, t) =1 % SeC[\/Vzrl]e(W*UB(t)’Uzt), (50)
1

—4?[11(\/}/_2 2
v(x,y,t) = —S————tan[ /Y. U]e(fzoB(t)fzg 0, (51)
- &)y, g
or
2 (iw-0B(t)-0%t)
u(X! Ys t) =1 TCSC[\/Y_Zn]e ’ (52)
1
4n.x
Vs ) = Ny et anm-art, (53)

] - )y,

where y, and y, are defined in equations (13) and 1 = %x"‘ + %y“ - 2nw; + 2n,wH)t.

4 Effect of fractional derivative and noise on solutions

Effects of noise and fractional derivative on the exact solutions of the SFDSEs are examined in this article. If
k=-1,6=1,w=n=03,w,=1,=1, and w3 = -1.5, then n; = 2.18, y, = %, and y, = %. We use the
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Solution
Solution

oo

2

Space "x" 0 o0 Time "t"

Solution
Solution

2

Space "x" 0 0 Time "t"

Figure 4: 3D plot of equation (27) with o = 0 and different a.

MATLAB package to plot many figures for different noise intensity o and for different value of fractional
derivative order o.

First, the impact of noise:

In Figure 1, for various values of a, we observe that the surface fluctuates when o = 0.

Figure 2 shows that when the noise intensity increases, after these short periods of transit, the surface
becomes more flat.

Figures 1and 2 allow us to draw the following conclusion: when the noise is not taken into account (i.e.,
o = 0), there are several distinct kinds of solutions, including periodic solution, kink solution, and others.
When noise is added, and its intensity is increased by a factor of o = 1, 2, the surface, which before had only
modest transit patterns, becomes substantially flatter. This illustrates that the SFDSE solutions are affected
by the white noise and that it stabilizes them around zero.

Second the impact of fractional derivative: In Figures 3 and 4, if we set 0 = 0, we see that the surface
grows with increasing a.

We inferred from Figures 3 and 4 that the solution curves do not overlap. Additionally, the surface gets
smaller as the order of the fractional derivative gets smaller.

5 Conclusion

The stochastic-fractional (2 + 1)-dimensional DSEs (3) and (4) were taken into consideration in this article.
To acquire stochastic fractional hyperbolic, rational, trigonometric solutions, we applied the Riccati-



DE GRUYTER Stochastic fractional Davey-Stewartson equations = 11

Bernoulli sub-ODE and sine-cosine methods. These solutions are essential for comprehending many fun-
damentally complex basic phenomena. Additionally, the obtained answers will be very helpful for further
research in subjects like hydrodynamics, nonlinear optics, plasma physics, and other areas. Finally, the
influence of multiplicative Brownian motion on the exact solutions of the SFDSEs (3) and (4) is illustrated.
We came to the conclusion that the noise makes the solutions stable around zero. In the future work, we
might think about solving the (2 + 1)-dimensional DSEs equations using either additive noise or color noise.
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